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editor’s letter

C
H A N G E  I S  C O N T I N UA L .  All liv-
ing things are changing—con-
tinual growth and renewal. 
A healthy bacteria colony 
regenerates hourly; Atlantic 

cod mature in 2 to 8 years, regenerat-
ing their shoals every few years. Even 
our bodies, seemingly static, create 225 
billion new cells every day, replacing 
our 35 trillion cells every six months. 
Likewise, the Communications of the 
ACM team is dynamic; a collection of 
passionate leaders, making change 
and creating the future CACM through 
the actions, initiatives, and goals that 
we—the community of contributors, 
the editorial and production team, and 
the ACM membership—are pursuing 
today. In that vein, here are some of my 
ambitions for the Future CACM.

Building on Success and Excellence. 
CACM is excellent. Nearly every day, an 
ACM member tells me “it’s the only pub-
lication I always read,” and CACM’s web-
site and app provide easy access. Many 
members contribute articles to CACM 
as well. This is fantastic! But in 2017, the 
leading computing professional society,  
can and must do more. 

First and foremost, we will maintain 
and grow CACM’s excellence, continu-
ing to highlight and disseminate com-
pelling research, critical news, and inci-
sive viewpoints. Central to this objective 
is CACM’s position as a key leadership 
voice of the computing community. 
Leveraging computing’s rise, CACM 
should become a broader and more in-
fluential voice. We will expand coverage 
and, as appropriate, create new features 
and venues that stimulate and lead the 
discourse where computing’s progress 
and impact is most dramatic (for ex-
ample, artificial intelligence, Internet 
of Things (IoT), and online issues from 
“radicalization,” “fake news,” “cyberse-

curity,” and more). But beyond its core, 
CACM has several key dimensions of 
challenge and opportunity.

˲˲ How should CACM exploit new me-
dia to increase reach, access, and engage-
ment? The millennial computing pro-
fessionals were raised on smartphones, 
many where smartphones define Inter-
net access. How can CACM reach and 
engage information “snackers” on hand-
helds? CACM must be engaging, and per-
haps interactive, immersive, and more.

˲˲ Can CACM grow an energized, inter-
active community, creating a new venue 
for the voice of ACM members? (Show-
casing and empowering their leader-
ship, expertise, activities, and impact.) 
Our greatest unique strength is ACM 
members’ deep and broad technical ex-
pertise. If CACM can give the leadership 
of individual members greater voice, 
ACM’s impact and global relevance will 
increase around the world.

Grow the Computing Professional 
Community. ACM is the leading global 
society of computing professionals. Can 
CACM be relevant for all computing 
professionals across the globe? CACM’s 
core strength today is excellence and 
breadth across research, practice, and 
policy; topics that reach across technol-
ogy companies and academe. As “every-
one codes” and information underpins 
every aspect of society, the professional 
community and its needs are growing 
rapidly. ACM membership should be in-
dispensable for computing profession-
als working at the state of the art from 
academe to the tech industry world-
wide. To reach this broad and expand-
ing community, CACM must not only 
build on our successes, but also think 
and engage ambitiously!

ACM’s membership today is stron-
gest in North America and Europe, 
but it’s clear that sustained global 

leadership must recognize the demo-
graphics of growing communities in 
Asia (China, India, and more), South 
America, and even the Middle East and 
Africa. How will we make CACM rele-
vant in these varied settings? How can 
we give members in every geography a 
sense of ownership and participation? 
These significant challenges surely re-
quire creative engagement of leaders 
from all of these regions. 

We need YOU!
These are my ambitions for CACM, 

but your ambitions can shape CACM 
too! Can we do more? Certainly. Are 
there other critical directions? Per-
haps. How can they be achieved? ACM 
is a volunteer organization, so progress 
depends on your inspired and creative 
efforts. We need your help! 

We need new members of the edi-
torial board to drive ambitious new 
agendas, but also to sustain excellence. 
We need new member volunteers in 
diverse geographical, technical, and 
institutional settings to bring their cre-
ative perspectives, passion, and energy. 
They will create new CACM elements, 
and enable CACM to reach the broad-
est computing community. And we also 
need volunteers with vision and ambi-
tion to create a CACM that is not only 
a publication, but also gives members 
new venues and voice for their leader-
ship and impact. Join us in building 
the future Communications of the ACM.

Email your ideas (eic@cacm.acm.org)! 
And, of course your offers to help!

Andrew A. Chien, EDITOR-IN-CHIEF

Andrew A. Chien is the William Eckhardt Distinguished 
Service Professor in the Department of Computer Science 
at the University of Chicago, Director of the CERES Center 
for Unstoppable Computing, and a Senior Scientist at 
Argonne National Laboratory.
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cerf’s up

Eric Schmidt, executive chairman of Alphabet 
(Google’s parent company), recently drew my 
attention to the notion of “under-specification.”  
He reminded me that the Internet had benefited 

strongly from this concept. Several spe-
cific examples came to mind. The Inter-
net Protocol (IP) specification does not 
contain any information about routing. 
It specifies what packets look like as 
they emerge from or arrive at the hosts 
at the edge of the Internet, but routing 
is entirely outside of that specificationa  
partly because it was not entirely clear 
what procedures would be used for In-
ternet routing at the time the specifica-
tion was developed and, indeed, a num-
ber of them have been developed over 
time. There is nothing in the specifica-
tion that describes the underlying trans-
mission technology nor is there any-
thing in the specification that speaks 
to how the packet’s payload (a string of 
bits) is to be interpreted. These matters 
are open to instantiation independent 
of the specification of packet formats. 

Some of the under-specification can 
be a manifestation of layering that fig-
ured strongly in the ARPANET host-host 
protocols and was carried over in the 
Internet Protocol suite. The idea is that 
while there is a well-defined interface 
between the layers that specifies how 
information crosses the layer bound-
ary, the details of the layer above or be-
low are hidden. This feature allows for 
changes in the implementation of and 
even the characteristics of the upper or 
lower layer. For example, above the IP 
layer, one finds a number of different 

a	 This is not precisely correct since the notion of 
“source routing” is part of the specification and 
allows a host to force packets to flow along a 
path specified by intermediate IP addresses, but 
the general route generation and selection proc-
ess is independent of the IP specification itself.

protocols such as User Datagram Pro-
tocol (UDP) or Transmission Control 
Protocol (TCP) or Real-Time Protocol 
(RTP) that all send and receive Internet 
packets but they use and interpret the 
IP packet payloads in different ways. 
Below the IP layer one finds a variety of 
different transmission technologies in-
cluding Ethernet, Multi-protocol Label 
Switching, Frame Relay, Asynchronous 
Transfer Mode, Dense Wave-Length Di-
vision Multiplexing, and many others. 
The IP layer doesn’t really care how the 
packets are transported.

What is interesting to contemplate 
is whether the notion of under-spec-
ification that induces flexibility and 
anticipates new but unknown develop-
ments can be codified in a concrete way 
beyond the purely conceptual. Is there 
a way to measure the degree of specifi-
cation in the way that Claude Shannon 
found to specify information as entropy 
independent of semantics? Can some-
thing be fully specified, partly specified, 
or completely unspecified and how 
would these be described or measured 
more precisely? In circuit design, for 
instance, there is the notion of “don’t 
care” for some values in a Boolean rep-
resentation. Can this notion be applied 
to program specification as well as to 
protocol specifications? Are there de-
sign principles that one can derive from 
this notion of under-specification? 

I am reminded of an anecdote told 
about doing business with Chinese 
manufacturers. American companies 
produced very detailed specifications 
of what was to be fabricated down to 
the last detail and the Chinese compa-

nies produced exactly what was asked, 
at a price. But a Chinese company 
produced a less specific specification, 
leaving room for the manufacturer to 
innovate, leading to a design that was 
less expensive, easier to manufacture, 
and to maintain. 

One of my oldest friends, Jonathan 
Postel, was the Internet Assigned Num-
bers Authority for many years and was 
often quoted: “Be liberal in what you 
accept and conservative in what you 
send,” in reference to the implementa-
tion of protocols. His dictum was aimed 
at improving interoperability. Of course, 
people who are particularly concerned 
about security might take issue with this 
particular nostrum (and some have!). 

As may be apparent to readers who 
have gotten this far, I am not yet sure 
there is a there there, but I am fascinated 
by the possibility that it might be pos-
sible to extract some design principles 
from this notion that would lead to po-
tentially more robust and adaptable de-
signs. Think about what makes a chair a 
chair. It’s a thing to sit on, has legs and 
usually a back and maybe some arms. 
But there are so many things we recog-
nize as chairs that are quite varied in 
their specifics. Flexible design suggests 
to me that under-specification has some-
thing to do with essence or core concepts. 
I hope interested readers will take a mo-
ment to share their thoughts, particu-
larly if they see more deeply into this idea 
than I have at the present. 	

Vinton G. Cerf is vice president and Chief Internet Evangelist 
at Google. He served as ACM president from 2012–2014.

Copyright held by owner/author.
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ence would usually hear only the boss’s 
side of the conversation; see, for exam-
ple, the “Bob Newhart Tobacco video 
(Sir Walter Raleigh phone conversa-
tion)” at https://www.youtube.com/
watch?v=_XDxAzVEbN4. Consider 
Tim Berners-Lee or other World Wide 
Web evangelist trying to convince his 
boss that letting the whole world tap 
the organization’s expensive and se-
cure CPU cycles to support the Web for 
the benefit of all humanity would in-
deed be a good idea. As with Newhart, 
we would imagine hearing it from the 
boss’s perspective. For me, I knew 
Berners-Lee was onto something when 
only a month or so after I began experi-
menting with Mosaic and Netscape, I 
saw http://www.coca-cola.com printed 
on a can of Coke. 

�W. Terry Hardgrave,  
Cross Junction, VA  
ACM Member since 1967

How to Really Encourage 
Women in Computing 
Reflecting on my involvement in the 
software profession in the 1950s and 
1960s, when male and female partici-
pation were roughly equal, I can to-
tally agree with Valarie Barr’s view in 
her “From the ACM W-Chair” column 
“Gender Diversity in Computing: Are 
We Making Any Progress?” (Apr. 2017) 
and am astonished how few women 
enter or stay in the field 60-odd years 
later. Barr wrote that women are 
“hemorrhaging out the side and back 
doors” of the field after five years. 
The women I knew who headed out 
those doors did so because they be-
came mothers, so I think it important 
to compare the female dropout rate 
among software professionals with 
similar dropout rates in other fields. I 
suspect, at least in earlier times, they 
would be similar, though I am less cer-
tain about those rates today. Neverthe-
less, this kind of data is vital for under-
standing what is happening. Also, Barr 
mentioned ACM financial support for 

A
S  A  C O M B AT  veteran and 
more recently an indus-
try technologist and uni-
versity professor, I have 
observed with concern 

the increasing automation—and de-
humanization—of warfare. Sarah Un-
derwood’s discussion of autonomous 
weapons in her news story “Potential 
and Peril” (June 2017) highlighting 
this trend also reminded me of the cur-
rent effort to update the ACM Code of 
Ethics, which says nothing about the 
responsibilities of ACM members in 
defense industries building the soft-
ware and hardware in weapons sys-
tems. Underwood said understanding 
the limitations, dangers, and poten-
tial of autonomous and other warfare 
technologies must be a priority for 
those designing such systems in order 
to minimize the “collateral damage” 
of civilian casualties and property/in-
frastructure destruction. 

Defense technologists must be 
aware of and follow appropriate ethi-
cal guidelines for creating and man-
aging automated weapons systems of 
any kind. Removing human control 
and moral reasoning from weapons 
will not make wars less likely or less 
harmful to humans.

 Harry J. Foxwell, Fairfax, VA 

When the Web Arrived for Me 
Regarding Neil Savage’s excellent 
news story on Tim Berners-Lee, “Weav-
ing the Web,” and Leah Hoffman’s 
likewise excellent Q&A with Berners-
Lee, “This Is for Everyone,” (both June 
2017), I would also add that the cost of 
computing has come down so much 
that organizations today are able (if 
willing) to allow outsiders to use their 
CPU resources. This would have been 
unthinkable in the mid-1980s. A com-
puting colleague later suggested a rou-
tine based on the Bob Newhart-humor 
model, characterized by a phone call 
with a skeptical boss regarding new 
products or technologies. The audi-

DOI:10.1145/3117849		

Embed Ethical Guidelines  
in Autonomous Weapons 

ACM 
Transactions on 

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1  6/9/09  1:04 PM  Page 1

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3117849
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_XDxAzVEbN4
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.coca-cola.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.acm.org%2Ftaccess
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.acm.org%2Fsubscribe
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_XDxAzVEbN4


AUGUST 2017  |   VOL.  60  |   NO.  8  |   COMMUNICATIONS OF THE ACM     9

letters to the editor

female computer science students “to 
attend research conferences.” But at-
tending research conferences and the 
longevity of practitioner employment 
have almost nothing in common. 
Surely ACM’s “encouragement” mon-
ey could be spent in more direct and 
effective ways. 

Robert L. Glass, Toowong, Australia 

Author Responds: 
There is no data about women’s 
persistence in scientific and engineering 
fields, including computer science, in 
the 1950s and 1960s, and we cannot 
draw conclusions based on anecdotal 
information alone. Current studies 
show engineering today has the highest 
turnover rate for women when compared 
to, say, accounting, law, and medicine, 
though the vast majority continues 
working; only 22% who have left report 
they are now doing “family care.” Other 
research shows engineering and science 
culture is a much more significant factor 
in women’s lack of persistence than are 
family concerns. While attendance at 
research conferences may not translate 
directly into long-term practitioner 
employment, conference attendance does 
help sustain and increase excitement 
about staying in computer science. 

Valerie Barr, South Hadley, MA 

Causal Connections for Predictive AI 
As part of the “ACM Panels in Print” 
section “Artificial Intelligence” (Feb. 
2017), panelist David Blei said he 
believes computer science needs to 
identify the causal connections be-

tween data components, concluding 
that artificial intelligence, with its 
predictive capabilities, will be en-
hanced through causal inference. For 
example, the first step toward using AI 
in database systems is to analyze and 
create a data map of the complexity of 
the causal interconnections between 
the data components in a problem 
space. A data map connects a data 
component to other data components 
through causal interrelationships. 
A data map can be created through 
qualitative analysis of data collected 
for a particular problem. The qualita-
tive analysis could then take the form 
of “thematic analysis,”1 using systems 
diagramming to gain greater insight 
into the data. At that point it might be 
advantageous to start applying AI di-
rectly to the data. 

Researching the complexity of data-
base systems, I have thus created such 
a data map, which is now ready to move 
to the next stage of automation where 
predictive analytics can help improve 
management of database systems. 
Using an analogy of the CODEX, or 
Control of Data Expediently, my 
research into causal connections 
has identified a potential role for AI 
in automating continuously chang-
ing best practice, thus representing 
an agile approach to deciphering the 
complexity of interconnections and 
promising to help create an autono-
mous way to deliver best practice in 
database management. 

Reference 
1.	 Braun, V. and Clarke, V. Using thematic analysis in 

psychology. Qualitative Research in Psychology 3, 2 
(2006), 77–101. 

Victoria Holt, Bath, U.K. 

Correction 
In the ACM Member News column 
(May 2017), Dragomir Radev was mis-
takenly identified as a professor at the 
University of Michigan. Radev teach-
es at Yale University, where he also 
leads the Language, Information, and 
Learning at Yale (LILY) lab.  
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over are now learning to code.
Why study older adults in par-

ticular? Because this population is 
already significant and also quickly 
growing as we all (hopefully!) con-
tinue to live longer in the coming de-
cades. The United Nations estimates 
that by 2030, 25% of North Ameri-
cans and Europeans will be over 60 
years old, and 16% of the worldwide 
population will be over 60. There has 
been extensive research on how old-
er adults consume technology, and 
some studies of how they curate and 
produce digital content such as blogs 
and personal photo collections. But 
so far nobody has yet studied how old-
er adults learn to produce new technolo-
gies via computer programming.

Thus, to discover older adults’ mo-
tivations and frustrations when learn-
ing to code, I designed a 10-question 
online survey that asked about their 
employment status (such as working, 
semi-retired, retired), occupation, 
why they are learning, what resources 
they use to learn, and what has been 
the most frustrating part of their 
learning experience thus far.

The first challenge was finding a 
large-enough group of older adult 

learners to fill out my survey. Fortu-
nately, I created a popular learn-to-
code website called Python Tutor  
(pythontutor.com), which has gotten 
over 3.5 million total visitors from 
over 180 countries throughout the 
past decade. Approximately 16% of 
its user base self-report as aged 55 
and older, so there are plenty of older 
adults learning to code on there.

I deployed my survey to the Python 
Tutor website from March 2015 to 
August 2016 and collected 504 re-
sponses. Respondents were, on aver-
age, 66.5 years old, and came from 52 
different countries. Unsurprisingly, 
most were highly educated profes-
sionals in STEM (science, technol-
ogy, engineering, mathematics) 
fields, since they are amongst the 
most tech-savvy of their generation. 
Specifically, 18% of respondents 
were (either current or retired) scien-
tists and engineers, 18% were K–12 
and college teachers, 12% were soft-
ware developers hoping to learn new 
technologies, and 8% were business 
executives and managers.

Motivations
Why were our respondents learning 

Philip Guo 
Older Adults  
Learning Computer 
Programming: 
Motivations, 
Frustrations,  

and Design Opportunities
http://bit.ly/2rmGIa5

May 15, 2017

I recently published and presented a 
paper at CHI 2017 (the annual ACM 
Conference on Human Factors in 
Computing Systems, https://chi2017.
acm.org) called “Older Adults Learn-
ing Computer Programming: Motiva-
tions, Frustrations, and Design Op-
portunities” (http://bit.ly/2snS4LN). 
This paper won an Honorable Men-
tion award at the conference. Here’s a 
summary of the project.

There is now tremendous mo-
mentum behind initiatives to teach 
computer programming to a broad 
audience, yet many of these efforts 
(for example, Code.org, Scratch, 
ScratchJr, and Alice) target the young-
est members of society: K–12 and col-
lege students. In contrast, I wanted to 
study the other end of the age spec-
trum: how older adults aged 60 and 

How Adults Ages 60+ 
Are Learning to Code
Philip Guo discusses his project studying older adults  
that have chosen to learn computer programming.
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programming? The most common 
age-related motivations were:

˲˲ 22% wanted to learn to make up 
for missed opportunities during their 
youth.

˲˲ 19% wanted to keep their brains 
challenged, fresh, and sharp as they 
aged.

˲˲ 5% were directly motivated by 
younger relatives such as children or 
grandchildren.

Here’s a great anecdote about learn-
ing to make up for missed opportuni-
ties during youth. A 67-year-old retired 
chief information officer wrote in his 
survey response:

“I did a little programming when I 
was in school, and when I first started 
working. However, I got “kicked up-
stairs” [into management] quite quickly, 
and was never able to program profes-
sionally. […] I always wanted to be able 
to create programs but between work 
and family, never took the time. Now 
that I am retired, I am trying to fulfill the 
dream and learn.”

Relatedly, a 64-year-old retired net-
working engineer wrote about his de-
sire to keep his brain sharp and to cre-
ate technologies that benefit peers in 
his generation:

“First, by endlessly learning new 
things, I hope to delay or reduce the ef-
fects of senility on my brain. […] Second, 
to take advantage of data produced by 
the many health-related, sensor-based 
monitors, I want to help myself and oth-
er senior citizens maintain an indepen-
dent living lifestyle that is affordable by 
the masses.”

Frustrations
What got our respondents frustrated 
as they were learning to code? The 
three most commonly reported age-
related frustrations were:

˲˲ 14% were frustrated by perceived 
cognitive impairments, such as mem-
ory loss and difficulty in concentrat-
ing.

˲˲ 11% were frustrated by lack of 
free time since they often had other 
duties, such as being a spousal care-
taker.

˲˲ 10% were frustrated by lack of 
human contact with tutors or peers, 
since they must learn online and do 
not have convenient access to in- 
person classroom environments.

A 71-year-old retired IT technician  

humorously wrote about his own per-
ceived cognitive impairments:

“Given that I was a VERY early adopt-
er of microprocessor/microcontroller 
technology, I have NO fear of the equip-
ment or the concepts. But things that 
were “automatic” a few years back seem 
to take a lot more time and effort to di-
gest and store than they used to. Early 
onset Alzheimer’s? Probably not. ACS? 
(Advanced curmudgeon syndrome)—
Probably some of that.”

Design Opportunities
Inspired by the findings from this 
study, I applied the Learner-Centered 
Design framework developed by Mark 
Guzdial in his book Learner-Centered 
Design of Computing Education: Re-
search on Computing for Everyone 
(http://bit.ly/2seYahY) to propose de-
sign ideas for improving the learning 
experience for this older adult popu-
lation. Three main themes emerged 
from my design process:

˲˲ Targeting: Like everyone else, 
older adults want to feel that program-
ming curricula and tools “look like 
they’re for me”—that is, that they are 
properly targeted to the motivations, 
needs, and aesthetic preferences of 
this population. They do not want to 
be patronized, to be talked down to, or 
made to play with “kids’ toys.” Several 
survey respondents mentioned brain 
training games (for example, from 
Lumosity) as being popular with their 
peers, so perhaps framing program-
ming education in terms of brain-
training games could work well for 
this audience.

˲˲ Contextualizing: It is also im-
portant to ground learning materials 

in contexts that engage this learner 
population, rather than trying to find 
a generic “one-size-fits-all” solution. 
Examples of relevant contexts here 
include structuring curricula around 
coding projects to help older adults 
curate digital media, to perform  
genealogical and historical storytell-
ing, and to organize their personal 
healthcare data.

˲˲ Universal Design: The promise of 
universal design is that designing for 
the specific needs of a target popula-
tion (such as older adults) can lead 
to designs that benefit everyone. In 
this case, we may want to design next- 
generation pedagogical program-
ming environments that mitigate the 
effects of both cognitive and motor 
impairments, which will hopefully 
make it easier for older adults to learn 
to code without as many frustrations. 
If properly designed, these environ-
ments may actually end up benefiting 
learners of all ages.

Parting Thoughts
The tech world is notoriously youth-
centered: popular conceptions of who 
learns and does programming are 
filled with images of young people, 
often under 30 years old. Also, age 
discrimination (see https://bloom.
bg/2qCdIv6) is an all-too-common 
reality in the technology sector. To 
counteract these prevailing trends as 
people keep living longer in the com-
ing decades, it is vital for older adults 
to have equal access to high-quality 
computing and programming educa-
tion throughout their lives.

We have already made great 
strides in broadening participation 
of computing to traditionally under- 
represented groups ... but there is still 
much, much more work to be done. 
Efforts to spread the power and joy of 
computing for all should also include 
people of all ages.

That’s it for now! You can read my 
paper for more details: Older Adults 
Learning Computer Programming: 
Motivations, Frustrations, and De-
sign Opportunities, at http://bit.
ly/2snS4LN. 	

Philip Guo is an assistant professor of cognitive science at 
the University of California, San Diego.

© 2017 ACM 0001-0782/17/08 $15.00

Older adults do 
not want to be 
patronized,  
to be talked down to, 
or made to play  
with “kids’ toys.”  
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ing tools to manual proofs written by 
hand and checked by a proof assistant 
(a program that checks the correct-
ness of proofs in expressive logic). 

Preventing Software Hacks
Generally, computer code is written 
without any formal processes, and the 
main metric for testing it is simply trying 
it out and seeing whether it or not works. 
Testing does not necessarily guaran-
tee all the bases have been covered that 
might occur at runtime, or that it would 
prevent a malicious attacker who reads 
the program from devising something 
clever with which to undermine it. For-
mal software verification relies on math-
ematical theorems and reasoning and 
uses deductive techniques to check the 
most critical aspects of a system. Pro-
ponents say this technique is making 
hacker-proof software possible.

“A lot of the ways attackers take 
over programs on machines and the 
Internet is by exploiting security vul-
nerabilities, and there are many kinds, 
such as the buffer overrun vulnerabil-
ity, to which safe languages are just im-
mune,’’ notes Andrew Appel, professor 
of computer science at Princeton Uni-
versity, who is considered an expert in 
the program verification field. 

Formal software verification uses 
methods that don’t rely on running the 
program; rather, they analyze program 
text to prove things about its behavior 

A
T THE  UN IVERSITY of Wash-
ington (UW) Medical Cen-
ter, a radiotherapy system 
shoots high-powered ra-
diation beams into the 

heads of patients, to treat cancers of 
the tongue and esophagus. Any soft-
ware errors in the system could prove 
fatal, so engineers at the medical cen-
ter have teamed with a group of com-
puter scientists from the university to 
ensure the system will not fail, and that 
the beam will shut off if prescribed set-
tings go out of tolerance. 

This is made possible by a process 
known as software verification, and 
verifying implementations of critical 
systems like that radiotherapy setup is 
one of the things about which Zachary 
Tatlock is passionate. Over three years 
ago, Tatlock was a Ph.D. candidate giv-
ing a talk at the university on his thesis 
research in program verification. The 
lead engineer for the medical center’s 
radiotherapy team was in the audience, 
and asked Tatlock how they could apply 
verification to that system. “That prob-
ably helped me get hired,” Tatlock re-
calls. Today, he’s an assistant professor 
of computer science at the university 
and, with other colleagues and students 
at UW, has also been working with the 
team at the medical center ever since. 

What makes the software verifica-
tion process challenging in the case 
of the radiotherapy system described 

here is that it is written in a variety of 
languages, so different techniques 
have to be deployed to verify the soft-
ware in its entirety. The system has 
about a dozen components, each with 
different levels of criticality.

Software for logging an event, for 
example, is not as critical as soft-
ware that verifies the beam power has 
not become too high, Tatlock notes. 
“What we want to be able to do is en-
sure the reliability of all pieces,’’ he 
says. “We want to make sure there are 
no bugs that can affect the parts that 
are critical.” There are two or three 
components “where the rubber meets 
the road, and it’s super-critical to get 
them right,” he says. 

The radiotherapy system team uses 
powerful verification methods rang-
ing from automated theorem prov-

Hacker-Proof Coding
Software verification helps find the faults, preventing hacks.

Science  |  DOI:10.1145/3105423 	 Esther Shein
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 N on any possible input. Even using so-
called “safe” languages such as Java 
to write programs doesn’t necessarily 
guarantee they are correct, says Appel; 
they can still have bugs and do wrong 
things, just nothing catastrophic. Safe-
ty is always important, but correctness 
is crucial when it comes to the critical 
infrastructure components of a sys-
tem, he emphasizes.

Safety has been proven to be an issue 
with critical systems before, and in at 

least one case, put patients’ lives at risk. 
In 1982, Atomic Energy of Canada Lim-
ited (AECL) produced the Therac-25 
radiation therapy machine. The system 
was involved in at least six accidents be-
tween 1985 and 1987, in which patients 
were given massive overdoses of radia-
tion—sometimes as much as hundreds 
of times greater than normal, resulting 
in death or serious injury.

Among the findings of a commis-
sion that investigated the Therac-25 
was that AECL did not have the soft-
ware code independently reviewed, nor 
did it ever test the system’s software 
and hardware until it was assembled at 
the hospital.

“So if you want your programs to 
be correct and not just safe, then you 
need to prove that your program be-
haves according to some specifica-
tion,’’ Appel says. “You have to write 
down in a formal way what would be 
correct in terms of how its output re-
lates to its input, and then you have to 
find a way to assure that for any pos-
sible input, your implementation will 
satisfy its specification.” 

Appel is a member of a research 
project called DeepSpec, whose mis-
sion is to examine the full functional 
correctness of software applications 

and hardware so programs run the way 
they are supposed to run. To do this, 
DeepSpec is building tools for verifying 
that programs conform to deep speci-
fications—granular, precise descrip-
tions of how software behaves based 
on formal logic and mathematics—
and that software components such as 
OS kernels provably conform to their 
deep specifications.

Another DeepSpec member, Yale 
University computer science profes-
sor Zhong Shao, along with a team of 
researchers there, wrote an operating 
system called CertiKOS which uses for-
mal verification to ensure the code be-
haves exactly as is intended. “If the code 
and spec do not match, there is a bug or 
loophole,’’ explains Shao. “What a certi-
fied operating system provides you with 
is a guarantee there are no such loop-
holes; under every situation, the code 
will behave exactly like its specifica-
tion.” This guarantees hackers cannot 
exploit the operating system, he says. 

In addition to verification, the other 
factor that sets CertiKOS apart from 
other OSs is that it has an extensible 
operating system kernel, meaning it 
can easily be customized and adapted 
for many different settings so more 
features can be added, Shao says. Certi- 
KOS also can run multiple threads 
(small sequences of programmed in-
structions) simultaneously on multiple 
central processing unit (CPU) cores, a 
process known as concurrency.

The major questions facing Certi- 
KOS and other examples have to do 
with “semantics engineering,” the 
process of defining specifications and 
proof methodologies to minimize the 

cost of revalidation, observes Suresh 
Jagannathan, a computer science pro-
fessor at Purdue University. 

“I don’t consider this a limitation 
of these systems as much as an aspect 
of formal verification that will likely 
be increasingly important as we gain 
more experience with verification tools 
and proof assistants, and as we achieve 
more success in using these tools for 
verifying realistic systems,” he says. It 
will be critical to determine what pro-
cesses and methodologies need to be 
adopted to make proofs robust as spec-
ifications and implementations evolve, 
Jagannathan adds.

DeepSpec vs. Other Principles
The UW team uses DeepSpec princi-
ples to check the more heavy-duty com-
ponents of the radiotherapy system. To 
assess the parts of the system that are 
not as critical, the team uses “lighter-
weight, less-powerful techniques to 
ensure the correctness, so the guaran-
tees for those parts aren’t as strong, 
but it’s a better engineering trade-off,” 
Tatlock says. That’s because the Deep-
Spec principles typically require highly 
trained humans to prove they function 
correctly, he says. “They take a lot of ef-
fort in that style, but you’re rewarded 
by having a much stronger guarantee.’’ 

This begs the question: if the Deep-
Spec techniques could make absolute, 
iron-clad guarantees of the verification 
of software, why don’t we use them all 
the time to avoid crashes and bugs in all 
types of systems? The reason, says Tat-
lock, is cost. The proof system used by 
DeepSpec and the UW medical center 
radiotherapy team for the most critical 
components is too expensive to apply to 
all components, because it requires an 
expert to sit at a computer and type out 

DeepSpec is building 
tools for verifying 
programs, and 
software components 
such as OS kernels, 
conform to deep 
specifications. 
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ware need to be verified. Already, Appel 
points out, some verification tools are 
commercially viable. For example, an 
optimizing C compiler in France called 
CompCert is being evaluated by Airbus 
and European certification agencies 
for use in compiling the fly-by-wire 
software used to fly the Airbus jetliner. 

“Compared with the compiler Air-
bus currently uses, CompCert has the 
advantage of being proved correct, no 
matter what program is compiled,” 
he says. 

Other aeronautics agencies are also 
starting to use them. Formal verifica-
tion tools “have been shown to be ef-
fective at finding defects in safety-crit-
ical digital systems including avionics 
systems,” according to a 2017 report 
released by the U.S. National Aeronau-
tics and Space Administration (NASA) 
Langley Research Center. Also, the U.S. 
Federal Aviation Administration (FAA) 
has issued guidelines that allow the 
use of formal methods tools to replace 
some of the methods it uses for “certi-
fication credit.” 

NASA acknowledges this will be a 
slow process, noting, “There are still 
many issues that must be addressed 
before formal verification tools can 
be injected into the design process for 
digital avionics systems.” The report 
points out, “Most developers of avion-
ics systems are unfamiliar with even 
the basic notions of formal verifica-
tion, much less which tools are most 
appropriate for different problem do-
mains,” and skills and expertise will be 
needed to master the tools effectively.

The U.S. Defense Advanced Re-
search Projects Agency (DARPA) has 
developed a program called High-As-
surance Cyber Military Systems that 

takes a “clean-slate, formal meth-
ods-based approach to enable semi- 
automated code synthesis from ex-
ecutable, formal specifications.” The 
approach ensures a hacker-proof sys-
tem and “illustrates that we’re now 
at a point where such systems can be 
deployed in truly mission-critical envi-
ronments,’’ notes Jagannathan.

In recent years, the auto industry 
has become aware of how vulnerable 
cars are to hacking, and “they are ea-
gerly looking for solutions from se-
curity researchers and verification 
researchers,” Appel says. He believes 
in the next decade there will be more 
industries using software verification, 
and more software available for pur-
chase that has been verified. 

For software verification to become 
widespread, however, there must be 
trusted compilers to translate these for-
mal software verification methods, since 
they are written in high-level languages. 
Progress is being made, however, and 
when a trusted compiler becomes wide-
ly available, the issue of hacker-proof 
software may no longer be a wistful no-
tion, but a concrete reality. 	
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proofs so the computer can check them 
for every version of the system.

This can be time-consuming and 
inefficient. “Ideally, if you proved one 
version and made a small change, you’d 
only make a small change to the proof, 
but that’s not the way it works,’’ Tatlock 
says. Whenever even a small change is 
made to software code, “it can have very 
large consequences,’’ resulting in a big 
change in the proof. It might change 
some fact that’s relied upon throughout 
the rest of the proof, he adds. 

Other techniques are less powerful, 
like bounded model checking, which is a 
form of exhaustive testing, Tatlock says. 
This involves considering some compo-
nent and showing every possible execu-
tion of steps up to some bound is correct. 
“So I might make sure for the logging 
system, there’s no execution within 100 
steps that ever crashes. I get that by au-
tomatically testing every execution up to 
100 steps.” Yet, he reiterates, the guaran-
tee isn’t as strong, and bounded model 
checking up to 100 steps does not tell you 
anything about the 101st step.

Tatlock and his colleagues have built 
a suite of tools the engineers use in their 
regular development process. They in-
clude a checker that allows them to for-
mally describe the entire radiotherapy 
system to a computer and ensure the key 
components are individually correct. 
The researchers are now working on 
building verified replacements for those 
parts of the system. When all those in-
dividual system components are put 
together, he says, essentially, they are as-
sured top-level safety verification. 

The radiotherapy system is checked 
daily because “we want to make sure 
the code written by the engineers on 
that team will correctly turn off the 
beam if anything goes wrong,’’ Tat-
lock says. The work is similar to Deep-
Spec’s; it just emphasizes a different 
degree of automation.

While CertiKOS prevents one app 
from incorrectly reading the memory 
of another application, the UW team 
does not use it because CertiKOS is 
a traditional Unix OS meant for run-
ning Unix-style apps, and the pre-
ponderance of components in the 
radiotherapy system are embedded 
systems and just run code directly on 
the hardware, he says. 

Like Tatlock, Appel and Shao stress 
that only certain types of critical soft-
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VR and AR’s potential, too; each com-
pany has its own consumer-facing VR 
and AR hardware.

Today, Oculus’ Rift headset and 
Touch hand sensors retail for just under 
$600. AR apps abound on smartphones. 
Solutions like Sony’s PlayStation VR 
and Samsung’s Gear VR headsets have 
entered the market. More consumers—
and developers—are discovering the 
power of VR and AR. 

Except it’s no longer just for fun 
and games; thanks to relatively cheap 
and better technology, VR and AR are 
poised to transform how we work. 

VR and AR companies see the 
technology as the natural evolution 

C
O L L A B O R AT I O N  I S  I N .  From 
offices with open floor plans 
to new apps that promise to 
reinvent messaging and col-
laboration, companies find 

it buzz-worthy and attractive to the 
bottom line when their teams work 
better together. 

Need proof? Messaging app Slack 
has a $3.8-billion valuation. In Janu-
ary, collaboration app Trello was sold 
for $425 million to software company 
Atlassian. Tech heavyweight Amazon 
in February dropped Chime, a Skype 
and GoToMeeting competitor, seeing 
a potential profit center in the already 
crowded collaboration market.

Yet in the next few years, none of 
these companies may matter at all. 
That is a bold claim, but one that will 
come true sooner than anticipated if 
champions of virtual reality (VR) and 
augmented reality (AR) technology 
have their way.

VR places users in a virtual world, 
typically via a headset that immerses 
them fully in a digital environment. AR, 
however, lays digital visuals over what 
you see in the real world. Neither is 
new, but only recently have the technol-
ogies become affordable—and power-
ful enough—for adoption by consum-
ers and businesses, thanks to advanced 
VR systems like the Oculus Rift.

The Rift headset immerses the user 
in a digital world to a degree unseen in 
the VR tech of the 1990s and early 2000s. 
Oculus’ quality of VR was so impressive, 
the company was bought by Facebook 
for north of $2 billion in 2014. 

At the other end of the spectrum, 
simple but popular apps like the 
smash-hit Pokemon Go put AR in the 
hands of anyone with a smartphone. In 
Pokemon Go, users hunt cartoon mon-

sters in the real world, walking around 
their communities and interacting 
with digital content laid over real im-
ages captured by their smartphone’s 
camera. While the app does not match 
Oculus’ degree of realism, it became 
wildly popular nonetheless, break-
ing Apple’s App Store record for most 
downloads in a week.

Facebook’s investment in Oculus 
jolted companies into action, send-
ing a market signal that VR was here 
to stay. Pokemon Go’s popularity 
proved that users were comfortable 
with—and even keen on—AR expe-
riences. Companies like Microsoft, 
HTC, and Sony have acknowledged 

Technology  |  DOI:10.1145/3105444	 Logan Kugler

Why Virtual Reality  
Will Transform  
a Workplace Near You
A clutch of companies are changing how work gets done—by using 
virtual reality and augmented reality technologies. 

Microsoft’s Hololens in use in a warehouse facility in The Netherlands. 
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far more effectively, changing how her 
colleagues do their jobs and how her 
company hires. 

This becomes even more compelling 
when the sensors and smart machinery 
that comprise the Internet of Things 
(IoT) enter the picture. The company’s 
DottyView product works with Autodesk 
CAD software to visualize assets in 3D, 
along with live data from that equip-
ment or vehicle’s sensors. For instance, 
a ship captain could view a 3D model 
of his vessel complete with real-time 
status reports on various components. 
From there, problems could be diag-
nosed and solved from thousands of 
miles away. In an industry like commer-
cial shipping, this reduces—or elimi-
nates completely—the need for costly, 
time-consuming ship inspections that 
take place in all types of weather and 
conditions, including dangerous ones.

“These types of AR solutions allow 
remote workers to coordinate in real 
time on complex models and assess so-
lutions much quicker for field teams,” 
says Shah.

Workers Without an Office
AR and VR in the workplace can be 
life-changing, especially when your 
workplace is a hospital tasked with 
saving lives. Osso VR is a surgical 
simulation platform that trains resi-
dents and helps veteran surgeons 
warm up for procedures in a highly 
realistic virtual environment. 

“During my surgical training, I no-
ticed that healthcare providers mainly 
learned their technical skills on the 
job, often taking the expression ‘see 
one, do one, teach one’ quite literally,” 
says Justin Barad, cofounder of the 
company and a board-certified ortho-
pedic surgeon. “This led to frequent 
situations where teams didn’t seem to 
be as proficient as they could be dur-
ing certain procedures because of a 
lack of knowledge and experience.”

Users practice specific procedures us-
ing Osso VR and a set of controllers that 
track hand movements. That speeds up 
how surgeons go about their work.

“If I want to learn about a new tech-
nique or device, I typically will attend 
a course,” explains Barad. “These are 
usually weekend affairs in a remote 
location, sometimes even across the 
country. Finding the time to make it 
to one of these courses is difficult as 

of popular collaboration apps; in-
stead of desktop interfaces or ping-
ing phone apps, however, they envi-
sion a world in which we collaborate 
with coworkers and peers in highly 
realistic virtual or virtually augment-
ed environments—a more immer-
sive, versatile, and natural way to get 
business done.

This is no pipe dream like the VR of 
decades past. Thanks to the commer-
cial viability of popular systems and 
apps, ambitious VR/AR products are 
already changing how professionals 
work, train, and cooperate. Company 
reps use the technologies to better 
train for customer-service interac-
tions and to troubleshoot issues fast-
er in real time using digital models. 
Manufacturers rely on the technology 
to better collaborate on the design 
and maintenance of components, 
and hospital systems employ VR and 
AR to remotely train doctors faster, 
less expensively, and more effectively. 

This is just the beginning. Your 
next meeting might take place in a VR 
environment that makes it easier to 
identify who’s speaking and how oth-
ers feel about your ideas (if Peter Dia-
mandis’ company High Fidelity, which 
creates “open source software for cre-
ating, hosting, and exploring shared 
VR experiences,” has its way). Entire 
collaboration exercises or corporate re-
treats might be hosted in virtual envi-
ronments (courtesy of technology like 
that offered by AltspaceVR, a virtual re-
ality software company building a new 
communication platform already used 
by people in more than 150 countries) 
Training on everything from operating 
equipment to combatting sexual ha-
rassment at work could become a lot 
easier and more effective, thanks to VR 
in the workplace.

“Phones will disappear,” predicts 
Ajay Shah, cofounder and business de-
velopment head at Dotty Digital, maker 
of the first collaborative environment 
for working on three-dimensional (3D) 
models over a Web browser, a system 
which includes AR components. “Ev-
erything is moving to wearable tech 
and everything will be viewed with AR, 
so you can still capture your true en-
vironment. Everything will be synced 
from voice commands and eye tracking 
with potentially a watch for touch. The 
tech already exists.”

That tech could make your work-
place very different from the one you 
know today.

Real Business—Virtually
Dotty’s AR solutions work with smart-
glasses from ODG, which raised the 
largest Series A (first significant round 
of venture capital financing) in wear-
ables when it scored $58 million in 
2016. Thanks to Dotty’s tech, users see 
3D models projected on their lenses; 
they can then collaborate digitally with 
other users viewing the same model or 
visuals, completely hands-free. Right 
now, Dotty sees the biggest use cases 
in retail, oil and gas, and manufactur-
ing workplaces.

Such technology can change how 
retailers work and consumers shop. 
As an example, the company’s 3D 
scanning app could be used by a sun-
glasses retailer to scan customer faces 
and digitally overlay different styles 
of shades. That fundamentally alters 
how service reps do their jobs; instead 
of answering sizing or availability 
questions, reps can provide higher-
level consultations that require more 
training, but also increase the per-
ceived value of the product or service 
they are selling.

Collaborative 3D models could 
change how manufacturers work, too. 
Instead of a field engineer constantly 
traveling between locations, she could 
troubleshoot machinery and refine 
product designs in real time, in tan-
dem with colleagues back at the home 
office, from anywhere in the world us-
ing Dotty’s collaborative AR environ-
ment. In turn, she could scale herself 

Thanks to the 
commercial viability 
of popular systems 
and apps, ambitious 
VR/AR products are 
already changing how 
professionals work, 
train, and cooperate.
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surgeons barely have enough time 
outside of the hospital as it is.”

With a system like Osso VR, hospi-
tals and healthcare systems can ensure 
these professionals are completely 
prepared and confident before they 
perform life-and-death procedures, re-
ducing the likelihood of mistakes and 
improving outcomes—all with a frac-
tion of the time and hassle required by 
in-person training.

Yet AR and VR in the workplace do 
not need to save lives to improve them. 
Atheer creates AR/VR hardware and 
software solutions for deskless employ-
ees. The company’s AiR Suite provides 
visual and non-interruptive collabora-
tion, communication, and workflow 
management on commercially avail-
able smartglasses. The result? Work-
ers can collaborate with headquarters 
without taking their hands, or eyes, off 
the job in front of them.

The company also manufactures its 
own smartglasses that are compatible 
with the system, the AiR Glasses. Pow-
ered by the Android operating system, 
the glasses connect to Wi-Fi, Bluetooth, 
and 4G LTE for maximum access to 
digital information in the field. Work-
ers control applications displayed on 
the glasses using hand gestures, head 
movements, and voice commands.

The company cites applications 
in logistics/warehousing, construc-
tion, and industrial sectors as target 
sectors for the technology. These in-
dustries share commonalities: field 
workers who need to learn and com-
municate, but who may not have the 
ability to use a mobile device or on-
site machine to do so. 

Then, of course, there are the com-
panies who want to be the new Slack 
(that is, a popular collaboration solu-
tion), but for VR. 

Software from AltspaceVR gives 
companies and individuals the abil-
ity to connect with others in a shared 
digital environment. Using a VR head-
set like the Oculus Rift, HTC Vive, or 
Samsung Gear VR, users can visually 
brainstorm like they are in the same 
room, or conduct more natural meet-
ings than otherwise possible through 
video or voice conferencing. 

VR company High Fidelity also has 
a platform-first approach. The compa-
ny provides users with an open-source 
system that works with major com-

mercial VR headsets, which allows 
them to create highly scalable virtual 
environments using common tools. 

These virtual environments offer 
real benefits to companies—especial-
ly as many firms implement remote 
work policies.

“A good portion of our team is re-
mote and we’re already seeing VR be-
come useful as a productivity tool,” 
says Barad at Osso VR. “We often have 
our daily meetings in VR. This allows 
us to function like we’re all in the same 
physical space. 

“I can see this supplanting video-
conferencing in the near future.”	

Further Reading

Myers, B.
Going to Work in VR Will Actually Be Pretty 
Great—We Swear, WIRED, May 7, 2016, 
https://www.wired.com/2016/05/going-
work-vr-will-actually-pretty-great-swear/

Lopez, M.
Augmented And Virtual Reality Fuel The 
Future Workplace, Forbes, December 
11, 2016, http://www.forbes.com/sites/
maribellopez/2016/11/11/augmented-
and-virtual-reality-fuel-the-future-
workplace/#68575e5c198e

McGhee, B.
How VR Will Change the Workplace, 
AndroidPit, February 9, 2017, https://www.
androidpit.com/how-vr-will-change-the-
workplace

Logan Kugler is a freelance technology writer based in 
Tampa, FL. He has written for over 60 major publications.
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A ship captain could 
view a 3D model  
of his vessel with 
real-time status 
reports on  
various components.  
From there, problems 
could be diagnosed 
and solved  
from thousands  
of miles away.
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PURSUING ENERGY 
EFFICIENT COMPUTING

“I am excited 
about making 
computing as 
energy efficient 
as possible, 
which means 
affordable and 

accessible,” says Luca Benini, 
professor of Digital Circuits and 
Systems in the Department of 
Information Technology and 
Electrical Engineering at ETH 
Zurich. “This is what my 
research has focused on my 
entire career: having energy 
efficient computing at your 
fingertips whenever you need 
it—at a minimal cost and with 
high availability.”

Benini earned his 
undergraduate degree in 
electrical engineering from 
the Università di Bologna, and 
received both his master’s and 
Ph.D. degrees in that discipline 
from Stanford University. 

Watching people at Stanford 
learn about things and then 
bring them into being struck a 
chord with Benini. “Science is 
not only learning, but making 
things practical and changing 
peoples’ lives,” he explains. 
“This was an attribute I first saw 
at Stanford and it changed my 
approach to problems and made 
me excited by what I was doing.”

After graduating from 
Stanford, Benini started 
working at Hewlett Packard. 
Within a year, he had received 
an offer from his alma mater to 
become a professor of electrical 
engineering, which he accepted. 
While there, he also served 
as a visiting professor, first at 
Stanford and then at EFPL in 
Switzerland. 

Benini has also worked as a 
consultant for industry.

He joined ETH Zurich in 2012. 
“I wanted to move from abstract 
research into making chips, 
which what I have been doing the 
past four years,” he says. 

Benini’s focus remains 
on making computation 
increasingly energy efficient.

—John Delaney

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.wired.com%2F2016%2F05%2Fgoing-work-vr-will-actually-pretty-great-swear%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.androidpit.com%2Fhow-vr-will-change-the-workplace
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.wired.com%2F2016%2F05%2Fgoing-work-vr-will-actually-pretty-great-swear%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.androidpit.com%2Fhow-vr-will-change-the-workplace
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For example, according to George, 
“80% of the calls an airline receives to 
change a ticket do not result in the tick-
et changing,” because the person may 
not efficiently be made aware of all of 
the terms and conditions involved, 
such as change fees or scheduling is-
sues.  The AI system can quickly pro-
vide this pertinent and relevant infor-
mation to the caller, without engaging 
the services of a live agent. “By using 
bots, customer call volume can be re-
duced [significantly].”

Indeed, AI is being used by customer 
contact centers as a contextual knowl-
edge management system.  “Some of 
the work we do is around specifically 
making sure that customers and con-
tact center agents have the right in-
formation in real time,” George says, 
which allows them to serve customers 
with the information they need imme-
diately, eliminating the need to esca-
late an issue to a specialist or manager. 

Astute Solutions also uses machine 
learning to track the behavior of its 
agents, so the system can learn the most 
appropriate responses to questions, for 
use in its automated bots and to train 
other agents. The company using the 
system can specify thresholds for what 
constitutes a successful behavior—such 
as requiring that 80% of agents must 
recommend a specific course of action 
in order for the system to recognize that 
action as the “ideal” response, and can 
set the appropriate learning period, re-
viewing interactions over the past day, 
week, month, or other time frame.

Multi-Channel Support
Artificial intelligence can do more than 
simply recognize patterns in call center 
interactions. Andrew Burgess, a stra-
tegic advisor at Celaton, a U.K.-based 
provider of machine learning technol-
ogy to contact centers, says that when 
deployed correctly, AI can provide en-
hanced service across a variety of plat-
forms, which is how today’s customers 
demand to engage with companies.

C
USTOM E R CONTACT CENTERS 

are most efficient when they 
are able to automate routine 
tasks and quickly route call-
ers to human agents who can 

solve issues in a timely and courteous 
fashion. In years past, rules-based de-
cision matrices (such as “press 1 for 
sales, press 2 for technical support”) 
were the de facto standard for “intel-
ligent” customer service systems, and 
often left customers frustrated and an-
gry by the time they reached a live hu-
man being.

Advances in artificial intelligence 
are yielding significant benefits for or-
ganizations that deploy the technology 
in their call centers. Indeed, rather than 
simply being used to replace contact 
center workers, artificial intelligence 
(AI)-based technologies, including ma-
chine learning, natural language pro-
cessing, and even sentiment analysis, 
are being strategically deployed to im-
prove the overall customer experience 
by providing functionality that would 
be too time-consuming or expensive to 
do manually.

“It’s a lot more prevalent than peo-
ple think,” explains Justin Robbins, 
content director for the International 
Customer Management Institute and 
HDI.  He cites the example of cross- 
language email support that is made 
more seamless by the integration of 
natural language processing.

“You may be speaking German, but 
when it comes to me as an agent, I read 
it in English that is fully contextual, and 
when I reply in English, thanks to natu-
ral language processing, it is returned 
to you in German, and it’s back in your 
natural language, in context,” Robbins 
says, discussing the technology that 
is currently available and deployed in 
some international contact centers via 
their text-based chat applications. “To 
the customer, it has no impact on your 
experience, but we as agents, it now al-
lows me to help you without the frus-
tration of language barriers.”

Adoption Driven by 
Customer Expectations
Perhaps the biggest driver of AI in cus-
tomer contact centers is the consumer 
acceptance of AI technology in devices 
such as Apple’s Siri, Amazon’s Alexa, 
and Google’s Home Assistant, which 
have conditioned consumers to be able 
to ask a question in a conversational, 
natural tone, and have the answer re-
turned to them quickly. That has con-
ditioned consumers to demand the 
same level of interaction when dealing 
with the customer care division of the 
companies and brands with which they 
interact on a regular basis.

“There’s a set of evolutions in con-
sumer behavior,” says Alex George, 
chief technology officer of Astute So-
lutions, a provider of call center tech-
nology to businesses such as McDon-
ald’s Corp., British Airways, L’Oreal, 
and Dunkin’ Donuts. “We see that 
people are trying to achieve more in 
short conversations.”

Astute Solutions uses artificial in-
telligence technology in a few distinct 
ways.  The company uses AI “bots” to 
handle routine tasks by utilizing natu-
ral language processing to interpret 
what customers are asking, search the 
business knowledge base system for 
an answer, and then interpreting this 
raw data into an intelligent, human-
friendly response.

Society  |  DOI:10.1145/3105442 	 Keith Kirkpatrick

AI in Contact Centers 
Artificial intelligence technologies are being deployed  
to improve the customer service experience.
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For example, Celaton’s inSTREAM 
platform allows many routine informa-
tion requests, which often come in via 
email, to be automatically handled by 
an intelligent ‘bot’ that assesses the 
nature of the request, and then routes 
the query to the proper second-level 
live agent, rather than relying on costly 
front-line service agents.

“The best example we have at the mo-
ment is with one of our clients, a train 
operating company,” Burgess says. “A 
lot of people email them, and they may 
be complimenting, complaining, or 
querying something. For example, the 
customer could be emailing in because 
they were on the 8:56 from London to 
Manchester and the Wi-Fi was out.”

Burgess highlights the power of ma-
chine learning and natural language 
processing to quickly process front-end 
requests, which often make up a signifi-
cant amount of call volume and labor 
costs.  “inSTREAM essentially reads that 
email, understands what the customer 
is asking, and then will categorize that 
email and send it to the right person in 
the organization,” he says. 

“It’s really taking that front-end in-
put, understanding what the problem 
is, and then finding the best person to 
[handle] it,” Burgess says. The technol-
ogy has “reduced the requirement for 
labor by 85% on that task.”

AI technologies such as machine 
learning can also be used to help cus-
tomer service agents in their real-time 
phone interactions with customers.  
One of the ways AI has been used is to 
monitor and analyze speech patterns 
and inflections of callers, as well as re-
viewing specific words, to determine 
when an interaction may be in danger 
of escalating. Indeed, “sentiment anal-
ysis,” where a system will detect chang-
es in tone, speech patterns, or volume, 
can often be useful not only in address-
ing a situation in real time that needs 
to be escalated to a manager, it can also 
be used as a training aid so agents can 
learn to better recognize signs of stress 
or anger during an interaction. It can 
also suggest ways for an agent to re-
duce the stress level of a conversation.

Challenges with AI
Despite the ability of AI to improve cus-
tomer experiences, many call centers 
and organizations have not yet adopted 
the technology.

“Cost is the upfront issue,” Robbins 
says, noting the initial implementation 
of new technology can be a barrier for an 
organization that has already made sub-
stantial investments into existing tech-
nology and agents.  However, “the hid-
den one, which [companies that want to 
deploy AI-based customer service] don’t 
realize until they start talking to people, 
is the work and effort that’s required to 
program on the back end.  That’s the 
other thing about analytics and AI—it’s 
not fine-tuned out of the box.”

The sheer number of possible phras-
es, words, and interactions does make 
it more challenging to automate the 
customer service experience, though 
with machine learning technology that 
can review thousands or millions of in-
teractions, organizations can tailor re-
sponses based on its learnings.  

“The other area where inSTREAM 
has additional capability is it will sug-
gest possible answers,” Burgess says, 
noting that Celaton’s machine learn-
ing technology can review thousands 
of possible answers to a particular 
question, and then filter and return 
three or four choices that best address 
the question.

“It makes the whole process much 
more efficient,” Burgess says. “It’s 
the ability to extract meaningful, 
structured data from unstructured 
input,” like text or email messages 
sent by customers. 

Nevertheless, ICMI’s Robbins 
notes most of the systems currently 

available—even those that feature 
some degree of machine learning—
still require a significant amount of 
training and programming to incor-
porate organization-specific terminol-
ogy and processes. Even similar types 
of companies may not use the same 
words or phrases to refer to similar 
tasks, and it’s up to the organization 
to customize the system for their 
needs, which can be a costly and time-
consuming process.

 “When [customer service] is done 
well, you still need live agents,” Robbins 
says, noting that customer service fea-
tures far more variability than other in-
dustries that have been successfully auto-
mated, such as automobile production. 

“With production, to make a car it’s 
the same process, the parts all need to 
come out the same, and programming 
the machines is always the same,” 
Robbins says. “With this industry, hu-
mans aren’t the same—they’re highly 
volatile. The programming for [contact 
centers] varies; the language isn’t al-
ways logical.  That’s where it gets more 
complicated.”

That said, researchers are still en-
couraged by the progress being made 
in this area, and expect advances to 
continue.

“The amazing pace of technical in-
novation in the speech-to-text and text 
analysis area has lured researchers 
from diverse areas to work in fun and 
productive teams,” says Mei Kobayashi, 
manager, Data Science/Text Analysis, 
for NTT Communications, formerly of 
IBM Research Japan. “There has never 
been a more exciting time to be work-
ing in this area.”	

Further Reading

White Paper: How are Artificial Intelligence 
& Virtual Assistance Changing  
the Contact Center?:   
https://www.callcentrehelper.com/report.
php?id=185 

Let’s Chat: 4 Limitations of Automated Agents 
in the Contact Center:   
http://www.bitpipe.com/detail/
RES/1483926562_479.html 

Video-IPSoft’s Amelia:   
https://www.youtube.com/
watch?v=KgSw8ckG7Jo 

Keith Kirkpatrick is principal of 4K Research & 
Consulting, LLC, based in Lynbrook, NY.
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One issue slowing  
the proliferation  
of AI in customer 
contact centers  
is “the work and 
effort that’s required 
to program on  
the back end ...  
it’s not fine-tuned out 
of the box.”
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Charles P. ‘Chuck’ Thacker:   
1943–2017

In Memoriam  |  DOI:10.1145/3107180 	 Lawrence M. Fisher

ceive the 2009 ACM A.M. Turing Award 
“for the pioneering design and realiza-
tion of the first modern personal com-
puter—the Alto at Xerox PARC—and 
seminal inventions and contributions 
to local area networks (including the 
Ethernet), multiprocessor worksta-
tions, snooping cache coherence pro-
tocols, and tablet personal computers.”

In an interview in the July 2010 issue 
of Communications, Thacker said, “I can 
lurk at a lot of different levels. I have de-
signed chips, I can design logic, I can 
design systems, and I can write software 
up to and including user interfaces.” He 
said his work on Ethernet at PARC, and 
on Firefly and fault-tolerant networks at 
DEC, “have a common thread, which is 
they are part of a distributed system—
they don’t stand in isolation.” The Alto, 
he recalled, was a “nice” single-user 
machine, but its “real power” was un-
leashed by networking.

Thacker said the “secrets for his de-
cades of continual success” included: 
strive for simplicity, build a kit of reus-
able tools, insist on sound specifica-
tions, think broadly, and make sure 
your collaborators also succeed.

In 2010, ACM then-president Wen-
dy Hall said Thacker’s “contributions 
have earned him a reputation as one 
of the most distinguished computer 
systems engineers in the history of the 
field. His enduring achievements—
from his initial innovations on the PC 
to his leadership in hardware develop-
ment of the multiprocessor worksta-
tion to his role in developing the tab-
let PC—have profoundly affected the 
course of modern computing.”

Communications editor-in-chief An-
drew A. Chien observed, “Chuck not 
only made seminal contributions to 
computer architecture, but was a tre-
mendous inspiration to the computer 
systems community through the beau-
tiful simplicity of his designs and gen-
erous mentoring of young researchers 
and new ideas.”	

—Lawrence M. Fisher

M
I C R O S O F T  R E S E A R C H E R 

Ch a r l e s  P.  T h a c k e r , 
awarded the 2009 ACM 
A.M. Turing Award in rec-
ognition of his pioneer-

ing design and realization of the first 
modern personal computer, and for his 
contributions to Ethernet and the tablet 
computer, died Monday, June 12, at the 
age of 74, after a brief illness.

Thacker, born in Pasadena, CA, on 
Feb. 26, 1943, earned his bachelor of 
science degree in physics from the 
University of California, Berkeley (UC 
Berkeley) in 1967. 

In 1968, Thacker joined UC Berkeley’s 
“Project Genie” to finance a graduate 
degree in physics. Instead, he recalled, 
“I went to work for this computer project,” 
which the Berkeley Time-sharing System, 
commercialized by Scientific Data 
Systems as the SDS 940. 

Thacker joined Butler Lampson (re-
cipient of the 1992 ACM A.M. Turing 
Award) and others to launch the startup 
Berkeley Computer Corporation (BCC). 
While BCC was not successful, this 
group became the core technologists 
of the Computer Systems Laboratory at 
Xerox Palo Alto Research Center (PARC).

Thacker spent the 1970s and 1980s 
at PARC. There, he led the project that 
developed the Xerox Alto personal com-
puter system, the first computer de-
signed from the ground up to support 
an operating system based on a graphi-
cal user interface. The hardware of the 
Alto was designed mostly by Thacker, 
with Lampson developing its software. 

He also is credited as co-inventor 
(along with Robert Metcalfe, David 
Boggs, and Lampson) of the Ethernet 
family of networking technologies, de-
veloped at PARC between 1973 and 1974. 

In 1983, Thacker was part of the 
group of computer scientists led by 
Robert Taylor (manager of PARC’s Com-
puter Science Laboratory) that left PARC 
to found the Systems Research Center 
(SRC) of Digital Equipment Corp. (DEC). 
During his tenure there, Thacker devel-

oped Firefly, one of the first multiproces-
sor workstation systems. 

In 1997, he joined Microsoft Re-
search, where he helped establish Mi-
crosoft Research Cambridge at Eng-
land’s University of Cambridge. 

Returning to the U.S., Thacker de-
signed the hardware for Microsoft’s Tab-
let PC, based on PARC’s “interim Dyna-
book” (which was never built), and the 
Lectrice, a pen-based hand-held com-
puter prototype developed at DEC SRC.

In 1984, Thacker, Lampson, and 
Taylor received the ACM Software Sys-
tems Award “for conceiving and guid-
ing the development of the Xerox Alto 
System, which clearly demonstrates 
that a distributed personal computer 
system could provide a desirable and 
practical alternative to time-sharing.” 
They also were named ACM Fellows in 
1994 in recognition of that work.

In 2004, the National Academy of 
Engineering awarded Thacker, along 
with Alan C. Kay, Lampson, and Taylor, 
its Charles Stark Draper Prize “for 
the vision, conception, and develop-
ment of the first practical networked 
personal computers.”

In 2007, Thacker was awarded the 
IEEE John von Neumann Medal for his 
“central role in the creation of the per-
sonal computer and the development of 
networked computer systems.”

In 2010, ACM chose Thacker to re-

“I have designed 
chips, I can design 
logic, I can design 
systems, and I can 
write software up to 
and including user 
interfaces.”
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had a good journey. But quite aside 
from being a socially graceful exercise, 
the questions also produced some 
interesting responses. These range 
from F.C Williams’ typically terse and 
somewhat cheeky ‘no-comment’ re-
sponse, “I’m not really interested in 
computers. I mean it’s just no good 
asking me a question like that. I made 
one, and I thought one out of one 
was a good score so I didn’t make any 
more”b to Allen Coombs’ much more 
loquacious 1,500-word response.

It is fair to say that predicting the 
future with any degree of accuracy is 
a tricky business. For my own part, my 
recent track record leads me to agree 
with Jane Austen’s Emma, who opines 
“I begin to doubt my having any such 
talent.”c

As part of my work I lead a research 
team that has a very successful track 
record in being awarded research 
grants from the European Commis-
sion, and others. This funding is 
critical for keeping together our in-

b	 All the quotations from the Pioneers record-
ings are drawn from my own transcriptions.

c	 Austen, J. Emma, Chapter XI.

I
N THE 1970S,  Chris Evans, a psy-
chologist and computer scien-
tist on the staff of the National 
Physical Laboratory, Tedding-
ton, observed that many of the 

first-generation pioneers of modern 
computing; the people who can rea-
sonably be crediting with laying the 
foundations of the digital age, were still 
with us. Chris conceived the idea that 
these people should be interviewed, 
and their recollections of the projects 
they led, the people they worked with, 
and the genesis of their ideas should be 
recorded for future generations. Tragi-
cally, aged only 48, Chris succumbed to 
cancer before he was able to complete 
the interview series he planned. Further 
interviews were carried out by Brian 
Randell, Simon Lavington, and others, 
but without intending any disservice to 
their sterling efforts, the conversations 
featuring Chris demonstrated standard 
of professionalism and ease within the 
milieu that really sets them apart.

The Evans interviews were released 
by the Science Museum, London,a as 

a	 Published by Computer Capacity Manage-
ment Limited Reading and Hugo Informatics.

a set of 20 audio recordings under 
the title “The Pioneers of Comput-
ing.” Almost 20 years ago, I became 
closely involved with the “Pioneers” 
series, transcribing, documenting, 
and annotating the interviews in col-
laboration with the Science Museum. 
One of the signature features of Chris 
Evans’ interviewing technique was to 
conclude most of his recorded con-
versations with a couple of questions 
broadly concerned with prognostica-
tion. The first was to ask the interview-
ee to consider their state of mind at 
the time they were undertaking their 
pioneering work, and to say how they 
would have expected computing to 
have developed up to the present day 
(that is, the mid-1970s).

The second signature question 
of the Evans interviews encouraged 
the pioneers to look forward 10 or 20 
years and indicate how they expected 
computing to progress into the 1990s. 
These questions have always struck 
me as being a good way to close out a 
somewhat technical conversation in 
a relaxing and informal way; more or 
less the complement of opening an 
interview by asking if the interviewee 

Historical Reflections 
Prophets, Seers,  
and Pioneers
Reflections on historical prognostications for the future.

DOI:10.1145/3108926	 David P. Anderson
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we’re going to have to make comput-
ing facilities available everywhere.”

Arthur W. Burks, senior engineer 
on the ENIAC, drew a distinction be-
tween engineering and theory: “Well, 
we need to divide computing science 
into the computers proper and the 
theory of computers. I think for com-
puters it is clear that they become 
cheaper and faster and that the revo-
lution of computers in terms of how 
they interact with us and that the uses 
that we make of them will continue 
apace at least for the next 10 years. I 
think the theory of computers has de-
veloped much more slowly and I am 
not sure when there will be important 
breakthroughs in the theory of com-
puters.”

Konrad Zuse, the prodigious Ger-
man computer pioneer contrasted 
the development of hardware and 
software, but also wanted to sound a 
cautionary note: “When I was a pio-
neer in the field and my colleagues 
were working in the two fields and 
translating one and another. Today, 
you have specialists for hardware and 
specialists for storage techniques, 
specialists for languages, specialists 

ternational team of experts, and for 
recruiting new talent. The work that 
it supports keeps us embedded in the 
leading research in our field and sup-
ports international research collabo-
ration on a reasonably large scale. For 
these reasons, it is important to have a 
keep a close eye on any broadly ‘politi-
cal’ developments that might affect 
us, as well as paying attention to pure 
research matters. More than one year 
ago, as I considered how the Brexit 
vote would turn out, I was certain the 
result would be close, but I was very 
confident that the voters would, in the 
end, decide that continued member-
ship of the EU was the wisest course 
of action. Areas of the country that 
benefitted most from regional and 
other support would surely realize 
where their interests were best served. 
Things would go on pretty much as 
they were. Having learned little from 
the experience of getting wrong a crit-
ically important prediction on mat-
ters where I am very well informed, I 
turned my attention to the 2016 U.S. 
Presidential election. It turns out that 
being relatively ignorant did nothing 
to improve my crystal-ball gazing.

One of the themes that emerged 
from the responses given to Chris Ev-
ans by the Pioneers, concerned an ex-
pectation that the costs of computing 
would fall. Another concerned com-
munications infrastructure. 

John M.M. Pinkerton, one of the 
leading figures involved with the 
LEO computer hit the nail fairly well 
on the head in saying: “Well a great 
many things are going to happen but 
the major influences I think are these: 
that first of all the cost of processing 
and the cost of storage is continuing 
to fall, it’s fallen a lot in the last 10 
years and it’s continuing to fall and as 
far as I can see its going to go on fall-
ing. But what doesn’t fall is the cost of 
communications, and also the cost of 
using people doesn’t fall, it tends to 
go up. The result of this is there won’t 
be anything like the obsession there 
has been with the efficient use of pro-
cessing or storage but there will be 
concern over the costs of communica-
tions. Not only that, there will be a de-
sire for everybody to have direct per-
sonal access to computing potential 
and because data arises everywhere 
and because people are everywhere 
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come right down. So that, high band-
width shouldn’t cost very much. This 
is all extrapolating and glossing over 
all the political and organizational 
problems. With regard to semicon-
ductor technology it’s not quite so 
clear but I think one could say that 
there’s probably a factor of at least 
two and perhaps as much as 10 avail-
able in the speed, power bandwidth, 
and so on. Derived from things like 
iron implantation and so forth so 
that there’s quite a lot to be gained 
but perhaps not as … not quite so 
much as in communications. Again, 
in storage—the technology is proba-
bly tied rather closely to that of semi-
conductors. So, in general you can 
say there will be cheaper machines, 
slightly faster machines and almost 
unlimited communications.” 

Harold L. Hazen, who contributed 
significantly to the theory of servo-
mechanisms and feedback control 
systems, was somewhat diffident ob-
serving: “I have been so far away from 
active participation in these things 
that, and I never was a great specula-
tor. For large extrapolations, one sees 
sizes going down, the limits of almost 
microns of element size seem not too 
much further compressible. Reliabili-
ty is at an impressive level now, proba-
bly will go up. See, what is it? Cost per 
unit of computation has been halving 
every two or three years or something 
of that sort, I don’t remember the ex-
act figure. It seems that such series 
must become asymptotic somewhere, 
where that will be I’m not sure! But ex-
trapolation for me or imagining what 
lies ahead would have to be based on 
the rather plebian and earthy process 
of simply extrapolating what’s hap-
pened the last 10 years . When is the 

for theoretical, informatic and so 
on ... today we have a breakdown of 
the prices of the integrated circuits 
and the first consequence is that you 
can have very cheap and very small 
computers and this will go on. That 
means that processing units will be-
come relatively cheap, I think in one 
or two years you will have already 
the machine like the Z3, I made in 
1941, which to that time took a whole 
room, where you can put in the pock-
et. And this development will go on 
and I am not quite sure that the … 
hardware engineers and the software 
engineers, will work good enough to-
gether to take all the consequences 
of this development. And, I can’t say 
exactly how the computers will look 
in 10 years or 20 years, but the devel-
opment is not just finished not at all. 
We are in the full development now 
and the consequences of these new 
techniques will be that intelligence 
will get cheaper and cheaper. I don’t 
think this is good. There is surely … 
there is some danger in this.”

John V. Atanasoff remarked with 
great modesty: “I don’t think I’m 
very wise. I think we see the main at-
tributes of computers during the 
next years. They will become smaller, 
they will require less electricity. Once 
speaking about computers, I felt as if I 
should say something good to the peo-
ple that were before me, and I said one 
thing you can say about computers is 
they will give great benefits without 
great losses of energy and I think this 
will one of the facets of new comput-
ers, the energy of which they use at the 
present time is of no consequence.”  

Donald W. Davies, developer of the 
notion of packet switching, opined: 
“To do this you first have to do some 
extrapolation of the technology, you 
need to know how far that’s going 
to go and to examine, for example, 
how much steam there is left in semi-
conductor development, store devel-
opment, communications develop-
ment. We could start, perhaps, with 
communications. Here the digit rates 
that are available on long lines in 
this country can be multiplied by fac-
tors of thousands with the technol-
ogy which is almost available now. In 
other words, there’s really no limit to 
the digit rates available and therefore 
the cost per digit could, in principle, 
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advance perhaps in electronic com-
puters will be to go to ultra-parallel 
computers in my opinion, like the 
brain. I see that as the biggest poten-
tial advance in computers apart from 
the possibilities of programming 
reaching intelligent machinery.” 

Donald Michie responded that: 
“The theme which I see coming to the 
fore is the transfer of systematized 
human knowledge, for example from 
books where most of it now is, but in-
cluding in the brains of experts, into 
computing systems. Not just as look-
up systems but in the form of opera-
tional knowledge which the comput-
ing systems can utilize to perform 
skilled tasks of interest to particular 
professional specialists. Now once that 
process gets under way it is inherently 
a tear away process, it’s a bootstrap-
ping process, because then you have 
machine intelligence systems which 
are able assistants, not only in organic 
Chemistry, or astronomy or whatever 
branch of science a particular scien-
tist’s assistant program has been engi-
neered for, but don’t forget that there 
is one other branch of science namely 
machine intelligence and that branch 
will also acquire powerful and teach-
able and self-adaptable research assis-
tants and that is the beginning of a tear 
away process. And I would say myself 
that sometime between 1980 and 1985, 
I would expect it to spread through the 
science community, the realization for 
good or otherwise that this tear away 
process has now started.” 

Perhaps the most remarkable thing 
about these various attempts to look 
into the future, is the very great extent 
to which all of the people who ven-
tured an opinion got nearly everything 
right. We live in a time when provable 
falsehoods are presented as ‘alterna-
tive facts’ and expertise is routinely 
disparaged. In that context, I find the 
modestly expressed prescience of the 
pioneers who laid the foundations of 
the digital age both encouraging and 
uplifting. These voices from the past, 
captured by Chris Evans, give me re-
newed hope for the future. 	

David P. Anderson (cdpa@btinternet.com) is Professor 
of Digital Humanities at the Centre for Research & 
Development (Arts)/Cultural Informatics Research Group, 
University of Brighton, U.K. 

Copyright held by author. 

software going to be the limitation 
rather than the hardware? I just don’t 
know.” 

Ralph J. Slutz, who worked in the 
IAS and SEAC computers, looked for-
ward to increasing miniaturization, 
and networking: “What I see in the 
very near future is a growth of more 
small computers, say associated with 
individual engineering work or labo-
ratory work such as that which really 
are stand-alone computers and can 
work by themselves perhaps in real 
time with a laboratory experiment but 
which, when the need occurs, comes 
around for something bigger than 
they customarily can handle, can be 
connected to a big central computer 
utility. In a sense, I sort of refer to it 
at the present time as the invisible 
computer network because 99% of the 
time it wouldn’t exist but then you dial 
up on a telephone line or high speed 
line to your computer utility and get 
the advantage of large facilities.”

There were a number of pioneers 
like Freddie Williams, who, perhaps 
sharing my own lack of confidence in 
their ability to see clearly into an un-
certain future, were reluctant to say 
much.

Herman H. Goldstine, for example, 
responded: “I don’t think I would even 
try that. Every time I’ve watched that 
kind of thing, I’ve seen how terribly 
badly the seers have missed the boat. 
For example, it was only a decade ago, 
I think, that people … everybody was 
saying that the terminal was going to 
be “the answer to a maiden’s prayer.” 
It turns out now, I think that people 
want small computers which are more 
or less stand-alone with some capacity 
to be connected up to a big computer 
and I don’t know what it will be in a 
decade. I just wouldn’t guess.”

John W. Mauchly was similarly re-
luctant: “This is sort of like writing sci-
ence fiction.  Science fiction and the 
comic strips like Buck Rogers try to be 
way ahead of the actuality but really, 
we don’t see much further than the 
end of our nose. And human beings 
usually extrapolate from what they 
now know, don’t really predict any-
thing that is so remarkable and I am 
afraid I have that same limitation. “ 

The theme of the likely emergence 
of learning computers and A.I., was 
taken up by British Pioneers who had 

worked with Alan Turing at Bletchley 
Park, and elsewhere. 

Allen W.M. Coombs, in a very full 
response remarked: “Well, now I 
think the future of the computer lies 
in this. With large-scale integration 
we are going to be able to do this on 
a much bigger scale, it’s getting big-
ger all the time … bigger and bigger in 
numbers and smaller and smaller in 
bulk, we can get closer and closer to 
a brain which can learn. I think prob-
ably that the next stage of the comput-
er is to be large scale learning of re-
ally difficult and complicated things. 
Not just shapes, which are rather 
simple, but more difficult things. It 
is said that there are several stages of 
learning machine. There is the adap-
tive machine which can be changed 
… modified, that is the learning ma-
chine which really means an adaptive 
machine with a human teacher and 
there is the self-organizing machine, 
which is a machine which can … which 
is adaptive and can learn but doesn’t 
need a human to tell it what to learn, it 
finds out for itself. Every child in this 
sense is a self-organizing system. And 
the next stage of computer technology 
is to make self-organizing systems. 
That is something that hasn’t been 
done yet. A lot of people have got ideas 
but there is a chance of doing it now 
that we have got large scale integra-
tion available to us and getting more 
and more understanding of what goes 
on in a brain when it learns things.”

I.J. (Jack) Good thought that: “The 
main development will probably be 
in software I think, in machine intel-
ligence work. But the main potential 

I find the modestly 
expressed prescience 
of the pioneers who 
laid the foundations 
of the digital age  
both encouraging  
and uplifting.
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interested in learning CS.b Among par-
ents, 91% wanted their children to learn 
CS, with 84% indicating CS is at least 
as important as required subjects like 
math, science, history, and English and 
24% indicating CS is more important 
than these required subjects. Approxi-
mately 60% of educators agreed that CS 
should be required if available. In fact, 

b	 Students indicated whether they were “very,” 
“somewhat,” or “not at all” interested. The 
full research report from which this column 
was developed is available at http://atg.co/
cseduresearch.

T
H E  I N C R E A S I N G  F O C U S  on 
K–12 computer science (CS) 
education in the last few years 
has been driven by two key 
factors: producing enough 

computing professionals to support 
the workforce and drive innovation, 
and ensuring that this workforce is 
sufficiently diverse to represent all 
perspectives. However, the diversity 
gap persists. Stereotypes and educa-
tor biases start young, as early as 
preschool.1–3 One way Google is con-
tributing to CS education efforts is 
through new research that identifies 
structural and social barriers, as well 
as strategies to overcome them.

This column presents insights de-
rived from the Google-Gallup national 
research. With CS education relatively 
young in the K–12 space, our multi-
year study sought to understand the 
context of K–12 CS education. Over 
two years, we surveyed about 16,000 
nationally representative students, 
parents, teachers, principals, and su-
perintendents across the U.S. in the 
fall/winter of both 2014–2015 and 
2015–2016. Students, parents, and 
teachers were surveyed via telephone 
while principals and superintendents 
were surveyed online via an email in-
vitation. We also designed the study 
with a focus on diversity—particularly 
girls, Blacks/African Americans, and 
Hispanics/Latinx. We wanted to un-
cover any structural barriers as well 
as social perceptions and biases that 
may be affecting these groups.

We found that overall, there was 
large demand and interest in CSa edu-
cation among students, parents, and 
educators. Specifically, 82% of students 
were at least somewhat interested in 
learning CS, with Black and Hispanic 
students 1.5 and 1.7 times as likely as 
white students, respectively, to be very 

a	 The survey provided a definition of CS and re-
minded respondents multiple times through-
out: “Computer science involves using pro-
gramming/coding to create more advanced 
artifacts, such as software, apps, games, web-
sites and electronics, and computer science is 
not equivalent to general computer use.”

DOI:10.1145/3108928	 Jennifer Wang

Education  
Is the U.S. Education System 
Ready for CS for All?
Insights from a recent Google-Gallup national research  
study seeking to better understand the context of K–12 CS education.

Members of an Iowa elementary school coding club demonstrate projects during a May 2017 
campaign promoting more computer science education.
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lower-income parents and teachers 
at schools with greater proportions of 
students receiving free-/reduced-lunch 
were more likely to value CS learning.

Despite this high demand from 
parents, our study revealed structural 
barriers at school and at home. Even 
though our study found an increase 
in the percentage of K–12 principals 
reporting their schools offer CS with 
programming/coding—from 25% in 
2014–2015 to 40% in 2015–2016—we 
saw persistent disparities in who had 
access to and who had learned CS. 
Black students reported significantly 
less access to classes with CS com-
pared to white students (47% vs. 58%). 
Also, lower-income students were less 
likely to report access to CS learning 
opportunities in general. Hispanic and 
Black students reported less exposure 
to computers at school and at home 
compared to white students (30% of 
Black and 26% of Hispanic vs. 45% of 
white students reported using comput-
ers every day at home; 34% of Black and 
31% of Hispanic vs. 42% of white stu-
dents reported using computers every 
day at school), and Hispanic students 
were less likely to indicate they knew 
someone who worked in tech (49% of 
Hispanic students vs. 68% of white and 
65% of Black students). Girls were less 
likely to say they had learned CS (50% 
of girls vs. 59% of boys), while boys 
were more likely to say they learned 
CS on their own (of students who have 
learned CS, 54% of boys vs. 41% of girls).

Interestingly, we also found that 
regardless of race/ethnicity or gender, 
80% of students who have learned CS 
said that they learned CS in a class at 
school, about twice the rate of any 
other means of learning, including on 
their own, through afterschool clubs, 
online, or in any other program outside 
of school. This data strongly suggests 
formal education remains the best way 
to ensure widespread and equitable ac-
cess to CS learning.

Yet, we found schools faced many 
barriers to offering CS classes. We asked 
principals and superintendents why 
they did not offer CS in their schools 
and districts. The most commonly cited 
barriers had to do with lack of qualified 
teachers and competing demands of 
standardized test preparation. Lack of 
qualified teachers was cited by 63% of 
principals and 74% of superintendents. 

Not enough funding to train teachers 
was cited by 55% of principals and 57% 
of superintendents. The need to devote 
time to testing requirements was cited 
by 50% of principals and 55% of super-
intendents. This indicates computing 
professionals can play an important 
role in expanding access to CS by sup-
porting organizations that train teach-
ers and by providing mentoring and re-
sources to teachers and students.

Despite the high demand and interest 
among parents, nearly half of adminis-
trators (principals and superintendents) 
cited a lack of demand from parents as a 
barrier to offering CS. In fact, less than 
8% of administrators believed parent 
demand was high and less than 30% of 
educators agreed that CS was a top pri-
ority at their school or district. We found 
that even though 91% of parents wanted 
their child to learn CS, less than 29% of 
parents reported they have expressed 
support for CS to their schools. This lack 
of direct parent engagement indicates 
that parents feel unprepared or unable 
to effectively advocate with school ad-
ministrators on behalf of their children.

Finally, we also identified social bar-
riers in CS education. Not surprisingly, 
students and parents see media images 
of those who practice CS as mostly male, 
white, and wearing glasses. And these 
perceptions expanded beyond media to 
beliefs among students, parents, and 
educators. The belief that you need to be 
“smart” prevailed—49% of students and 
57% of parents reported that “people 
who do CS need to be very smart” while 
62% of teachers and 56% of principals 
agreed that students good at math and 
science are more likely to succeed in 

These findings point 
to proactive ways 
that computing 
professionals 
(both industry and 
academic) can 
support and advocate 
for CS education.
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learning CS. Gendered stereotypes also 
persisted, with 74% of students, 64% of 
parents, and 63% of teachers indicat-
ing that boys are more interested in CS 
than girls and 44% of students, 37% of 
parents, and 36% of teachers saying that 
boys are more likely to succeed in learn-
ing CS compared to girls.

The stereotypes played out in who 
is and is not encouraged—only 26% 
and 27% of girls reported being told by 
a teacher or parent, respectively, that 
they would be good at CS compared to 
39% and 46% of boys. Girls were also 
less likely to see role models in the me-
dia, with 31% of those who see CS in the 
media saying they never see someone 
“like me” engaged in CS, nearly twice 
the rate of boys. In a previous study,4 we 
found that encouragement was the big-
gest factor influencing whether girls 
intended to pursue CS or not. In fact, 
our Google-Gallup study found that 
girls not only had lower confidence 
in learning CS (48% of girls vs. 65% of 
boys were very confident they could 
learn CS), they were also less likely to 
be aware of CS learning opportunities 
outside of classes at school and were 
less likely to learn CS at all (50% of girls 
vs. 59% of boys). Anyone can help chal-
lenge these stereotypes by promoting 
broader perceptions of those who en-
gage in CS and building more inclusive 
environments in computing.

While we see large support for CS 
education among students, parents, 
and educators, many barriers stand in 
the way. What can ACM members do? 
Education is a deeply rooted system, 
so solutions need to tackle these chal-
lenges from both the bottom up and 
the top down and through structural 
and social modes. 

Our Google-Gallup research uncov-
ered a number of persistent barriers 
that hamper the education system’s 
readiness of CS for All students, and 
these findings point to proactive 
ways that computing professionals 
(both industry and academic) can 
support and advocate for CS educa-
tion. To tackle structural barriers and 
increase access, companies and com-
puting professionals can speak up 
and advocate for CS in their commu-
nities and local schools to amplify stu-
dents’ and parents’ interest and value 
of CS learning. From the top down lev-
el, they can call state legislators and ask 

for support for CS in their state — for 
example, share state data (see https://
goo.gl/EjiVFp), Google’s policy advo-
cacy brief (see https://goo.gl/gzVOlf) 
and resources on  code.org/promote 
(see https://code.org/promote).

However, increasing access alone 
will not enable all students to learn 
CS; we need to also remove social bar-
riers. To ameliorate social challenges 
and enable diverse students to take 
advantage of available opportunities, 
computing professionals can spend 
time with teachers and students, par-
ticularly those who would otherwise 
not engage in CS. They can also avoid 
unintentionally supporting stereo-
types with comments about who and 
what is nerdy or geeky. Rather, it is 
important to emphasize computing 
as advancing a variety of industries, 
from healthcare to agriculture to the 
arts, as well as the diversity of back-
grounds of the people who practice 
computing. As influential adults, we 
can each do the small gesture of en-
couraging students no matter where 
they come from or who they are, and 
supporting them through positive, 
inclusive environments. 

This is only the beginning of the jour-
ney. Increasing access to CS learning is 
an early needed step, but without indi-
vidual and societal support to remove 
social barriers, the diversity gap will per-
sist in our education system. Comput-
ing professionals can play an essential 
and active role in making CS accessible 
for all students. They can advocate with 
school leaders and help empower and 
enable young people. Each of us has the 
power to help build and strengthen the 
computing field by encouraging and 
welcoming all K–12 students.	
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ing the values you asked for. Every time 
you ask the system for some stats, it 
has to do work to get those stats, and 
the system doesn’t account for your re-
quest separately from any other work it 
has to do. If your monitoring system is 
banging away at the server asking for 
data every minute, then what you will 
see in your monitoring system is the 
load that the system itself is generat-
ing. Such Heisen-monitoring, where 
your monitoring system is overwhelm-
ingly affecting the measurements, is 
completely pointless.

In a monitoring system, there is al-
ways the tension between too much 
and too little information. When you’re 
debugging a problem, you always wish 
you had more data, but when your sys-
tem is running normally, you want 
it to do the work for which it was de-
ployed. Unless you enjoy just pushing 
monitoring systems—and, yes, there 

Dear KV,
The company I work for rolled out a 
new monitoring system one weekend, 
and it didn’t go as well as we would 
have liked. When we first brought up 
the monitoring system, several of our 
servers started to show very high CPU 
load. Initially, we could not figure out 
why. The monitoring processes on each 
server were very busy, so we turned off 
the monitoring system and the serv-
ers got less busy. Eventually, we real-
ized it was the number of polls being 
issued by the monitoring system that 
was causing the servers to use so much 
CPU time. We decreased the polling 
frequency to every 10 minutes, and this 
seemed to be the sweet spot for sys-
tem performance. What I would like to 
know is how one should go about tun-
ing such systems, as it seems still to be 
done via trial and error.

Polled Too Frequently

Dear Polled,
Trial and error? The problem here is 
usually a failure to appreciate just what 
you are asking a system to do when 
polling it for information. Modern sys-
tems contain thousands—sometimes 
tens of thousands—of values that can 
be measured and recorded. Blindly re-
trieving whatever it is that might be ex-
posed by the system is bad enough, but 
asking for it with a high-frequency poll 
is much worse for several reasons.

The first reason is the one that you 
bring up in your letter: the amount of 
overhead introduced by simply ask-
ing for the data. Whenever you ask 
the system for its configuration state, 
whether that’s a routing table or the 

state of various sysctls (system con-
trol variables), the system has to pause 
other work to provide a consistent 
picture of what’s going on. KV knows 
that in recent years the idea of consis-
tency has been downplayed in favor of 
performance—in particular, by vari-
ous database projects. In the systems 
world, however, we still think that con-
sistency is a good thing™ and therefore 
the system will try either to snapshot 
the data you request or to pause other 
work while the data is read out. If you 
ask for a few thousand items, and a 
random sysctl -a shows 9,000+ ele-
ments on a server I am using, then that 
is going to take time—not forever but 
not nothing, either.

The second reason that polling for 
data frequently is a problem is that 
it actually hides the information you 
might be looking for in the noise gen-
erated by retrieving and communicat-
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system to find bugs!” I hear the DevO-
ps folks cry. And cry they will, because 
sorting through all that data to find the 
needle in the noise will definitely not 
make them happier or give them the 
ability to find the bug.

What is needed in any monitoring 
system is the ability to increase or re-
duce the level of polling and data col-
lection as system needs dictate. If you 
are actively debugging a system, then 
you probably want to turn the volume 
of data up to 11, but if the system is 
running well, you can dial the vol-
ume back down to 4 or 5. The volume 
can be thought of as the polling fre-
quency times the amount of data be-
ing captured. Perhaps you want more 
frequent polling but less data per re-
quest, or perhaps you want more data 
for a broader picture but polled less 
frequently. These are the horizontal 
and vertical adjustments you should be 
able to make to your system at runtime. 
A one-size-fits-all monitoring system 
fits no one well. The fear, of course, 
is that by not having the volume at 11 
you will miss something important—
and that is a valid fear—but unless the 
whole reason for your existence is to 
capture all events at all times, you will 
have to find the right balance between 
0 and maximum volume.

KV
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is definitely a handle for those people 
somewhere on social media—you need 
to find the Goldilocks zone for your 
monitoring system. To find that zone, 
you must first know what you’re ask-
ing for. Figure out which commands 
the monitoring system is going to ex-
ecute on your servers, and then run 
them individually in a test environ-
ment and measure the resources they 
require. You care about runtime, which 
can be found to a coarse level with the 
time(1) command. Here is an ex-
ample from the server just mentioned.

time sysctl -a > /dev/null 
sysctl -a > /dev/null 0.02s 
user 0.24s system 98% cpu 
0.256 total 

Here, grabbing all of the system’s 
various system-control variables takes 
about a quarter of a second of CPU time, 
most of which is system overhead—that 
is, time spent in the operating system 
getting the information you requested. 
The time(1) command can be used on 
any utility or program you choose.

Now that you have a rough guess 
as to the amount of CPU time that the 
request might take, you need to know 
how much data you’re talking about. 
Using a program that counts charac-
ters, such as wc(1), will give you an 
idea of how much data you’re going to 
be gathering and moving off the sys-
tem for each polling request.

sysctl -a | wc -c 
378844 

You would be grabbing more than 
a quarter of a megabyte of data here, 
which in today’s world isn’t much, but 
it still averages out to 6,314 bytes per 
second if you poll every minute; and, in 
reality, the instantaneous rate is much 
higher, causing a 3Mbps blip on the 
network every time you request those 
values.

Of course, no one in his or her right 
mind would just blindly dump all the 
sysctl values from the kernel every 
minute—you would be much more nu-
anced in asking for data. KV has seen 
a lot of unsubtle things in his time, in-
cluding monitoring systems that were 
set up to do just this sort of ridiculous 
level of monitoring. “We don’t want to 
lose any events; we need a transparent 
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next big step will come from technolo-
gies outside the framework of silicon 
hardware and binary logic. Quantum 
computing is now being developed on 
an international scale, with active re-
search and use from Google and NASA 
as well as numerous universities and 
national laboratories, and a proposed 
€1 billion quantum technologies flag-
ship from the European Commission. 
Biological computing is also being de-
veloped, from data encoding and pro-

T
E CHN OLOGY CHANG ES  SCI-

E N CE .  In 2016, the scientific 
community thrilled to news 
that the LIGO collaboration 
had detected gravitational 

waves for the first time. LIGO is the 
latest in a long line of revolutionary 
technologies in astronomy, from the 
ability to ‘see’ the universe from radio 
waves to gamma rays, or from detect-
ing cosmic rays and neutrinos (the 
Laser Interferometer Gravitational-
Wave Observatory—LIGO—is an NSF-
supported collaborative effort by the 
U.S National Science Foundation and 
is operated by Caltech and MIT). Each 
time a new technology is deployed, 
it can open up a new window on the 
cosmos, and major new theoretical de-
velopments can follow rapidly. These, 
in turn, can inform future technolo-
gies. This interplay of technological 
and fundamental theoretical advance 
is replicated across all the natural sci-
ences—which include, we argue, com-
puter science. Some early computing 
models were developed as abstract 
models of existing physical computing 
systems. Most famously, for the Turing 
Machine these were human ‘comput-
ers’ performing calculations. Now, as 
novel computing devices—from quan-
tum computers to DNA processors, 
and even vast networks of human ‘so-
cial machines’—reach a critical stage 
of development, they reveal how com-
puting technologies can drive the ex-
pansion of theoretical tools and mod-
els of computing. With all due respect 

to Dijkstra, we argue that computer 
science is as much about computers as 
astronomy is about telescopes. 

Non-standard and unconventional 
computing technologies have come to 
prominence as Moore’s Law, that pre-
viously relentless increase in comput-
ing power, runs out. While techniques 
such as multicore and parallel pro-
cessing allow for some gains without 
further increase of transistor density, 
there is a growing consensus that the 

Viewpoint 
The Natural Science  
of Computing 
As unconventional computing comes of age, we believe  
a revolution is needed in our view of computer science.
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mented in the physical device itself. 
Neural nets, for example, can be mod-
eled using real-valued activation func-
tions, and arguments have been made 
that these networks are in actuality 
computing those real values to arbi-
trary precision, and hence far outper-
forming the capabilities of standard 
computers. In practice, however, such 
purely abstract infinite real-valued pre-
cision is completely outside the physi-
cal capabilities of the device: it can nei-
ther be observed, nor exploited. 

Computing theory should not be 
imposed top-down without taking 
into account the physical theory of the 
device: computer science is not math-
ematics. The computing ability of the 
system is not always identical with the 
computing capability of the physical 
device theory: computer science is not 
physics. What is it, then? We believe 
that it has features of both, consisting 
in the complex interplay of mathemat-
ics and physical theory through a cru-
cial relation: representation.

Understanding computers can be 
seen as the key to understanding com-
puter science. A computer crosses 
the boundary between the abstract 
domain of logic/computation, and 
the physical realm of semiconductors 
or quantum ions or biological mol-
ecules; and it does so in a way that 
we can precisely characterize. Con-
sider part (a) of the the figure here, in 
which a ‘compute cycle’ starts with an 
abstract problem, such as adding two 
numbers, or finding prime factors, or 
calculating a shortest path. Usually ex-
pressed in some high-level language, 
this is then encoded into the comput-
er’s native language. This encoding is 
still in essence an abstract process: the 
description of the computation has 
been transformed from one language 
to another. Now the actual computer is 
brought in, and the native language in-
put is instantiated in the target physi-
cal device. The device is configured, 
and the physical processes of com-
puting initialized. Then the computer 
runs, as a physical process with a physi-
cal output in the final state of the com-
puter. To find the output of the com-
putation, we ask to what abstract state 
the physical one corresponds: which 
state of the program is represented by 
the physical state of the computer? 
This is then (abstractly) decoded from 

cessing in DNA molecules, to neuro-
silicon hybrid devices and bio-inspired 
neural networks, to harnessing the 
behavior of slime molds. The huge ad-
vance of the internet has enabled ‘so-
cial machines’—Galaxy Zoo, protein 
FoldIt, Wikipedia, innumerable citizen 
science tools—all working by network-
ing humans and computers, to perform 
computations not accessible on cur-
rent silicon-based technology alone.

What all these devices, from the 
speculative to the everyday, share 
is that they currently lie beyond the 
reach of conventional computer sci-
ence. Standard silicon-based technol-
ogy is built on a toolkit of theoretical 
models and techniques, from lambda 
calculi through to programming, com-
pilation, and verification. These tools 
seem to be largely inaccessible to the 
new technologies. How do you pro-
gram a slime mold? What is the assem-
bly language of protein folding? How 
do you compile for a human in a social 
machine? New technologies may be 
one or more of stochastic, continuous 
time, continuous space, sloppy, asyn-
chronous, temperature dependent, 
sub-symbolic, evolving systems, with 
computationally complex encodings 
and decodings, and one shot construc-
tion-and-execution.

Without the ability to define and 
characterize how and when comput-
ing is happening in these systems, and 
then to import or develop the full suite 
of theoretical tools of computer sci-
ence, we claim that the information-
processing capabilities of these devices 
will remain underexploited. We believe 
we need an extended computer sci-
ence that will enable us to treat these 
systems with theoretical and practical 
rigor to unlock their potential, and also 
to enable us to combine them with ex-
isting technology to make scalable and 
hybrid devices.

Computer science has histori-
cally been conceived and developed 
around abstract Turing Machines and 
equivalent calculi. This discrete, sym-
bolic logical, deterministic underly-
ing model is realized equivalently, but 
differently, in one specific technology, 
the von Neumann stored program ar-
chitecture. This technology has proved 
so successful, and is now so ubiqui-
tous, that other models of computing 
have tended to be ignored; one ex-

ample is Shannon’s largely forgotten 
GPAC computational model, based on 
the technology of differential analys-
ers. As a consequence of using only a 
single model, standard approaches to 
computing abstract away the physical 
implementation, leaving a theoretical 
computer science that is frequently 
viewed as a branch of mathematics, 
rather than as a physical science that is 
expressed in mathematical language. 
With little connection to actual physi-
cal devices, this theoretical framework 
can be at a loss when faced with non-
standard computing systems. Often 
the response is to impose top-down 
a standard bit-and-logic-gate frame-
work, in the belief that this is the way 
to compute. The delicate systems in 
a quantum computer, for instance, 
can be forced to act like standard bits 
obeying classical logic. However, these 
devices gain their real power when 
allowed to act as natively  ‘quantum 
bits,’ or qubits, with their own quan-
tum logic gates. It is as inefficient (or 
simply impossible) to impose the stan-
dard computing framework on many 
nonstandard systems as it would be to 
use a sophisticated optical telescope 
to detect cosmic neutrinos. We do not 
believe that we can unlock the true 
potential of unconventional systems 
by forcing them into the mold of stan-
dard computing models.

While traditionally computer sci-
ence tends to view itself as a branch 
of mathematics, the field of uncon-
ventional computing has tended to go 
too far the other way, seeing comput-
ing merely as an outgrowth of physics, 
or chemistry, or biology. Arguments 
around computing power often over-
focus on the physical theory of the 
device, rather than what can be imple-

It is inefficient  
(or simply impossible) 
to impose the 
standard computing 
framework on many 
nonstandard systems.
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modeled, gives the abstract specifi-
cation to be instantiated; this engi-
neering in turn requires a sufficiently 
good scientific understanding of the 
system’s properties. Not all abstract 
systems that can be imagined denote 
something in the physical world (“the 
present king of France”), or can be 
physically instantiated (faster-than-
light travel). 

Just like a telescope, a computer is 
a highly engineered device. LIGO went 
through many years of testing of its 
various components before scientists 
were happy that it would function as a 
gravitational wave detector. With the 
tests complete, it can now be used as 
a telescope to observe the universe in 
terms of those ripples. Similarly, com-
puters require engineering before they 
can be used for computation: we need 
to be confident that their physical be-
havior parallels that of the abstract 
program so that the device can be used 
to predict its outcome (there can be en-
gineering bugs in hardware). Comput-
ers start with computer science: with 
experiments on novel substrates and 
with new ways of performing comput-
ing. Only once that cycle is complete, 
and we know enough about how the 
system behaves, can a new device be en-
gineered to instantiate a computation. 

What does AR theory mean for our 
understanding of computer science? 
We claim that we now have a way to 
understand that computational logic 
arises from the physical structure of 
a potential computing substrate, and 
that it may vary widely across different 
classes of substrate. Computer science, 
in addition to its theoretical compo-
nent, covers both the experimentation 

the abstracted output to a language to 
answer the original problem. The com-
puter has output the solution.

If a computer is a good one, and 
running without errors, the aim of the 
compute cycle is to parallel the physi-
cal and abstract behaviours. The solu-
tion is an abstract answer to an abstract 
question; were it possible to “run” the 
program entirely abstractly, then the 
solution could be found without in-
cluding any physical device in the cy-
cle, be that an engineered computer, or 
a pencil-and-paper based human emu-
lation. Computers are used as a physi-
cal proxy for this abstract mapping. 
A good computer is engineered such 
that the result of letting the physical 
dynamics run will parallel the abstract 
behavior of the program. A computer is 
a device that manipulates the physical 
instantiation of abstract concepts, in 
order to solve problems. It is not iden-
tical with a computation: computation 
is abstract, a computer is physical, and 
they relate through (nontrivial) repre-
sentation and instantiation.

This centrality of representation 
is the core of a new formalism devel-
oped by the authors: Abstraction/Rep-
resentation Theory (AR theory). With 
diagrams such as part (a) of the figure 
here, and an associated algebraic-like 
structure, AR theory is a toolkit for 
the foundations of computer science, 
and beyond. The complex interplay 
of mathematics, physical theory, and 
representation is not confined to the 
field of computing. It also drives the 
mechanism of experimental testing of 
abstract theories throughout the natu-
ral sciences. We can, for instance, give 
a diagram for the relation between as-

tronomy and telescopes, with crucial 
similarities and differences to com-
puting. Part (b) of the figure shows 
how theory and experiment relate in 
the LIGO experiment. Again abstract 
and physical are parallel, but now the 
process of running the experiment 
starts with the physical apparatus, 
rather than with an encoding of an ab-
stract computational problem. There 
is an abstract representation of the ap-
paratus in the theory of gravitational 
waves: that it can detect them. Also in 
the abstract realm there is a theoreti-
cal prediction for how the apparatus 
will behave if such waves indeed exist. 
If the experiment is successful, as with 
LIGO, then the theory and the abstract 
interpretation of the physical outcome 
coincide up to some error margin ε. If 
a theory is sufficiently good, the physi-
cal system can be removed altogether: 
abstract theory can be used to predict 
physical behavior.

Looking at these two diagrams, we 
uncover a deep truth. Just as a math-
ematical theory allows us to predict 
physical behavior, in a computer the 
physical behavior of a device is used 
to ‘predict’ the result of an abstract 
computation. Computing and natural 
science are fundamentally linked; the 
link is technology. Notice the direction 
of the arrows of representation in the 
two diagrams. In an experiment, they 
go only one way, upward: this is the 
representation of physical systems by 
an abstract model. In computing there 
is another type of relation: instantia-
tion of abstract theory in physical sys-
tems. Instantiation is more complex 
than modelling, and requires engineer-
ing to construct a system that, when 

Computers and telescopes: The interplay of abstract theory/programming and physical devices in (a) computing and (b) physical sciences 
(given here by the LIGO experiment). 
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ology—and even, with the interactions 
of social machines, for networks of 
human beings. We believe this could 
be of immediate practical importance 
to scientists in those areas, enabling 
them to describe high-level function-
ing of complex systems, and to find 
new and unforeseen connections be-
tween disparate systems and scenari-
os. These process languages could be 
as revolutionary for the physical sci-
ences as for computer science.

Computers have come a long way 
since the days of valves and punched 
cards. Now computer science itself is 
branching off in new directions with 
the development of unconventional 
computing technologies. As the do-
main of computer science grows, as 
one computational model no longer 
fits all, its true nature is being revealed. 
Just like astronomy, computer science 
could describe physical systems in ab-
stract language with predictive power, 
and thereby drive forward the dual in-
terplay of technology and theoretical 
advancement. New computers could 
inform new computational theories, 
and those theories could then help us 
understand the physical world around 
us. Such a computer science would in-
deed be a natural science.	
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and engineering phases of computing, 
as well as the eventual use in deploy-
ment as a computer. This understand-
ing tells us to use an experimental and 
engineering process when developing 
new formal models and methods of 
computer sciences for our new devices, 
paralleling the process of developing 
new models and instruments to tackle 
new phenomena in rest of the natural 
sciences. A computational logic for 
a system arises, but we then abstract 
away from the specific device to a for-
mal model of it. Programming these 
new devices is then a matter of look-
ing for a natural internal process logic 
of the system, as opposed to forcing a 
one-size-fits-all model of computation 
onto some candidate computing sys-
tem. Rather than looking to impose 
top-down the machinery of standard 
logic gates, we should look at the natu-
ral behaviour of the system and what 
‘gates’ or subroutines or problem-solv-
ing it is intrinsically good at. By extract-
ing an intrinsic computational logic of 
their physical components we can har-
ness the true potential of unconven-
tional computers.

Using our physical understanding 
of a substrate to inform a computa-
tional logic does not mean that such 
a logic is the only one possible. Just 
as a quantum computer can run as ei-
ther quantum or classical, other non-
standard systems may be capable of 
supporting multiple computational 
models. This again is found through-
out the natural sciences: for example, 
in physics a particular system might 
be modelled as a continuous fluid, or 
as a collection of discrete particles. 
With different potential computa-
tional representations of a system un-
der investigation, the key is to extract 
out the ones that do something useful 
and novel and better than other sub-
strates—and then use that computa-
tional theory to engineer our next gen-
eration of computers.

We can then go further. With an ab-
stract computational language that de-
scribes the native operation of uncon-
ventional devices, we would then have 
a logical language in which to describe 
the physical systems themselves, even 
outside a specifically computational 
device. Computer science could then 
provide high-level logical process lan-
guages for physics, chemistry, and bi-
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MODERN WORD PROCESSORS,  like Microsoft Word 
OneDrive, SharePoint, and Google Docs, allow people 
to work on the same document at the same time. While 
systems that allow simultaneous writing have been 
demonstrated in research labs for some time, only 
relatively recently have such systems been available 
commercially for widespread use. Google Docs, for 
example, enables people to be at the same place in the 
document while adding, deleting, and moving text at 
will. Google Docs is very popular (for example, there 
are over 60 million users of Google Apps for Education 
worldwide and two million businesses use Google 
Apps for Work) and many people see the simultaneous 
writing feature as a great asset. 

For example, when we analyzed in de-
tail the writing patterns of undergradu-
ate students enrolled in an advanced 
university course on project manage-
ment, 95% of the documents exhibited 
simultaneous writing. Three documents 
were only written simultaneously.9

We, the four co-authors of this article, 
have experienced numerous sessions 
where simultaneous writing created no-
table benefits. Given that we can work si-
multaneously now, how can we harness 
that capability to make the work more 
efficient? What can you do with simul-
taneous writing? When might you not 
want to write simultaneously?

To answer these questions, we col-
lected our stories, grouped them, and 
noted patterns across them. Each of the 
stories is told with the voice of one of the 
authors except the last, which is co-writ-
ten by all four of us because it reflects 
how we wrote this article. Subsequently, 
we note the similarities and differences 
among our stories, and with “plural uni-
ty” created the scheme of six patterns 
and two epiphenomena. We believe the 
stories will serve as an inspiration to 
readers to work in new, beneficial ways. 

Google Docs is relatively new and al-
though some of our stories refer to the 
use of Docs, a number of the stories in-
volve research prototypes or early com-
mercial systems, some going as far back 
as the 1980s. Before we get to the stories, 
we first provide brief descriptions of the 
characteristics of each of these systems, 
listed in order of creation. 

The Systems We Refer To
IDE, for Instructional Design Environ-
ment,10 was a tool to create instruc-
tional content by helping designers or-
ganize and create materials rapidly. IDE 
was built on top of the Notecards hyper-
media system.5,6 IDE featured “cards” 
with different kinds of links between 
sections of text. While IDE was not 
originally intended as a multi-person 
collaborative system, people quickly re-
alized they could partition work among 
a number of writers and get things done 
more quickly by working on different 
cards simultaneously. When someone 
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was working on a card, it was locked to 
the others. While this is technically not 
the kind of simultaneous editing that 
other tools have, the story where this 
was used for parallel simultaneous edit-
ing has some valuable lessons.

ShrEdit was a collaborative writing 
tool built in 1990.7,8 A shared document 
was hosted on a server and individu-
als accessed it from client machines on 
the same local network. The architec-
ture allowed multiple people to write in 
the same document at the same time. 
ShrEdit had “selection locking,” mean-
ing that one could write simultaneously 
within one character of one another. 

Aspects was a commercial product 
available in the 1990s.4 Like ShrEdit, 
people could edit at the same time 
within one character of each other. 
Whereas ShrEdit supported only text, 
Aspects supported spreadsheets, draw-
ings, and presentations in addition to 
text, similar to Google Apps but run-

ning on a local network and only avail-
able for Macintoshes.

Centra Symposium was a commer-
cial system that allowed for audio and 
video conferencing as well as sharing of 
an object, like a document or a presen-
tation. One could allow others to edit 
the shared object. 

Google Docs is a commercial, multi-
user, shared document editing system 
provided by Google beginning in 2006. 
Docs lets multiple people edit a docu-
ment simultaneously, view the revision 
history of the document, and share the 
doc with specific people or broadly on 
the open internet. 

The Power of Simultaneous Writing
We now move to telling our stories 
about how the power of simultaneous 
writing creates significantly more pro-
ductive work settings. The stories that 
follow are grouped into five categories: 

˲˲ Writing large documents (Stories 1–3)

˲˲ Writing short documents for class 
assignments (Story 4)

˲˲ Displaying and collaboratively cre-
ating meeting minutes (Stories 5–6)

˲˲ Teaching through shared docu-
ments (Story 7)

˲˲ Writing this document. (Story 8)
Story 1: Doc Build-It using Google 

Docs, told by Ricardo. To be useful to oth-
ers, software needs to be documented. 
Many times software needs to be rewrit-
ten from scratch because the original 
could not be found or once found, could 
not be understood. Unfortunately, many 
software developers hate to document. 
Although technical writers, like me, can 
do the job, there are too few of us, and 
the process of understanding a technol-
ogy and writing appropriate documenta-
tion can take years. Consequently, only 
core technologies get documented.

To solve this problem, I developed 
a documentation method called the 
Doc Build-It. A Doc Build-It is a single-
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linear, book-like output, incorporating 
diagrams and text from each node. 

Every Monday, we would meet to 
review the work done during the pre-
ceding week. The team discussed and 
resolved any overarching issues, and 
clarified interactions between sec-
tions. Since each author could work 
more-or-less independently (except 
when they had to edit a node together 
sitting side-by-side), issues could be re-
solved fairly easily. The most common 
issues the team needed to resolve were 
questions about style, tone, language, 
and the framing of concepts.

Before each weekly meeting, we 
would print the graph of all the work 
done-to-date and post it on the wall 
for the entire group to see. This poster 
showed the week-by-week work done 
by each team member and the links be-
tween sections and various subparts. 
Not only was the graph useful for see-
ing where issues might arise, but it 
was also a powerful motivator for other 
team members to keep up. 

During any single week, the authors 
could work independently in parallel, 
writing their nodes and creating any 
substructures as needed. When they 
discovered new prerequisites, they 
were responsible for creating those ex-
plicit links between the nodes as nec-
essary. Of course, other authors could 
create new prerequisite links into their 
territory as well. For the cross-links, 
authors sometimes chose to work to-
gether side-by-side synchronously with 
one acting as scribe to the discussion.

After eight weeks, the project was 
completed—all the chapters had com-
plete text, and all the cross-section pre-
requisite issues had been solved. The 
printout resulted in a 220-page textbook. 

Insights. The book was primar-
ily written in parallel, solo-author ses-
sions, with some short, key moments 
of simultaneous work when issues 
arose and resolutions needed to be 
reached. The book was created over the 
course of eight weeks, contrasting with 
the Build-It which had preparation 
work, one long day of dumping mate-
rial, and a few days of cleanup. Atlas, 
O’Reilly (atlas.oreilly.com) and Book-
Sprints (www.booksprints.net) support 
a process similar to this story. 

This story is also similar to the one 
told by Boellstorf et al.,2 where four au-
thors detail the creation of their coau-

day event where a small group of engi-
neers gather to simultaneously write 
documentation about a specific piece 
of technology. The Doc Build-It is a con-
strained activity, carefully designed to 
enable engineers to impart their exper-
tise in a way that seems natural to them. 

The Doc Build-It has three phases: 
preparation, composition, and edit-
ing. During the preparation phase, 
the writer meets with the techni-
cal lead to get a detailed overview of 
the technology to be documented. 
The writer then generates a prospec-
tive outline for the final document. 
The outline is granular to the point 
where each topic has two to three bul-
let points that suggest what content 
should appear in the topic. 

The composition phase is a single-
day event. The writer asks the techni-
cal lead to invite three to five key en-
gineers from the team to the event. At 
the event, the writer first asks the engi-
neers to give a verbal explanation of the 
technology to get them into a teaching 
mindset, a mindset that fits documen-
tation. The writer then adjusts the pro-
spective outline based on the explana-
tion provided. Once the Build-It team 
agrees on the outline, the writer invites 
the engineers to claim responsibility 
for the topics in which they feel they 
have the most expertise. Their task is 
only to capture the ideas in the words 
that were spoken during the explana-
tion phase. They then all write simul-
taneously in the same document. The 
fact that they can see each other as they 
produce the sections allows them to 
align their styles (like level of detail), 
make cross-references and double 
check for accuracy. 

The writer encourages the engi-
neers to avoid concerns about diction, 
spelling, punctuation, grammar, or 
structure. Their contribution to the 
document is their knowledge. This ses-
sion normally takes about three hours 
for relatively simple topics, and up to 
seven hours for deeper topics.

After the composition phase, the 
technical writer alone polishes the 
document. Because the editing proc-
ess can introduce semantic errors, the 
writer circulates the edited document 
for review with the engineering team. 

The Build-It method had an enor-
mous impact on productivity. The cost 
for one Build-It that I ran was an order 

of magnitude smaller than a traditional 
documentation approach costing an 
estimated $1,900 instead of $18,000. 
Other Build-Its produce similar re-
sults, and had ancillary benefits like 
the identification of subtle bugs in the 
technology. These discoveries are pos-
sible because the event captures the 
attention of the most knowledgeable 
people about a topic, who focus close-
ly on the design of the software in the 
process of creating a document.

Insights. Doing work in clear phases 
clarified the roles and simplified the 
whole process. The technical writer 
created an outline; the outline was 
then edited after the explanation. Then 
experts wrote down as much of their 
knowledge as they could. This knowl-
edge was then cleaned up by the tech-
nical writer and reviewed for accuracy. 
A number of the following Stories have 
similar mixes of asynchronous and 
synchronous work.

Story 2: Writing a textbook using 
IDE, told by Dan. During the sum-
mer of 1988, I organized a team of 10 
graduate students from the Stanford 
School of Education to help write a 
high school algebra textbook, fulfilling 
a requirement to have experience in 
designing coursework. The goal was to 
create a complete textbook with a team 
in less than 10 weeks. The team wrote 
this text using IDE.

Of the 10 students, two acted as 
lead designers and created an initial 
outline, assigning each chapter to a 
student author to create. To “write” 
a chapter, the author had to create a 
network of nodes in IDE, each linked 
to other nodes signifying whether the 
linked-to nodes were abstract con-
cepts, conceptual details, refinements, 
practice problems or dependencies.

During writing, the authors had to 
identify any prerequisites that they 
needed to assume while writing their 
material. For example, the chapter on 
Trigonometric functions relied on the 
Pythagorean theorem to be introduced 
in an earlier chapter, written by a dif-
ferent author. For that dependency, an 
explicit prerequisite link would be cre-
ated to signal that this concept (in one 
chapter) depended on another concept 
in another chapter (usually preceding). 

The resulting network could then 
be graph-walked (by following links of 
a specified type) to produce a single, 
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thored book, written in Google Docs. 
It recounts initial hand-offs of respon-
sibilities and sections to write. Later 
they capitalized on the ability to write 
simultaneously, to find who is writing 
and where they are writing, and initi-
ate a conversation either by voice or 
associated chat feature. This was use-
ful, they said, for both quick fixes and 
encouragement. They also report ses-
sions where one typed while another 
was dictating, with a third coming 
along closely behind to make small 
edits, similar to the upcoming Story 5 
about meeting minutes.

Story 3: Creating a committee report 
using ShrEdit, told by Judy. The com-
puter science department at a major 
university has an external review every 
few years. An advisory committee of 
about eight people from outside the 
university comes to campus for a few 
days to hear what the various research-
ers are doing, review the curriculum, 
hear statistics on admissions, place-
ment, and so on. Normally, after two-
days of presentations, the commit-
tee would plan how they were going 
to write up their report, writing their 
parts, then reading and commenting 
on others asynchronously over the next 
four weeks.

Having found ShrEdit useful in our 
own work, we organized something like 
a Doc Build-It, but with some interest-
ing differences. We brought the advisory 
committee to a special room that was set 
up with a large number of computers.

We had a single ShrEdit document 
open with an outline that I had written, 
which reflected the topics that had been 
presented over two days prior. All eight 
people began to write their reactions to 
and evaluation of the topics. The com-
mittee members read the input of oth-
ers and added their own input. They 
chose to write wherever they wished, 
often adding to others’ writing, and oc-
casionally having text-based debates. 

The committee worked for over 
an hour, all typing simultaneously. 
They produced an 11-page document; 
rough in its style, but full of good con-
tent. At the end, one committee mem-
ber asked, “Where is the cleanup but-
ton?” All had a much-needed laugh. 
The leader of the team volunteered to 
take this rough draft and make it into 
good text, taking on a role very much 
like Ricardo’s in the Build-It story. The 

leader was grateful for the volume of 
raw material on which to build. This 
material was far richer than the min-
utes of a discussion would have been. 
And when they traveled home, all 
members of the committee, except the 
leader, were done. 

Insights. Of interest in this story 
is the fact the writing was not divide-
and-conquer like the two previous 
stories, but rather what we might call 
a “swarm,” for the large number of co-
authors involved in this process with-
out a structured process. Everyone con-
tributed to each of the sections at will, 
sometimes typing very close to another 
person’s current entry. Except for the 
occasional laugh, the room was silent 
for an hour with only the sounds of 
keys clicking softly.

Story 4: Students writing assign-
ments in class using Google Docs, told 
by Judy. My students in a Project Man-
agement course worked in groups to 
do a small project during the academic 
quarter. They had to turn in various doc-
uments that were common in formal 
project management practice, such as 
a business case, a scope statement, and 
so on. The students were required to 
use Google Docs and share their final 
document with me for grading. 

With their permission, we ana-
lyzed three years worth of the docu-
ments—96 in all. We examined their 

collaborative writing styles and work 
patterns, and correlated some key fea-
tures with the quality of the final docu-
ment. Work patterns were revealed 
through a tool, DocuViz11 that shows 
a picture of the revision history, with 
slices in time of who wrote what when. 
The accompanying figure shows the 
DocuViz timeline visualization of one 
group’s style. Students are represented 
with different colors, with the size of 
the stripe indicating length of contri-
bution and different slices indicating 
when in time they were produced. This 
team had a lot of simultaneous work 
near the end.

Some 95% of those documents 
showed evidence of simultaneous writ-
ing, where we defined “simultaneous” 
as writing activity within seven min-
utes of the last action without closing 
and opening the document. One might 
expect these sessions of simultaneous 
work to be a “divide and conquer” style. 
While nearly one-third were, a large 
number of them showed editing by sev-
eral people in the same paragraph or 
even in the same cell of a table.

Insights. We have less detail in this 
story about how the students managed 
to create, edit, and vet their work. But 
traces in the revision histories show 
not only explicit project management 
of assigning people to sections, but 
also freeform editing of their own en-

The DocuViz visualization of a team showing a session of simultaneous work near the end.
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the top. This archive has proven use-
ful in a number of occasions where 
someone could resurrect a forgotten 
“tabled” item.

Insights. This story shares the col-
laborative note taking with Story 5, but 
adds the feature of using the emerging 
document as low bandwidth confer-
encing and closed captioning.

Story 7: Teaching through noticing 
things in simultaneous work using As-
pects, told by Judy. A former doctoral 
student of mine, who had graduated 
recently and was now employed at an-
other university, was scheduled to give 
a presentation of our joint work at an 
upcoming conference. I asked the for-
mer student to prepare his talk in As-
pects’ presentation tool, and share it 
with me. 

In a session in which both of us 
could see the presentation while speak-
ing over the phone, the former student 
gave his presentation uninterrupted 
for timing purposes. At the end, I gave 
general feedback about the timing and 
order of things. I also suggested in-
cluding different figures than those he 
had chosen. While he searched for the 
new figures and replaced them in the 
presentation, I made some small for-
matting changes on a number of slides 
starting near the end of the deck. When 
the former student returned, having 
completed the replacement of figures, 
he said, “Oh, I see what you’re doing.” 
He then changed earlier slides to fit the 
style of the changes that I was making. 
We discussed a few more changes in 
wording. When we were both satisfied 
with the result, he gave the presenta-
tion again without interruption. After 
two more small changes, we were done.

Gary had a similar experience using 
Centra screen sharing with the abil-
ity to write simultaneously. They went 
over a draft presentation, discussed it, 
and made changes in real time. The 
shared view focused the discussion; si-
multaneous editing sped the revisions.

Insights. What would have normally 
taken hours or days of back and forth 
took one hour. Modeling the types of 
changes that I wanted enabled the for-
mer student to “get it” without discus-
sion. There could have been objections 
and discussion, but in this case he just 
copied my style changes without either.

Story 8: Writing this document to-
gether with Google Docs: How we did 

tries and, importantly, those of others. 
There was also a great deal of simulta-
neous work. 

Story 5: Displaying and collabora-
tively creating meeting minutes using 
ShrEdit, told by Gary. In addition to us-
ing ShrEdit to conduct research,8 I used 
it to take minutes during research meet-
ings. In these meetings, the ShrEdit 
document was shared and open on ev-
eryone’s workstation, and we often pro-
jected it on a large screen at the front of 
the room. One person, usually me, took 
the lead, but everyone could edit. 

Meeting participants would com-
monly fix typos and other errors (like 
correcting the spelling of someone’s 
name) that I or another scribe created 
while typing rapidly. We often com-
mented that the document looked 
as if Pac-Man was nibbling along be-
hind the note taker. The shared view 
of the notes (either from the projected 
view or the individuals’ views on their 
own computers) helped to maintain 
the group’s focus, and make sure the 
points were captured correctly. The 
tool enabled efficient meetings and 
more accurate notes. 

Normally, scribes for a meeting are 
so busy they cannot contribute eas-
ily to the conversation. But when we 
used ShrEdit, someone else took over 
the scribe role while the main scribe 
spoke. This allowed the main scribe to 
be a full contributor to the meeting.

In one important meeting with 
corporate sponsors, we projected the 
meeting minutes on a screen visible to 
everyone in the room. There were nine 
agenda items to cover in the afternoon-
long meeting. After several hours of 
talking and taking copious notes, the 
meeting coordinator noted that we had 
covered only the first two items with 
seven still left to go. We had to move 
on. One of the sponsors said that he 
was not involved in any of the remain-
ing items, but he had much more to say 
about the current topic. Consequently, 
the rest of us went on with the meet-
ing while he continued to write in the 
appropriate section, hidden from our 
view. He titled his section “You haven’t 
seen this yet.” He wrote his thoughts 
for an hour, being able to refer to ear-
lier parts of the minutes, while the rest 
of us finished our agenda. His time 
was not wasted, and we completed our 
task. The fact that this was a single doc-

ument (not an add-on of his thoughts 
from another document) made his ad-
ditions easier to read in context. 

Insights: Like Stories 1-4, the shared 
document had a prepared form (the 
agenda). While three of the previous 
stories divided the work and gave par-
ticipants specific assignments to ac-
complish, in Story 5, one person was 
the main scribe. Other participants 
could silently and in parallel, add de-
tail, correct errors, and in this case, 
continue to contribute while other 
meeting members went on with agen-
da items he wasn’t involved in. Time 
was not wasted.

Story 6: Meeting minutes collabora-
tively and remotely created in Google 
Docs, told by Gary. The ACM SIGCHI 
Executive Committee has periodic 
meetings that last 2–3 days. An agenda 
is circulated in advance, and modified 
via email as new items arise. We use 
Google Docs to take minutes, the docu-
ment seeded by pasting in the agenda 
from email. The agenda is often reor-
ganized and modified on the fly. 

Like the previous story, one mem-
ber is designated as the main scribe, 
but any of us can edit at any time, and 
when the scribe speaks, someone else 
temporarily takes over his role. 

Occasionally, some members at-
tend parts or even the entire meeting 
remotely. We would often call remote 
members for specific items on the 
agenda, but they observed other parts 
of the meeting as well. Some even 
joined without having an audio or vid-
eo connection. In this case, the Google 
Doc served as a kind of poor man’s 
conferencing tool. The very low rate 
of change in the Doc works well for a 
remote participant who can then task 
switch at appropriate times. We noted 
also that non-native English speakers 
benefit from the minutes being a form 
of “closed captioning.”

Often a member of the committee 
uses PowerPoint slides during their 
report; these are almost always pasted 
directly into the shared Google Doc. 
Occasionally, other kinds of materials 
are pasted into the Doc, such as links 
to some web material relevant to what 
we are discussing.

At another regular research group 
meeting, the minutes are never de-
leted but just pushed down, with the 
new agenda and notes appearing at 
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it. Having discovered that all four of us 
had stories about writing simultane-
ously, Ricardo suggested that we write 
an article on this topic using Build-It. 
We all happily agreed, wanting both 
to write this article and to experience 
Build-It. We scheduled a day for the 
writing about a month after this initial 
meeting, with three of us collocated 
and Dan joining remotely. 

We had a videoconference in ad-
vance of this day, where we discussed 
the general framework of the article 
and the kinds of stories we would use. 
This was all captured in a Google Doc 
that we co-wrote. Ricardo created a 
tentative outline based on this discus-
sion. When we were together, in the 
first hour we discussed ideas and direc-
tions. Initially we were hampered by 
not having a clear idea of what the arti-
cle was going to be. Build-It is designed 
for a divide-and-conquer strategy, not 
for the stage where we have to discover 
what we want to say. The outline Ri-
cardo came in with did not capture the 
discussion we were developing, so we 
abandoned it. 

Eventually we decided the best next 
step was to simply write up the set of sto-
ries that would serve as the raw materi-
al. We could read while others wrote. We 
often read something someone else had 
written and went back to add or change 
our own contribution. When everyone 
was finished, we then read them all in 
context which then led us to discuss a 
better organization for the article. 

Indeed, in both writing the details 
and then reading each other’s stories, 
we noted some similarities and differ-
ences. We made a working table directly 
in the document, to compare and con-
trast the stories. We hoped this would 
help in both ordering the stories in a 
sensible way and then supporting the 
development of the Discussion section. 

In the course of creating this table, 
each of us recognized that we had left 
something out of the stories. Having 
noticed these emergent similarities, 
we combed our own memories for 
more examples. We named these gath-
ered extra points “epiphenomena.” 

After about six hours of talking, writ-
ing and talking again, we were exhaust-
ed, but we had to decide on our next 
steps. Someone had to do the first pass 
of ordering the stories, making them a 
bit more similar in style, and then writ-

ing a draft of the Discussion using the 
table as a guide. Judy volunteered. 

This next stage required someone 
to “own” the document temporarily, 
without others editing, because a re-
organization and a first draft of a dis-
cussion required understanding the 
whole document to make the appropri-
ate connections. When Judy finished, 
she alerted the others. But we didn’t 
want everyone to edit at once. We first 
tagged Ricardo, a technical writer, to 
perform a more fine-grained copy-
edit. He tried to harmonize the voice 
and pace of the writing and identify or 
resolve features of the document that 
seemed to break the flow.

We then had a videoconference to 
talk through several important issues, 
making a list of things to do. We asked 
Judy and Gary to take the first pass at 
their parts of this list and then have 
Ricardo and Dan edit or comment fur-
ther. Again, noting who was in control 
was important.

We had not talked about how we 
were going to manage edits, wheth-
er we would just make the changes 
and count on the revision history to 
undo things that we disagreed with, 
use Docs “suggest” mode, which is 
similar to Word’s tracking changes, 
or use comments to discuss and sug-
gest changes. Judy and Ricardo made 
changes directly. Dan then used com-
ments to say, for example, “This needs 
to be spelled out.” Dan later clarified 
that he did not want to edit someone 
else’s work. These examples show that 
people come to the document with dif-
ferent ideas as to who has the author-
ity or responsibility to change things. 
As Birnholtz and Ibara1 found, making 
changes to others’ writing is a social 
act with consequences having to do 
with trust and relationships.

The final stage of this collaboration 
involved putting the Google Doc into 
Word to fit the required two-column 
format that this journal requires. From 
there the editing was entirely hand-off 
with clear mention of responsibilities 
and time lines.

Insights. Unlike Build-It, the outline 
for this article emerged after the stories 
were written down, shared, and dis-
cussed. This article also involved using 
the document as a “holding place” to 
keep things (like the table) that might 
help the writing, or material that was 

The writer 
encourages  
the engineers to 
avoid concerns 
about diction, 
spelling, 
punctuation, 
grammar,  
or structure.  
Their contribution  
to the document  
is their knowledge. 
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mosphere or their expertise and abili-
ties are not on par with your own. In 
some competitive cultures, there can 
be sabotage. In addition, many of the 
sessions of simultaneous work that we 
outline were for rough work, not for 
the final draft (although Story 7 con-
tained the collaborative reformatting 
of a final presentation).

And, there can be technical difficul-
ties, such as edit wars because with 
direct editing, one does not see what 
something was changed from. Also, 
if two people are in exactly the same 
point with one adding and one delet-
ing, it can get very confusing. And, to 
write simultaneously, one has to be on 
a network, having to rely on server con-
nectivity. In addition, if using a service 
in the cloud, some may have concerns 
about privacy.

Patterns of using simultaneous writ-
ing. When we examine the stories, it is 
striking that there was not more di-
versity in the experiences, but rather 
just a few different patterns of writing 
together. The stories cluster into two 
sets: Four patterns of simultaneous 
work and two patterns of accompany-
ing asynchronous hand-offs. 

The first four stories and the account 
of writing this article employ a simul-
taneous divide-and-conquer strategy. 
At some points in the creation of the 
document, all co-authors wrote at the 
same time. Most often they wrote in 
different sections of the document. 

Stories 5 and 6 employ a main 
scribe, with a second or third scribe in-
volved either to immediately take over 
when the primary scribe speaks or to 
do ancillary additions or edits. We call 
this the rotating scribe pattern. 

Story 5 employs a branching pattern, 
where when one person is not involved 
in the immediate conversation, they 
use the time productively to write more 
for others to read later. In essence, the 
one person is creating a new branch in 
the minutes, while the others proceed. 
This pattern is a variant of the divide-
and-conquer.

The fourth pattern is exemplified in 
Story 3, what we call the swarm. In this 
pattern, everyone is in the document 
writing their parts, reading other’s and 
commenting or correcting them. No 
one is assigned a section; they all are 
responsible for the whole document. 
This is also similar to the teaching sto-

eventually deleted. There were times 
when simultaneous divide-and-con-
quer was appropriate; there were times 
when one person had to be in charge 
while she captured the organization 
of the emerging article; and there were 
times when serial hand-off for edit-
ing was appropriate. We realized that 
we should have explicitly discussed 
whether we would just edit, suggest, or 
comment for changes. 

Discussion
The ability to write simultaneously in 
a shared document is a powerful ad-
vancement in technology. However, 
the literature has said little about the 
social process that harnesses the tech-
nological advancement of simultane-
ous writing for real benefit to the users. 
These stories attempt to shed light on 
this social process.

In almost all of these stories, some-
one led the effort by making some sort 
of structure: the tree in IDE, the out-
line in ShrEdit and Docs, the agenda 
in meetings, the presentation draft in 
Aspects and Centra. The one exception 
was the writing of this article. We had 
that discussion after we wrote our sto-
ries and read each other’s. The struc-
ture emerged. 

Writing simultaneously offers sev-
eral benefits, including productivity 
gains, a deeper sense of satisfaction for 
time well spent, and practical training 
by imitation of a collaborator’s style. 
On a tactical level, participants can 
move quickly toward a quality docu-
ment because participants can see and 
emulate what others are doing. As peo-
ple join in writing, they can view recent 
work in order to make their contribu-
tions fit the overall vision. The ability to 
work simultaneously on meeting min-
utes has benefits beyond the recording 
and correcting the content. Everyone 
was “on the same page.”

Of course, not all collaborations 
may benefit from simultaneous work. 
There are sensitivities when someone 
changes your writing. There are sensi-
tivities when others can see your pro-
cess of writing (for example, if you are 
slow or a bad speller). Some may find 
it distracting to see the edits of oth-
ers while they are writing or editing. 
Working simultaneously is not appro-
priate if you mistrust your colleagues, 
either because it is a competitive at-

When we examine 
the stories,  
it is striking that 
there is not more 
diversity in  
the experiences,  
but rather just  
a few different 
patterns of writing 
together.
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ries, where the “teacher” exemplifies 
what the “student” is to emulate, and 
they collectively finish the document.

The fifth pattern, the cleanup, is a 
solo kind of work that appears in many 
of the stories. For example, in our own 
writing, there was one big simultaneous 
session and then Judy took over to both 
re-organize the stories into clusters 
and write the text that represented the 
discussion captured in the table. In the 
committee report, the chair took on the 
role of cleaning up the rough text and 
synthesizing content. In BuildIt, Ricar-
do takes on the responsibility of clean-
ing up the text and coordinating tone, 
turning rough text into good prose. 

The sixth pattern, again often rep-
resented in many of the stories, is the 
hand-off, where different authors are 
“in charge” for periods of time for re-
organization or fact-checking and sim-
pler editing. This often accompanied 
sessions of simultaneous work.

We also note that collocation for 
synchronous writing was important 
but not necessary. Collocation provides 
immediate access to other participants 
for things such as clarification, seeing 
people’s expressions, indicating that 
one wanted a turn to speak, and so 
on. However, many of the stories had 
successful contributions from remote 
people, even without audio or video 
connectivity. In one case, remote par-
ticipants only saw the evolving Google 
Doc. For some purposes, this level of 
participation was sufficient.

Epiphenomena. Late in our discus-
sion of the similarities and differences 
among the stories, we noted some epi-
phenomena—unusual behavior gener-
ated by the fact the work was being cre-
ated synchronously in view of all.

One epiphenomenon involved 
humor, often an important social com-
ponent of intense work. For example, 
as the scribe in meetings where the 
minutes are projected, Gary would 
often type slightly snide comments 
about what was being said and quickly 
erase them. For example, if someone 
was talking too long, Gary would write 
in big letters but out of the speaker’s 
view, “Is it time for lunch yet?” and 
then quickly erase it. 

A student in one Project Manage-
ment team, deep in discussion in a 
long simultaneous-editing session 
about their client, pasted in a funny 

picture of a grizzly man wearing a bear 
hat and the text “this guy!” The picture 
was in the document for about a min-
ute then deleted. The Visiting Commit-
tee read emerging debates inside the 
report, eliciting giggles occasionally. At 
the end, one member of the committee 
also remarked for humor, “Where is 
the Clean-It-Up button?” The collective 
laugh was one of appreciation and re-
lief that the session was over. 

A second epiphenomenon we noted 
is that visibility is motivating. In using 
IDE to write the textbook, the visible 
presentation of progress on the book 
motivated people. Similarly, while the 
document is live and worked on simul-
taneously, one can see where the activ-
ity is and be motivated to read carefully 
and talk about any arising issues either 
through text chat or voice conversa-
tion. When there is visible activity, 
people feel compelled to focus on the 
document being created. One attends 
to “seismic activity.” We believe the 
student who pasted in a funny picture 
during a simultaneous working ses-
sion used the humor to induce motiva-
tion to keep working. One student in 
another team pasted in a picture of a 
shovel and wrote “Work Hard!”

Conclusion
Writing simultaneously is an extreme-
ly powerful capability, now widely 
available in commercial software. It 
is often successfully mixed with some 
hand-off writing and some sessions 
where one person takes charge to in-
tegrate the material and voice. But 
technology alone does not make en-
hanced productivity and satisfaction, 
people do. What we offer here are a 
number of stories and commentary 
on what makes this kind of writing so 
powerful. 

We follow the stories with six pat-
terns of writing when simultaneous 
work is possible. Team members now 
need to plan the style of work (some of 
which will include simultaneous writ-
ing) that would fit the kinds of goals at 
hand. As outlined by Glushko3 some 
of the overall collaborations will be 
preplanned (what he calls hierarchi-
cal collaboration), co-developed by 
the authors (what he calls consensus 
collaboration), or a free-for-all (what 
he calls open collaboration). Each 
approach has its strengths and weak-

nesses, so choosing appropriately for 
the task at hand is important. And, as 
mentioned earlier, not all teams and 
occasions will benefit; cooperation 
and trust are essential.

We have provided a set of examples 
where we have worked in new ways 
that are very productive, and therefore 
satisfying. The next step is for you to 
analyze the collaborative writing situa-
tions you are in day-by-day and craft a 
method that best suits. The possibili-
ties are very rich. 
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COMPUTERS COMMONLY PERFORM numerical computations 
using floating point arithmetic,a typically representing 
numbers as specified by the IEEE 754 standard. Numbers 
are represented as m x be, where b is base, m is a fixed 
bit length length fraction (mantissa), with an implicit 
“decimal point” on the left, and e is an exponent. For 
conventional IEEE “double precision” floating point, the 
base b is 2, and the mantissa m is 53 bits (approximately 
16 decimal digits) long. For a hardware calculator, we might 
use b = 10, with a 12-digit mantissa.b

Floating-point representations are used pervasively, 
from large-scale scientific computing problems down

a	 Goldberg, D. What every computer scientist should know about floatingpoint arithmetic. ACM Com-
puting Surveys 23, 1 (1991), 5–48.

b	 Cochran, D.S. Internal programming of the 9100A Calculator. HP Journal, Sept. 1968.

to pocket calculators. They provide 
a great time-honored compromise 
between speed of computation and 
sufficient accuracy to usually provide 
meaningful results. A 53-bit mantissa 
can often provide 10 to 15 decimal dig-
its of accuracy in the final result, and 
modern processors can often perform 
more than one floating-point opera-
tion per cycle.

But conventional floating point 
arithmetic remains a compromise. 
The results can be computed quick-
ly, but they are only usually precise 
enough to be meaningful. Usually the 
precision loss from rounding to 53 bits 
is not noticeable, because we are usu-
ally computing on measured physical 
quantities that are far less accurate to 
start with, and usually well-designed 
algorithms do not compound these in-
coming measurement errors too much. 
But none of those “usually” qualifiers 
can be dropped, and algorithms are 
not always well designed.

Most of us are familiar with some of 
the programming hazards of floating 
point. We may have observed, for ex-
ample, that the loop

for (x = 0.0; x != 10.0; x += 0.1) { … }

usually fails to terminate. But we are will-
ing to deal with these issues, and write 
more careful code, in order to get high 
performance numerical computation.

But sometimes performance, at 
least in the conventional sense, re-
ally doesn’t matter. Calculators, which 
normally target expressions with few 
operations, are probably the canoni-
cal example for this category of appli-
cations. That is particularly true when 
the calculator is really an application 
running on a smartphone with four 
2GHz processor cores. This is also an 
environment in which users are un-
likely to think much about formulating 
algorithms to optimize floating point 
precision properties.

Even for calculators, the hazards of 
floating point extend to more than a 
few digits off in the last place. For ex-
ample, if we try to compute:

Small-Data 
Computing: 
Correct 
Calculator 
Arithmetic

DOI:10.1145/2911981

Rounding errors are usually avoidable, and 
sometimes we can afford to avoid them. 

BY HANS-J. BOEHM
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which is clearly equivalent to √0, on any 
standard calculator, the result is just an 
error message. The problem is that 1 + 
10–16 is rounded to 1. When we subtract 
1, we get 0 instead of 10–16. This is com-
monly known as “catastrophic cancel-
lation:” We are subtracting two nearly 
equal numbers, effectively magnifying 
the input error, yielding a result with 
few or no meaningful digits. When we 
then subtract 10–16, the result is a nega-
tive number, which can now be repre-
sented accurately. Taking the square 
root of a negative number produces the 
error. For a more interesting and subtle 
example along these lines, see the side-
bar entitled “A Fixed-Precision Fail.”

√1 + 10–16 - 1 - 10–16 There are other cases for which we 
do get correct answers, but the first 
16 digits fail to expose the interesting 
properties of the result. We may want 
to see when the decimal expansion of 
a rational number repeats. Or we may 
want to see how close Ramanujan’s 
constant (eπ√163) is to an integer. These 
tend to be “mathematical” rather than 
“physical” problems. But we suspect a 
significant fraction of calculator use is 
in schools for just that purpose.

The Space Beyond  
Machine Floating Point
Perhaps the most serious problem with 
conventional calculator arithmetic is 
that it has trained us not to even at-
tempt certain problems.

Every calculus class teaches us that 
we can approximate derivatives with 
finite differences. We can, usually very 
accurately, approximate f'(x) by (f(x + 
h) – f(x))/h, with a sufficiently small h. 
For example, since the derivative of ex 
is ex, we should expect that (e1+h – e1)/h 
evaluates to a very good approxima-
tion of e, if we use h = 10–1000.

This of course does not work on 
normal calculators. The expressions 
e1+h and e1 agree to far more digits 
than the evaluation precision, and the 
numerator evaluates to zero, yielding 
a “derivative” of 0 rather than e.

In fact, the idea of limited preci-
sion seems to be sufficiently drilled 
into us that it occurs to few people 
to even try something like this. And 
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The calculator rounded the result 
to a smaller number of decimal digits 
than the 16 provided by the underlying 
arithmetic. This reduced the probabil-
ity that a number with a finite decimal 
expansion like 12.34, but an infinite 
binary expansion, would be displayed 
as 12.399999999. But there was an un-
avoidable tension between not drop-
ping enough digits and generating un-
pleasant representations, and dropping 
too many. The latter would either intro-
duce additional error for intermediate 
results, or it would force the calculator 
to display a result significantly different 
from its internal representation. Both 
could produce unpleasant surprises. 
A Web search for “Android Calculator 
bug” shows some of the results. The 
nature of the complaints also confirms 
that most users are not happy to toler-
ate the kind of floating-point issues that 
a numerical analyst would expect.

Accurate Answers From a Calculator
Our goal was to replace the arithmetic 
evaluation engine in the Android Cal-
culator with one that was not subject 
to floating point-rounding errors. We 
wanted to ensure at a minimum that the 
displayed final answer was never off by 
one or more in the final displayed digit.

This can be done using “construc-
tive real arithmetic.”d,e Rather than 
computing a fixed number of digits for 
each intermediate result, each subex-
pression is computed to whatever pre-
cision is needed to ensure sufficient 
accuracy of the final result.

Let’s say we want to compute π+ 1/3, 
and the calculator display has 10 digits. 
We would compute both π and 1/3 to 11 
digits each, add them, and round the 
result to 10 digits. Since π and 1/3 were 
accurate to within 1 in the 11th digit, and 
rounding adds an error of at most 5 in 
the 11th digit, the result is guaranteed 
accurate to less than 1 in the 10th digit, 
which was our goal.

Other operations are somewhat 
more complex to implement. Multipli-
cation to 10 digits beyond the decimal 
point might involve evaluating one ar-
gument to five digits. If that is zero, we 

d	 E. Bishop, and D. Bridges. Constructive Analysis. 
Springer Science & Business Media, 1985.

e	 Boehm, HJ., and Cartwright, R. Exact real 
arithmetic: Formulating real numbers as func-
tions. Rice University, Department of CS, 1988.

people often seem surprised when we 
suggest it.

For numerical differentiation with 
machine floating point, there is a sub-
tle trade-off in the choice of h, which 
is likely to be well beyond the exper-
tise of a high school student trying to 
check a formula on a calculator. And 
yet there is no reason calculations 
like this shouldn’t just work, even 
with h = 10–1000. The sidebar entitled 
“Derivatives on a Calculator” pushes 
this example a bit further.

Our Starting Point
The Android Open Source Project has 
always included a relatively simple 
calculator application. This is the de-
fault calculator on Pixel phones and 
many other Andriod devices. Histori-
cally some other third-party Android 
calculators have also extended the 
same source code base. This calcula-

tor is designed to be as simple as pos-
sible, targeting primarily nontechni-
cal users rather than engineers. It has 
always offered “scientific calculator” 
functionality, with trigonometric 
functions, among others. But the em-
phasis has been on simple use cases 
and conformance to Android user in-
terface guidelines.

In versions prior to Android 6.0 
Marshmallow, the calculator internal-
ly used the “arity” expression evalua-
tion library.c The calculator uses this 
library to evaluate traditional infix 
expressions. Conventional syntax is 
mildly extended to allow dropping of 
trailing parentheses and a few other 
shortcuts. The actual evaluation is 
performed using double precision 
machine floating point.

c	 Mihai Preda, https://code.google.com/p/arity
calculator/

A Fixed-Precision Fail
Although conventional calculators usually provide plenty of precision for most 
purposes, they are prone to occasional misbehavior on surprisingly simple problems. 
These are more likely to be problems encountered by high school or college students 
experimenting with mathematical laws, than they are real engineering problems.

One particularly small example involves the trigonometric tangent (tan) and 
arctangent (tan–1) functions. The expression tan(tan–1(x)) maps a slope x to 
the corresponding angle and back, and should clearly always give us back x. But 
evaluating this expression correctly for large x tends to be quite tricky, since tan–1 of 
a large argument produces a result very close to π/2 radians (or 90 degrees), which is a 
singularity for the tan function.

On software-based calculators (Android or Web), a result something like the one 
shown here is common for tan(tan-1(1020)).

On old-fashioned hardware calculators we tried, the arguably better answer shown 
below is more common.

The standard Microsoft Windows calculator we tried uses more precision, and 
hence fails only with even larger values of x.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fcode.google.com%2Fp%2Farity-calculator%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fcode.google.com%2Fp%2Farity-calculator%2F


AUGUST 2017  |   VOL.  60  |   NO.  8  |   COMMUNICATIONS OF THE ACM     47

practice

evaluate the other argument to five dig-
its. If both are zero, zero is an accept-
able answer. Once we have a nonzero 
argument, we can get a reasonably tight 
bound on the number of digits needed 
for the other argument, and use that 
to reevaluate the initial nonzero argu-
ment to the correct precision.

Some functions, such as square roots, 
can be easily evaluated to any required 
precision using Newton iteration. Com-
mon transcendental functions can be 
evaluated using Taylor series, taking 
care to evaluate sufficiently many terms 
to sufficient precision to guarantee the 
1-digit-in-the-last-place error bound.

A number of detailed representa-
tions for the constructive reals have 
been explored.f,g,h,i 

We started with an existing Java 
library,j mildly enhancing it as needed. 
The library represents real numbers as 
class CR Java objects with an appr() 
method. A call to appr(n), where n is 
typically negative, produces an approxi-
mation accurate to 2n. The actual result 
returned is implicitly scaled (multiplied) 
by 2–n, so that it can be represented as an 
integer. For example, if THREE is the con-
structive real representation of 3, then 
THREE.appr(–3) would yield 24, that 
is, 3 multiplied by 23 or 8. That would be 
the only acceptable answer, since the re-
sult always has an error of < 1.

To add two numbers in this repre-
sentation, we produce an instance of a 
subclass of CR, implemented as:

class add_CR extends CR {
	 CR op1; CR op2;
	 ...
	� protected BigInteger  

appr(int p) {
		�  return scale(op1.appr(p-2). 

  add(op2.appr(p-2)), -2);
	 }
}

Here scale( ..., n ) multiplies by 

f	 Aberth, O. A precise numerical analysis pro-
gram. Commun. ACM 17, 9 (Sept. 1974), 509–513.

g	 Ménissier Morain, V. Arbitrary precision real 
arithmetic: Design and algorithms. J. Logic and 
Algebraic Programming 64, 1 (2005), 13–39.

h	 Vuillemin, J.E.  Exact real computer arithmetic 
with continued fractions. IEEE Trans. Comput-
ers 39, 8 (1990), 1087–1105.

i	 Lee, Jr, V.A. and Boehm, H-J. Optimizing pro-
grams over the constructive reals. ACM, 1990.

j	 Boehm, H.J. The constructive reals as a Java 
library. J. Logic and Algebraic Programming 64, 
1 (2005), 3–11.

2n and rounds to the nearest integer, 
ensuring a final rounding error of ≤ ½. 
The arguments are evaluated to two ad-
ditional bits, ensuring that each con-
tributes an error of < ¼.

The real implementation caches 
the highest precision prior evaluation, 
so reevaluating an expression to fewer 
digits of precision is essentially free.

Calculators based on constructive 
real arithmetic are not new. The library 
we use as a basis contains a basic Java 
applet calculator. WolframAlpha also 
appears to use a technique along these 
lines.k However, we had two additional, 
previously unsatisfied, goals:

1.	 It was essential that the calcula-
tor remain usable as a general-purpose 
tool, for example, for balancing check-
books and calculating tips, and for 
mathematically unsophisticated users. 
We wanted behavior universally better 
than machine floating point.

2.	 We want an intuitive way to pres-
ent numbers with nonterminating 
decimal representations as infinite ob-
jects, as opposed to explicitly entering 
a result precision.

We now focus on these issues.

k	 It also appears to use a few, but not all, of the 
techniques described in this article.  We could 
not find a detailed description.

Scrollable Results
Since we must be able to produce an-
swers to arbitrary precision, we can also 
let the user specify how much precision 
she wants, and use that to drive the eval-
uation. In our calculator, the user speci-
fies the requested precision by scrolling 
the result, as one would expect with a 
primarily touch-based user interface.l

In order to preserve the illusion of 
an infinite result as much as possible, 
we precompute a higher precision re-
sult in the background, as soon as we 
have displayed about 4/5 of the digits 
computed. The number of addition-
al digits computed each time is a bit 
more than 1/5 of the number we have 
computed so far, so we recompute 
in larger chunks the further the user 
scrolls, and the more expensive the 
computations become. This typically 
succeeds in hiding scrolling latency 
for a few thousand digits, even if the 
user resorts to “fling” gestures to 
scroll quickly.m

l	 A brief demonstration video can be found at 
https://vimeo.com/219144100.

m	 The computation cost of a Taylor series ex-
pansion is typically around O(n2.6) for n digits 
(O(n) terms, each of which requires a constant 
number of Karatsuba multiplications on O(n) 
digits), this eventually falls behind a constant 
speed scroll, even if the reevaluation frequency 
decreases linearly.

Derivatives on a Calculator
We explore tiny finite differences to approximate derivatives a bit further. We continue 
to use the exponential function as an easy-to-type and easy-to-check example.

The figure here illustrates the result of computing the derivative of ex at 1, by 
computing (e1+h – e1)/h, with h = 10–100:

As expected, the result is unsurprising to anyone untrained in floating point 
arithmetic. It looks exactly like e. We can now easily ask what error resulted from 
approximating the derivative as a finite difference, rather than computing its limit. The 
following figure shows what we get if we take the preceding result and subtract e:

A trained numerical analyst might cringe at the observation that this computation 
involves a second catastrophic cancellation in a row. The astute reader might also notice 
that this is itself astonishingly close to ½e x 10–100. We leave it to the interested reader 
to go for three catastrophic cancellations in a row and calculate the difference.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Fvimeo.com%2F219144100
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sult were exactly 0.99999999999, and 
we could only display 10 characters 
at a time, we would see an initial dis-
play of 1.00000000. As we scroll to see 
more digits, we would successively see 
...000000E-6, then ...000000E-7, and 
so on until we get to ...00000E-10, but 
then suddenly ...99999E-11. If we scroll 
back, the screen would again show ze-
roes. We decided this would be exces-
sively confusing, and thus try to trun-
cate toward zero rather than rounding.

It is still possible for previously dis-
played digits to change as we are scroll-
ing. But we always compute a number 
of digits more than we actually need, so 
this is exceedingly unlikely.

Since our goal is an error of strictly 
less than one in the last displayed digit, 
we will never, for example, display an 
answer of exactly 2 as 1.9999999999. 
That would involve an error of exact-
ly one in the last place, which is too 
much for us.

It turns out there is exactly one 
case in which the display switches 
between 9s and 0s: A long but finite 
sequence of 9s (more than 20) in the 
true result can initially be displayed 
as a slightly larger number ending in 
0s. As we scroll, the 0s turn into 9s. 
When we immediately scroll back, 
the number remains displayed as 9s, 
since the calculator caches the best-
known result (though not currently 
across restarts).

We prevent 9s from turning into 
0s during scrolling. If we generate a 
result ending in 9s, our error bound 
implies that the true result is strictly 
less (in absolute value) than the value 
(ending in 0s) we would get by incre-
menting the last displayed digit. Thus 
we can never be forced back to gener-
ating zeros and explicitly ensure that 
we always continue to generate 9s, 
and 9s never turn into 0s.

Coping with Undecidability
The calculator essentially represents 
a number as a program for comput-
ing approximations. This represen-
tation has many nice properties, like 
never resulting in the display of in-
correct results. It has one inherent 
weakness: Exact equality of two num-
bers is fundamentally undecidable. 
We can compute more and more dig-
its of both numbers, and if they ever 
differ by more than one in the last 

Indicating position. We would like 
the user to be able to see at a glance 
which part of the result is currently be-
ing displayed.

Conventional calculators solve the 
vaguely similar problem of displaying 
very large or very small numbers by us-
ing scientific notation. We use the same 
approach for the initial display.n If the 
user enters “1÷3X10^20”, computing 
1/3 times 10 to the 20th power, the result 
may be displayed as 3.3333333333E19. 
In this version of scientific notation, 
the decimal point is always displayed 
immediately to the right of the most 
significant digit.

Once the decimal point is scrolled 
off the display, this style of scientific no-
tation is not helpful; it essentially tells 
us where the decimal point is relative to 
the most significant digit, but the most 
significant digit is no longer visible. We 
address this by switching to a different 
variant of scientific notation, in which 
we interpret the displayed digits as a 
whole number, with an implied decimal 
point on the right. Instead of display-
ing 3.3333333333E19, we hypotheti-
cally could display 33333333333E9 or 
33333333333 times 109. In fact, we use 
this format only when the normal scien-
tific notation decimal point would not 
be visible. If we had scrolled the above 
result two digits to the left, we would 
in fact be seeing ...33333333333E7. 
This tells us the displayed result is very 
close to a whole number ending in 
33333333333 times 107. The two forms 
of scientific notation are easily distin-
guishable by the presence or absence of 
a decimal point, and the ellipsis charac-
ter at the beginning.

Rounding vs. scrolling. Normally 
we expect calculators to try to round 
to the nearest displayable result. 
If the actual computed result were 
0.66666666666667, and we could 
only display 10 digits, we would ex-
pect a result display of, for example 
0.666666667, rather than 0.666666666. 
For us, this would have the disadvan-
tage that when we scrolled the result 
left to see more digits, the “7” on the 
right would change to a “6”. That 
would be mildly unfortunate. It would 
be somewhat worse if the actual re-

n	 Numbers that differ from zero by less than 
10–320 may be displayed as 0.0000000000. See 
section Coping with Undecidability.

Perhaps the most 
serious problem 
with conventional 
calculator 
arithmetic is that it 
has trained us not 
to even attempt 
certain problems. 
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computed digit, we know they are not 
equal. But if the two numbers were in 
fact the same, this process would go 
on forever.

This still improves on floating-
point arithmetic—equality is easily 
decidable, but tells us even less about 
equality of the true mathematical real 
numbers approximated by the floating 
point values.

This undecidability of equality does 
create some interesting issues. If we di-
vide a number by x, the calculator will 
compute more and more digits of x un-
til it finds some nonzero ones. If x was, 
in fact, exactly zero, this process will 
continue forever.

We deal with this problem using two 
complementary techniques:

1.	 We always run numeric com-
putations in the background, where 
they will not interfere with user inter-
actions, just in case they take a long 
time. If they do take a really long time, 
we time them out and inform the 
user that the computation has been 
aborted. This is unlikely to happen by 
accident, unless the user entered an 
ill-defined mathematical expression, 
like a division by zero.

2.	 As we will see, in many cases we 
use an additional number representa-
tion that does allow us to determine 
that a number is exactly zero. Although 
this easily handles most cases, it is 
not foolproof. If the user enters “1÷0” 
we immediately detect the division by 
zero. If the user enters “1÷(π2÷π–π)” we 
time out.

Zeros Further Than the Eye Can See
Prototypes of our calculator, like 
mathematicians, treated all com-
puted results as infinite objects, with 
infinitely many digits to scroll through. If 
the actual computation happened to be 2 
– 1, the result was initially displayed as 
1.00000000, and the user could keep 
scrolling through as many thousands of 
zeroes to the right of that as he desired. 
Although mathematically sound, this 
proved unpopular for several good rea-
sons, the first one probably more seri-
ous than the others:

1.	 If we computed $1.23 + $7.89, the 
result would show up as 9.1200000000 
or the like, which is unexpected and 
confusing.

2.	 Many users consider the result of 
1+2 to be a finite number, and find it 

confusing to be able to scroll through 
lots of zeros on the right.

3.	 Since the calculator could not 
ever tell that a number was not going to 
be scrolled, it could not treat any result 
as short enough to allow the use of a 
larger font.

These problems were largely ad-
dressed by evaluating expression to 
not just a constructive real number, 
but also to a rational number repre-
sented as a (numerator, denomina-
tor) pair. The latter is unavailable if 
the computation involved an irratio-
nal number, or the rational represen-
tation is too large.

This allows us to tell whether a re-
sult has a finite decimal representa-
tion, and if so, how many digits there 
are to the right of the decimal point. 
We simply look at the fraction in low-
est terms. If the denominator has 
a prime factor other than 2 or 5, the 
decimal expansion is clearly infinite; 
no number of multiplications by 10 
can turn the fraction into an integer. 
Otherwise the denominator can be 
factored as 2n5m and the number of 
nonzero digits to the right of the  deci-
mal point is max(m,n).

If the expansion is finite, we pre-
vent scrolling past that point. We 
also prevent scrolling through a large 
number of trailing zeroes to the left of 
the decimal point. This often leaves 
us with a short nonscrollable result, 
for which we can use a larger font. Un-
like the floating-point case, such short, 
large font results are always exact, and 
never attributable to a number that 
was merely close to a short decimal 
representation.

This is, however, fallible in the other 
direction. For example, we do not 
compute a rational representation for 
1÷(π2÷π–π), and hence it is still possible 
to scroll through as many zeros of that 
result as you like.

This underlying fractional repre-
sentation of the result is also used to 
directly detect, for example, division by 
zero, making it much less likely that a 
casual user will ever see a timeout.

Looking Back
The calculator described here is 
available through Google Play Store, 
and is also the default calculator dis-
tributed with Android 6.0 Marshmal-
low and later. 

Initial reviews of the calculator 
liked several unrelated UI and func-
tionality changes, but failed to notice 
the change in arithmetic.o We were ap-
parently successful in having the ac-
curacy guarantees not interfere with 
normal use.

The calculator now exposes the ratio-
nal representation to the user when it 
is available. That has turned out to be a 
useful feature on its own, though it was 
motivated by other considerations.

Feedback has been quite positive. 
But it, together with our own experi-
ence, has also suggested some im-
provements:

˲˲ Scrolling results have generated 
far more interest than the much more 
subtle precision improvements. The 
latter seem to have been recognized 
only by an absence of bug reports. As a 
result, performance of a different kind 
actually does matter: Users did notice 
sluggishness when scrolling through 
30,000 digits of π. And we subsequent-
ly switched to the better-performing 
Gauss-Legendre algorithm for π. 

˲˲ The semantics of calculator ex-
pressions are more subtle and contro-
versial than we had realized. Is 50+10% 
equal to 50.1 or 55? If the latter, what’s 
50x5%? If 2π is a valid expression, what 
about π2?

˲˲ The most recent versions of our 
calculator explicitly track rational mul-
tiples of π and some other common 
irrational constants. This allows us to 
compute a rational result for sin(π/6) 
in radian mode, as we already did for 
sin(30°).
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ALAN TURING IS often praised as the foremost figure 
in the historical process that led to the rise of the 
modern electronic computer. Particular attention has 
been devoted to the purported connection between 
a “Universal Turing Machine” (UTM), as introduced 
in Turing’s article of 1936,27 and the design and 
implementation in the mid-1940s of the first stored-
program computers, with particular emphasis on the 
respective proposals of John von Neumann for the 
EDVAC30 and of Turing himself for the ACE.26 

In some recent accounts, von Neu-
mann’s and Turing’s proposals (and the 
machines built on them) are unambigu-
ously described as direct implementa-
tions of a UTM, as defined in 1936. Most 
noticeable in this regard are the writ-
ings of Jack Copeland and his collabora-
tors, as stated in the following example: 

“What Turing described in 1936 was 
not an abstract mathematical notion 
but a solid three-dimensional machine 
(containing, as he said, wheels, levers, 
and paper tape); and the cardinal prob-
lem in electronic computing’s pioneer-
ing years, taken on by both ‘Proposed 
Electronic Calculator’ and the ‘First 
Draft’ was just this: How best to build a 
practical electronic form of the UTM?”9 

Similar is the following by Andrew 
Hodges: 

“[The] essential point of the stored-
program computer is that it is built to 
implement a logical idea, Turing’s idea: 
the universal Turing machine of 1936.”18 

This statement is of particular inter-
est because, in his authoritative biogra-
phy21 of Turing (first published 1983), 
Hodges typically follows a much more 
nuanced and careful approach to this 
entire issue. For instance, when refer-
ring to a mocking 1936 comment by Da-
vid Champernowne, a friend of Turing, 
to the effect that the universal machine 
would require the Albert Hall to house 
its construction, Hodges commented 
that this “was fair comment on Alan’s 
design in ‘Computable Numbers’ for if 
he had any thoughts of making it a prac-

Turing’s  
Pre-War Analog 
Computers:  
The Fatherhood 
of the Modern 
Computer 
Revisited 

DOI:10.1145/3104032 

Turing’s machines of 1936 were a purely 
mathematical notion, not an exploration of 
possible blueprints for physical calculators. 

BY LEO CORRY 

 key insights
˽˽ There is no straightforward, let alone 

deterministic, historical path leading 
from Turing’s 1936 ideas on the Universal 
Machine to the first stored-program 
electronic computers of the mid-1940s. 

˽˽ Turing’s own pre-war ideas on the 
Universal Machine were not intended 
as a possible blueprint for the actual 
construction of physical automatic 
calculating machines. 

˽˽ Turing’s personal interaction with von 
Neumann while at Princeton had little 
impact, if at all, on the later involvement 
of both men on the design and 
construction of the early stored-program 
computers, beginning in the mid-1940s. 
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tical proposition they did not show in 
the paper.”21 Or, even more cautiously, 
in the following: 

“Did [Turing] think in terms of con-
structing a universal machine at this 
stage? There is not a shred of direct 
evidence, nor was the design as de-
scribed in his paper in any way influ-
enced by practical considerations ... 
My own belief is that the ‘interest’ [in 
building an actual machine] may have 
been at the back of his mind all the 
time after 1936, and quite possibly mo-
tivated some of his eagerness to learn 
about engineering techniques. But as 
he never said or wrote anything to this 
effect, the question must be left to tan-
talize the imagination.”21 

Discussions of this issue tend to be 
based on retrospective accounts, some-
times even on hearsay. The most-often 
quoted one comes from Max Newman, 
who had been Turing’s teacher and 
mentor back in the early Cambridge 
days and, later, became a leading fig-
ure in the rise of the modern electronic 
computer, sometimes collaborating 
with Turing. In an obituary published in 
1954, he wrote: 

“The description that [Turing] gave 
of a ‘universal’ computing machine 
was entirely theoretical in purpose, 
but Turing’s strong interest in all 

kinds of practical experiment made 
him even then interested in the pos-
sibility of actually constructing a ma-
chine on these lines.”6 

This and other similar testimonies 
have been cited repeatedly as solid his-
torical evidence but are invariably vague 
and unsupported.a Similar is the case 
with the anecdotes about the purported 
early influence of Turing’s paper on von 
Neumann; see, for example, Hodges.21 

This article is intended as a further 
contribution to the historical ongoing 
debates about the actual role of Tur-
ing in the history of the modern elec-
tronic computer and, in particular, the 
putative connection between the UTM 
and the stored-program computer. I 
contend that in order to achieve a com-
plete and balanced historical picture, 
one must explicitly abandon the idea 
of a straightforward (let alone neces-
sary) transition from the mathematical 
idea of 1936 to the physical machine 
(or even the design of that machine) in 
1945. More specifically, by exploring 
the details of Turing’s pre-war involve-
ment with various fields of mathemat-

a	 Newman repeated this claim in an oft-cited 
oral interview of 1976, but, curiously, in 1955 he 
wrote a memoir on Turing for the Royal Society 
in which this point was not mentioned at all.21

ics, both at Cambridge and at Princ-
eton, and with the actual construction 
of two calculating machines, I claim 
that to the extent that early stored-pro-
gram computers of the mid-1940s can 
be seen as physically embodying ideas 
discussed in the 1936 paper, “Comput-
able Numbers,” this is mostly a result of 
hindsight and says little about Turing’s 
ideas before the war. 

The purported connection I call into 
question involves, in the first place, a 
technical claim, namely that the UTM as 
defined in 1936 comprises a representa-
tive mathematical model of the stored-
program electronic computers of the 
late-1940s. Turing, in 1947, said, for ex-
ample, that digital computing machines 
(such as the ACE) “are in fact practical 
versions of the universal machine.”6 But 
the full validity of this technical claim 
is debatable in various ways. For one, 
a stored-program machine is only one 
way to construct a practical realization 
of a UTM. For another, even when the 
connection was mentioned in relation 
to the new machines, reference was to 
re-cast versions of Turing’s ideas rather 
than to the original ones.12 

Notoriously, neither von Neumann 
nor Turing himself suggested this con-
nection in 1945 in their original propos-
als. In a brief note apparently drafted 

Alan Turing finishing a race, 1946. 
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and I do so by relying on a variety of al-
ready published, mostly well-known, 
primary sources. I argue that the “ma-
chines” Turing discussed at the time 
were purely mathematical constructs. 
They were not conceived as possible 
blueprints for building physical calcula-
tors. Moreover, I claim the very idea of a 
modern computer in the sense of either 
von Neumann’s “First Draft” or of Tur-
ing’s “Proposed Electronic Calculator” 
was in 1936 not only beyond the scope 
of Turing’s capabilities but also of his 
concerns. This is true in the obvious 
(yet crucial) sense that the specific elec-
tronic technology that would allow their 
construction was then beyond Turing’s 
horizon but also true in the less-obvious 
sense of the question: What should an 
automatic calculating device be in the 
first place? 

Turing did become involved during 
this time in the construction of two ac-
tual devices, and in both cases the idea 
of a UTM was of no use, provided no 
inspiration, and was not even remotely 
mentioned or hinted at. Neither did 
Turing suggest that the right approach 
to building a real computing machine 
would be along the lines of the UTM 
and that he would not pursue this direc-
tion just for reasons related to technical 
limitations or to lack of time. 

Turing’s Computers 
Let us start with the 1936 paper itself. 
Beyond superficial appearance, there 
is nothing in the original text of “Com-
putable Numbers” that might indicate 
Turing was referring to, or had in mind, 
actual physical devices as part of his 
analysis. The “computers” he referred 
to in the article were humans who cal-
culate. The aim was to “construct a ma-
chine to do the work of this computer,” 
and this is what his famous “machines” 
were indeed meant to do. Clearly, “con-
struct” was not intended in this text as 
“physically construct,” just as it was not 
intended when Turing speaks about 
“constructing” a proof “by the methods 
of Hilbert and Bernays” or “construct-
ing” a number about which he asks 
whether or not it is “computable.” 

The non-physical spirit of Turing’s 
conception of “machines” is highlight-
ed by specific comments that do involve 
what could be taken on first sight to 
mean physical components (such as 
ink or a square) in the (infinite) paper 

ribbon but which are actually treated 
as truly abstract entities, when, for in-
stance, he explains the assumption 
that the number of symbols that may 
be printed is finite. The reason for this 
assumption is that otherwise we would 
have, as Turing said, “symbols that dif-
fer from each other to an arbitrarily 
small extent.” A footnote explaining 
this comment leaves no doubt that, in 
spite of the wording, Turing is thinking 
here not as an engineer but purely as a 
mathematician analyzing the situation 
with conceptual tools taken from mea-
sure theory and topology: 

“If we regard a symbol as literally 
printed on a square we may suppose 
that the square is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The 
symbol is defined as a set of points in 
this square, viz. the set occupied by 
printer’s ink. If these sets are restricted 
to be measurable, we can define the ‘dis-
tance’ between two symbols as the cost 
of transforming one symbol into the 
other if the cost of moving unit area of 
printer’s ink unit distance is unity, and 
there is an infinite supply of ink at x = 
2, y = 0. With this topology, the symbols 
form a conditionally compact space.”27 

Some time around May 1936 Turing 
prepared a two-page French summary 
of “Computable Numbers.” This time 
he did not mention human computers, 
explicitly stating that a number may be 
called “computable” if its decimals can 
be written by a machine. In describing 
what he meant by a machine, he explic-
itly characterized the various configura-
tions of which the machine is “suscep-
tible” as different arrangements of “the 
levers, the wheels, etc.”c But even when 
he used this suggestive wording, it is 
clear he was speaking figuratively, and 
that the machines in question were to 
his mind purely mathematical entities. 
We can see this from what he writes fur-
ther: 

“A real ‘computing machine’ should 
be able to write as many digits as one 
wishes; “A machine M is called ‘mali-
cious’ (méchant) [what in English he 
called ‘circular’] if there is a number 
N such that M will never write N digits; 
and “An application of Cantor’s diago-

c	 See http://www.turingarchive.org/browse.php/K/4 
In the quotation from Copeland and Somma-
ruga,9 the authors refer to this French sum-
mary as evidence for their statement about a 
“three-dimensional machine.”

in 1945 while working on his proposal, 
Turing implicitly clarified that the origi-
nal context of the ideas from 1936 could 
not allow for thinking about a physical 
calculator, as proposed on the basis 
of electronic components. He did not 
mention the issue of instructions stored 
as data, that might be seen, at least ret-
rospectively, as connecting the current 
design with the idea of a UTM. Rather, 
Turing referred only to the issue of ac-
cessing the data in reasonable time: 

“In ‘Computable Numbers’ it was as-
sumed that all the stored material was 
arranged linearly, so in effect the acces-
sibility time was directly proportional to 
the amount of material stored, being es-
sentially the digit time multiplied by the 
number of digits stored. This was the 
essential reason why the arrangement 
in ‘Computable Numbers’ could not be 
taken over as it stood to give a practical 
form of machine.”7 

But beyond the questionable paral-
lel between a UTM and a stored-pro-
gram machine, there are more purely 
historical questions that require clari-
fication. Of particular interest is the 
actual, direct influence of Turing’s 
paper on von Neumann at the time 
when the latter wrote his famous “First 
Draft.” Some authors have recently ap-
proached this issue and shown (con-
vincingly, in my opinion) that, to the 
extent von Neumann (or even Turing 
himself) actually took inspiration from 
Turing’s 1936 paper when engaged in 
the design of a stored-program com-
puter, these ideas provided at most ad-
ditional input (arguably not decisive) 
that was incorporated into a broader, 
complex array of (mostly engineering 
and only partly mathematical) consid-
erations; see, for example, Daylight,12 
Haigh,15 and Haigh et al.16,b To what 
has been said in such works, I add only 
some specific remarks here. But I think 
my analysis, by focusing on the earlier 
part of the story, naturally connects to 
the views expressed therein and gives 
them greater credence. 

I do not explore the important issue 
of contemporary developments in dif-
ferent national settings.3 I limit myself 
to Turing’s work before being recruited 
to Bletchley Park in September 1939, 

b	 It should be remarked that the term “stored-
program” was introduced in 1949 by IBM engi-
neers in Poughkeepsie, NY.11
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these are of such a nature as obviously 
to cause no loss of generality—in partic-
ular, a human calculator, provided with 
pencil and paper and explicit instruc-
tions, can be regarded as a kind of Tur-
ing machine.”4 

Note that Church used the term 
“computing machine” to mean any cal-
culating machine of finite size, rather 
than the specific kind of “machines” in-
troduced by Turing. The latter are then 
characterized by further restrictions, 
and Turing’s human calculator becomes 
a particular example of the Turing ma-
chine. This goes in just the opposite di-
rection from Turing in his original for-
mulation. Moreover, as Hodges20 wrote, 
Turing had not referred to machines of 
finite size as Church did here, and cer-
tainly did not define computability in 
terms of the alleged power of finite ma-
chines. Such machines would eventu-
ally repeat themselves, and Turing had 
attempted precisely to show how a ma-
chine with finite specifications would 
not be constrained to do so. The finite-
ness of Turing’s machines concerned 
only the number of configurations, but 
the tape, for instance, could not be lim-
ited. So we see that Church’s account 
somewhat obscured rather than clarified 
Turing’s powerful, original point of view. 

Turing, however, never seems to have 
explicitly reacted negatively to Church’s 
characterization. Neither did he react to 
similar remarks by Gödel, who character-
ized Turing’s work in the 1930s as a gen-
eral analysis of arbitrary machines.22 It is 
likely that Turing did not consider such 
accounts of his ideas as totally unreason-
able. But, as Hodges further suggested,20 
it is likely that the participants in this 
discourse about computability were us-
ing the word “machine” in a loose man-
ner and without qualifications to signify 
“mechanical processes” in general. The 
machines and the mechanical proce-
dures they referred to were conceived as 
part of the meta-mathematical attempt 
to provide the rigorous mathematical 
characterization of the informal idea of 
computing rather than suggesting, in 
any way, some practical guidance on how 
to build a physical machine. 

Yet another contemporary account 
emphasizes from a different direction 
the purely mathematical character of 
Turing’s view of his machines, this one 
by British mathematician Alister Wat-
son. Watson, who, like Turing, was a fel-

nal argument proves that there exists 
no machine that, if provided with a de-
scription of an arbitrary machine M, can 
decide if M is malicious.” 

It would make little sense to say that 
by appealing to this abstract argument, 
used to tackle situations involving infi-
nite sets, Turing intended to say some-
thing about an actual physical device. 

We can take this analysis one step 
further by considering Turing’s ideas in 
the context of the well-known contem-
porary debates of the mid-1930s involv-
ing other logicians who came up with 
their own attempts to provide rigorous 
mathematical formulations of ideas re-
lated to the general notion of “effective 
computability” or “mechanical proce-
dure.” Kurt Gödel, Alonzo Church, Ste-
phen Cole Kleene, Paul Bernays, and 
Emil Post are among the most promi-
nent names associated with this “period 
of confluence.” Their motivations, the 
specific problems they were addressing, 
and the approach they followed were 
slightly different in each case, and I am 
unable to delve into them here; see, for 
example, DeMol13 and Sieg.22 For all of 
them though, the search for mathemati-
cally precise concepts, corresponding 
to what were then informal ideas, only 
vaguely understood, was crucial. 

Turing was the first to introduce into 
such discourse the word “machine.” 
The more specific term “Turing Ma-
chine” was coined by Church in a fa-
mous review from 1937. Church, as is 
well known, had completed at roughly 
the same time—but following a rather 
different approach—his own contribu-
tion to solving Hilbert’s Entscheidung-
sproblem, which was also the focus of 
Turing’s paper. After becoming aware 
of this, Turing sent it for publication 
in August 1936, with an appendix prov-
ing the equivalence of both approaches 
and of the ensuing results. In the re-
view, Church described the “Turing Ma-
chines” as follows: 

“[Turing] proposes as a criterion that 
an infinite sequence of digits 0 and 1 be 
‘computable’ that it shall be possible to 
devise a computing machine, occupy-
ing a finite space and with working parts 
of infinite size, which will write down 
the sequence to any desired number of 
terms if allowed to run for a sufficiently 
long time. As a matter of convenience, 
certain further restrictions are imposed 
on the character of the machine, but 

Between publication 
of “Computable 
Numbers” and  
his recruitment  
to Bletchley,  
Turing was  
involved in  
the design 
and possible 
construction  
of two different 
physical 
calculators. 
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With the help of the oracle, Turing thus 
wrote, “We could form a new kind of 
machine (call them o-machines), 
having as one of its fundamental 
processes that of solving a given 
number theoretic problem.” 

Turing in this context used the term 
“number theoretic problem” with a pre-
cise meaning, namely, problems involv-
ing statements of the form “for all ..., 
there exists ...” He proposed the meta-
mathematical task of establishing the 
completeness of such problems. The 
twin prime conjecture and the state-
ment of Fermat’s last theorem fall with-
in the scope of these problems. But of 
special importance for Turing was the 
fact that the Riemann Hypothesis was 
also a “number theoretic” problem in 
his sense. As American logician Solo-
mon Feferman indicated,14 it is not 
really clear why Turing concentrated 
specifically on such statements rather 
than on arithmetical statements in 
general. After all, there are other im-
portant problems, including the finite-
ness of the number of solutions of a 
diophantine equation or the statement 
of Waring’s problem, that do not fit into 
this definition. 

At this stage, Turing was already 
involved in the design of two actual 
calculating devices, as I explore in the 
following sections. And yet, even more 
than in “Computable Numbers,” there 
is nothing in the way “machines” are re-
ferred to in Turing’s thesis that may be 
taken to suggest the idea of building an 
actual device. Much less does the text 
suggest that a UTM should be taken as 

the most appropriate basis for build-
ing some kind of “general purpose” or 
“stored program” calculator. On the 
other hand, since the “oracle” by its 
very nature, cannot be a machine in the 
restricted sense of the Turing machine, 
it brings to the fore the idea of various 
possible ways to conceive appropriate 
models of addressing different mathe-
matical situations. So, in exploring the 
capabilities of the o-machines, Turing 
actually meant to explore aspects of 
mathematical proof and of calculation 
that would not be covered by the ma-
chine as defined in 1936. 

Turing’s Princeton 
Turing’s encounter with von Neu-
mann at Princeton is one topic that 
arises repeatedly in texts by scholars 
who argue for the connection between a 
UTM and the stored-program computer.  
A most explicit example of this ap-
pears in the following passage from 
2011, cited from a text by Jack Copeland 
and Diane Proudfoot: 

“John von Neumann shared Turing’s 
dream of building a universal stored-
program computing machine. Von 
Neumann had learned of the universal 
Turing machine before the war; he and 
Turing came to know each other during 
1936–1938 when both were at Prince-
ton University.”8 

Indeed, the range of the mutual math-
ematical interests of these two bright 
men was very broad. Von Neumann in 
the 1920s had been a leading figure in 
the Hilbert circle and Hilbert’s collabora-
tor in matters related to the foundations 
of mathematics. In 1933 he became pro-
fessor of mathematics at the Institute for 
Advanced Study. Turing met him in the 
summer of 1935 in Cambridge when von 
Neumann lectured there on “almost pe-
riodic functions.” This was a topic of in-
terest to Turing at the time, and he most 
certainly attended the course. 

Given the later prominence of both 
Turing and von Neumann in the devel-
opment of the modern computer, it may 
seem natural to assume their encounter 
in Princeton was a period of intense 
intellectual interchange, particularly 
around the possibility of building calcu-
lating machines. However, a closer look 
at the evidence tells a completely dif-
ferent story of the encounter and of its 
relevance to our story. Take for example 
the following passage from Turing’s let-

low at King’s College and also the per-
son who introduced Turing to Ludwig 
Wittgenstein in the summer of 1937. 
What interests us here is Watson’s de-
scription of Turing’s machines in an ar-
ticle he published in 1938: 

“Turing’s theory of computable 
numbers is essentially that of math-
ematical expressions, but he has put 
it in a rather striking way in terms of 
machines, which would calculate deci-
mals in accordance with rules that 
correspond to different mathematical 
expressions for sequences of this kind. 
He shows how each such machine can 
be given a number, different for each 
machine, and so concludes that the ma-
chines and therefore the numbers cal-
culated by them form an enumerable 
set. Although we can give every machine 
a number, it is impossible to give a me-
chanical method by which we can ascer-
tain whether any particular machine is 
really [circle-free] ...”31 

Turing’s Thesis 
Invited to take his Ph.D. under the 
direction of Church, Turing worked 
at the Institute for Advanced Study 
in Princeton from September 1936 
to July 1938. His dissertation pro-
vides further insight into the rela-
tionship between his “machines” and 
any thoughts he might have had about 
building an actual physical calculator. 

A main innovation of the thesis is 
the idea of an “oracle” that “cannot be 
a machine” and which, by definition, 
involves “some unspecified means of 
solving number theoretic problems.” 
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and much less that they shared (or dis-
cussed) during these years anything like 
a “dream of building a universal stored-
program computing machine.” 

Turing’s Analog Machine 
Between publication of “Comput-
able Numbers” and his recruitment to 
Bletchley, Turing was involved in the 
design and possible construction of 
two different physical calculators. The 
first, in the Fall of 1937, was essentially 
an electric multiplier. This was for Tur-
ing an early and rather rudimentary 
(though no doubt original) foray into 
machine-based cryptanalysis. On the 
mathematical side, it appealed to a sim-
ple but theretofore not very well noticed 
parallel between binary arithmetic and 
Boolean algebra. On the physical side, it 
brought to bear the possibility of using, 
as the basis for a computing device, the 
kind of electromagnetic relays that had 
already been in use for approximately 
100 years in the context of telegraphy. 

In his account of this interest-
ing episode, Hodges19 explained it 
as an attempt, on the side of Turing, 
to build a physical embodiment of 
a specific “Turing Machine” meant 
to deal with a specific mathematical 
problem, with the network of relay-
operated switches acting as material 
counterparts of the “configurations”: 

“The idea would be that when a num-
ber was presented to the machine, pre-
sumably by setting up currents at a se-
ries of input terminals, the relays would 
click open and closed, currents would 
pass through, and emerge at output ter-
minals, thus in effect ‘writing’ the enci-
phered number.”21 

We have no evidence that Turing 
himself would have described in these 
terms what he was doing here or that, in 
his view, with the relay multiplier, “‘Tur-
ing machines’ were coming to life,” as 
Hodges further remarked. But one way 
or another, as Hodges himself clearly 
stated elsewhere,19 “This offbeat ama-
teur engineering was the closest Turing 
came to developing his ideas of general 
computation in a practical direction.” 
This episode underscores, in my view, 
the unlikeliness of seeing Turing’s 1936 
UTM as a blueprint for a counterpart 
physical device that would be general-
purpose, digital, and, more important, 
stored-program. An engineering project 
involving such ideas was simply well be-

ter written October 6, 1936, soon after 
his arrival at Princeton: 

“The mathematics department 
here comes fully up to expectations. 
There is a great number of the most 
distinguished mathematicians here. 
J.v.Neumann, Weyl, Courant, Hardy, 
Einstein, Lefschetz, as well as hosts of 
smaller fry. Unfortunately, there are 
not nearly so many logic people here as 
last year. Church is here of course, but 
Gödel, Kleene, Rosser and Bernays ... 
have left. I don’t think I mind very much 
missing any of these except Gödel.”6 

Turing did not include von Neu-
mann among the “logic people,” and 
with good reason. Right after becom-
ing aware of Gödel’s results in 1930, 
von Neumann deliberately abandoned 
his previous, very active and important 
involvement with the foundations of 
mathematics.1 The prominent math-
ematicians listed in Turing’s letter 
showed little interest in the newcomer 
from Cambridge and in his work on log-
ic. Von Neumann was no exception, nor 
was Godfrey H. Hardy, who was on visit 
at the IAS. It is fair to say that Church 
was Turing’s only real interlocutor on 
logic while Turing was at Princeton. 

Both Turing and Church were far 
from the overly extroverted style of 
von Neumann, and all evidence indi-
cates there was no personal or friendly 
relationship with him. We do know 
Church’s few active attempts to make 
Turing’s work better known in Princ-
eton were not particularly successful. 
Shortly before “Computable Numbers” 
was published in 1937, Church urged 
Turing to deliver a talk before the distin-
guished local mathematical communi-
ty. Obviously, Turing was thrilled about 
the opportunity and thought it might 
bring his work to greater attention. 
However, it all ended up in disappoint-
ment, as we read in one of his letters: 

“There was rather bad attendance at 
the Maths Club for my lecture on Dec. 
2. One should have a reputation if one 
hopes to be listened to.”6 

Turing was also disappointed by 
the rather limited reaction—besides 
Church’s review essay—aroused by the 
publication of his paper at the end of 
1936. We know that only two persons 
requested offprints. Even Hermann 
Weyl, who had been a most prominent 
member of Hilbert’s inner circle and a 
main figure in the late-1920s debates 

around the Hilbert program, made 
not a single remark about the paper. 
Naturally, Turing was particularly dis-
appointed by Weyl’s lack of reaction.21 
And it seems that he did not expect von 
Neumann to react in any way to his pa-
per. To be sure, besides the letter, von 
Neumann is not mentioned in any of 
the letters Turing wrote from Princeton 
in 1936–1937 to either his mother or his 
teacher, Philip Hall. 

In April 1938, von Neumann ap-
proached his younger colleague to of-
fer him a job as assistant, and Turing 
turned it down. His fellowship at Cam-
bridge had just been renewed, and 
he was not eager to remain in the U.S. 
anyway. These may have been the main 
reasons for Turing’s decision. But what 
about von Neumann’s reasons for ap-
proaching Turing? Hodges21 suggested 
that by this time von Neumann “was 
aware of ‘Computable Numbers,’ even 
if he had not been a year earlier.” This is 
likely, though there is no direct evidence 
for it. But what is more than evident is 
that the offer had nothing to do with a 
direct interest in Turing’s work on com-
putability and logic, either as developed 
in the now famous article of 1936 or as 
then pursued in his Ph.D. dissertation.28 

Indeed, back in June 1937, von Neu-
mann had written a letter of recom-
mendation on behalf of Turing for the 
Procter Fellowship, indicating Turing 
“had done good work in branches of 
mathematics in which I am interested, 
namely: theory of almost periodic func-
tions and theory of continuous groups.” 
Von Neumann, let me emphasize again, 
had by then completely abandoned his 
interest in logic, and there is no indica-
tion that at the time (and indeed any-
time before he became involved in the 
war effort) he had in any way started to 
think about computing machines or 
even about mathematical topics related 
to massive calculations.1 

If, as Copeland and Proudfoot8 em-
phasized, “von Neumann had learned 
of the universal Turing machine before 
the war,” there is no indication he de-
voted special attention to it. While 
obviously, according to Copeland 
and Proudfoot, “he and Turing came 
to know each other... at Princeton,” 
their interaction was rather limited in 
scope and intensity. There is no indi-
cation that the two devoted any time to 
discussing Turing’s ideas on the topic 
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ber x where this change of sign happens 
is smaller than 10101034

. 
While at Princeton, and during his 

visit to Cambridge in the Summer of 
1937, Turing actively pursued research 
related to RH. Among other things, he 
improved the value of Skewes’s bound, 
and, more important, improved the 
existing methods for calculating zeros 
of ζ(s). Shortly before that, Edward Ch. 
Titchmarsch had been involved with 
such calculations at Oxford and was 
able to establish that the first 1,041 
nontrivial zeros of ζ(s) all satisfy RH.24,25 
Turing’s plan from 1939 for building a 
calculating device is directly connected 
to Titchmarsch’s work. 

Titchmarsch’s calculations were 
based on approximation formulas that 
required massive iterations of addition 
and multiplication, as well as the use 
of cosine tables. For “planning and su-
pervising the calculations, which were 
carried out with Brunsviga, National, 
and Hollerith machines,” Titchmarsch 
explicitly thanked J.L. Comrie,25 who 
had, since 1929, been “Secretary of the 
British Mathematical Tables Commit-
tee” and the driving force behind a great 
amount of important projects of scien-
tific table making conducted in the U.K. 
at the time.10 

Astronomical tables were of particu-
lar importance among such projects, 
and their preparation involved repeti-
tive summations of circular functions 
involving different frequencies for plot-
ting the positions of planets. Comrie’s 
recent introduction of Hollerith punch-
card techniques to scientific table mak-
ing5 signified a remarkable innovation 
in the field. As it happened, the calcu-
lations required in Titchmarsch’s ap-
proach to calculating zeros of ζ(s) were 
quite similar to them. Comrie was clear-
ly the right person to provide the neces-
sary technical assistance. 

Comrie did not typically perform any 
calculations himself. Rather, he had 
teams of “human computers” (mainly 
women) to do that work. Each computer 
received data to be worked out, and, with 
the help of “Brunsviga, National, and 
Hollerith machines,” would perform a 
specific task, clearly defined in advance 
according to the kind of input presented 
to her. She would then deliver the result 
to another person in the team who also 
carried out a respective task, well de-
fined in advance, again depending on 

the kind of input at stake. Note while 
Turing’s “machines” of 1936 provided 
a mathematical model meant to ana-
lyze the nature and scope of the calcula-
tions that individual human computers 
could and did effectively perform, those 
machines can also be taken to describe 
adequately (and perhaps even better) 
the model of what coordinated teams of 
human computers were actually doing 
in Turing’s time when addressing heavy 
computational tasks that went beyond 
what an individual could achieve. 

When Turing in 1939 undertook to 
perform relatively massive calculations 
in one of his main mathematical topics 
of interest other than logic—the Rie-
mann Hypothesis—he was aware that 
precisely at that time, one of Comrie’s 
teams had recently been involved in the 
same task, with the aid of mechanical 
calculators. The conceptual similarity 
between Turing’s model and Comrie’s 
activities could not have escaped Tur-
ing’s notice. And yet, for his own calcula-
tions, he did not choose to follow or im-
prove the direction previously pursued 
by Titchmarsch. Neither did he take 
a step further toward anything like a 
UTM. Rather, he went into the totally dif-
ferent direction of designing an analog 
machine, specifically conceived for sup-
porting his work on what for him was 
such an important mathematical task. 

Turing’s analog design relied on a 
machine built some years earlier for 
tide prediction at Liverpool, England. 
It performed trigonometrical summa-
tions based on a combination of pulley 
wheels, each representing one of the 
gravitational effects that give rise to tid-
al phenomena. A thin nickel tape con-
nected the various pulley wheels and 
“summed up,” as it were, their separate 
movements. The tidal highs and lows 
were thereby registered on a chart locat-
ed at the bottom of the machine. 

Turing thought similar principles 
would be useful for constructing an ap-
paratus for calculating trigonometric 
sums that were at the heart of his meth-
od for the zeros of ζ(s). In some cases, 
he thought, the apparatus would not be 
accurate enough and it would then be 
necessary to work out the calculations 
manually. But he believed such cases 
would be extremely rare. He specifically 
stressed that the apparatus would be so 
closely analog to the simulated math-
ematical situation to the extent that he 

yond the horizon of what Turing had in 
mind at this point. 

But all such intent becomes even 
more evident when we take a close look 
at a second calculating device Turing 
designed and started to build in 1939. 
This was one specifically conceived for 
calculating approximate values of the 
Riemann zeta-function on its critical 
line. Hodges’s Turing website “Alan Tur-
ing: the Enigma” (http://www.turing.
org.uk/index.html), the foremost reposi-
tory of scholarly information for anyone 
interested in Turing’s life and work, dis-
plays the application submitted by Tur-
ing to the Royal Society for a grant sup-
port for building the device, as well as 
a blueprint with some details about its 
technical design.d This is not the place 
for details about the mathematical sig-
nificance of the Riemann Hypothesis, or 
RH, of Turing’s overall involvement with 
this problem, or of his specific contribu-
tion to it; such information can be found 
in Booker2 and in Hejhala and Odlyzko.17 
But there are some specific points that 
are highly relevant to our concerns here 
and proceed to discuss them now. 

Turing’s interest in RH was sparked 
shortly after matriculating at King’s Col-
lege in 1931. There he attended a course 
by Albert E. Ingham, who in 1932 pub-
lished an important text on the distribu-
tion of prime numbers. At King’s, Tur-
ing also befriended Stanley Skewes, 
who in 1933 made a remarkable contri-
bution to research on RH. Briefly, Skew-
es calculated an upper bound for the 
smallest value of x for which π(x) > Li(x). 
Here π(x) represents the number of 
primes that are smaller than a given in-
teger x, while Li(x) is the value of the in-
tegral . It is well known that RH 
concerns the question of the nontrivial 
zeros of the Riemann zeta-function ζ(s) 
and its relation to the estimation of the 
value of the difference between the two 
functions. John E. Littlewood had 
proved, in 1912, contrary to the com-
mon belief at the time, that the differ-
ence π(x) – Li(x) changes sign infinitely 
many times, both if RH is true and if RH 
is false. Skewes’s proof involved two dif-
ferent values of the upper bound for the 
respective cases, and both were amaz-
ingly high. For instance, if RH is true, 
then he proved that the smallest num-

d	 See http://www.turing.org.uk/sources/zetama-
chine.html
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Intuition and Turing’s Machines 
Turing left Cambridge in September 
1939 for Bletchley Park, and would over 
the next few years devote all of his intel-
lectual energies to war-related projects 
while temporarily setting aside mathe-
matical research in his other fields of in-
terest. By 1945 he would have added im-
portant skills, as well as familiarity with 
electronic valves and with machines of 
various kinds, to the already impressive 
arsenal of knowledge he had brought 
with him at the time of his recruitment. 
His activities after 1945, including, of 
course, all of his involvement with elec-
tronic computers, were deeply influ-
enced by his years at Bletchley. 

But over the first months following 
his recruitment, Turing and Newman 
continued to correspond and discuss is-
sues connected to their pre-war activity. 
This correspondence bears witness to 
the way the two went on to speak about 
“Turing machines” at a time when Tur-
ing had already gained actual experi-
ence, not only with the two calculating 
devices he had been involved with, but 
also with what he had now started to 
learn at Bletchley. Remarkably, they 
stuck to the language of “machines,” 
not in the sense of physical devices 
but rather as the relevant, purely math-
ematical idea on the basis of which 
they would discuss issues related to the 
foundations of arithmetic. 

In a particularly interesting passage, 
under the heading “Ingenuity and In-
tuition,” Turing replied to a previous 
letter from Newman in which Newman 
seems to have commented on matters 
related to the Hilbert program: 

“I think you take a much more radi-
cally Hilbertian attitude about mathe-
matics than I do. You say ‘If all this whole 
formal outfit is not about finding proofs 
which can be checked on a machine it’s 
difficult to know what it is about.’ [D]o 
you have in mind that there is (or should 
be or could be, but has not been actu-
ally described anywhere) some fixed 
machine ... and that the formal outfit 
is, as it were about this machine. If you 
take this attitude ... there is little more 
to be said: we simply have to get used to 
the technique of this machine and re-
sign ourselves to the fact that there are 
some problems to which we can never 
get the answer ... If you think of various 
machines I don’t see your difficulty. One 
imagines different machines allowing 

could not think “of any application that 
would not be connected with” ζ(s). The 
project, at any rate, was never complet-
ed because of the outbreak of war, and 
none of its parts has survived. 

I find it quite interesting that when 
Hodges describes the project on his 
website, he mentions “a special ma-
chine to calculate approximate val-
ues for the Riemann zeta-function on 
its critical line.” This is not the only 
place where the term “special ma-
chine,” which was not used by Tur-
ing, is used in this context, as in, for 
example, Booker2 and Hejhala and 
Odlyzko.17 I take it to be a revealing, 
subtly misleading description of what 
Turing had in mind in 1939, particu-
larly because the project is often men-
tioned in conjunction with Turing’s 
later efforts of 1950 to attack the same 
problem using a “general purpose” 
electronic computer, the Manchester 
University Mark I.29 

My point is that in 1939 Turing ap-
proached the actual construction of an 
apparatus the way he did, not because—
for lack of time or resources—he was 
compelled to make do with it. This was 
not a “special” limited or rudimentary 
version of what for him would be the 
real thing, namely, a general-purpose, 
stored-program, digital and electronic 
computer (presumably being a physi-
cal embodiment of a UTM). Rather, it 
is that a putative physical version of a 
UTM was not within the horizon of pos-
sible or convenient approaches to be 
followed. To the contrary, what the evi-
dence shows is that, at the time, Turing 
considered the analog approach to be 
the most intrinsically appropriate for 
the task at hand. 

In fact, the tremendous success of 
modern digital computers has nega-
tively affected the way the history of ana-
log computers in general has been told. 
The case of Turing’s 1939 project is just 
one example of such retrospective mis-
reading, though one seldom mentioned 
in this context. Analog computers were 
not only a natural choice in many situ-
ations before the war but even after the 
emergence of digital computing in the 
post-war period were not immediately 
displaced.23 A most remarkable exam-
ple of this is precisely the Liverpool tide-
predicting machine, which remained in 
use until the 1960s, before being super-
seded by electronic computers. 

By its very nature, 
Turing’s oracle 
could not be  
a standard  
Turing machine. 
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models as suggesting blueprints for de-
signing physical devices, then an analog 
machine (such as planned by Turing 
in 1939) would come much closer than 
anything built along the lines of a UTM 
to embodying specific, “fundamental 
processes” associated with a particular 
number theoretic problem, in the sense 
suggested in his Ph.D. thesis. 

When Turing in 1950 returned to 
the task of calculating zeros of ζ(s) the 
sea changes that had revolutionized the 
world of automatic computation had 
rendered all those pre-war consider-
ations obsolete. The natural approach 
to follow for Turing was now to write a 
specific program to run in a stored-pro-
gram, general-purpose machine. But the 
Mark I, like all other similar machines at 
the time, was not only stored-program. 
It was also electronic, large-scale, high-
speed, general purpose, and digital. In 
1939, all these crucial components of the 
machines that started to be built in the 
late 1940s were far beyond the horizon. 
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different sets of proofs, and by choos-
ing a suitable machine one can ap-
proximate ‘truth’ by ‘provability’ better 
than with a less suitable machine, and 
can in a sense approximate it as well as 
you please. The choice of a machine in-
volves intuition,... or as [an] alternative 
one may go straight for the proof and 
this again requires intuition.”6 

The fact that still, in 1940, when the 
classical debates on the foundations 
of arithmetic had almost totally faded 
away, Newman and Turing continued 
their exchanges on such matters, is 
worthy of attention in itself. But no less 
interesting is the subtle twist Turing 
introduced into this discussion when 
he mentioned the possibility of having 
various kinds of machines according to 
different kinds of intuitions that are rel-
evant to different mathematical situa-
tions. The UTM was not for Turing “uni-
versal” in this important sense. 

It seems that now—in those few op-
portunities when he could think about 
the foundations of mathematics and 
about questions of “truth” or “prov-
ability”—Turing also incorporated new 
directions (such as he had explored in 
his Ph.D. dissertation). This included, 
no doubt, the oracle, but also, so it 
seems, alternatives to the basic “ma-
chine” he had defined in 1936. 

Conclusion 
I conclude with a final, somewhat con-
jectural suggestion. By its very nature, 
Turing’s oracle could not be a standard 
Turing machine. “Solving a given num-
ber theoretic problem” is one of “its fun-
damental processes.” And the Riemann 
Hypothesis is one such problem. Now, 
it seems to me, Turing’s construction 
of his analog machine and the variety of 
machines he mentioned in his response 
to Newman shed interesting light, retro-
spectively, on that passing, somewhat 
unclear comment Turing advanced in 
his thesis. From the letter we learn that 
each mathematical situation calls for 
the choice of a suitable machine and 
these choices rely on the right intuition 
to do so in each case. The UTM had been 
a highly successful, specific choice for 
dealing with the Entscheidungsprob-
lem, but that would not mean—even in 
principle—it would provide a model for 
a physical universal machine, suitable 
for all mathematical tasks. If we may 
somehow think of these mathematical 
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WHILE DATA S CIEN CE  has emerged as an ambitious 
new scientific field, related debates and discussions 
have sought to address why science in general needs 
data science and what even makes data science a 
science. However, few such discussions concern the 
intrinsic complexities and intelligence in data science 
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While it may not be possible to build a data 
brain identical to a human, data science can 
still aspire to imaginative machine thinking. 
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problems and the gaps in and op-
portunities for data science research. 
Following a comprehensive literature 
review,5,6,10–12,15,18 I offer a number of 
observations concerning big data and 
the data science debate. For example, 
discussion has covered not only data-
related disciplines and domains like 
statistics, computing, and informat-
ics but traditionally less data-related 
fields and areas like social science 
and business management as well. 
Data science has thus emerged as a 
new inter- and cross-disciplinary field. 
Although many publications are avail-
able, most (likely over 95%) concern 
existing concepts and topics in statis-
tics, data mining, machine learning, 
and broad data analytics. This limited 
view demonstrates how data science 
has emerged from existing core dis-
ciplines, particularly statistics, com-
puting, and informatics. The abuse, 
misuse, and overuse of the term “data 
science” is ubiquitous, contributing 
to the hype, and myths and pitfalls are 
common.4 While specific challenges 
have been covered,13,16 few scholars 

have addressed the low-level complex-
ities and problematic nature of data 
science or contributed deep insight 
about the intrinsic challenges, direc-
tions, and opportunities of data sci-
ence as an emerging field. 

Data science promises new opportu-
nities for scientific research, addressing, 
say, “What can I do now but could not do 
before, as when processing large-scale 
data?”; “What did I do before that does 
not work now, as in methods that view 

 key insights
˽˽ Data science problems require 

systematic thinking, methodologies,  
and approaches to help spur  
development of machine intelligence. 

˽˽ The conceptual landscape of data 
science assists data scientists trying to 
understand, represent, and synthesize 
the complexities and intelligence in 
related problems. 

˽˽ Data scientists aim to invent data- 
and intelligence-driven machines to 
represent, learn, simulate, reinforce, 
and transfer human-like intuition, 
imagination, curiosity, and creative 
thinking through human-data interaction 
and cooperation. 
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and synthesizes a number of relevant 
disciplines and bodies of knowledge, 
including statistics, informatics, com-
puting, communication, management, 
and sociology, to study data following 
“data science thinking”6 (see Figure 1). 
Consider this discipline-based data 
science formula 

data science = {statistics ∩ informatics 
∩ computing ∩ communication ∩ 
sociology ∩ management | data ∩ 
domain ∩ thinking } 

where “|” means “conditional on.” 

X-Complexities in Data Science 
A core objective of data science is ex-
ploration of the complexities19 inher-
ently trapped in data, business, and 
problem-solving systems.3 Here, com-
plexity refers to sophisticated charac-
teristics in data science systems. I treat 
data science problems as complex sys-
tems involving comprehensive system 
complexities, or X-complexities, in 
terms of data (characteristics), behav-
ior, domain, social factors, environ-
ment (context), learning (process and 
system), and deliverables. 

Data complexity is reflected in terms 
of sophisticated data circumstances 

and characteristics, including large 
scale, high dimensionality, extreme 
imbalance, online and real-time inter-
action and processing, cross-media 
applications, mixed sources, strong 
dynamics, high frequency, uncertainty, 
noise mixed with data, unclear struc-
tures, unclear hierarchy, heteroge-
neous or unclear distribution, strong 
sparsity, and unclear availability of spe-
cific sometimes critical data. An impor-
tant issue for data scientists involves 
the complex relations hidden in data 
that are critical to understanding the 
hidden forces in data. Complex rela-
tions could consist of comprehensive 
couplings2 that may not be describ-
able through existing association, cor-
relation, dependence, and causality 
theories and systems. Such couplings 
may include explicit and implicit, 
structural and nonstructural, seman-
tic and syntactic, hierarchical and ver-
tical, local and global, traditional and 
nontraditional relations, and evolution 
and effect. 

Data complexities inspire new per-
spectives that could not have been 
done or done better before. For ex-
ample, traditional large surveys of 
sensor data, including statisticians’ 
questions and survey participants, 
have been shown to be less effective, 
as seen in related complications (such 
as wrongly targeted participants, low 
overall response rate, and questions 
unanswered). However, data-driven 
discovery can help determine who is to 
be surveyed, what questions need to be 
answered, the actionable survey opera-
tion model, and how cost-effective the 
survey would be. 

Behavior complexity refers to the 
challenges involved in understanding 
what actually takes place in business 
activities by connecting to the seman-
tics and processes and behavioral sub-
jects and objects in the physical world 
often ignored or simplified in the data 
world generated by physical-activity-
to-data conversion in data-acquisition 
and -management systems. Behavior 
complexities are embodied in coupled 
individual and group behaviors, behav-
ior networking, collective behaviors, 
behavior divergence and convergence, 
“nonoccurring”8 behaviors, behavior-
network evolution, group-behavior 
reasoning, recovery of what actually 
happened, happens, or will happen in 

data objects as independent and identi-
cally distributed variables (IID)?”; “What 
problems not solved well previously are 
becoming even more complex, as when 
quantifying complex behavioral data?’’; 
and “What could I not do better before, 
as in deep analytics and learning?” 

As data science focuses on a system-
atic understanding of complex data and 
related business problems,5,6 I take the 
view here that data science problems 
are complex systems3,19 and data sci-
ence aims to translate data into insight 
and intelligence for decision making. 
Accordingly, I focus on the complexi-
ties and intelligence hidden in com-
plex data science problems, along with 
the research issues and methodologies 
needed to develop data science from a 
complex-system perspective. 

What It Is 
The concept of data science was origi-
nally proposed within the statistics and 
mathematics community23,24 where it 
essentially concerned data analysis. 
Data science today17 goes beyond specif-
ic areas like data mining and machine 
learning or whether it is the next genera-
tion of statistics.9,11,12 But what is it? 

Definition. Data science is a new 
trans-disciplinary field that builds on 

Figure 1. Transdisciplinary data science. 
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easy to understand and interpretable 
by nonprofessionals, revealing in-
sights that directly inform and enable 
decision making and possibly having 
a transformative effect on business 
processes and problem solving. 

X-Intelligence in Data Science 
Data science is a type of “intelligence 
science” that aims to transform data 
into knowledge, intelligence, and 
wisdom.21 In this transformation, 
comprehensive intelligence,3 or “X-
intelligence,” is often used to address 
a complex data science problem, re-
ferring to comprehensive and valuable 
information. X-intelligence can help in-
form the deeper, more structured and 
organized comprehension, representa-
tion, and problem solving in the under-
lying complexities and challenges. 

Data intelligence highlights the most 
valuable information and narratives in 
the formation and solution of business 
problems or value in the corresponding 
data. Intelligence hidden in data is dis-
covered by data science through its abili-
ty to understand data characteristics and 
complexities. Apart from the usual focus 
on complexities in data structures, dis-
tribution, quantity, speed, and quality, 
the focus in data science is on the intel-
ligence hidden in the unknown “Space 
D” in Figure 2. For example, in addition 
to existing protocols for cancer treat-
ment, determining what new and exist-
ing treatments fail on which patients 
might be informed by analyzing health-
care data and diversified external data 
relevant to cancer patients. The level of 
data intelligence depends on how much 
and to what extent a data scientist is able 
to deeply understand and represent data 
characteristics and complexities. 

Data scientists discover behavior in-
telligence by looking into the activities, 
processes, dynamics, and impact of 
individual and group actors, or the be-
havior and business quantifiers, owners, 
and users in the physical world. Such dis-
covery requires they be able to bridge the 
gap between the data world and the physi-
cal world by connecting what happened 
and what will happen in the problem and 
discovering behavior insights through 
behavior informatics.1 For example, in 
monitoring online shopping websites, 
regulators must be able to recognize 
whether ratings and comments are 
made by robots, rather than humans; 

the physical world from the highly de-
formed information collected in the 
purely data world, insights, impact, 
utility, and effect of behaviors, and the 
emergence and management of behav-
ior intelligence. However, limited sys-
tematic research outcomes are available 
for comprehensively quantifying, rep-
resenting, analyzing, reasoning about, 
and managing complex behaviors. 

Data scientists increasingly recog-
nize domain complexity7 as a critical 
aspect of data science for discovering 
intrinsic data characteristics, value, 
and actionable insight. Domain com-
plexities are reflected in a problem 
domain as domain factors, domain 
processes, norms, policies, qualitative-
versus-quantitative domain knowl-
edge, expert knowledge, hypotheses, 
meta-knowledge, involvement of and 
interaction with domain experts and 
professionals, multiple and cross-do-
main interactions, experience acquisi-
tion, human-machine synthesis, and 
roles and leadership in the domain. 
However, existing data analytics focus-
es mainly on domain knowledge. 

Social complexity is embedded in 
business activity and its related data 
and is a key part of data and business 
understanding. It may be embodied 
in such aspects of business problems 
as social networking, community 
emergence, social dynamics, impact 
evolution, social conventions, social 
contexts, social cognition, social intel-
ligence, social media, group formation 
and evolution, group interaction and 
collaboration, economic and cultural 
factors, social norms, emotion, senti-
ment and opinion influence processes, 
and social issues, including security, 
privacy, trust, risk, and accountability 
in social contexts. Promising interdis-
ciplinary opportunities emerge when 
social science meets data science. 

Environment complexity is another 
important factor in understanding 
complex data and business problems, 
as reflected in environmental (contex-
tual) factors, contexts of problems and 
data, context dynamics, adaptive en-
gagement of contexts, complex contex-
tual interactions between the business 
environment and data systems, signifi-
cant changes in business environment 
and their effect on data systems, and 
variations and uncertainty in interac-
tions between business data and the 

business environment. Such aspects 
of the system environment have con-
cerned open complex systems20 but not 
yet data science. If ignored, a model 
suitable for one domain might produce 
misleading outcomes in another, as is 
often seen in recommender systems. 

Learning (process and system) com-
plexity must be addressed to achieve 
the goal of data analytics. Challenges 
in analyzing data include developing 
methodologies, common task frame-
works, and learning paradigms to han-
dle data, domain, behavioral, social, 
and environmental complexity. Data 
scientists must be able to learn from 
heterogeneous sources and inputs, par-
allel and distributed inputs, and their 
infinite dynamics in real time; support 
on-the-fly active and adaptive learning 
of large data volumes in computational 
resource-poor environments (such as 
embedded sensors), as well as multi-
source learning, while considering the 
relations and interactions between 
sensors; enable combined learning 
across multiple learning objectives, 
sources, feature sets, analytical meth-
ods, frameworks, and outcomes; learn 
non-IID data-mixing coupling relation-
ships with heterogeneity;2 and ensure 
transparency and certainty of learning 
models and outcomes. 

Other requirements for manag-
ing and exploiting data include ap-
propriate design of experiments and 
mechanisms. Inappropriate learning 
could result in misleading or harmful 
outcomes, as in a classifier that works 
for balanced data but could mistak-
enly classify biased and sparse cases 
in anomaly detection. 

The complexity of a deliverable data 
product, or “deliverable complexity” 
becomes an obstruction when action-
able insight7 is the focus of a data sci-
ence application. Such complexity 
necessitates identification and evalua-
tion of the outcomes that satisfy tech-
nical significance and have high busi-
ness value from both an objective and 
a subjective perspective. The related 
challenges for data scientists also in-
volve designing the appropriate evalu-
ation, presentation, visualization, re-
finement, and prescription of learning 
outcomes and deliverables to satisfy 
diverse business needs, stakeholders, 
and decision support. In general, data 
deliverables to business users must be 
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is crucial for addressing complex data 
problems, data scientists must be able 
to apply subjective factors, qualitative 
reasoning, and critical imagination. 

Network intelligence emerges from 
both Web intelligence and broad-based 
networking and connected activities and 
resources, especially through the Inter-
net of Things, social media, and mobile 
services. Information and facilities from 
the networks involved in target busi-
ness problems can contribute useful 
information for complex data-science 
problem solving; a relevant example is 
crowdsourcing-based open source sys-
tem development and algorithm design. 

Organizational intelligence emerges 
from the proper understanding, in-
volvement, and modeling of organiza-
tional goals, actors, and roles, as well 
as structures, behaviors, evolution and 
dynamics, governance, regulation, con-
vention, process, and workflow in data 
science systems. For example, the cost 
effectiveness of enterprise analytics 
and functioning of data science teams 
rely on organizational intelligence. 

Social intelligence emerges from the 
social complexities discussed earlier. 
Human social intelligence is embedded 
in social interactions, group goals and 
intentions, social cognition, emotional 
intelligence, consensus construction, 
and group decision making. Social in-
telligence is also associated with social-
network intelligence and collective 
interactions among social systems, as 
well as the business rules, law, trust, 
and reputation for governing social in-
telligence. Typical artificial social sys-
tems include social networks and social 
media in which data-driven social com-

plexities are understood through social-
influence modeling, latent relation 
modeling, and community formation 
and evolution in online societies. 

Environmental intelligence is also 
hidden in data science problems, as 
specified in terms of the underlying do-
main and related organizational, social, 
human, and network intelligence. Data 
science systems are open, with interac-
tions between the world of transformed 
data and the physical world functioning 
as the overall data environment. Exam-
ples include context-aware analytics in-
volving contextual factors and evolving 
interactions and changes between data 
and context, as in infinite-dynamic-rela-
tion modeling in social networks. 

Known-to-Unknown 
Transformation 
Complex data science problem-solving 
journeys taken by data scientists repre-
sent a cognitive progression from un-
derstanding known to unknown com-
plexities in order to transform data into 
knowledge, intelligence, and insight 
for decision taking by inventing and 
applying respective data-intelligence 
discovery capabilities. In this context, 
knowledge represents processed in-
formation in terms of information 
mixture, procedural action, or propo-
sitional rules; resulting insight refers 
to the deep understanding of intrinsic 
complexities and mechanisms in data 
and its corresponding physical world. 

Figure 2 outlines data science pro-
gression aiming to reduce the imma-
turity of capabilities and capacity (y-
axis) to better understand the hidden 
complexities, knowledge, and intel-
ligence (CKI) in data/physical worlds 
(x axis) from the 100% known state K 
to the 100% unknown state U. Based 
on data/physical world visibility and 
capability/capacity maturity, data 
science can be categorized into four 
data challenges: 

“Space A” represents the known 
space; that is, “I (my mature capabil-
ity/capacity) know what I know (about 
the visible world).” This is like the 
ability of sighted people to recog-
nize an elephant by seeing the whole 
animal, whereas non-sighted people 
might be able to identify only part of 
the animal through touch. Knowledge 
concerning visible data is known to 
people with mature capability/capac-

likewise, in social media, detecting algo-
rithms, or robot-generated comments, 
in billions of daily transactions is itself a 
computational challenge. Constructing 
sequential behavior vector spaces and 
modeling interactions with other ac-
counts in a given time period and then 
differentiating abnormal behaviors may 
be useful for understanding the differ-
ence between proactive and subjective 
human activity and the reactive and pat-
ternable behaviors of software robots. 

Domain intelligence emerges from 
relevant domain factors, knowledge, 
meta-knowledge, and other domain-
specific resources associated with a 
problem and its target data. Qualitative 
and quantitative domain intelligence 
can help inform and enable a data sci-
entist’s deep understanding of domain 
complexities and their roles in discov-
ering unknown knowledge and action-
able insight. For example, to learn high-
frequency trading strategies for use with 
stock data, a strategy modeler must in-
clude the “order book” and microstruc-
ture of the related “limit market.” 

Human intelligence plays a central 
role in complex data science systems 
through explicit, or direct, involvement 
of human intuition, imagination, em-
pirical knowledge, belief, intention, ex-
pectation, runtime supervision, evalu-
ation, and expertise. It also concerns 
the implicit, or indirect, involvement 
of human intelligence in the form of 
imaginative thinking, emotional intel-
ligence, inspiration, brainstorming, 
reasoning inputs, and embodied cogni-
tion, as in convergent thinking through 
interaction with fellow humans. For 
example, as “data-science thinking”6 

Figure 2. Known-to-unknown discovery in data science. 
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data science systems and widening 
gap between world invisibility and ca-
pability/capacity immaturity yield new 
research challenges that motivate de-
velopment of data science as a disci-
pline. Figure 4 outlines the conceptual 

ity; that is, their capability/capacity 
maturity is sufficient to understand 
data/physical-world invisibility. This 
insight corresponds to well-under-
stood areas in data science. Examples 
include profiling and descriptive 
analysis that applies existing models 
to data deemed by data analysts to fol-
low certain assumptions. 

“Space B” represents the hidden 
space; that is, “I know what I do not 
know (about the unseen world).” 
For some people or disciplines, even 
though certain aspects of their capabil-
ity/capacity is mature, CKI is hidden 
to (so cannot be addressed by) current 
data science capability/capacity, thus 
requiring more-advanced capability/
capacity. Examples include existing IID 
models (such as k-means and the k-
nearest neighbors algorithm) that can-
not handle non-IID data. 

“Space C” represents the blind 
space; that is, “I (my immature capabil-
ity) do not know what I know (about the 
world).” Although CKI is visible to some 
people or disciplines, their capability/
capacity is also mature, but CKI and ca-
pability/capacity do not match well; im-
maturity thus renders them blind to the 
world. An example might be when even 
established social scientists try to ad-
dress a data science problem. 

“Space D” represents the unknown; 
that is, “I do not know what I do not 
know, so CKI in the hidden world is 
unknown due to immature capabil-
ity.” This is the area today on which 
data science focuses its future research 
and discovery. Along with increased 
invisibility, the lack of capability ma-
turity also increases. In the world of 
fast-evolving big data, CKI invisibility 
increases, resulting in an ever-larger 
unknown space. 

The current stage of data science 
capability and maturity, or “We do not 
know what we do not know,” can be 
explained in terms of unknown per-
spectives and scenarios. As outlined in 
Figure 3, the unknown world presents 
“unknownness” in terms of certain de-
finable categories, including problems 
and complexities; hierarchy, struc-
tures, distributions, relations, and het-
erogeneities; capabilities, opportuni-
ties, and gaps; and solutions. 

Data Science Directions 
Here, I consider the applied data sci-

ence conceptual landscape, followed 
by two significant aspirational goals: 
non-IID data learning and human-
like intelligence. 

Data science landscape. The X-com-
plexity and X-intelligence in complex 

Figure 3. Hidden world in data science. 

Figure 4. Data science conceptual landscape. 
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main-specific analytic theories, tools, 
and systems not available in the rel-
evant body of knowledge to represent, 
discover, implement, and manage 
the data, knowledge, and intelligence 
and support the corresponding data 
and analytics engineering. Examples 
include automated analytical soft-
ware that automates selection and 
construction of features and models, 
as well as the analytics process in its 
self-understanding of intrinsic data 
complexities and intelligence, and 
that self-monitors, self-diagnoses, 
and self-adapts to data characteristics, 
domain-specific context and learning 
objectives and potential, and learns al-
gorithms that recognize data complex-
ities and self-trains the corresponding 
optimal models customized for the 
data and objectives; 

Data quality and social issues. The 
aim here is to identify, specify, and 
respect social issues in domain-spe-
cific data, business-understanding, 
and data science processes, including 
use, privacy, security, and trust, and 
make possible social issues-based 
data science tasks not previously han-
dled well. Examples include privacy-
preserving analytical algorithms and 
benchmarking the trustworthiness of 
analytical outcomes; 

Data value, impact, utility. The aim 
is to identify, specify, quantify, and 
evaluate the value, impact, and utility 
of domain-specific data that cannot be 
addressed through existing measure-
ment theories and systems. Examples 
involve data actionability, utility, and 
value; and 

Data-to-decision and action-taking 
challenges. The aim is to develop de-
cision-support theories and systems 
to enable data-driven decisions and 
insight-to-decision transformation, 
incorporating prescriptive actions and 
strategies that cannot be managed 
through existing technologies and sys-
tems. Examples include ways to trans-
form analytical findings into decision-
making strategies. 

Since data/knowledge engineering 
and advanced analytics6 play a key role 
in data science, the focus is on specific 
research questions not previously ad-
dressed. Data-quality enhancement is 
fundamental to handling data-quality 
issues like noise, uncertainty, miss-
ing values, and imbalance that may 

landscape of data science and its major 
research challenges by taking an inter-
disciplinary, complex-system-based, 
hierarchical view. 

As in Figure 4, the data science land-
scape consists of three layers: “data in-
put,” including domain-specific data 
applications and systems, and X-com-
plexity and X-intelligence in data and 
business problems; “data-driven dis-
covery” consisting of discovery tasks 
and challenges; and “data output” con-
sisting of results and outcomes. 

Research challenges and opportu-
nities emerge in all three in terms of 
five areas not otherwise managed well 
through non-data-science methodolo-
gies, theories, or systems: 

Data/business understanding. The 
aim is for data scientists, as well as 
data users, to identify, specify, repre-
sent, and quantify the X-complexities 
and X-intelligence that cannot be man-
aged well through existing theories 
and techniques but nevertheless are 
embedded in domain-specific data and 
business problems. Examples include 
how to understand in what forms, at 
what level, and to what extent the re-
spective complexities and intelligence 
interact with one another and to devise 
methodologies and technologies for 
incorporating them into data science 
tasks and processes; 

Mathematical and statistical foun-
dation. The aim is to enable data sci-
entists to disclose, describe, repre-
sent, and capture complexities and 
intelligence for deriving actionable 
insight. Existing analytical and com-
putational theories may need to be 
explored as to whether, how, and 
why they are insufficient, missing, or 
problematic, then extended or rede-
veloped to address the complexities 
in data and business problems by, 
say, supporting multiple, heteroge-
neous, large-scale hypothesis testing 
and survey design, learning incon-
sistency, and uncertainty across mul-
tiple sources of dynamic data. Results 
might include deep representation of 
data complexities, large-scale, fine-
grain personalized predictions, sup-
port for non-IID data learning, and 
creation of scalable, transparent, 
flexible, interpretable, personalized, 
parameter-free modeling; 

Data/knowledge engineering and 
X-analytics. The aim is to develop do-

The metasynthesis 
of X-complexities 
and X-intelligence 
in complex data 
science problems 
might ultimately 
produce even 
super machine 
intelligence. 
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randomization, and measurement that 
apply to population data and analysis. 

Fundamental work on detecting 
and verifying such validations is lim-
ited, and even less has sought to invent 
new theories and tools to manage and 
circumvent assumption violations in 
big data. One such violation I high-
light here is the IID assumption, as 
big, complex data (referring to objects, 
attributes, and values2) is essentially 
non-IID, whereas most existing analyti-
cal methods are IID.2 

In a non-IID data problem (see Fig-
ure 5a), non-IIDness, as outlined in 
Figure 5c, refers to the mixture of cou-
plings, including co-occurrence, neigh-
borhood, dependence, linkage, corre-
lation, and causality, and other poorly 
explored and unquantified relations 
involving, say, sophisticated cultural 
and religious connections and influ-
ence, as well as heterogeneity within 
and between two or more aspects of a 
data system (such as entity, entity class, 
entity property like a variable, process, 
fact, and state of affairs) or other types 
of entities or properties (such as learn-
ing algorithms, and learned results) 
appearing or produced prior to, dur-
ing, or after a target process (such as a 
learning task). By contrast, IIDness es-
sentially ignores or simplifies all these 
properties, as outlined in Figure 5b. 

Learning visible and especially in-
visible non-IIDness is fundamental for 
data scientists looking for deep under-
standing of data with weak and/or un-

be present due to the increasing scale 
of complexity and data-quality issues 
(such as cross-organizational, cross-
media, cross-cultural, and cross-eco-
nomic mechanisms) emerging in the 
big-data and Internet-based data/busi-
ness environment. 

Data scientists seek to model, learn, 
analyze, and mine data, including X-
complexities and X-intelligence. For 
example, being able to perform deep 
analytics is essential for discovering 
unknown knowledge and intelligence 
in the unknown space in Figure 2 that 
cannot be handled through existing 
latent learning and descriptive and 
predictive analytics; another option 
might be to integrate data-driven and 
model-based problem solving, bal-
ancing common learning models and 
frameworks and domain-specific data 
complexities and intelligence-driven 
evidence learning. 

X-complexity and X-intelligence 
pose additional challenges to simula-
tion and experimental design, includ-
ing how to simulate the complexities, 
intelligence, working mechanisms, 
processes, and dynamics in data and 
corresponding business systems and 
how to design experiments to explore 
the effect of business managers’ data-
driven decisions. Big-data analytics 
requires high-performance processing 
and analytics that support large-scale, 
real-time, online, high-frequency, 
Internet-based, cross-organizational 
data processing and analytics while 
balancing local and global resource 
objectives. Such an effort may require 
new distributed, parallel, high-per-
formance infrastructure, batch, array, 
memory, disk, and cloud-based pro-
cessing and storage, data-structure-
and-management systems, and data-
to-knowledge management. 

Complex data science also chal-
lenges existing analytics and comput-
ing architectures and infrastructure 
to, say, invent analytics and computing 
architectures and infrastructure based 
on memory, disk, cloud, and Internet 
resources. Another important issue for 
developers of data systems is how to 
support the networking, communica-
tion, and interoperation of the various 
data science roles within a distributed 
data science team. Such coordination 
requires distributed cooperative man-
agement of projects, data, goals, tasks, 

models, outcomes, work flows, task 
scheduling, version control, reporting, 
and governance. 

Addressing them involves system-
atic and interdisciplinary approaches 
possibly requiring synergy among many 
related research areas. Such synergy is 
due to taking on complex data science 
problems that cannot be addressed 
through one-off efforts. For instance, 
data structures, computational infra-
structure, and detection algorithms 
are required for high-frequency real-
time risk analytics in extremely large 
online businesses like electronic com-
merce and financial trading. 

Violating assumptions in data 
science. Big data includes X-complex-
ities, including complex coupling 
relationships and/or mixed distribu-
tions, formats, types and variables, 
and unstructured and weakly struc-
tured data. Complex data poses sig-
nificant challenges to many math-
ematical, statistical, and analytical 
methods built on relatively narrow 
assumptions, owing to the fact that 
they are routinely violated in big-data 
analytics. When assumptions are vio-
lated, modeling outcomes may be in-
accurate, distorted, or misleading. In 
addition to general scenarios (such as 
whether data violates the assumptions 
of normal distribution, t-test, and linear 
regression), an assumption check ap-
plies to broad aspects of a business 
problem’s data, including indepen-
dence, normality, linearity, variance, 

Figure 5. IIDness vs. non-IIDness in data science problems. 
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objects and developing new theories 
and algorithms for selecting, mining, 
and constructing features; 

Non-IID learning theories, algorithms, 
and models. The aim is to create new 
theories, algorithms, and models for 
analyzing, learning, and mining non-
IID data by considering various cou-
plings and heterogeneity; and 

Non-IID similarity and evaluation 
metrics. The aim is to develop new simi-
larity and dissimilarity learning meth-
ods and metrics, as well as evaluation 
metrics that consider non-IIDness in 
data and business. 

More broadly, many existing data-
oriented theories, designs, mecha-
nisms, systems, and tools may have to 
be reinvented in light of non-IIDness. 
In addition to incorporating non-
IIDness into data mining, machine 
learning, and general data analytics, 
non-IIDness is found in other well-es-
tablished bodies of knowledge, includ-
ing mathematical and statistical foun-
dations, descriptive-analytics theories 
and tools, data-management theories 
and systems, information-retrieval the-
ories and tools, multimedia analysis, 
and various X-analytics.6 

Data characteristics and X-complex-
ities. To address critical issues in data-
driven discovery like assumption vio-
lations, I assume data characteristics 
and X-complexities determine the val-
ues, complexities, and quality of data-
driven discovery. Data characteristics 
refer to the profile and complexities 
of data (generally a dataset) that can 
be described in terms of data factors 
(such as distribution, structure, hierar-
chy, dimension, granularity, heteroge-
neity, and uncertainty). 

Understanding data characteris-
tics and X-complexities involves four 
fundamental data science challenges 
and directions:6 definition of data 
characteristics and X-complexities; 
how to represent and model data char-
acteristics and X-complexities; data-
characteristics- and X-complexities-
driven data understanding, analysis, 
learning, and management; and how 
to evaluate the quality of data un-
derstanding, analysis, learning, and 
management in terms of data charac-
teristics and X-complexities. Unfortu-
nately, only limited  theories and tools 
are available for addressing them. 

Data-brain and human-like ma-

ing systems seek to understand non-
IIDness in data-analytics systems, from 
values, attributes, objects, methods, and 
measures to processing outcomes (such 
as mined patterns). 

I now explore the prospects for 
inventing new data science theories 
and tools for non-IIDness and non-
IID data learning,2 including how to 
address non-IID data characteristics 
(not just variables), in terms of new 
feature analysis: 

Deep understanding of non-IID data 
characteristics. The aim is to identify, 
specify, and quantify non-IID data 
characteristics, factors, types, and 
levels of non-IIDness in data and 
business, and identify the difference 
between what can be captured and 
what cannot be captured through 
existing technologies; 

Non-IID feature analysis and con-
struction. The aim is to invent new 
theories and tools for analyzing feature 
relationships by considering non-IID-
ness within and between features and 

clear structures, distributions, relation-
ships, and semantics. In many cases, 
locally visible but globally invisible 
(or vice versa) non-IIDness takes a 
range of forms, structures, and layers 
on diverse entities. Individual learners 
cannot tell the whole story due to 
their inability to identify such com-
plex non-IIDness. Effectively learn-
ing the widespread, visible, and 
invisible non-IIDness of big data is 
crucial for data scientists trying to 
gain a complete picture of an underly-
ing business problem. 

Data analysts often focus on learn-
ing explicit non-IIDness, or visible and 
easy to learn. The hybridization of mul-
tiple analytical methods on combina-
tions of multiple sources of data into 
a big table for analysis typically falls 
into this category of non-IID systems. 
Computing non-IIDness refers to un-
derstanding, formalizing, and quantify-
ing the non-IID aspects of data2 (such as 
entities, interactions, layers, forms, and 
strength of non-IIDness). Non-IID learn-

Figure 6. Synthesizing X-intelligence in data science. 
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To enable an X-intelligence-driven 
complex data science problem-solv-
ing process, data scientists need new 
methodologies and system-engineer-
ing methods. The theory of “metasyn-
thetic engineering”3,20 and integration 
of ubiquitous intelligence might pro-
vide useful guidance for synthesizing 
X-intelligence in complex data and 
business systems. 

The principle of “intelligence 
metasynthesis” of multiple types of 
intelligence3,20 involves, synthesizes, 
and uses ubiquitous intelligence in 
the complex data environment to un-
derstand the nature of data and re-
lated problems, invent discovery sys-
tems, discover interesting knowledge, 
and generate actionable insights.7 
Intelligence metasynthesis applies to 
solving complex data science prob-
lems involving complex system engi-
neering in which multiple aspects of 
complexity and intelligence may be 
embedded in the data, environment, 
and problem-solving process. The “re-
ductionism” methodology3 for data 
and knowledge exploration may not 
work well because the problem may 
not be clear, specific, and quantitative 
so cannot be decomposed and ana-
lyzed effectively. In contrast, analysis 
through a holistic lens does not equal 
the sum of the analysis of the parts, a 
common challenge developing com-
plex systems.20 

Accordingly, in light of the theory 
of “system complexities” and corre-
sponding methodologies “system-
atism,”3,20 a methodology that synthe-
sizes reductionism and “holism”6,7 
may then be more applicable for ana-
lyzing, designing, and evaluating com-
plex data problems. 

When a data science problem in-
volves large-scale data objects, multiple 
levels of subtasks, objects, sources, and 
types of data from online, business, 
mobile, or social networks, complicat-
ed contexts, human involvement and 
domain constraints, the problem thus 
reflects the characteristics of an open 
complex system.3,20 The problem is also 
likely to involve common system com-
plexities, including openness, scale, hi-
erarchy, human involvement, societal 
characteristics, dynamic characteris-
tics, uncertainty, and imprecision.3,19,20

Although specific big-data analyti-
cal tasks are manageable by follow-

chine intelligence. Computer scien-
tists, economists, and politicians, 
as well as the general public, debate 
whether and when machines might 
replace humans.22 While it may not be 
possible to build data-brain or thinking 
machines with human-like abilities, 
data science, especially big-data ana-
lytics, is driving a technological revolu-
tion, from implementing logical-think-
ing-centered machine intelligence to 
creative-thinking-oriented machine 
intelligence. It may be partially re-
flected in Google’s AlphaGo (https://
deepmind.com/) defeat of top-ranked 
Chinese Go player Ke Jie in 2017 and 
South Korean grandmaster Lee Sedol 
in 2016, as well as the Facebook emo-
tion experiment,14 but none has actu-
ally exhibited human-like imagination 
or thinking. This revolution (such as 
through data science thinking6), if tru-
ly able to mimic human intelligence, 
may transform machine intelligence, 
changing the human-machine separa-
tion of responsibilities. 

Curiosity is a critical human ca-
pability, starting the moment we are 
born. We want to know what, how, 
and why everything. Curiosity connects 
other cognitive activities, particularly 
imagination, reasoning, aggregation, 
creativity, and enthusiasm to produce 
new ideas, observations, concepts, 
knowledge, and decisions. Humans 
manage to upgrade their own intel-
ligence through experience, explora-
tion, learning, and reflection. Accord-
ingly, a critical goal for data scientists 
is to enable data- and X-intelligence-
driven machines to generate, re-
tain, and simulate human curiosity 
through learning inquisitively from 
data and X-intelligence. 

Imaginative thinking differenti-
ates humans from machines designed 
with sense-effect, learning, reasoning, 
and optimization mechanisms. Hu-
man imagination is intuitive, creative, 
evolving, and uncertain. It also repre-
sents a great yet challenging opportu-
nity for transforming logic, patterns, 
and predefined sense-effect-mecha-
nisms-driven machines into human-
like data systems. Such a transforma-
tion would require machines able to 
simulate human-imagination pro-
cesses and mechanisms. Existing 
knowledge representation, aggrega-
tion, computational logic, reasoning, 

and logic thinking incorporated into 
machines may never quite deliver ma-
chine curiosity, intuition, or imagi-
nation. Existing data and computer 
theories, operating systems, system 
architectures and infrastructures, 
computing languages, and data man-
agement must still be fundamentally 
reformed by, say, simulating, learn-
ing, reasoning, and synthesizing origi-
nal thoughts from cognitive science, 
social science, data science, and intel-
ligence science to render machines 
creative. They also must be able to 
engage X-intelligence in a non-pre-
defined, “non-patternable” way, un-
like existing simulation, learning, and 
computation, which are largely pre-
defined or design-based by default. 

To enable discovery, data-analytical 
thinking, a core aspect of data science 
thinking,6 needs to be built into data 
products and learned by data profes-
sionals. Data-analytical thinking is 
not only explicit, descriptive, and pre-
dictive but also implicit and prescrip-
tive. Complex data problem solving 
requires systematic, evolving, imagi-
native, critical, and actionable data 
science thinking. In addition to com-
putational thinking, a machine might 
ultimately be able to mimic human 
approaches to information processing 
by synthesizing comprehensive data, 
information, knowledge, and intel-
ligence through cognitive-processing 
methods and processes. 

Developing Complex Systems 
The X-complexities and X-intelligence 
discussed earlier render a complex 
data system equivalent to an open 
complex intelligent system.3 Use of X-
intelligence by a data scientist could 
take one of two paths: “single intelli-
gence engagement” or “multi-aspect 
intelligence engagement.” An example 
of the former is domain knowledge in 
data analytics and user preferences in 
recommender systems. Single-intelli-
gence engagement applies to simple 
data science problem solving and sys-
tems. In general, multi-aspect X-intel-
ligence can be found in complex data 
science problems. 

As outlined in Figure 6, the per-
formance of a data science-problem-
solving system depends on recogni-
tion, acquisition, representation, and 
integration of relevant X-intelligence. 

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Fdeepmind.com%2F
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ing these iterative and hierarchical 
steps toward qualitative-to-quantita-
tive intelligence transformation would 
thus disclose and quantify the initial 
problem “unknownness.” Finally, ac-
tionable knowledge and insight would 
be identified and delivered to busi-
nesspeople who would address data 
complexities and business goals. 

As an example of how to deliver 
actionable knowledge, domain-driv-
en data mining7 aims to integrate X-
intelligence and X-complexities for 
complex knowledge-discovery prob-
lems. Domain-driven data mining 
advocates a comprehensive process 
of synthesizing data intelligence with 
other types of intelligence to prompt 
new intelligence to address gaps in 
existing data-driven methods, deliv-
ering actionable knowledge to busi-
ness users. The metasynthesis of X-
complexities and X-intelligence in 
complex data science problems might 
ultimately produce even super ma-
chine intelligence. Super-intelligent 
machines could then understand, 
represent, and learn X-complexities, 
particularly data characteristics; ac-
quire and represent unstructured, 
ill-structured, and uncertain human 
knowledge; support involvement of 
business experts in the analytics pro-
cess; acquire and represent imagina-
tive and creative thinking in group 
heuristic discussions among human 
experts; acquire and represent group/
collective interaction behaviors; and 
build infrastructure involving X-in-
telligence. While a data brain cannot 
mimic special human imagination, 
curiosity, and intuition, the simula-
tion and modeling of human behavior 
and human-data systems interaction 
and cooperation promise to approach 
human-like machine intelligence. 

Conclusion 
The low-level X-complexities and X-
intelligence characterizing complex 
data science problems reflect the gaps 
between the world of hidden data and 
existing data science immaturity. Fill-
ing them requires a disciplinewide 
effort to build complex data science 
thinking and corresponding method-
ologies from a complex-system per-
spective. The emerging data science 
evolution means opportunities for 
breakthrough research, technological 

innovation, and a new data economy. 
If parallels are drawn between evolu-
tion of the Internet and evolution of 
data science, the future and the socio-
economic and cultural impact of data 
science will be unprecedented indeed, 
though as yet unquantifiable. 	
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ing existing analytical methodologies, 
typical cross-enterprise, global, and 
Internet-based data science projects 
(such as global financial crisis and 
terrorist activities) satisfy most if 
not all such complexities. This level 
of complex data science involves X-
complexities problems, and their 
resolution must first synthesize the 
X-intelligence in the problems. One 
approach to instantiate the system-
atism methodology is “qualitative-
to-quantitative metasynthesis,”3,20 as 
proposed by Chinese scientist Xue-
sen Qian (also known as Hsue-Shen 
Tsien) to guide system engineering 
in large-scale open systems.20 Such 
qualitative-to-quantitative metasyn-
thesis supports exploration of open 
complex systems through an iterative 
cognitive and problem-solving pro-
cess on a human-centered, human-
machine-cooperative problem-solving 
platform in which human, data, and 
machine intelligence, along with X-
intelligence, must be engaged, quanti-
fied, and synthesized. Implementing 
it for open complex intelligent sys-
tems, the “metasynthetic computing 
and engineering” (MCE) approach3 
provides a systematic computing and 
engineering guide and suite of system-
analysis tools. 

Figure 7 outlines the process of ap-
plying the qualitative-to-quantitative 
metasynthesis methodology to com-
plex data science problems. MCE sup-
ports an iterative, hierarchical prob-
lem-solving process, incorporating 
internal and external inputs, includ-
ing data, information, domain knowl-
edge, initial hypotheses, and underly-
ing environmental factors. Data 
scientists would start by presetting 
analytics goals and tasks to be ex-
plored on the given data by incorporat-
ing domain, organizational, social and 
environmental complexities and intel-
ligence. They would then use prelimi-
nary observations obtained from do-
main and experience to identify and 
verify qualitative and quantitative hy-
potheses and estimations that guide 
development of modeling and analyt-
ics methods. Findings would then be 
evaluated and fed back to the corre-
sponding procedures for refining and 
optimizing understanding of previ-
ously unknown problem challenges, 
goals, and discovery methods. Follow-
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RECENT PROGRESS IN automated reasoning and super-
computing gives rise to a new era of brute force.  
The game changer is “SAT,” a disruptive, brute-reasoning 
technology in industry and science. We illustrate its 
strength and potential via the proof of the Boolean 
Pythagorean Triples Problem, a long-standing open 
problem in Ramsey Theory. This 200TB proof has been 
constructed completely automatically—paradoxically, 
in an ingenious way. We welcome these bold new proofs 
emerging on the horizon, beyond human understanding—
both mathematics and industry need them.

Many relevant search problems, 
from artificial intelligence to combi-
natorics, explore large search spaces to 
determine the presence or absence of a 
certain object. These problems are hard 
due to combinatorial explosion, and 
have traditionally been called infea-
sible. The brute-force method, which 
at least implicitly explores all possibili-
ties, is a general approach to systemati-
cally search through such spaces.

Brute force has long been regarded 
as suitable only for simple problems. 
This has changed in the last two de-
cades, due to the progress in Satisfi-
ability (SAT) solving, which by adding 
brute reason renders brute force into 
a powerful approach to deal with many 
problems easily and automatically. 
Search spaces with far more possibili-
ties than the number of particles in the 
universe may be completely explored.

SAT solving determines whether a 
formula in propositional logic has a 
solution, and its brute reasoning acts 
in a blind and uninformed way—as a 
feature, not a bug. We focus on apply-
ing SAT to mathematics, as a system-
atic development of the traditional 
method of proof by exhaustion.

Can we trust the result of run-
ning complicated algorithms on 
many machines for a long time? The 
strongest solution is to provide a 
proof, which is also needed to show 
correctness of highly complex sys-
tems, which are everywhere, from 
finance to health care to aviation. 

The 
Science 
of Brute 
Force
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Mathematics solves problems by pen and 
paper. CS helps us to go far beyond that.

BY MARIJN J.H. HEULE AND OLIVER KULLMANN

 key insights

˽˽ Long-standing open problems in 
mathematics can now be solved 
completely automatically resulting in 
clever though potentially gigantic proofs.

˽˽ Our time requires answers to hard 
questions regarding safety and security. 
In these cases knowledge is more 
important than understanding as long as 
we can trust the answers.

˽˽ Powerful SAT-solving heuristics facilitate 
linear speedups even when using 
thousands of cores. Combined with the 
ever-increasing capabilities of high-
performance computing clusters they 
enable solving challenging problems.
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triple. SAT solving has revolutionized 
hardware verification,5 and now SAT 
can come to the rescue of mathemat-
ics, solving very hard combinatorial 
problems previously completely out 
of reach. This collaboration works in 
both directions, as the applications 
in mathematics, especially Ramsey 
Theory, sharpen SAT algorithms: the 
Cube-and-Conquer method16 was devel-
oped for computing van der Waerden 
numbers,1 and recently the Cube-and-
Conquer solver Treengelingb won the  
parallel track of the 2016 SAT compe-
tition.c Deeper mathematical inves-
tigations into the structure of the SAT 
instances could help with understand-
ing and improving SAT in general.

Well known early mathematical 
proofs using Proof by Exhaustion are the 
Four-Color Theorem37 and the proof 
that no projective plane of order 10 
exists.24 The former is actually a rather 
small case-distinction by modern stan-
dards (only hundreds of cases). The lat-
ter invokes a larger, but also man-made 
case-split (billions of cases), for which it 
can be determined in advance whether 
this will succeed. In contrast, we have 
currently no way of knowing whether 
the SAT solver’s “magic” is sufficient to 
solve a given problem.

Throughout this article we use the 
Boolean Schur Triple Problem as an 
example: does there exists a red/blue 
coloring of the numbers 1 to n, such 
that there is no monochromatic solu-
tion of a + b = c with a < b < c ≤ n. 
Compared to the Boolean Pythagorean 
Triples Problem, all natural numbers 
are involved, not just square num-
bers. As a result, there are many more 
triples, and unsatisfiability is reached 
much sooner. For n = 8 such a coloring 
exists: color the numbers 1, 2, 4, 8 red 
and 3, 5, 6, 7 blue. However such a col-
oring is not possible for n = 9. A naive 
brute-force algorithm would consider 
all 29 = 512 possible red/blue colorings. 
We will show that with brute reasoning 
only six (or even four) red/blue color-
ings need to be evaluated.

The Art of SAT Solving
A SAT problem uses Boolean variables v 
(they can be assigned to either true or 
false), which are constrained using 

b	 http://fmv.jku.at/lingeling/.
c	 http://www.satcompetition.org/.

Many problems arising from areas 
such as Ramsey Theory and formal 
methods appear to be intrinsically 
hard and may be only solvable by SAT. 
Any proof for such problems may be 
huge, in which case mathematicians 
will not be able to produce a paper 
proof. The enormous size of such  
proofs hardly influences confidence 
in the correctness, as highly trusted 
systems can validate them.

We argue that obtaining such 
results is meaningful regardless of our 
ability to understand them.

The Rise of Brute Force
We all know that brute force does not 
work, or at least is brutish, do we not? 
In our case it is even “brute reasoning.”

 I can stand brute force, but brute 
reason is quite unbearable. There 
is something unfair about its use. 
It is hitting below the intellect. 
� O. Wilde

A mathematician using “brute force” is 
a kind of barbaric monster, is she not? 
Case distinctions play an important 
role for thinking, but if the number of 
cases gets too big, it seems impossible 
to obtain an overview, and one has to 
slavishly follow the details. But per-
haps this is what our times demand?

In the beginning of the 20th century 
there was a very optimistic outlook for 
mathematics. Gödel’s Incompleteness 
Theorem seemed to destroy the 
positive spirit of the time, famously 
expressed by Hilbert’s “We must know. 
We will know.” That said, even Gödel 
anticipated the relevance of SAT solv-
ing in his letter to von Neumanna, 
shifting the attention to finitizing infi-
nite problems. Today, SAT solving on 
high-performance computing systems 
enables us to conquer problems of high 
complexity, driven by practice. This 
combination of enormous computa-
tional power with “magical brute force” 
can now solve very hard combinatorial 
problems, as well as proving safety of 
systems such as railways.

Our guiding example is the Pythag
orean Triples Problem,15,25 a typical 
problem from Ramsey Theory: we con-
sider all partitions of the set {1, 2, . . .} 
of natural numbers into finitely many 

a	 https://rjlipton.wordpress.com/the-gdel-letter/.

parts, and the question is whether 
always at least one part contains a 
Pythagorean triple (a, b, c) with a2 + b2 = c2.  
For example when splitting into odd and  
even numbers, then the odd part does 
not contain a Pythagorean triple (due 
to odd plus odd = even), but the even 
part contains for example 62 + 82 = 102. 
We show that the answer is yes,15 when 
partitioning into two parts, and we 
conjecture the answer to be yes for any 
finite size of the partition.

To solve the Boolean Pythagorean 
Triples Problem, it suffices to show 
the existence of a subset of the natu-
ral numbers, such that any partition 
of that subset into two parts has one 
part containing a Pythagorean triple. 
We focus on subsets {1, . . ., n}, and 
determined by SAT solving that the 
smallest n for which the property 
holds is 7825. Plain brute force cannot 
help, since 27825, the number of pos-
sible partitions into two parts, is way 
too big. So really “clever” algorithms 
are needed. An interesting aspect 
here is that there is no known ordi-
nary mathematical existence proof for 
any form of the Pythagorean Triples 
Problem, even when generalizing the 
problem from triples a2 + b2 = c2 to 
tuples 2 2 2

1 1k kt t t−+ + = . Only computa-
tional proofs are known and, so far at 
least, only SAT solving can deal with 
the harder problems. We show that  
{1, . . ., 107} can be partitioned into 
three parts, such that no part contains 
a Pythagorean triple. Thus if there 
is an n such that every 3-partitioning 
of {1, . . ., n} has a part containing a 
Pythagorean triple, then n > 107. Due 
to this enormous size, it is thus con-
ceivable that the truth of the three-val-
ued Pythagorean Triples Problem might 
never be known.

Before considering the solution 
process, one may ask, why should we 
care? Are there problems, for which 
such reasoning is really useful? Yes, 
the same techniques are used to prove 
correctness of hardware and soft-
ware systems. Finding a bug in a large 
hardware system is essentially the 
same as finding a counter-example, 
and thus is similar to finding a parti-
tion avoiding all Pythagorean triples. 
Proving correctness of a system, that 
is, there is no counter-example, is 
similar to proving that each parti-
tion must contain some Pythagorean 

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=http%3A%2F%2Ffmv.jku.at%2Flingeling%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=http%3A%2F%2Fwww.satcompetition.org%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=https%3A%2F%2Frjlipton.wordpress.com%2Fthe-gdel-letter%2F
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clauses, which are disjunctions of liter-
als x. Literals are either variables x = v 
or their negations x = v–. A literal x (or x–) 
is true if the corresponding variable v 
is assigned to true (or false, respec-
tively). A clause is satisfied if at least one 
of its literals is assigned to true. A SAT 
formula is a conjunction of clauses. 
We refer to a solution of a SAT formula 
as an assignment to its variables that 
satisfies all its clauses. Formulas with 
a solution are called satisfiable, while 
formulas without solutions are called 
unsatisfiable. Let ∨ and ∧ refer to the 
logical OR and AND operators, respec-
tively. For example, the formula (x ∨ y–) 
∧ (x– ∨ y) with two clauses is satisfiable. 
The solutions for this formula are the 
two assignments that assign both x and 
y to the same value.

SAT solvers, programs that solve 
SAT formulas, have become extremely 
powerful over the last two decades. 
Progress has been by leaps and bounds, 
starting with the pioneering work by 
Davis and Putnam until the early 1990s 
when solvers could handle formulas 
with thousands of clauses. Today’s solv-
ers can handle formulas with millions 
of clauses. This performance boost 
resulted in the SAT revolution:3 encode 
problems arising from many interest-
ing applications as SAT formulas, solve 
these formulas, and decode the solu-
tions to obtain answers for the original 
problems. This is in a sense just using 
the NP-completeness of SAT:6,11,19 every 
problem with a notion of “solution”—
where these solutions are relatively 
short and where an alleged solution can 
be verified (or rejected) quickly—can 
be reduced to SAT efficiently. For many 
years NP-completeness was used only as a 
sign of “you can not solve it!”, but the SAT 

revolution has put this back on its feet. 
For many applications, including hard-
ware and software verification,7, 18 SAT 
solving has become a disruptive tech-
nology that allows problems to be solved 
faster than by other known means.

The main paradigms of SAT solving 
are the incomplete local search,20 which 
can only find satisfying assignments, 
and the two complete paradigms (which 
can also determine unsatisfiability), 
look-ahead17 and Conflict-Driven Clause 
Learning28 (CDCL). Local search tries to 
find a solution via local modifications to 
total assignments (using all variables). 
Look-ahead recursively splits the prob-
lem as cleverly as possible into subprob-
lems, via looking-ahead. CDCL tries 
to assign variables to find a satisfying 
assignment in a straight-forward way, 
and if that fails (the normal case), then 
the failure is transformed into a clause, 
which is added to the formula. Here, 
we first explain CDCL, which is mainly 
responsible for the SAT revolution. 
Afterwards we describe how look-ahead 
can enhance CDCL on hard problems.

CDCL SAT solving algorithms cycle 
through three phases: simplify, decide, 
and learn. Solvers maintain an assign-
ment (initially empty) and each phase 
updates that assignment. During simplify 
the assignment is extended by detecting 
new inferences. Afterwards, decide heu-
ristically picks an unassigned variable 
and assigns it to true or false. After 
iterating these two phases, the current 
assignment either satisfies the formula, 
which terminates the search, or falsi-
fies a clause. In the latter case, learn 
this conflict, as a clause, and modify the 
assignment to resolve the conflict. If the 
empty clause ⊥ is learned, the solver 
detects unsatisfiability, otherwise 

simplify-decide is performed again, etc. 
Look-ahead differs from CDCL by using 
stronger means for simplify and decide, 
but weaker means for learn.

The most basic inference mecha-
nism in SAT solvers works as follows: a 
clause is unit under an assignment that 
falsifies all but one of its literals, while 
leaving the remaining literal unas-
signed. The only possibility to satisfy a 
unit clause (under that assignment) is 
to assign the remaining literal to true. 
A key SAT solving technique is Unit 
Clause Propagation (UCP): Given an 
assignment and a formula, while the 
formula has unit clauses, extend the 
assignment by satisfying the remain-
ing literals in the unit clauses. UCP has 
two possible terminating states: either 
all unit clauses have been satisfied, or 
there is a falsified clause due to two 
complementary unit clauses (x) and (x–).  
In the latter case, we say that UCP results 
in a conflict. Conflicts are analyzed 
to obtain new clauses. These conflict 
clauses are added to the formula to pre-
vent the solver from visiting that assign-
ment in the future. Additionally, conflict 
analysis updates the heuristics to guide 
the solver towards a short refutation.

There are two types of decision 
heuristics for SAT solvers: focus and 
global heuristics. Focus heuristics, also 
known as conflict-driven heuristics (for 
CDCL solvers), aim at finding short ref-
utations. These heuristics are cheap to 
compute and have been highly success-
ful in solving large problems arising 
from industrial applications. In short, 
focus heuristics work as follows: when-
ever a solver encounters a conflicting 
state, the importance of the variables 
that cause the conflict is increased. 
Simply making these variables more 

Figure 1. Encoding and case split of Boolean Schur Triples Problem.

Encoding

(x1 ∨ x2 ∨ x3) ∧ (x−1 ∨ x−2 ∨ x−3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x−1 ∨ x−3 ∨ x−4) ∧
(x1 ∨ x4 ∨ x5) ∧ (x−1 ∨ x−4 ∨ x−5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x−2 ∨ x−3 ∨ x−5) ∧
(x1 ∨ x5 ∨ x6) ∧ (x−1 ∨ x−5 ∨ x−6) ∧ (x2 ∨ x4 ∨ x6) ∧ (x−2 ∨ x4 ∨ x−6) ∧
(x1 ∨ x6 ∨ x7) ∧ (x−1 ∨ x−6 ∨ x−7) ∧ (x2 ∨ x5 ∨ x7) ∧ (x−2 ∨ x−5 ∨ x−7) ∧
(x3 ∨ x4 ∨ x7) ∧ (x−3 ∨ x−4 ∨ x−7) ∧ (x1 ∨ x7 ∨ x8) ∧ (x−1 ∨ x−7 ∨ x−8) ∧
(x2 ∨ x6 ∨ x8) ∧ (x−2 ∨ x−6 ∨ x−8) ∧ (x3 ∨ x5 ∨ x8) ∧ (x−3 ∨ x−5 ∨ x−8) ∧
(x1 ∨ x8 ∨ x9) ∧ (x−1 ∨ x−8 ∨ x−9) ∧ (x2 ∨ x7 ∨ x9) ∧ (x−2 ∨ x−7 ∨ x−9) ∧
(x3 ∨ x6 ∨ x9) ∧ (x−3 ∨ x−6 ∨ x−9) ∧ (x4 ∨ x5 ∨ x9) ∧ (x−4 ∨ x−5 ∨ x−9)

Case split as binary tree
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in this heuristic have been manually 
tweaked to achieve strong performance 
on the Boolean Pythagorean Triples 
Problem.15 We estimate that the use 
of this optimized look-ahead heuristic 
reduced the number of cases by at least 
two orders of magnitude compared to 
alternative heuristics, such as focus 
heuristics or MOMS. Look-ahead heu-
ristics were popular in the 1990s, but 
they have been mostly ignored after 
CDCL emerged. The usefulness of 
look-ahead heuristics to boost the per-
formance on hard problems may revive 
the interest.

Proofs of Unsatisfiability
The unpredictable effectiveness of SAT 
solvers, together with their non-trivial 
implementations (needed for real-world  
efficiency), raise the question of whether 
their results can be trusted. If a prob-
lem has a solution, it is easy to verify 
that the given solution is correct: sim-
ply check whether the solution satis-
fies at least one literal in every clause. 
However, a claim that no solution 
exists is much harder to validate. Since 
SAT solvers use many complicated tech-
niques that could result in implemen-
tation as well as conceptual errors, a 
method is required to verify unsatisfi-
ability claims.

There are two approaches to deal 
with the trust issue of complicated 
software: prove its correctness or pro-
duce a certificate which can be vali-
dated with a simple program. Work in 
the first direction resulted in verified 
SAT solving.31 However, this approach 
has two disadvantages: only some 
state-of-the-art techniques are verified, 
and verification is performed only on 
“higher levels,” and thus excludes the 
low-level implementation tricks that 

important than all the other variables 
results in state-of-the-art performance 
on most industrial problems.2

If no short refutation exists (or is too 
hard to find), it is best to use global heu-
ristics (for look-ahead solvers) to split 
the search space into two parts that 
are both easier to solve. Global heuris-
tics are based on look-aheads:23 for a 
given formula F, a look-ahead on literal 
x assigns x to true, applies UCP, and 
computes the set S of clauses in F that 
are shortened, but not satisfied. The 
heuristic value of a look-ahead on x is 
based on a weighted sum of the clauses 
in S, where clause weights depend on 
the length of clauses.

Both focus and global heuristics 
can reduce the search space exponen-
tially. For really hard problems, such 
as the Pythagorean Triples Problem, it 
is best to combine both types of heu-
ristics. Focus heuristics are effective 
when there exists a short refutation of 
the formula. For hard problems, ini-
tially there are no short refutations. 
One therefore needs to partition such 
a problem using global heuristics until 
the short refutations manifest them-
selves. This is the main idea behind the 
Cube-and-Conquer SAT solving para-
digm,16 which was crucial to solve the 
Pythagorean Triples Problem.

Consider again the Boolean Schur 
Triples Problem on the existence of a 
red/blue coloring of 1, . . ., 9 without a 
monochromatic solution of a + b = c.  
Figure 1 shows the SAT encoding, 
consisting of 32 clauses using the 
Boolean variables x1, . . ., x9. If variable xi 
is assigned to true (false), then num-
ber i is colored red (blue). For each of the 
16 solutions of a + b = c, there are two 
clauses: one stating that at least one of a, 
b, or c must be colored red, one stating 

that at least one of them must be colored 
blue. A binary tree is shown right beside 
the clauses. Each internal node contains 
a splitting variable xi. The left branches 
assign decision variables to false (blue 
edge), while the right branches assign 
decision variables to true (red edge). 
Each leaf node represents an assign-
ment that would result in a conflict dur-
ing UCP. For example, for the left-most 
leaf node, x1 and x3 are assigned to false 
(blue): thus x2, x4 have to be set to true 
(due to 1 + 2 = 3 and 1 + 3 = 4), forcing x6 to 
false (2 + 4 = 6), which forces x7 and x9  
to true (1 + 6 = 7 and 3 + 6 = 9), which 
yields the conflict 2 + 7 = 9 with all three 
set to true (red). This node matches  
the first clause in the proof of Figure 2. 
The binary tree (a simple form of look-
ahead solving) illustrates that heuristics 
can reduce the number of assignments 
to be evaluated from 512 to 6.

Due to the limited size of the example 
formula, relatively simple heuristics are 
sufficient to reduce the number of cases 
from 512 to 6. One such simple heuris-
tic is Maximum Occurrences in clauses 
of Minimal Size (MOMS). Initially, all 
clauses are ternary and variable x1 occurs 
most frequently. Therefore x1 is used as 
the first decision variable. After simpli-
fication, several variables occur most 
frequently in binary clauses (twice), but 
variable x3 has the best tie break (occur-
rences in remaining ternary clauses). 
Therefore variable x3 is the best decision 
on the second level of the tree. Finally, 
variable x5 is the most occurring variable 
in binary clauses on the third level.

A crucial aspect of solving the 
Boolean Pythagorean Triples Problem 
was the use of a dedicated look-ahead 
heuristic based on the recursive 
weight heuristic for random 3-SAT 
formulas. The three magic constants 

Figure 2. Proof and unit clause justification of the Boolean Schur Triples Problem.

Proof

(x1 ∨ x3)
(x1 ∨ x5)

(x1)

(x1 ∨ x2 ∨ x3), (x1 ∨ x3 ∨ x4), (x−2 ∨ x −4 ∨ x −
6), (x1 ∨ x6 ∨ x7), (x3 ∨ x6 ∨ x9), (x−2 ∨ x−7 ∨ x−9)

(x1 ∨ x3), (x1 ∨ x4 ∨ x5), (x1 ∨ x5 ∨ x6), (x−2 ∨ x−4 ∨ x −6), (x2 ∨ x5 ∨ x7), (x−3 ∨ x−4 ∨ x−7)
(x1 ∨ x3), (x1 ∨ x5), (x−2 ∨ x−3 ∨ x−5), (x−3 ∨ x−5 ∨ x−8), (x2 ∨ x6 ∨ x8), (x1 ∨ x8 ∨ x9), (x−3 ∨ x−6 ∨ x−9)

d(x1 ∨ x3)
d(x1 ∨ x5)

(x–3)
(x–5)

(x1), (x−1 ∨ x−2 ∨ x−3), (x−1 ∨ x−3 ∨ x−4), (x2 ∨ x4 ∨ x6), (x−1 ∨ x−6 ∨ x−7), (x−3 ∨ x−6 ∨ x−9), (x2 ∨ x7 ∨ x9)
(x1), (x−3), (x−1 ∨ x−4 ∨ x−5), (x−1 ∨ x−5 ∨ x−6), (x2 ∨ x4 ∨ x6), (x−2 ∨ x−5 ∨ x−7), (x3 ∨ x4 ∨ x7)

⊥ (x1), (x−3), (x−5), (x2 ∨ xx3 ∨ x5), (x3 ∨ x5 ∨ x8), (x−2 ∨ x−6 ∨ x−8), (x−1 ∨ x−8 ∨ x−9), (x3 ∨ x6 ∨ x9)

Unit clause justification
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are crucial for fast performance. Both 
disadvantages slow down the verified 
solver substantially, making it useless 
in most practical settings.

The second approach has been 
more successful in the context of SAT 
solving. We refer to a certificate of 
an unsatisfiability claim as a proof of 
unsatisfiability. What kind of format 
would be useful for such proofs? The 
ideal proof format facilitates five prop-
erties: (1) proof production should be 
easy to ensure that it will be supported 
by many solvers; (2) proofs should be 
compact in order to have small over-
head; (3) proof validation should be 
simple, otherwise the trust issue per-
sists; (4) proof validation should be 
efficient to make verification useful in 
practice; and (5) all techniques should 
be expressible, otherwise solvers will 
be handicapped. There is a trade-off 
between these properties. For example, 
more details in a proof should allow a 
more efficient validation procedure. 
However, adding details makes proofs 
less compact and harder to produce.

Initially, proofs of unsatisfiability 
were based on resolution. Although 
useful in some settings, it is hard or 
even impossible to achieve the prop-
erties of easy production (1), com-
pactness (2), and expressibility (5) for 
such proofs. The alternative is clausal 
proofs12 for which it is now possible to 
achieve all five properties.

What is a clausal proof of unsatisfi-
ability for a SAT problem? Basically, we 
start with the given list of clauses, and 
add or delete clauses, until finally we 
add the empty clause ⊥, which marks 
unsatisfiability, since there is no literal 
in it to satisfy. The most basic restric-
tion on adding clauses is, that the 
addition is solutions-preserving, that 
is, all solutions (at that point, taking 
all previous additions and deletions 
into account) also satisfy the added 
clause. This guarantees correctness: 
if all additions are solutions-preserv-
ing, and we are able to add ⊥ (which 
has no solution), then the original 
SAT problem must be unsatisfiable. 
For example, consider the formula  
F = (x ∨ y) ∧ (x ∨ y–). Adding the clause 
(x) to F is solutions-preserving: F has 
two solutions and in both solutions x 
is assigned to true.

It is important to validate that clause 
addition steps are solutions-preserving, 

otherwise we do not have a proof, just 
some sort of claim. This verification 
should be cheap to perform, and the 
basic criterion is as follows. Suppose a 
formula F is given, and the clause C is 
claimed to be solutions-preserving for 
F. Take the assignment that sets all lit-
erals in C to false. If UCP on F results 
in a conflict, then the clause is indeed 
solutions-preserving, since we checked 
that it is not possible to falsify C while 
satisfying F. This realizes the first three 
ideal proof format properties: easy, 
compact, and simple. The solver can 
just output the learned clauses, with-
out a justification, and validation hap-
pens by UCP.

SAT solvers do not only learn lots 
of clauses, but also aggressively delete 
them to achieve fast UCP. Proofs should 
include this deletion information in 
order to realize efficient validation. 
Furthermore, proof checkers require 
dedicated UCP algorithms to make 
proof validation as fast as proof pro-
duction.14 Combining these techniques 
realizes the fourth ideal proof property 
(efficient validation).

A proof of our running example is 
shown in Figure 2. The proof consists of 
six clause addition steps and two clause 
deletion steps. The latter have a “d” pre-
fix and do not require checking. The cor-
rectness of each clause addition step is 
checked using UCP, and shown using a 
unit clause justification: a sequence of 
clauses that become unit, ending with a 
falsified clause that marks the conflict. 
The unit clause justification is omitted 
from clausal proofs to ensure compact-
ness, but the checker constructs a justi-
fication during validation.

Some SAT solving techniques may 
change (add or remove) solutions which 
can significantly reduce solving time. In 
order to express such techniques—to 
have also the final ideal proof property 
(expressible)—support is required for 
proof steps that go beyond the above 
solutions-preservation. This is realized 
by the concept of solutions-preserving 
modulo x for some literal x. Let ϕ be 
an assignment. We denote by ϕ  ⊕ x  
the assignment obtained by flipping 
the truth value for literal x in ϕ. In case 
x is unassigned in ϕ, then x is assigned 
to true in ϕ ⊕ x. For a given formula F, 
addition of clause C is solutions-preserv-
ing modulo x if for all solutions ϕ of F at 
least one of ϕ or ϕ ⊕ x satisfies F and C.

For example, consider the formula 
F = (x ∨ y) ∧ (x ∨ y–) again. The addition 
of clause (x– ∨ y) to F is solutions-pre-
serving modulo y. Recall that F has two 
solutions. The first solution ϕ1, where 
x is true and y is true, also satisfies  
(x– ∨ y). The second solution ϕ2, where x 
is true and y is false, falsifies (x– ∨ y), 
but ϕ2 ⊕ y satisfies F and (x– ∨ y).

How to check that adding clause C 
is solutions-preserving modulo x? We 
use the following efficient criterion: 
x ∈ C, and for all D ∈ F with x– ∈ D we 
have that setting all literals in C as well 
as all literals in D\{x–} to false yields a 
conflict via UCP. The proof format that 
encapsulates this inference in a single 
step is called the “DRAT” format,4 and 
is supported by state-of-the-art solvers.

It is instructive to show that this cri-
terion guarantees adding C to F is solu-
tions-preserving modulo x. The critical 
clauses are the D ∈ F with x– ∈ D, since 
here flipping of x might change a sat-
isfied clause to a falsified clause. First 
observe that from the criterion fol-
lows that all C ∪ (D\{x–}) are solutions- 
preserving w.r.t. F. Now assume that 
ϕ is a total satisfying assignment for F 
which falsifies C (otherwise ϕ satisfies F 
and C and we are done). Thus ϕ falsifies 
x, and ϕ ⊕ x satisfies C. Since all C ∪ D\{x–}  
are solutions-preserving w.r.t. F, ϕ sat-
isfies all C ∪ D\{x–}. Hence ϕ satisfies 
all D\{x–} (because ϕ falsifies C), and so 
does ϕ ⊕ x as well, and thus indeed ϕ ⊕ x  
satisfies all D. QED

The DRAT format seems to be a good 
proof format for existing and future SAT 
solvers, as it has all the five properties of 
an ideal proof format. Moreover, DRAT 
proofs can be efficiently checked even 
in parallel, and they have been used to 
validate the results of the annual interna-
tional SAT competitions since 2013. For 
the Boolean Schur Triples Problem with 
n = 9, there exists a DRAT proof consisting 
of only four clause additions: (x1 ∨ x4), (x1), 
(x4), ⊥. Validating this proof involves more 
details, which can be obtained by using 
the DRAT proof checker DRAT-trim.d

Indeed, DRAT in a theoretical sense 
is equivalent to one of the most power-
ful systems studied in proof complex-
ity, Extended Frege with Substitution, 
and thus it should offer “proofs as  
short as possible.”4 The Extension  

d	 The tool is available at https://github.com/
marijnheule/drat-trim.
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proof has been provided, correctness 
is more of an issue than in cases of 
Ramsey Theory. Computationally, EDP 
is much easier,21 and a much smaller 
proof exists (about a gigabyte) than in 
our case. Finally a general mathemati-
cal existence proof has been provided.35 
This mathematical proof was called 
“much more satisfying” than the com-
putational approach.25 However, there 
is for example the possibility that 
the Pythagorean Tuples Conjecture 
(see below) is not provable with cur-
rent methods. Furthermore, the SAT 
approach is actually a rather “satisfying 
approach” when taking into account its 
deep connections to formal methods.

The Pythagorean Tuples Conjecture 
states that Ptn(k; m)—with k the length 
of the tuple and m the number of col-
ors—exists for all k ≥ 3 and m ≥ 2. That 
is, for every partitioning of {1, . . ., Ptn(k; 
m)} into m parts, some part contains 
a Pythagorean tuple of size k. We have 
shown that Ptn(3; 2) = 7825. The value of 
Ptn(3; 2) was conjectured30 not to exist 
after determining the numbers Ptn(k; 2)  
for 4 ≤ k ≤ 31. We have meanwhile 
computed the only known Pythagorean 
tuples numbers for three colors: Ptn(5; 3)  
= 191, Ptn(6; 3) = 121, and Ptn(7; 3) = 102. 
We also established Ptn(3; 3) > 107, and 
this lower bound (via local-search algo-
rithms) seems still far away from the 
exact bound. So it is imaginable that a 
mathematical existence-proof can not 
be found, and finiteness of Ptn(3; 3) 
might never be established. It is further-
more conceivable that the Pythagorean 
Tuples Conjecture is true but the best 
proofs are SAT-like. Thus formal proofs 
in systems like Zermelo-Fraenkel set the-
ory would only exist for concrete k and m, 
while there would not exist a single proof 
for all k and m. No mathematical exis-
tence proofs have yet been established 
for any Ptn(k; m) (see “alien truth state-
ments” for further discussions).

Before coming to the industrial 
applications of SAT, we remark that 
the Ramsey numbers33 R(k) are very dif-
ferent from the Boolean Pythagorean 
Triples Problem: namely the latter is 
“random-like” and thus has no symme-
tries (besides the trivial color symme-
tries). Currently SAT solving is more 
successful in the absence of strong sym-
metries, while Ramsey numbers cur-
rently have too much structure for an 
automated attack. More sophisticated 

Rule basically states that the clauses  
(x ∨ a– ∨ b–) ∧ (x– ∨ a) ∧ (x– ∨ b) can be 
added if no literals x and x– occur in the 
formula. In fact, each of the clauses 
are solutions-preserving modulo x or x– 
according to the above criterion.

Proof size nevertheless becomes an 
issue. Although DRAT proofs are “com-
pact,” the size of the DRAT proof of the 
Boolean Pythagorean Triples Problem 
is 200 TB. An obvious challenge of such 
a huge file is its storage. Also, dealing 
with such files increases the complexity 
of proof validation algorithms, which 
will need to support parallel check-
ing. On the other hand, it is possible to 
trade complexity for space by adding 
details to the proof that facilitate fast 
checking. In order to make this feasi-
ble, the proof can be optimized using 
a non-verified trimmer which also adds 
the checking details. This approach 
has been successfully applied to vali-
date the 200 TB proof using a checker 
which was formally verified in Coq.8

Ramsey Theory and Complexity
A popularized summary of Ramsey 
Theory is that “complete chaos is impos-
sible.”26 More concretely, Ramsey Theory 
deals with patterns that occur in well-
known sets such as the set of natural 
numbers or the set of graphs. For exam-
ple, coloring the natural numbers with 
finitely many colors will result in a mono-
chromatic Schur triple a + b = c.

Hundreds of papers have been pub-
lished on determining the smallest size 
of sets such that a given pattern must 
start to occur.32 The most famous pat-
tern is related to Ramsey numbers R(k): 
the smallest n such that all red/blue 
edge colorings of the complete graph 
with n vertices have a red or a blue clique 
of size k. Only the first four Ramsey num-
bers are known. Paul Erdős famously 
told a story about aliens who threatened 
to obliterate earth unless humans pro-
vided them with the value of R(5)—with a 
proof, we may add here. Putting all man-
kind behind this project would do the 
job in a year. Yet if aliens asked for R(6), 
we should opt for the Hollywood resolu-
tion and obliterate them instead.13

Many problems in Ramsey Theory 
appear to be solved only using large 
case splits (especially for the determi-
nation of Ramsey-type numbers), and 
thus using SAT is a natural option. Also 
SAT formulations of these problems are 

easy and natural. In order to determine 
the smallest subset in which a pattern 
starts to occur using SAT, two formu-
las need to be solved. First, it has to be 
shown that for any smaller subset there 
exists a counter-example. This is typi-
cally easy, because the formula is satis-
fiable. The second formula, encoding 
the existence of the pattern, is much 
harder to solve as now unsatisfiability 
must be shown.

The first major success of SAT solv-
ing in Ramsey Theory was determining 
the sixth Boolean van der Waerden 
number:22 vdW(6) = 1132. The number 
vdW(k) expresses the smallest n such 
that any red/blue coloring of the num-
bers 1 to n results in a monochromatic 
arithmetic progression of length k. 
The computation used multiple clus-
ters as well as dedicated SAT-solving 
hardware (FPGA solvers) for several 
months. Unfortunately, no proof was 
produced during the computation, 
making it impossible to verify the 
result. This raises several trust issues, 
because errors could have been made 
on several levels. For example, was 
the splitting correct and thus has the 
whole search space been explored? 
Also, FPGA solvers have been tested 
much less thoroughly compared to 
state-of-the-art solvers.

The first important problem with 
a verified clausal proof is the Erdős 
Discrepancy Problem (EDP), which is 
about “complete uniformity is impossi-
ble.” The problem conjectures that any 
infinite sequence s1, s2, . . . with si = ±1  
contains for any positive integer C 
a subsequence sd, s2d, s3d, . . ., skd, for 
some positive integers k and d, such 
that 

=
≥∑ 1

k

idi
s C . Using colors, the con-

jecture says that for every C ≥ 1 and 
every red/blue coloring of 1, 2, . . . there 
is a finite initial segment of some pro-
gression d, 2d, 3d, . . . for some d ≥ 1, 
such that the discrepancy between the 
number of color-occurrences is at least 
C (one color occurs at least C-times 
more than the other). The conjecture 
has been a long-standing open prob-
lem even for C = 2. The case C = 2 was 
eventually solved using SAT by provid-
ing the exact bound,21 also applying 
Cube-and-Conquer. The encoding of 
this problem is more involved than the 
simple encoding of Ramsey problems 
(which are just hypergraph coloring 
problems), and thus, though a clausal 
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symmetry-breaking techniques are req
uired to improve the performance.

Brute Force Formal Methods
SAT solvers are a key technology in for-
mal methods for applications, such as 
bounded model checking5 and equiv-
alence checking. In bounded model 
checking, given a transition system and 
an invariant such as a safety property, the 
SAT solver determines for some appro-
priate finitization, whether there exists a 
sequence of transitions that violates the 
safety property. Equivalence checking is 
used to determine the equivalence of a 
specification and an implementation or 
two different implementations. The SAT 
solver is asked to find an input such that 
some output differs. Notice that the exis-
tence of a solution means that the safety 
property is violated or that there exists a 
counter-example for equivalence.

All problems discussed so far could 
be expressed as a propositional formula. 
For many interesting problems, how-
ever, this is not the case and they require 
a richer logic for its representation. That 
does not mean that SAT technology can-
not be used to solve these problems. On 
the contrary: more and more problems 
that require a richer logic are being 
solved efficiently using SAT.

The key idea is to abstract away 
those parts of a given problem that 
cannot be expressed as propositional 
logic. A solution of the abstracted prob-
lem may not be a solution of the given 
problem, while a refutation of the 
abstracted problem is also a refuta-
tion of the given problem. In case a 
solution of the abstracted problem is 
obtained, which is not a solution for 
the  given problem, then the abstrac-
tion is refined by adding a clause that 
prevents the SAT solver from finding 
that solution (and potentially similar 
solutions) again. This is repeated until 
either a refutation or a solution for the 
given problem is found. Incremental 
SAT solving10 facilitates an efficient 
implementation of this approach.

This approach has been very suc-
cessful in Automated Theorem Proving 
(ATP). The long-time champion in the 
annual ATP competitions is Vampire,36 
which has been tightly integrated with 
a SAT solver. Other strong ATP solvers, 
including iProver and Leo, incor-
porate SAT solvers as well. The major 
interactive theorem provers, such as 

ACL2, Coq, and Isabelle, support 
the usage of SAT solvers to deal with 
subproblems that can be expressed 
in propositional logic. In this setting, 
SAT solvers are treated as a black-box 
and the emitted proofs are validated in 
the theorem provers. Another success-
ful extension of SAT in this direction is 
Satisfiability Modulo Theories (SMT).9 It 
uses multiple theories, such as linear 
arithmetic, uninterpreted functions, 
and bit-vectors, and replaces con-
straints in a theory by propositional 
variables. SMT solvers, such as Z3, 
Boolector, CVC4, and Yices have 
been highly successful.

Alien Truths
The core argument against solving a 
problem by brute force is it does not con-
tribute to understanding the problem. In 
that view, the proof is meaningless and 
hard to generalize, and a human mathe-
matical proof is preferred. Furthermore, 
without understanding errors seem 
more likely, although validation can be 
done by highly trusted systems.

The proponents of “elegant” proofs 
appear to consider problems with 
only very long proofs as not interest-
ing or not relevant. But even unprov-
able statements, like the famous 
Continuum Hypothesis, have an 
important place in mathematics. If we 
do not study the limits of our current 
knowledge, we will stay ignorant for-
ever, always restricted to a “safe space,” 
neglecting problems we assume 
to be too hard. Furthermore, what  
is a limit of one discipline is a core subject 
of another discipline. Computational 
complexity and Ramsey Theory have 
close relations. Understanding the hard-
ness of problems from Ramsey instances 
could lead to major breakthroughs.27 
For example, why is proving the Ramsey 
property for a + b = c rather easy, while  
a2 + b2 = c2 appears to be a very hard 
problem? In general, even small propo-
sitional problems might have only very 
large proofs. If we would ignore this area, 
then we would allow random holes in our 
knowledge. The question “why there are  
no short proofs,” and “what makes a 
problem hard,” are deep and fascinat-
ing questions, and we consider them 
some of the most important problems 
of our times.

To better discuss the untold sto-
ries of computer science, complexity 

More and more 
problems that 
require a richer 
logic are being 
solved efficiently 
using SAT. 
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that are expected to be alien are that 
vdW(6) = 1132 (see Kouril22) and that 
the exact bound of EDP with C  = 2 is 
1161 (see Konev21). A plain brute-force 
approach to those problems would 
require the evaluation of 21132 and 21161 
cases, respectively. Brute reasoning 
using SAT solvers significantly reduced 
the size of the case-splits and allowed 
determining their truth. We think it is 
relevant to make a further distinction: 
the above two alien truth statements 
express the exact bound, but for both 
cases there is a mathematical exis-
tence proof that the pattern cannot be 
avoided indefinitely. Now also high-
level statements, such as any red/blue 
coloring of the natural numbers yields 
a monochromatic Pythagorean triple, 
could be alien, when the bound result, 
Ptn(3; 2) = 7825, is the only proof. We 
call such statements indeed strongly 
alien. If a mathematical existence 
proof would be found for the statement 
here, then only the bound statement 
remains, which is simply alien. This 
happened for the Erdős Discrepancy 
Problem: the bound was computed 
using SAT, and later a mathematical 
existence proof was given.

Finally, for some truth statements, 
we may never be able to produce a proof. 
A possible example problem of this 
type is the statement that every 3-col-
oring of the natural numbers yields a 
monochromatic Pythagorean triple. As 
already discussed, experiments show 
that Ptn(3; 3) > 107, where lower bounds 
are relatively easy to compute. Proofs of 
upper bound results are much harder 
to obtain: for example, Ptn(3; 2) > 7824 
can be computed in one CPU-minute 
with local search, while computing 
Ptn(3; 2) £ 7825 required more than 
40  000 CPU-hours. We call decidable 
truth statements extra alien if a proof 
can never be computed.

The concept of alien truth state-
ments deals with the size of proofs, 
but it touches naturally on unprovabil-
ity (in current systems like Zermelo-
Fraenkel set theory). It is conceivable 
that Ptn(3; 3) does not exist, that is, the 
natural numbers are 3-colorable with-
out a monochromatic Pythagorean 
triple. However, this may not be prov-
able, since the coloring is too complex. 
On the other hand, it is conceivable 
that all Ptn(3; m) with m ³ 3 exist (note 
that a SAT solver can prove them in 

theory, and SAT, let’s call alien a prov-
able and rather short mathematical 
statement with only a very long proof. 
Artificial alien statements can be 
constructed using Gödel’s methods. 
Whether a natural truth statement 
can be shown to be alien, such as the 
Pythagorean Triples Problem, is of 
highest relevance. Even if a short proof 
for the Pythagorean Triples Problem 
may be constructed, that is unlikely to 
be the case for the exact bound result. 
Now there is actually a whole spec-
trum of possibilities between human 
truths and alien truths. Classical 
mathematical statements for  
which a paper proof exists, such as 
Schur’s Theorem,34 we consider as 
human truth statements. Hence the 
vast body of mathematical works 
belongs to this category. Furthermore, 
we consider mathematical statements 
that have been proven mostly manu-
ally, but with some computer help, 
weakly human. More specifically, such 
statements have a large case-split, 
which could potentially be under-
stood by humans, but which have 
only been checked mechanically. An 
example of such a statement is the 
Four-Color Theorem.37 The proof by 
Appel and Haken considers 663 cases 
in its improved version. The case-
split is fully understood and humanly 
constructed. A theorem prover only 
checks the cases. Coming to larger 
cases, we refer to a weakly alien truth 
statement as a giant humanly gener-
ated case-split which can be validated 
using plain brute-force methods. For 
example, it has been shown that the 
minimum number of givens is 17 in 
Sudoku by enumerating all possible 
cases with 16 givens and refuting 
them all29 (5 472 730 538 cases after 
symmetry breaking). Although impos-
sible to evaluate by humans, it could 
be directly done mechanically. This 
result is expected to be weakly alien, 
as it is unlikely that there exists a 
small enough case-split that is check-
able by humans.

We arrive at a better understanding 
of “alien,” namely a truth statement 
is alien if humanly understandable 
case-splits are way too big for any 
plain brute-force method, but there 
exists a giant case-split that mysteri-
ously avoids an enormous exponential 
effort. Examples of truth statements 

For some truth 
statements,  
we may never be  
able to produce  
a proof. 
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principle), but these statements are all 
alien or extra-alien. Since these proofs 
grow with m, the general statement 
that all Ptn(3; m) with m ³ 3 exist, is 
then unprovable in principle.

Conclusion
Recent successes in brute reasoning, 
such as solving the Erdős Discrepency 
Problem and the Pythagorean Triples 
Problem, show the potential of this 
approach to deal with long-standing 
open mathematical problems. More
over, proofs for these problems can be 
produced and verified completely auto-
matically. These proofs may be big, 
but we argued that compact elegant 
proofs may not exist for some of these 
problems, in particular (but not only) 
for the exact bound results. The size 
of these proofs does not influence the 
level of correctness, and these proofs 
may reveal interesting information 
about the problem.

In contrast to popular belief, 
mechanically produced huge proofs 
can actually help in understanding the 
given problem. We can try to under-
stand their structure, and making them 
thus smaller. Hardly any research has 
been done yet in this direction apart 
from removing redundancy in a given 
proof. Possibilities are changing the 
heuristics of a solver or introducing 
new definitions of frequently occurring 
patterns in the proof. Indeed, simply 
validating a clausal proof does not only 
produce a yes/no answer as to whether 
the proof is correct, but also provides 
an unsatisfiable core consisting of all 
original clauses that were used to vali-
date the proof—revealing important 
parts of the problem. The size of the 
core depends on the type of problem. 
Problems in Ramsey Theory typically 
have quite a large core and therefore 
provide limited insight. Many bounded 
model checking problems, however, 
have small unsatisfiable cores, thereby 
showing that large parts of the hard-
ware design were not required to deter-
mine the safety property.

To conclude, it is definitely pos-
sible to gain insights by using SAT. 
However that “insight” might need to 
be reinterpreted here, and might work 
on a higher level of abstraction. Every 
paradigm change means asking differ-
ent questions. Gödel’s Incompleteness 
Theorem solved partially the question 

of the consistency of mathematics by 
showing that the answer provably can-
not be delivered in the näive way. Now 
the task is to live up to big complexi-
ties, and to embrace the new possibili-
ties. Proofs must become objects for 
investigations, and understanding will 
be raised to the next level, how to find 
and handle them.

So, when the day finally comes 
and the aliens arrive and ask us about  
Ptn(3; 3), we will tell them: “You know 
what? Finding the answer yourself gives 
you a much deeper understanding than  
just telling you the answer—here you 
have the SAT solving methodology, 
that’s the real stuff!” And then humans 
and aliens will live happily ever after.

Wir müssen wissen. Wir werden 
wissen.
(We must know. We will know.)
	 David Hilbert, 1930�
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commutativity. The implementation 
is mostly scalable, but not always: 
even when a scalable implementation 
of an API exists in theory, it will not 
necessarily be the most obvious or 
even the most efficient; sometimes, 
it’s simply not worthwhile. They 
also learned that many advanced 
data structures do not scale well; for 
instance, rebalancing a tree might 
modify a portion of the tree that is 
semantically unrelated to the update 
that triggered the rebalancing. 

The authors present a simple and 
powerful idea. It is not just about OSs, 
but applies to any piece of parallel 
software, whether running on a mul-
ticore computer or in the cloud. Com-
mutativity enables us to reason about 
scalability in a principled way, inde-
pendently of a particular implementa-
tion, benchmark or workload. We can 
now design our APIs to be scalable, by 
ensuring calls commute in the com-
mon case, and we can use verification 
tools to automate and exercise this 
reasoning—an unexpected connec-
tion between high-school math theory 
and hardcore computer science. 	
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SCALAB ILITY  IS  THE  capability of a par-
allel program to speed up its execu-
tion as we provide it with more CPUs. 
Back in 1967, Gene Amdahl noticed 
the sequential part of a parallel pro-
gram had a disproportionate influence 
on scalability.1 Suppose that some pro-
gram takes 100 s to run on a sequential 
processor. Now, let’s run it on a parallel 
computer. If we are able to parallelize, 
say, 80% of the code, then with enough 
CPUs that 80% would take essentially 
zero time. However, the remaining se-
quential portion will not run any faster; 
this means the parallel program will 
always take at least 20 s to run, a maxi-
mum speed-up of only 5×. If we are able 
to parallelize 95% of the code, speed-
up is still limited to 20×, even with an 
infinite number of CPUs! This back-
of-the-envelope calculation, known as 
Amdahl’s Law, does not take into ac-
count other factors, such as increased 
memory size, but remains an impor-
tant guideline. 

In 1967, parallelism was a niche 
topic, but not any more. Improving 
program performance on today’s clus-
ters, clouds, and multicore computers 
requires the developer to pay serious 
attention to scalability. The inherent 
scalability of an interface is the focus 
of the following paper. 

When a thread updates some shared 
datum, and another thread wants to 
read or write the most recent version 
of that datum (they conflict), they must 
synchronize, which constitutes a se-
quential bottleneck. This is a general 
result that does not depend on any par-
ticular implementation, even with ef-
ficient hardware support for cache co-
herence, as explained by the authors. 

Here comes the paper’s main in-
sight: If two concurrent procedure 
calls commute with each other (that is, 
executing them in either order is equiv-
alent), this means that neither one de-
pends on the result of the other. There-
fore, there is no inherent reason why 
these calls should conflict; and, hence, it 
is possible to implement them in a way 
that scales well.

The advantages of commutativity in 
software have been known for a long 
time, see the paper for relevant refer-
ences. It is only recently, however, that 
focus has shifted from simply leverag-
ing existing commutativity toward de-
signing software to achieve commu-
tativity.2,3 The paper goes well beyond 
previous work. First, instead of simple 
abstract data types, it considers the 
more complex case of software with 
an intricate interface and massive 
amount of shared state—a whole op-
erating system (OS). Second, instead 
of just a black-and-white characteriza-
tion “commute/don’t-commute,” it 
considers calls that may commute in 
some states and not in others. This is 
especially important when commut-
ing is the common case, as in many OS 
calls. Finally, it leverages static pro-
gram verification techniques, provid-
ing a tool that will prove if and when 
a given interface is commutative, and 
will generate test cases exercising the 
scalability of its implementation. 

The authors designed a whole OS 
based on these ideas. It’s similar to 
Linux, but its APIs are designed for 

The following paper 
presents a simple  
and powerful idea.  
It is not just  
about OSs, but  
applies to any piece  
of parallel software, 
whether running  
on a multicore 
computer or  
in the cloud.
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Abstract
Developing software that scales on multicore processors 
is an inexact science dominated by guesswork, measure-
ment, and expensive cycles of redesign and reimplementa-
tion. Current approaches are workload-driven and, hence, 
can reveal scalability bottlenecks only for known workloads 
and available software and hardware. This paper introduces 
an interface-driven approach to building scalable software. 
This approach is based on the scalable commutativity rule, 
which, informally stated, says that whenever interface oper-
ations commute, they can be implemented in a way that 
scales. We formalize this rule and prove it correct for any 
machine on which conflict-free operations scale, such as 
current cache-coherent multicore machines. The rule also 
enables a better design process for scalable software: pro-
grammers can now reason about scalability from the earli-
est stages of interface definition through software design, 
implementation, and evaluation.

1. INTRODUCTION
Until the mid-2000s, continuously rising CPU clock 
speeds made sequential software perform faster with 
each new hardware generation. But higher clock speeds 
require more power and generate more heat, and around 
2005 clock speeds reached the thermal dissipation lim-
its of a few square centimeters of silicon. CPU architects 
have not significantly increased clock speeds since, but 
the number of transistors that can be placed on a chip 
has continued to rise. Architects now increase parallel-
ism by putting more CPU cores on each chip. Total cycles 
per second continues to grow exponentially, but soft-
ware must scale—must take advantage of parallel CPU 
resources—to benefit from this growth.

Unfortunately, scaling is still an untamed problem. Even 
with careful engineering, software rarely achieves the holy 
grail of linear scalability, where doubling hardware parallel-
ism doubles software performance.

Engineering scalable systems software is particularly 
challenging. Systems software, such as operating system 
kernels and databases, presents services to applications 
through well-defined interfaces. Designers rarely know 
ahead of time how applications will use these interfaces, 
and thus often cannot predict what bottlenecks to multicore 
scalability will arise. Furthermore, scaling bottlenecks may 
be a consequence of the definition of the interface itself; 
such problems are particularly difficult to address once 
many applications depend on the interface.

Lack of a principled way to reason about scalability 
hampers all phases of systems software development: 
defining an interface, implementing the interface, and 
testing its scalability.

When defining an interface, developers lack a system-
atic way of deciding whether a given definition will allow 
for scalable implementations. Demonstrating a scalabil-
ity bottleneck requires a complete implementation and a 
workload. By the time these are available, interface changes 
may no longer be practical: many applications may rely on 
the existing interface, and applications that trigger the bot-
tleneck may not be important enough to warrant an inter-
face change.

During design and implementation, developers lack a 
systematic way to spot situations in which perfect scalabil-
ity is achievable. This makes it hard to design an imple-
mentation to be scalable from the start. Instead, over time 
developers must iteratively improve the software’s parallel 
performance as specific workloads uncover bottlenecks, 
often re-implementing the software multiple times.

While testing, developers lack a systematic way of 
evaluating scalability. The state of the art for testing the 
scalability of multicore software is to choose a workload, 
plot performance at varying numbers of cores, and use 
tools such as differential profiling13 to identify scalabil-
ity bottlenecks exhibited by that workload. Each new 
hardware model or workload, however, may expose new 
scalability bottlenecks.

This paper presents a new approach to designing scal-
able software that starts with the design of scalable software 
interfaces. This approach makes it possible to reason about 
multicore scalability before an implementation exists, 
and even before the necessary hardware is available. It can 
highlight inherent scalability problems, leading to better 
interface designs. It sets a clear scaling target for the imple-
mentation of a scalable interface. Finally, it enables system-
atic testing of an implementation’s scalability.

At the core of our approach is what we call the scalable 
commutativity rule: In any situation where several opera-
tions commute (meaning there is no way to distinguish their 
execution order using the interface), there exists an imple-
mentation that is conflict-free during those operations 
(meaning no core writes a cache line that was read or written 

The original version of this paper was published in the 
Proceedings of the 24th ACM Symposium on Operating 
Systems Principles (SOSP’13).
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by another core). Since conflict-free operations empirically 
scale (as we argue in Section 2), this implementation scales. 
Thus, more concisely, whenever interface operations com-
mute, they can be implemented in a way that scales.

This rule makes intuitive sense: when operations com-
mute, their results (return values and effect on system state) 
are independent of order. Hence, communication between 
commutative operations is unnecessary and avoiding it yields 
a conflict-free implementation. Conflict-free operations can 
execute on different cores without mutual interference via 
inter-core cache coherence invalidation requests, allowing 
total throughput to scale linearly with the number of cores.

The intuitive version of the rule is useful in practice, but 
is not precise enough to reason formally about interfaces or 
to build automated tools that evaluate scalability. This paper 
formalizes the scalable commutativity rule and illustrates 
its usefulness in the context of several examples, and for 
entire operating systems that support POSIX, a complicated, 
widely used interface.

2. SCALABILITY AND CONFLICT-FREEDOM
The scalable commutativity rule assumes that code with 
conflict-free memory accesses—that is, code in which no 
cache line written by one core is read or written by any other 
core—is scalable. This section argues that, under reason-
able assumptions, conflict-free operations do scale linearly 
on shared-memory multicore computers.

Multicores maintain a unified, globally consistent view  
of memory using MESI-like coherence protocols.15 MESI pro-
tocols coordinate ownership of cached memory at the level 
of cache lines. Their key invariant is that a line with a muta-
ble copy in one core’s cache cannot be present in any other 
caches: obtaining a mutable copy invalidates any other caches’ 
immutable copies. This requires coordination, which affects 
scalability.

Figure 1 shows the basic state machine implemented by 
each cache for each cache line. This maintains the invariant 
by ensuring a cache line is either “invalid” in all caches, “mod-
ified” in one cache and “invalid” in all others, or “shared” in 
any number of caches. Practical implementations add further 
states—MESI’s “exclusive” state, Intel’s “forward” state, and 
AMD’s “owned” state—but these do not change the basic 
communication required to maintain cache coherence.

Roughly, a set of operations scales when maintaining 
coherence does not require ongoing communication. There 
are two memory access patterns that fit:

•	 Multiple cores reading and/or writing different cache 
lines. This scales because no further communication is 
required once each cache line is in the relevant core’s 
cache, so further accesses can proceed independently of 
concurrent operations.

•	 Multiple cores reading the same cache line. A copy of 
the line can be kept in each core’s cache in shared 
mode; further reads from those cores can access the 
line without communication.

That is, when memory accesses are conflict-free, they do not 
require communication. Furthermore, higher-level opera-
tions composed of conflict-free reads and writes are them-
selves conflict-free and will also execute independently and 
in parallel. In all of these cases, conflict-free operations exe-
cute in the same time in isolation as they do concurrently, so 
the total throughput of N such concurrent operations is pro-
portional to N. Therefore, given a perfect implementation of 
MESI, conflict-free operations scale linearly.

Conflict-freedom is not a perfect predictor of scalabil-
ity. Limited cache capacity and associativity cause caches 
to evict cache lines (later resulting in cache misses) even 
in the absence of coherence traffic, and a core’s first access 
to a cache line will always miss. Such misses directly affect 
sequential performance, but they may also affect the scal-
ability of conflict-free operations. Satisfying a cache miss 
(due to conflicts or capacity) requires the cache to fetch 
the cache line from another cache or from memory; the 
resulting communication may contend with concurrent 
operations for interconnect resources or memory control-
ler bandwidth. But applications with good cache behavior 
are unlikely to have such problems, while applications with 
poor cache behavior usually have sequential performance 
problems that outweigh scalability concerns. We have veri-
fied on real hardware that conflict-free operations actually 
do scale linearly under reasonable workload assumptions.6

3. THE SCALABLE COMMUTATIVITY RULE
Connections between commutativity and scalability have 
been explored before, especially in the context of operations 
on abstract data types.2, 16, 17, 19, 21, 22 For instance, commutative 
replicated data types19 are distributed objects whose opera-
tions always commute, allowing scalable, synchronization-
free implementation. Abstract data type operations commute 
if they always produce the same result, regardless of order. For 
example, set member insertion commutes with itself, but not 
with removal: set.insert(i) and set.insert(j) produce the same 
results in either order, set.insert(i) and set.remove(j) has order-
dependent results if i = j. But the systems interfaces we care 
about are richer, more granular, and more state- and context-
dependent than typical data type operations. Consider the 
POSIX creat system call, which creates a file. The calls creat(“/
d1/x”) and creat(“/d2/y”) seem to commute: their results are 
the same, regardless of the order they are applied. But if the 
disk is almost full and only one inode remains, then the calls 

Figure 1. A basic cache-coherence state machine. “R” and “W” 
indicate local read and write operations, while “rR” and “rW” 
indicate reactions to remote read and write operations. Thick red 
lines show operations that cause communication. Thin green lines 
show operations that occur without communication.
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finish calculating a response, and it does not have to generate 
responses in the order invocations were received.

An implementation M exhibits a history H if, when fed 
H’s invocations at the appropriate times, M can produce H’s 
responses (so that its external behavior equals H overall). 
An implementation M is correct for a specification  if M’s 
responses always obey the specification. This means that 
every history exhibited by M is either in , or contains some 
invalid invocation.

3.2. Commutativity
SIM commutativity, which we define here, aims to capture state 
dependence at the interface level. State dependence means SIM 
commutativity must capture when operations commute in some 
states, even if those same operations do not commute in other 
states; however, we wish to capture this contextually, without 
reference to any particular implementation’s state. To reason 
about possible implementations, we must capture the scalabil-
ity inherent in the interface itself. This in turn makes it possible 
to use the scalable commutativity rule early in software develop-
ment, during interface design and initial implementation.

Commutativity states that actions may be reordered with-
out affecting eventual results. We say a history H′ is a reorder-
ing of H when H|t = H′|t for every thread t. This allows actions 
to be reordered across threads, but not within them. For 
example, if H = [A1, B2, A−1, C1, B−2, C−1], then [B2, B−2, A1, A−1, C1, C−1] 
is a reordering of H, but [B2, C1, B−2, C−1, A1, A−1] is not, since it 
does not respect the order of actions in H|1.

Now, consider a history H = X  Y (where  concatenates 
action sequences).We say Y SI-commutes in H when given any 
reordering Y′ of Y, and any action sequence Z,

X  Y  Z ∈   if and only if  X  Y′  Z ∈ .

This definition captures state dependence at the interface 
level. The action sequence X puts the system into a specific 
state, without specifying a representation of that state (which 
would depend on an implementation). Switching regions Y 
and Y′ requires that the exact responses in Y remain valid 
according to the specification even if Y is reordered. The 
presence of region Z in both histories requires that reorder-
ings of actions in region Y cannot be distinguished by future 
operations, which is an interface-based way of saying that Y 
and Y′ leave the system in the same state.

Unfortunately, SI commutativity is not sufficient to prove the 
scalable commutativity rule. To avoid certain degenerate cases, 
we must further strengthen the definition of commutativity to  
be monotonic (the M in SIM). An action sequence Y SIM-commutes 
in a history H = X  Y when for any prefix P of any reordering of  
Y (including P = Y), P SI-commutes in X  P. Equivalently,  
Y SIM-commutes in H when, given any prefix P of any reor-
dering of Y, any reordering P′ of P, and any action sequence Z,

X  P  Z ∈   if and only if  X  P′  Z ∈ .

Both SI commutativity and SIM commutativity capture 
state dependence and interface basis. Unlike SI commuta-
tivity, SIM commutativity excludes cases where the commu-
tativity of a region changes depending on future operations. 
SIM commutativity is what we need to state and prove the 
scalable commutativity rule.

do not commute—the second creat call will fail. (Unless, that 
is, one or more of the files already exists, in which case the 
calls commute after all!) Special cases like this can dominate 
analyses that use a strong notion of commutativity. If commu-
tative operations had to commute in all contexts, then only 
trivial systems operations could commute, and commutativ-
ity would not help us explore interface scalability.

Our work relies on a new definition of commutativity, 
called SIM commutativity (State-dependent, Interface-based, 
and Monotonic), that captures state- and context-dependence, 
and conditional commutativity, independent of any imple-
mentation. SIM commutativity lets us prove the scalable 
commutativity rule, which says that scalable implementa-
tions exist whenever operations commute. Even if an inter-
face is commutative only in a restricted context, there exists 
an implementation that scales in that context.

The rest of this section explains this formalism, gives 
the rule precisely, and lays out some of its consequences for 
system designers.

3.1. Specifications
We represent specifications using actions, where an action is 
either an invocation (representing an operation call with argu-
ments) or a response (representing the return value). Splitting 
each operation into an invocation and a response lets us 
model blocking interfaces and concurrent operations.11 Each 
invocation is made by a specific thread and the correspond-
ing response is returned to the same thread. We will write 
invocations as creat(“/x”)1 and responses as , where an over-
bar marks responses and subscript numbers are thread IDs.

A particular execution of a system is a history or trace, 
which is just a sequence of actions. For example,

H = [A1, B3, C2, A−1, C−2, B−3, D1, D−1, E2, F3, G1, E−2, G−1, F−3],

consists of seven invocations and seven corresponding responses 
across three different threads. In a well-formed history, each 
thread’s actions alternate invocations and responses, so each 
thread has at most one outstanding invocation at any point. H 
above is well-formed; for instance, in the thread-restricted sub-
history H|1 = [A1, A−1, D1, D−1, G1, G−1], which selects 1’s actions 
from H, invocations and responses alternate as expected.

A specification models an interface’s behavior as a set of 
system histories—specifically, a prefix-closed set of well-
formed histories. A system execution is “correct” according 
to the specification if its trace is included in the specifica-
tion. For instance, if  corresponded to the POSIX specifi-
cation, then [getpid1, 92—

1] ∈  (a process may have PID 92) 
but [getpid1, ENOENT1] ∉  (the getpid() system call may not 
return that error). A specification constrains both invocations 
and responses: [NtAddAtom1] is not in the POSIX specification 
because NtAddAtom is not a POSIX system call.

An implementation is an abstract machine that takes invo-
cations and calculates responses. Our constructive proof of 
the scalable commutativity rule uses a class of machines on 
which conflict-freedom is defined6; a good analogy is a Turing-
type machine with a random-access tape, where conflict- 
freedom follows if the machine’s operations on behalf of 
different threads access disjoint portions of the tape. An 
implementation may “stutter-step,” taking multiple rounds to 
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isz1 and isz2. But, again, there is a conflict-free implementation 
based on adding a Boolean “zeroness” snapshot as well as per-
thread counters. isz simply returns this snapshot. When dec 
reduces a per-thread value to zero or below, it reads and sums 
all per-thread values and updates the snapshot if necessary.

3.5. Discussion
The rule pushes state and history dependence to an extreme: 
it makes a statement about a single history. In broadly com-
mutative interfaces, the arguments and system states for 
which a set of operations commutes often collapse into 
fairly well-defined classes (e.g., file creation might commute 
whenever the containing directories are different). In prac-
tice, implementations scale for whole classes of states and 
arguments, not just for specific histories.

On the other hand, there can be limitations on how broadly 
an implementation can scale. It is sometimes the case that a 
set of operations commutes in more than one class of situa-
tion, but no single implementation can scale for all classes. 
For instance, in our modified reference counter, H′1, H′2, 
and H′3 all SIM-commute in H′, and we described a scalable 
implementation for each situation. However, H′4 does not 
SIM-commute, even though it is a union of SIM-commutative 
pieces: if the two dec operations were reordered to the start of 
the region, then the isz operations would have to return dif-
ferent values. Any reasonable counter implementation must 
fail to scale in H′4, because isz must return different values 
depending on whether it ran before or after the dec invoca-
tions, and this requires communication between the cores 
that ran dec and isz. This can be proved using a converse of 
the rule: when a history contains a non-SIM-commutative 
region, no non-degenerate implementation can be scalable 
in that region.6 (The non-degeneracy condition eliminates 
implementations that, for example, never respond to any 
invocation, or always respond with an error return value.)

In our experience, real-world interface operations rarely 
demonstrate such mutually exclusive implementation choices. 
For example, the POSIX implementation in Section 5 scales 
quite broadly, with only a handful of cases that would require 
incompatible implementations.

4. DEFINING COMMUTATIVE INTERFACES
This section demonstrates more situations of interface-level 
reasoning enabled by the rule, using POSIX, the standard 
interface for Unix-like operating systems.

The following sections explore four general classes of 
changes that make POSIX operations commute in more sit-
uations, enabling more scalable implementations.

4.1. Decompose compound operations
Many POSIX APIs combine several operations into one, lim-
iting the combined operation’s commutativity. For example, 
fork both creates a new process and snapshots the current pro-
cess’s entire memory state, file descriptor state, signal mask, 
and several other properties. As a result, fork fails to com-
mute with most other operations in the same process, includ-
ing memory writes, address space operations, and many file 
descriptor operations. However, applications often follow fork 
with exec, which undoes most of fork’s suboperations. With 

3.3. Rule
We can now formally state the scalable commutativity rule.

Assume an interface specification  that has a correct 
implementation and a history H = X  Y exhibited by that 
implementation. Whenever Y SIM-commutes in H, there exists 
a correct implementation of  whose steps in Y are conflict-free. 
Since, given reasonable workload assumptions, conflict-free 
operations empirically scale on modern multicore hardware, 
this implementation is scalable in Y.

Our proof of the rule constructs the scalable implementa-
tion from the correct reference implementation, and relies 
on our abstract machine definition and our definition of 
conflict-freedom.6

3.4. Example
Consider a reference counter interface with four operations. 
reset(v) sets the counter to a specific value v, inc and dec 
increment and decrement the counter and return its new 
value, and isz returns Z if the counter value is zero and NZ 
otherwise. The caller is expected to never decrement below 
zero, and once the counter reaches zero, the caller should 
not invoke inc.

Consider the counter history

The region H1 SIM-commutes in H, so the rule tells us that a 
correct implementation exists that is conflict-free for H1. In fact, 
this is already true of a simple shared-counter implementation: 
its isz reads the shared counter, but does not write it.

But H2 does not SIM-commute in H, so no scalable imple-
mentation is implied—and, in fact, none is possible. The 
problem is that the caller can reason about order via the dec 
return values. Only a degenerate implementation, such as 
one that refused to respond to certain requests, could avoid 
tracking this order in a nonconflict-free way.

We can make dec commute by eliminating its return value. 
If we modify the specification so that inc and dec return noth-
ing, then any region consisting exclusively of these operations 
commutes in any history. A version of H with this modified 
specification is

H′2, unlike H2, SIM-commutes, so there must be an imple-
mentation that is conflict-free there. Per-thread counters 
give us such an implementation: each dec can modify 
its local counter, while isz sums the per-thread values. 
Per-thread and per-core sharding of data structures like 
this is a common and long-standing pattern in scalable 
implementations.

The rule highlights at least one more opportunity in this 
history. H′3 also SIM-commutes in H. However, the per-thread 
counter implementation is not conflict-free for H′3: dec3 will 
write one component of the state that is read and summed by 
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but for operations that release resources, this is often stricter 
than applications need and expensive to ensure. For example, 
writing to a pipe must deliver SIGPIPE immediately if there are 
no read FDs for that pipe, so pipe writes do not commute with 
the last close of a read FD. This requires aggressively tracking 
the number of read FDs; a relaxed specification that promised 
to eventually deliver the SIGPIPE would allow implementa-
tions to use more scalable read FD tracking. Similarly, mun-
map does not commute with memory reads or writes of the 
unmapped region from other threads, because other threads 
should not be able to write to the unmapped region after mun-
map returns (even though depending on this behavior usu-
ally indicates a bug). Indeed, enforcing this requires remote 
TLB shootdowns, which do not scale on today’s hardware. An 
munmap (or an madvise) that released virtual memory asyn-
chronously would let the kernel reclaim physical memory 
lazily and batch or eliminate remote TLB shootdowns.

As another example, to build a scalable reference coun-
ter, we start with the interface described in Section 3.4: inc 
and dec both return nothing and hence always commute. In 
place of the isz operation, we introduce a new review opera-
tion that finds all objects whose reference counts recently 
reached zero; this frees the developer from having to period-
ically call isz on their own. review does not commute in any 
sequence where any object’s reference count has reached 
zero and its implementation conflicts on a small number 
of cache lines even when it does commute. However, unlike 
dec, the user can choose how often to invoke review. More 
frequent calls clean up freed memory more quickly, but 
cause more conflicts. In our implementation of this scheme, 
called Refcache,7 review is called at 10 ms intervals, which is 
several orders of magnitude longer than the time required 
by even the most expensive conflicts on current multicores.

5. DESIGNING FOR CONFLICT-FREEDOM
To evaluate the implementation difficulty of the previous 
section’s commutative interfaces, we built sv6, a research 
operating system that aims to provide a POSIX-like inter-
face with as much scalability as is reasonably possible. sv6 
includes a ramfs-like in-memory file system called ScaleFS8 
and a virtual memory system called RadixVM.7 In design-
ing and implementing sv6, the rule told us that conflict-free 
implementations were possible in many cases, which forced 
us to come up with designs that achieved conflict-freedom. 
Without the rule, we would have given up too soon, deciding 
that some corner cases simply cannot be made to scale.

Problems in achieving conflict-freedom fell into two broad 
categories. On the one hand, we found situations where a single 
logical object (such as a reference counter, a pool of memory, 
or the scheduler queue) was accessed from many cores. Here, 
we typically used per-core data structures for the commuta-
tive parts of the API, and tried to ensure that noncommutative 
parts of the API (such as reconciling per-core reference counts, 
or stealing free memory pages or runnable threads from other 
cores when one core runs out) are invoked rarely and minimize 
cache-line movement when they are invoked. In some cases 
this required designing new algorithms, such as Refcache.

On the other hand, we also encountered situations that 
accessed logically distinct objects (e.g., files in a directory, or 

only fork and exec, applications are forced to accept these 
unnecessary suboperations that limit commutativity. POSIX 
has a posix_spawn call that addresses this problem by creat-
ing a process and loading an image directly (CreateProcess 
in Windows is similar). This is equivalent to fork followed by 
exec, eliminating the need for many of fork’s suboperations. 
As a result, posix_spawn commutes with most other opera-
tions and permits a broadly scalable implementation.

Another example, stat, retrieves and returns many differ-
ent attributes of a file simultaneously, which makes it non-
commutative with operations on the same file that change 
any attribute returned by stat (such as link, chmod, chown, 
write, and even read). In practice, applications invoke stat 
for just one or two of the returned fields. An alternate API 
that gave applications control of which field or fields were 
returned would commute with more operations and enable 
a more scalable implementation of stat.6

POSIX has many other examples of compound return val-
ues. sigpending returns all pending signals, even if the caller 
only cares about a subset; and select returns all ready file 
descriptors, even if the caller needs only one of them.

4.2. Embrace specification nondeterminism
POSIX requires that the open system call returns the lowest-
numbered unused file descriptor (FD) for the newly opened 
file. This rule is a classic example of overly deterministic 
design that results in poor scalability. Because of this rule, 
open operations in the same process (and any other FD allo-
cating operations) do not commute, since the order in which 
they execute determines the returned FDs. This constraint is 
rarely needed by applications, and an alternate interface that 
could return any unused FD could use scalable allocation 
methods, which are well-known. Many other POSIX interfaces 
get this right: mmap can return any unused virtual address 
and creat can assign any unused inode number to a new file.

4.3. Permit weak ordering
Another common source of limited commutativity is strict 
ordering requirements between operations. For many oper-
ations, ordering is natural and keeps interfaces simple to use; 
for example, when one thread writes data to a file, other threads 
can immediately read that data. Synchronizing operations like 
this are naturally noncommutative. Communication inter-
faces, on the other hand, often enforce strict ordering, but may 
not need to. For instance, most systems order all messages 
sent via a local Unix domain socket, even when using SOCK_
DGRAM, so any send and recv system calls on the same socket 
do not commute (except in error conditions). This is often 
unnecessary, especially in multi-reader or multi-writer situa-
tions, and an alternate interface that does not enforce order-
ing would allow send and recv to commute as long as there is 
both enough free space and enough pending messages on the 
socket. This in turn would allow an implementation of Unix 
domain sockets to support scalable communication.

4.4. Release resources asynchronously
A closely related problem is that many POSIX operations 
have global effects that must be visible before the operation 
returns. This is generally good design for usable interfaces, 
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covering file system and virtual memory operations, and 
checked the resulting test cases against Linux and the sv6 
operating system. The results are shown in Figures 2 and 3, 
respectively. Each square represents a pair of system calls. 
The color of each square represents the fraction of test cases 
that fail to be conflict-free despite being commutative.

In the case of Linux, we can see that the kernel is already 
quite scalable: many pairs of system calls are conflict-free for 
all tests generated by Commuter. However, there are also 
many pairs that commute but are not conflict-free. This indi-
cates that even a mature and reasonably scalable operating 
system implementation misses many cases that can be made 

pages in a virtual address space), but the data structures typi-
cally used to access these objects induced unnecessary con-
flicts. In particular, we discovered that many sophisticated 
data structures like red-black trees, splay trees, AVL trees, con-
current lock-free skip lists, etc., are a poor fit for the scalable 
commutativity rule. For example, balancing operations on 
binary trees have nonlocal effects: an operation on one branch 
can cause conflicts over much of the tree. Lock-free skip lists 
and other lock-free balanced lookup data structures avoid 
locking, but still induce conflicts on operations that should 
commute: inserts and removes make nonlocal memory writes 
to preserve balance (or an equivalent), and those writes con-
flict with commutative lookups. The effect of these conflicts on 
performance can be dramatic. A frequent solution involved 
switching to array-based data structures, which tend to natu-
rally lend themselves to avoiding conflicts for commutative 
operations. For example, using an array to represent the open 
file descriptors for a process naturally provides conflict-free-
dom for operations on distinct file descriptors, because those 
operations access different addresses in the array.

Naive arrays are not great for situations where the key 
space is large. One solution for medium-size keys is to use a 
radix tree. For instance, we use radix trees in the sv6 virtual 
memory system, RadixVM,7 to implement the mapping from 
virtual addresses to the corresponding mapped objects. Since 
radix trees have no balancing operations, accesses to different 
addresses tend to not conflict. At the same time, simple com-
pression techniques in the radix tree allow for a compact rep-
resentation that’s much more efficient than a single flat array.

For large or variable-sized keys, hash tables are a natural 
choice. For example, in the sv6 file system, we use a hash 
table to represent each directory. This means that concur-
rent operations on different file names in a single directory 
are unlikely to conflict (unless they map to the same hash 
table bucket). This is in contrast to traditional file system 
designs that take out a single lock to ensure that operations 
do not modify the same directory entry at the same time.

6. TESTING FOR CONFLICT-FREEDOM
Fully understanding the commutativity of a complex inter-
face is tricky, and checking if an implementation achieves 
conflict-freedom whenever operations commute adds another 
dimension to an already difficult task. To help developers 
apply the rule during testing, we developed a tool called 
Commuter that automates this process.6 First, Commuter 
takes a symbolic model of an interface and computes precise 
conditions for when that interface’s operations commute. 
Second, Commuter uses these conditions to generate con-
crete tests of sets of operations that commute according to 
the interface model, and thus should have a conflict-free 
implementation according to the commutativity rule. Third, 
Commuter checks whether a particular implementation is 
conflict-free for each test case. A developer can use these test 
cases to understand the commutative cases they should con-
sider, to iteratively find and fix scalability bottlenecks in their 
code, and to perform regression tests to ensure scalability 
bugs do not creep into the implementation over time.

To illustrate how Commuter can help with testing for 
scalability, we wrote a symbolic model of the POSIX interface 

Figure 2. Conflict-freedom of commutative system call pairs in Linux 3.8, 
showing the fraction and absolute number of test cases generated 
by Commuter that are not conflict-free for each system call pair.
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Figure 3. Conflict-freedom of commutative system call pairs in sv6.
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One potential way to expand the reach of the rule and 
create more opportunities for scalable implementations is 
to find ways in which nonconflict-free operations can scale. 
For example, while streaming computations are in general 
not linearly scalable because of interconnect and memory 
contention, we have had success with scaling interconnect-
aware streaming computations. These computations place 
threads on cores so that the structure of sharing between 
threads matches the structure of the hardware interconnect 
and such that no link is oversubscribed. On one 80-core x86 
system, repeatedly shifting tokens around a ring mapped to 
the hardware interconnect achieves the same throughput 
regardless of the number of cores in the ring, even though 
every operation causes conflicts and communication. 
Mapping computations to this model might be difficult, 
and given the varying structures of multicore interconnects, 
the model itself may not generalize. However, this problem 
has close ties to job placement in data centers and may be 
amenable to similar approaches. Likewise, the evolving 
structures of data center networks could inform the design 
of multicore interconnects that support more scalable 
computations.

8. RELATED WORK
This section briefly explains the relation between the scal-
able commutativity rule and previous work that explores 
thinking about scalability and commutativity. For a more 
in-depth discussion of related work that also covers scal-
able operating systems and testing approaches we refer the 
reader to Clements’s thesis.6

8.1. Scalability
Israeli and Rappoport12 introduce the notion of disjoint-
access-parallel memory systems. Roughly, if a shared mem-
ory system is disjoint-access-parallel and a set of processes 
access disjoint memory locations, then those processes scale 
linearly. Like the commutativity rule, this is a conditional 
scalability guarantee: if the application uses shared memory 
in a particular way, then the shared memory implementa-
tion will scale. However, where disjoint-access parallelism is 
specialized to the memory system interface, our work encom-
passes any software interface. Attiya et al.3 extend Israeli and 
Rappoport’s definition to additionally require non-disjoint 
reads to scale. Our work builds on the assumption that mem-
ory systems behave this way and we have confirmed that real 
hardware closely approximates this behavior.6

Both the original disjoint-access parallelism paper and 
subsequent work18 explore the scalability of processes that  
have some amount of non-disjoint sharing, such as compare-
and-swap instructions on a shared cache line or a shared 
lock. Our work takes a black-and-white view because we have 
found that, on real hardware, a single modified shared cache 
line can wreck scalability.

The Laws of Order2 explore the relationship between the 
“strong noncommutativity” of an interface and whether 
any implementation of that interface must contain atomic 
and/or fence instructions for correct concurrent execution. 
These instructions slow down execution by interfering with 
out-of-order execution, even if there are no memory access 

to scale according to the commutativity rule. Some of these 
correspond to well-known scalability problems in Linux, such 
as concurrent operations on different file names in the same 
directory (which conflict on a per-directory lock) or concurrent 
operations on the virtual memory subsystem (which conflict 
on a per-address-space lock7). Others are new bottlenecks that 
may not have been previously discovered: Commuter has sys-
tematically discovered latent scalability problems.

In contrast with Linux, sv6 is conflict-free for nearly every 
commutative test case. In part this is due to our choice of 
data structures that are naturally conflict-free, as described 
in the previous section. While testing sv6, Commuter also 
discovered many commutative corner cases that we would 
not have thought of by ourselves. For example, consider the 
rename system call and the access system call, which can be 
used to check if a file exists. Suppose there are two existing 
files, a and b. Commuter discovered that rename(a, b) com-
mutes with access(b), because in either order, rename suc-
ceeds and access indicates that b exists. However, our initial 
implementation was not conflict-free, because access used 
an internal function that not only checked if the file exists, 
but also looked up the file’s inode. To make this case conflict-
free, we introduced a separate function to check whether a file 
name exists in a directory hash table, without actually read-
ing its corresponding value. During testing, we discovered a 
number of other common design patterns, such as deferring 
work whenever possible, preceding pessimism (i.e., writes 
to memory locations) with optimistic read-only checks, and 
avoiding reads unless absolutely necessary.

For a small number of commutative operations, sv6 is not 
conflict-free. The majority of these cases involve idempotent 
updates to internal state, such as two lseek operations that 
both seek a file descriptor to the same offset, or two anony-
mous mmap operations with the same fixed base address and 
permissions. While it is possible to implement these scalably, 
every implementation we considered significantly reduced 
the performance of more common operations, so we explicitly 
chose to favor common-case performance over total scalability. 
Other cases represent intentional engineering decisions in the 
interest of practical constraints on memory consumption and 
sequential performance. Complex software systems inevitably 
involve conflicting requirements, and scalability is no excep-
tion. However, the presence of the rule forced us to explicitly 
recognize, evaluate, and justify where we made such trade-offs.

7. DISCUSSION
One surprising aspect of the rule is that it allows us to reason 
about scalability without having to measure the throughput 
of a system as a function of the number of cores. Indeed, this 
paper contains no such graph. To be sure that our rule works 
in practice, we measured the scalability of a mail server run-
ning on sv6, using commutative system calls. The result was 
perfect scalability. On the one hand, this demonstrates the 
power of the rule: even for a previously untested hardware 
system and workload, we are able to confidently predict 
scalability. On the other hand, scalability is not the same 
as performance, and a perfectly scalable implementation 
could have lower total performance than an implementa-
tion tuned for efficiency on a small number of cores.
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Referencesconflicts. The Laws of Order resemble the commutativity 
rule, but draw conclusions about sequential performance, 
rather than scalability.

It is well understood that cache-line contention can result 
in bad scalability. A clear example is the design of the MCS 
lock,14 which eliminates scalability collapse by avoiding 
contention for a particular cache line. Other good examples 
include scalable reference counters.1, 5, 9 The commutativity 
rule builds on this understanding and identifies when arbi-
trary interfaces can avoid conflicting memory accesses.

8.2. Commutativity
The use of commutativity to increase concurrency has been 
widely explored. Steele describes a parallel programming 
discipline in which all operations must be either causally 
related or commutative.21 His work approximates commuta-
tivity as conflict-freedom. We show that commutative opera-
tions always have a conflict-free implementation, implying 
that Steele’s model is broadly applicable. Rinard and Diniz17 
describe how to exploit commutativity to automatically par-
allelize code. They allow memory conflicts, but generate 
synchronization code to ensure atomicity of commutative 
operations. Similarly, Prabhu et  al.16 describe how to auto-
matically parallelize code using manual annotations rather 
than automatic commutativity analysis. Rinard and Prabhu’s 
work focuses on the safety of executing commutative opera-
tions concurrently. This gives operations the opportunity to 
scale, but does not ensure that they will. Our work focuses on 
scalability directly: we show that any concurrent, commuta-
tive operations have a scalable implementation.

The database community has long used logical readsets 
and writesets, conflicts, and execution histories to reason 
about how transactions can be interleaved while maintain-
ing serializability.4 Weihl extends this work to abstract data 
types by deriving lock conflict relations from operation com-
mutativity.22 Transactional boosting applies similar tech-
niques in the context of software transactional memory.10 
Shapiro et al.19, 20 extend this to a distributed setting, leverag-
ing commutative operations in the design of replicated data 
types that support updates during faults and network parti-
tions. Like Rinard and Prabhu’s work, the work in databases 
and its extensions focuses on the safety of executing commu-
tative operations concurrently, not directly on scalability.

9. CONCLUSION
The scalable commutativity rule helps developers to rea-
son about scalability in all three phases of software design: 
defining an interface, designing and implementing the soft-
ware, and testing its scalability properties. The rule does not 
require the developer to have a target workload or a physical 
machine to reason about scalability. We hope that program-
mers will find the commutativity rule helpful in producing 
software that is scalable by design.
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rotationally symmetric object with 
great spinning behavior with any of 
the available modeling systems. We 
have here an excellent example for 
“computational fabrication.” Compu-
tation not only accelerates the design 
and fabrication process, but in fact is 
the only way of creating such objects.  

This is a step in a new direction, 
namely the exploitation of the nearly 
unlimited design space for objects 
fabricated with AM. Computer graph-
ics is about to take a leading role in 
AM research, including the authors 
of the following paper. I just mention 
here work on “geometric materials,” 
which act in a surprising, predefined 
way, or on the design of musical in-
struments of unconventional shape. 
A related classical topic is “topology 
optimization,” where one optimizes 
the interior of objects so that mini-
mal material usage results in suffi-
cient strength to resist predefined 
loads. 

Finally, let me point to work on the 
much larger architectural scale. A re-
cent direction of research, called “ar-
chitectural geometry,” aims at making 
geometrically complex architectural 
structures affordable through novel 
computational tools by linking design, 
function, and fabrication. Substantial 
contributions to this field, for exam-
ple, on self-supporting freeform struc-
tures, have also been made by some 
of the authors of the following paper 
(in cooperation with Philippe Block; 
http://www.block.arch.ethz.ch/). 

Computer graphics is a field where 
technology meets design.  We are in 
strong need for this type of research, 
on all scales, from the micro-level of 
material behavior to the macro-level of 
buildings or even entire cities. 	

Helmut Pottmann is a professor of applied geometry at 
Technische Universität Wien, Vienna, Austria.
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“ C O M P U T E R  G R A P H I C S  A R E  pictures 
and movies created using comput-
ers.” This opening sentence from 
Wikipedia’s entry on computer 
graphics becomes increasingly out-
dated as graphics is about to close the 
loop between virtual and physical re-
ality and from digital design to fabri-
cation. Is this a new trend? Not quite, 
but the magnitude of the current de-
velopment and the potential impact 
may be bigger than ever before.

Geometric modeling, a subfield of 
computer graphics, has been motivat-
ed by industrial needs at the advent of 
computer-aided manufacturing, aim-
ing at increased productivity via a com-
pletely digital workflow from design 
to production. Research in geometric 
modeling has been highly successful in 
creating a huge variety of shape model-
ing functionalities for 3D-design sys-
tems. The possibilities for digital shape 
design are almost unlimited and highly 
effective for the creation of “pictures 
and movies.”  But did the field achieve 
the goals toward manufacturing? I am 
not convinced here, since purely ge-
ometry-driven shape modeling creates 
bottlenecks when moving toward engi-
neering and fabrication.

Some of the problems are related 
to geometry representations. B-splines 
and subdivision schemes proved to 
be highly effective for freeform shape 
modeling, but the resulting digital 
models are not yet suitable for simu-
lation. There are various reasons for 
this: The models are usually not wa-
tertight and need to be “repaired” in 
a time-consuming laborious process; 
for example, at surface/surface inter-
sections. Moreover, the models are 
surface based. For simulation, one 
requires meshes, not just for bound-
ing surfaces, but also for the interior. 
For the actual production, which often 
employs CNC machining of molds, 
there are further conversion issues 
since the machines are not capable of 
precisely following splines. 

There are various efforts to change 
this picture:  a prominent reaction 
from mathematics is “isogeometric 
analysis,” which eliminates re-mesh-
ing by using the same spline-based 
representation for both modeling and 
simulation. However, the result of a 
simulation may reveal a design prob-
lem; for example, a mismatch of form 
and function, or the presence of geom-
etry, which contradicts a certain man-
ufacturing process or material behav-
ior, requiring changes to the design. 
To avoid such costly feedback loops 
between design, engineering, and fab-
rication, research in computer graph-
ics has recently tried to incorporate key 
aspects of function and fabrication into 
an “intelligent” shape modeling process. 
This is not easy at all, since one wants 
to achieve interactivity of the model-
ing tools, but at the same time satisfy 
numerous constraints. 

A great example for this trend is de-
picted in the following paper—it cou-
ples shape and function and results 
in unexpected, almost miraculous 
behavior of objects. In the present 
case, these objects are toys, namely 
spinning tops or yo-yos of nearly ar-
bitrary shape. However, the research 
is far deeper. It merges the previously 
mentioned research focus with an-
other hot topic of research: Additive 
manufacturing (AM). With AM, geo-
metric complexity comes almost for 
free. Here, complexity is not restricted 
to the outer surface, but also applies 
to the interior of an object. This is in 
perfect harmony with the goals of the 
highlighted article: Compute and fab-
ricate the interior of an object so that 
it possesses perfect spinning proper-
ties. Mathematically, one “just” has to 
get right a few integrals over the entire 
body, namely the ones that determine 
barycenter and moments of inertia. 
While this can be nicely cast into an 
algorithm, one cannot ask a designer 
to care about such properties. It is 
basically impossible to model a non-
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Abstract
Spinning tops and yo-yos have long fascinated cultures 
around the world with their unexpected, graceful motions 
that seemingly elude gravity. Yet, due to the exceeding diffi-
culty of creating stably spinning objects of asymmetric shape 
in a manual trial-and-error process, there has been little 
departure from rotationally symmetric designs. With mod-
ern 3D printing technologies, however, we can manufacture 
shapes of almost unbounded complexity at the press of a but-
ton, shifting this design complexity toward computation.

In this article, we describe an algorithm to generate 
designs for spinning objects by optimizing their mass dis-
tribution: as input, the user provides a solid 3D model and 
a desired axis of rotation. Our approach then modifies the 
interior mass distribution such that the principal directions 
of the moment of inertia align with the target rotation frame. 
To create voids inside the model, we represent its volume 
with an adaptive multiresolution voxelization and optimize 
the discrete voxel fill values using a continuous, nonlinear 
formulation. We further optimize for rotational stability by 
maximizing the dominant principal moment. Our method 
is well-suited for a variety of 3D printed models, ranging 
from characters to abstract shapes. We demonstrate tops 
and yo-yos that spin surprisingly stably despite their asym-
metric appearance.

1. INTRODUCTION
Spinning toys have existed since antiquity as playful objects 
that capture the imagination. Invented independently all 
over the world, spinning tops are referenced in ancient 
Greek literature,12 and evidence of clay tops has been found 
in ancient cities dating as early as 3500 B.C. Similarly, while 
yo-yos are believed to have been invented in China, there 
are many historical references, including in Mozart’s The 
Marriage of Figaro where a yo-yo is spun to relieve stress.17 
Despite the long tradition of these toys, until today creating 
new designs has been a trial-and-error process, calling on 
the intuition and meticulous patience of artists and hobby-
ists. Moreover, there has been little departure from rotation-
ally symmetric designs.

Much attention has been devoted in the field of classi-
cal mechanics to explaining the motion of spinning objects; 
however, the focus has been primarily on analysis8, 9, 19, 21 
rather than design. In this article, we investigate the unique 
geometric properties of shapes that spin, with an eye on 
digital modeling and free-form design. A stable spin has 
requirements on rotational inertia, including precise posi-
tioning of the center of mass and correct alignment of the 
primary axes of the body. We propose an algorithm to opti-
mize for these inertial properties, for example, to design a 

spinning top that rotates smoothly and stably and can be 
fabricated using 3D printing.

In our approach, users provide an initial design for a 
spinning model, specified as a 3D surface mesh. Along with 
the input geometry, the user may specify the desired axis of 
spinning and the contact point with the support. The mass 
distribution is then optimized to ensure that the primary 
axis for the moment of inertia aligns with the desired axis 
of rotation. Since the moment of inertia depends on the 
entire volume, rather than just on the surface geometry, we 
preserve the appearance of the input design by changing the 
internal mass distribution as we illustrated in Figure 1 on an 
elephant top.

We first formulate a nonlinear functional that measures 
the spinnability of a solid shape about a user-defined axis. 
Using this measure, we then devise constrained optimization 
problems that align the principal axes for moment of inertia 
with user-specified rotation axes. To this end, we maximize 
the ratio of principal moments in the dominant and lateral 
directions and place the center of mass on the rotation axis. 
For our tops, we further improve stability by lowering the 
center of mass, simultaneously reducing the mass.

The original version of this paper was published in 
Proceedings of SIGGRAPH’14, August 2014, ACM.

Figure 1. We describe an algorithm for the design of spinning tops 
and yo-yos. Our method optimizes the inertia tensor of an input 
model by changing its mass distribution, allowing long and stable 
spins even for complex, asymmetric shapes.

Unstable input

Our spinning top design

Hollowed, optimized model

Elephant in motion
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Our approach is effective on a wide range of models, from 
characters to abstract geometric forms. We employ an adap-
tive octree for discretizing the fill volume of our input shapes 
and validate our results by fabricating the optimized shapes; 
the objects can be stably spun despite their complex, asym-
metric exterior appearance.

2. RELATED WORK
Fabrication-oriented design. Fabrication-oriented 
design has gained increasing interest from the computer 
graphics community, triggered by advances in 3D manu-
facturing technology. Various physical properties have 
been explored in this shape modeling context includ-
ing deformation properties,4, 22 articulation behavior,1, 5 
structural strength,23, 24 and kinematic structures.6, 7, 25

Most related to our effort is the work by Prévost et al.20: 
they proposed an approach for balancing static models at 
rest that applies a combination of voxel carving and defor-
mation to control the center of mass. Our work addresses a 
more general problem of stability under rotational motion, 
involving both center of mass and moment of inertia. While 
Prévost et al.20 use a plane sweeping heuristic for carving, we 
solve our constrained combinatorial problems by recasting 
them as sequential linear-quadratic programs using relax-
ation on the fill variables. As discussed later, our optimiza-
tion can be used for static balancing, tending to find more 
stable solutions.

Rotational dynamics design. Furuta et al.10 combine a 
geometric modeling interface and a rigid body simulator 
for the design of kinetic art, providing real-time previews 
of the resulting motion during the design process. While 
restricted to forward simulations, this approach allows the 
user to quickly explore many trial-and-error experiments. 
We avoid trial-and-error and simulation, directly estimating 
models from user-specified geometries.

Hirose et al.13 enforce symmetries along with additional 
geometric constraints to create sphericons. In contrast, 
we do not require a feasible starting solution and do not 
incorporate constraints other than the ones prescribed by 
the desired physical properties, enabling free-form design. 
To the best of our knowledge, we are the first to study the 
computational design of spinning toys with asymmetric 
appearance.

Moment of inertia. Moment of inertia is a fundamental 
property of rigid bodies. It specifies the required torque 
needed for a change in angular velocity and is, for example, 
an essential component in physics-based animation for 
rigid body simulations or dynamics and control of charac-
ters.16 Design for moment of inertia has been investigated in 
mechanical engineering. However, the methods and objec-
tives used differ significantly. Our approach further general-
izes to free-form shapes and we formulate an exact energy 
and derivatives.

Topology optimization. Topology optimization meth-
ods solve engineering problems of distributing a limited 
amount of material in a design space.3 While our adaptive 
voxel discretization shares similarities with solution tech-
niques common in this field, spinnability properties have 
not been considered by prior work.

3. FUNDAMENTALS AND OVERVIEW
Given a 3D shape, we aim to generate spinnable models by 
altering their mass distribution, while keeping the appear-
ance as close to the original as possible. In the following 
sections, we describe the user input, fundamental mass 
properties, and spinnability metrics needed to optimize the 
input toward a stably rotating object.

3.1. User input
The user provides the surface of a solid 3D shape, along 
with the desired spinning axis a. The axis origin is set to the 
contact point p as shown in Figure 2a, which can be user-
defined or chosen as the lowest point on the model w.r.t. the 
up-direction a. For yo-yo designs, the shape is partitioned 
into two parts and connected with an axle that aligns with a, 
to allow string coiling. The user selects a point q on the axle 
to define the coiling location (Figure 2b).

3.2. Mass properties and constraints
Center of mass. We denote by M the mass of our object and 
by c the center of mass. If we assume a frictionless spin, the 
only external torque acting on a spinning top relative to p, is 
the gravitational torque with magnitude |τ| = Mgd, where g 
is Earth’s gravity and d is the distance from c to the spinning 
axis (Figure 2a). We constrain the center of mass to lie on the 
spinning axis so that the net torque on the model around the 
ground contact point is zero.

Refer to Figure 2c: during the spinning motion, the 
precession angle θ between the rotational (vertical) and 
spinning axes increases if the angular velocity ω becomes 
smaller. We can express the gravitational torque as |τ| = 
Mgsin θ, where  is the height of the center of mass. Hence, 
we expect a longer, more stable spin for smaller values of 
 and M.

For yo-yos, the gravitational torque remains zero through-
out the spin if we neglect the effect of an uneven coiling of 
the string.

Moment of inertia. Moment of inertia is the analog of 
mass for rotational motion and measures the resistance to 
rotations about a given axis. Euler’s equations from classical 
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Top
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Unbalanced
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Yo-yo

a q

Precession
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Figure 2. Spinning yo-yos and tops stably: for spinning tops, the 
center of mass must lie on the user-specified spinning axis a, 
otherwise it will cause an unbalanced external torque |τ| = Mgd 
relative to p (a). For slower angular velocities, the precession angle θ 
between rotational (vertical axis) and spinning axes becomes larger 
(c). For smaller , the gravitational torque |τ| = Mg sin θ is smaller for 
equal precession, resulting in a longer spin. For yo-yos, we require 
the center of mass to coincide with q (b).
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mechanics (see, e.g., Ref.11) conveniently describe the rotat-
ing motion of a rigid body in its body frame, whose axes are 
the three principal axes of inertia and the origin is c. Since 
there is no external torque acting on the body (for c on the 
spinning axis), we can only spin about an axis with constant 
angular velocity if it is a principal axis of inertia.

For an arbitrary rigid body, there exists an equivalent ellip-
soid with the same inertial properties. We can discuss the 
preferable axis using an ellipsoid E with half-axes ha, hb, hc 

(hc ≤ hb ≤ ha). Due to sym-
metry, E ’s principal axes of inertia 
are parallel to its half-axes, and the 
corresponding moments Ia, Ib, and 
Ic each equal the sum of squares 
of the two other half-axes’ lengths 
(omitting a common scale factor), 
as illustrated in the inset. Hence, 
the maximal principal axis of iner-
tia corresponds to the shortest axis 
hc, and we have Ic ≥ Ib ≥ Ia. If we 

spin the ellipsoid E with a constant angular velocity ω about 
a principal axis of inertia, the kinetic energy K in our system  
is  I ∈ {Ia, Ib, Ic}. Since K is proportional to I, we can 
expect a longer spin for I = Ic.

Rotational stability. Rotational stability refers to a body’s 
behavior under small disturbances to its angular velocity ω 
due to, for example, frictional forces. Given three distinct 
values for the principal moments of inertia, Ic > Ib > Ia, ro-
tation is stable under small perturbations only about the 
largest and the smallest axis.11 In the case of two axes hav-
ing identical principal moments, the rotation is stable only 
around the distinct axis. For Ic = Ib = Ia, no axis is stable, ne-
glecting contact friction. We can observe this effect when 
trying to spin a marble in place: the orientation of the body 
changes over time. As long as the condition Ic > Ib ≥ Ia holds, 
we call Ic the dominant and Ib and Ia the lateral principal mo-
ments of inertia.

For an asymmetric shape whose maximal principal axis 
of inertia aligns with the spin (and gravitational) axis and 
whose moments are distinct Ic > Ib > Ia, the top spins stably 
under the condition14:

	 � (1)

From this relation we can see that the stability limit 
depends on the height of the center of mass  and the mass 
M itself: the lower the centroid and the smaller the mass, 
the less angular velocity ω is required for a stable spin, 
confirming our conclusion from the above discussion on 
precession. Similarly, we need a smaller ω the higher the 
absolute difference between the largest moment Ic and the 
mid-moment Ib.

In summary, in order to spin stably, four basic require-
ments on the mass distribution of the model must be met:

1.	 The center of mass c must lie on axis a for spinning 
tops, or coincide with the axle center q for yo-yos.

2.	 The center of mass c should be closer to contact point 
p and the mass M minimal for our tops.

3.	 The axis a should be parallel to the maximal principal 
axis of inertia.

4.	 The magnitude of the largest principal moment of 
inertia should dominate over lateral moments to 
ensure the stability of the spin.

3.3. Measuring spin quality
To distill the above analysis of spinning properties into a 
spin quality measure, we formulate energy functionals for 
our yo-yos and tops. Provided that the basic constraints 
from Section 3.2 are fulfilled, our functionals assign a 
spin quality score to a given model M based on the sta-
bility criterion (1). Note that while Equation (1) suggests 
that a comparison of the mid- and largest moments is suf-
ficient for tops, we consider all moments in our quality 
measures because the ordering of mid- and smallest axes 
might flip during our dynamic balancing optimization 
(see Section 4).

Yo-yos. We measure the spin quality of a yo-yo by sum-
ming the squared ratios of the dominant to lateral principal 
moments of inertia:

	 � (2)

assuming that Ic corresponds to the given spin axis and the 
center of mass c equals the axle center q. The function fyo-yo is 
our yo-yo energy functional; small values correspond to lon-
ger, more stable spins.

Tops. To measure the quality of a spinning top, we add 
a term that penalizes the distance  between the center of 
mass c (which is constrained to lie on the axis a) and the 
contact point p and minimizes the mass M, yielding the top 
energy functional:

	 � (3)

The two weights γc and γI allow calibrating the relative contri-
butions of the center of mass, inertia and the regularization 
term of the parameterization that follows (see Section 5).

3.4. Optimizing tops and yo-yos
We turn models into spinnable objects by altering their mass 
distribution while keeping their appearance unchanged. To 
this end, we redistribute mass by hollowing the interior with 
precisely shaped voids. We adopt a multiresolution octree 
to discretize the interior volume of the object. To generate 
the voids, we optimize for voxel fill values using a continu-
ous, nonlinear formulation as we discuss in more detail in 
Section 5. We maximize stability through the energy func-
tionals fyo-yo (2) and ftop (3), respectively.

While hollowing is effective for many models, some spe-
cial cases over-extend our stability requirements and voids 
alone cannot accomplish a stable spin. This is due to the non-
negligible material on the object’s shell. In the original ver-
sion of this article,2 we introduce extensions to our approach, 
further manipulating mass by either deforming the surface 
and interior voids or compensating for highly nonoptimal 
mass distributions with a heavier material in the interior.

ε
Ic

IaIb
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where tr is the trace operator and Ix and Iy take on the roles of 
Ia and Ib, respectively.

Optimizing yo-yos. To turn an arbitrary model M into a 
yo-yo, we therefore need to minimize fyo-yo with Ia:= Ix, Ib:= Iy, 
and Ic:= Iz, with the constraints

	 � (6)

Parallel Axis Theorem. The body frame centered at c is not 
an ideal coordinate system for our tops because the center of 

mass can move freely along the axis a. A bet-
ter-suited frame is centered at the contact 
point p, with the z-axis aligned with a (see 
inset). Within this frame, the center of mass 
c lies at height  on the z-axis, so that the 
inertia tensor I is computed w.r.t. a frame 
shifted by  w.r.t. our body frame. To evalu-
ate ftop, we use the Parallel Axis Theorem, 

which states that if the axes of two frames are parallel, we can 
determine the new inertia tensor using the translation vector 
between the two origins and the body’s mass:

 ICoM = I + M (ccT – cT cE),

where E is the identity matrix. For our choice of frame, where 
the center of mass is at [0, 0, ]T, the theorem simplifies to

Optimizing tops. For our tops, we minimize ftop, where Ia 
and Ib are now the eigenvalues of the upper 2 × 2 block of the 
inertia tensor ICoM, and Ic = sx2 + sy2 as before.

Unlike the yo-yo case, c can move freely on the z-axis. 
Hence, we relax the equality constraint sz = 0, instead substi-
tuting M = sz in the objective ftop (refer to Equation 3).

The constraints to the optimization are then

	 � (7)

Optimizing static balance. Interestingly, the problem 
of balancing a model at rest is a relaxed version of the top 
optimization:

where we remove the mass term M in fstatic because only the 
lowering of c improves the balance at rest.

5. HOLLOWING
The most nonintrusive way to compensate for unfavor-
able mass distributions in a model is to introduce voids in 
the interior, as illustrated in Figure 3. The idea of carving 
the shape’s interior by sweeping a plane through a uni-
form voxel grid was explored in Prévost et al.20 for static 
balancing. We propose a different optimization approach 
that addresses the inertia tensor in addition to the center 
of mass, uses a spatially adaptive discretization, and 
avoids heuristics.

4. OPTIMIZING DYNAMIC BALANCE
Before we explain our multiresolution discretization of the inte-
rior mass distribution, we formalize our quality measures and 
requirements from the previous section, casting them as opti-
mization problems in a discretization-independent manner. 
To evaluate our two quality measures fyo-yo and ftop on a model M 
made of a homogeneous material, we need to express its mass 
properties M, c, and the 3 × 3 symmetric inertia tensor I.

Assume that the surface M encloses a region Ω ∈ R3 that 
corresponds to a solid object with constant density ρ. We 
express the above quantities using the ten integrals of the 
monomials of degree ≤2 over Ω, collected in a 10-vector:

	 � (4)

We obtain the following expressions for the mass and 
center of mass:

and M’s inertia tensor:

Note that we can reduce the volume integrals in sΩ to sur-
face integrals s¶Ω using the Divergence theorem, resulting 
in analytical expressions for a triangulated surface ¶Ω; see 
Supplemental Material accompanying the original version 
of  this article Ref.2

Coordinate frame for yo-yos. As evident from the formu-
las above, c and I are expressed w.r.t. a coordinate frame. 

For our yo-yos, the most convenient frame 
has its origin at the user-provided spin 
point q and one of the three axes, say 
z, points in the direction of the desired 
spin axis a, as illustrated in the inset. For 
this choice of frame, the model can only 
be spun about a if the center of mass 
components sx, sy, and sz, and also the 

off-diagonal elements −sxz, −syz of I equal zero. Otherwise, 
c does not equal q or the z-axis is not a principal axis 
of inertia of M. Provided M fulfills these constraints,  
Iz = sx2 + sy2 takes on the role of Ic in our functional fyo-yo. If Ix and Iy 
denote the eigenvalues of the 2 × 2 upper block

we recall that the trace of I–2 is the sum of the squared eigen-
values , leading to an elegant reformulation of our 
yo-yo functional fyo-yo

	 �
(5)
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where Ωi = ∪k Ωk is a partitioning of the interior into octree 
cells Ωk. The void space Ω′ consists of all cells Ωk for which 
βk = 1.

5.3. Optimization approach
Given our adaptive voxel discretization, since the fill val-
ues are binary, the resulting minimization problem would 
be combinatorial. In order to take advantage of continu-
ous optimization techniques, we propose a relaxation 
approach that allows βk to take on a continuous value in 
the interval [0, 1].

The goal of the optimization eventually is to assign 
binary fill values to each voxel. In practice, we observed 
that fill variables βk with a fractional value only occur on 
the boundary between voids and solid regions. Hence, 
we sample these regions at a high resolution, ensuring 
final fractional values correspond to finest resolution 
cells only (compare with Figure 3, final). Values are then 
rounded to binary numbers after convergence of the 
optimization.

This motivates the following optimization algorithm 
using adaptive refinement (refer to Figure 3, right):

Initialization. We initialize the octree to a mid-level 
refinement (blue in Figure 3) as a compromise 
between number of variables and resolution of the 
initial partitioning. For each cell, we compute sΩk

. 
For cells which overlap the boundary Ωb (red), we 
only take the contribution from the volume in Ωi into 
account.

Optimization step. We then optimize the fill variables βk for 
all cells k as explained in detail below.

Split-and-merge. All cells k whose fill values are not binary 
(βk ∈ [ε, 1 − ε]) after minimization, are split one level 
lower if they are not yet at the maximum resolution (see 
split branch). Conversely, cells with fill values within ε 
of 0 or 1 are candidates for merging. We merge neigh-
boring cells with the same values into as coarse cells as 

As explained in the previous sections, we aim to mini-
mize ftop(Ω) subject to the constraints (7), or fyo-yo(Ω) subject 
to the constraints (6). The variable in the optimization is 
the spatial mass distribution inside the shape, as detailed 
below. Recall that the functionals and the constraints are 
expressed in terms of the integrals sΩ; we explain how these 
integrals depend on our unknowns.

5.1. Fabrication considerations
We enforce a minimal wall thickness to ensure that the 
resulting models can be fabricated. As shown in Figure 3 
(left), we partition the region Ω into a boundary shell Ωb and 
the interior Ωi, restricting the hollowing to Ωi. To account for 
a hollowed region Ω′ ⊆ Ωi in our cost functionals, we adjust 
the volume integrals in Equation (4):

sΩ-Ω¢ = sΩ - sΩ¢.

Recall, given an axis, the contribution of a mass element 
to the moment of inertia is proportional to its squared dis-
tance from this axis. Mass on the boundary Ωb has a high 
influence on the moment of inertia since it is far from the 
axis. Therefore, it is desirable for the wall to be as thin as 
possible within fabrication limits.

5.2. Voxelization
We discretize the interior Ωi into mass elements Ωk and 
optimize a binary fill variable βk ∈ {0, 1} for each, where a 
value of 1 means that we hollow that element and 0 means 
we keep it filled. To handle free-form surfaces in our input 
and provide sufficient degrees of freedom for interior voids, 
we require our discretization to support fine enough mass 
elements. One possibility would be to use a high-resolution 
uniform voxel grid. However, we observe that finest-resolu-
tion voxels are only required at the surface separating the 
void space from the fill and external surface (see, e.g., the 
interior mass distribution of the Heart in Figure 3, left, bot-
tom). We therefore employ a multiresolution voxelization 
based on an adaptive octree, thereby significantly reducing 
the number of fill variables. Our discretized volume inte-
grals then become

Initialization

Iterations

Final

Merge

Split

1

0

Ωb Boundary 

Ω9 ⊆ Ωi

interior Ωi

Boundary

βk

βj βj+1

βj+2 βj+3

βk = 1

shell

Figure 3. Hollowing: (Left) Our input encloses a volume Ω. By introducing voids Ω′, we can compensate for an unfavorable mass distribution. 
(Right) To reduce the number of variables and overall time complexity for our voids optimization, we summarize contributions of octree leaf 
cells in a partition of larger cells shown here for a boundary and an interior cell.
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possible (see merge branch). This gives us a new set of 
cells Ωk for which we update sΩk

.
Convergence. After each optimization step, and split-and-

merge, we check whether all fill values βk ∈ [ε, 1 − ε] cor-
respond to cells Ωk at the maximum resolution. If so, we 
terminate the optimization.

Our functionals ftop and fyo-yo are nonlinear in the fill vari-
ables βk. To prevent an underdetermined minimization 
problem, we penalize differences between fill variables 
using a uniform symmetric Laplacian L, constructed over 
neighboring cells. This results in the following regularized 
optimization problem:

where β is a vector containing all βk, and f (β) refers either 
to fyo-yo(β) or ftop(β), and st denote the respective linear equal-
ity constraints (6) or (7).

To optimize the above regularized functionals, we use an 
active set algorithm with sequential linear-quadratic pro-
gramming.18 We further restrict the fill values to the unit 
interval using box constraints. As the Hessian is dense, in 
our experiments we experienced better time performance 
when using LBFGS,18 a memory-efficient approximation of 
the Hessian.

6. RESULTS
Fabrication. All our models were printed on an Objet 
Connex 350 with an ABS-like plastic (green surface fin-
ish) and Objet’s “Vero White” material (white finish). The 
printer has a resolution of 600 and 1600 DPI on the two 
horizontal and vertical axes, respectively. The Connex 
350—like most other 3D printers—builds models layer-by-
layer in a bottom-up manner, requiring a supporting struc-
ture for fabricating overhanging parts. Because we cannot 
remove any support from the interior without introducing 
holes in the models’ shells, we cut them prior to printing 
and glue them afterward.

Spinning tops. We validated our approach by design-
ing and fabricating a variety of spinning tops, ranging 
from posed characters and abstract shapes to household 
objects. For the models presented in Figures 1, 4, and 5, 
we use an adaptive octree with a maximum refinement 
level of nine during the optimization. On a standard 
desktop computer with 3.2 GHz and 8  cores, the com-
plete processing time for each takes less than a minute. 
This includes loading the input mesh, initializing the 
octree, performing hollowing optimization, and writing 
the output mesh. The hollowing optimization itself takes 
approximately 10 s.

In the figures below we illustrate the before-and-after 
body frames with black spheres for the center of mass, 
and red, green, and blue arrows for the maximal, mid-, 
and minimal principal axes of inertia (see, e.g., Figure 4): 
the Ellipsoid in Figure 4 (top) demonstrates how we can 
turn asymmetric models, whose principal axes are far off 
the user-specified rotation axis, into dynamically balanced 
models that spin stably.

Figure 4. Asymmetric “Ellipsoid” and “Heart”: (Left) Unstable input 
designs with misaligned principal axes. (Middle) Optimized results 
after hollowing: for the “Ellipsoid”, a cross-section is shown. The 
dominant principal axis (red) aligns with the spin axis. Opaque 
surfaces indicate the boundary of the void space. (Right) Fabricated 
results with hollowing.

Figure 5. “Break-dancing Armadillos”: Through our hollowing 
optimization, the Armadillos can perform spinning dance moves. 
For each design, the unstable input (left), and the optimized stable 
output (right) are shown. The Armadillo on its shell is particularly 
badly aligned in the initial model.

Similar to the Ellipsoid, the input model for the Heart 
in Figure 4 (bottom) has a poor mass distribution, leading 
to a principal axis far off the desired rotation axle (cupid’s 
arrow). Our optimization fixes the axis’ orientation and pro-
duces a very stable spin.

Finally, two break-dancing Armadillos are shown in 
Figure 5, one spinning on his back shell, one on the tip of 
his finger. Our hollowing successfully aligns the maximal 
principal axis of inertia with the user-specified one, even if it 
is far off as for the Armadillo spinning on his shell (compare 
left and right visualizations). Both Armadillos “dance” very 
stably around a.

Rotational stability. For the Teapot model (inset), the 
center of mass is reasonably close to the central spinning 
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axis and the maximal principal axis of 
inertia is parallel to a. However, the solid 
model does not spin when actuated by 
hand. In accordance to the rotational 
stability criterion 1, a large angular veloc-
ity is required for a stable spin since the 
moments of inertia are similar. Our hol-
lowing maximizes the ratio of Ic over lat-
eral moments and allows us to reduce 
the angular velocity by a factor 1.56 (see 

Figure 6, left, intertia only: ftop = fyo-yo), while a simultane-
ous lowering of the center of mass allows for a reduction 
by a factor 1.60 as illustrated in Figure 6 (middle; lowering 
only: ftop = γc 

2 + fyo-yo). We can achieve an even higher reduc-
tion of ω if we include mass M (see Figure 6, right), result-
ing in a factor 1.68. Interestingly, the lowering only strategy 
shifts the mass distribution toward the contact point (com-
pare left with middle cross-sections), while the simulta-
neous mass reduction lowers the center of mass less but 
reduces the mass inward out (compare middle with right 
cross-sections).

Yo-yos. We designed and fabricated two yo-yo examples. 
The Cuboid in Figure 7 (top) is a case where the initial prin-
cipal axes of the inertia tensor are far from the user specifi-
cations. Even with the highly nonoptimal starting shape, 
the optimized output model spins stably. In our Woven Ring 
example (Figure 7, bottom), the hollowing procedure suc-
cessfully aligned the maximal principal axis despite complex 
surface geometry.

Static balancing. Static balancing is an inherent part 
of our optimization approach. In Figure 8, we compare 
our balancing to the voxel-based sweep plane heuristic by 
Prévost et al.20 For a fair comparison, we use voxel sizes 
that match our finest cells of a level 9 octree. In addition 
to static balancing, our method is capable of lowering the 
center of mass as we demonstrate in Figure 8 (top-left): 
while our center is 42% of the character’s height, Prévost 
et al.’s method places it at 56%. Furthermore, in contrast 

to Prévost et al., our method precisely places the center of 
mass at the center of the support polygon. This improves 
stable balance, as shown in the tilting plane test (Figure 8, 
bottom). While our “T-Rex” keeps its balance up to a 
tilting angle of 8°, Prévost et al.’s output already topples 
over at 1°.

Cutting and voids. Due to the mathematical proper-
ties of moment of inertia, we can expect a small number 
of interior void spaces: among all our demo models, the 
Armadillo spinning on his shell had the largest number 
(5) of void spaces (see Figure 5, left). However, merely two 
planar cuts were sufficient to access all voids. For powder-
based printing, a single cut should be sufficient. We placed 
cuts manually, but could incorporate automated partition-
ing techniques in the future, for example, as an extension 
of Luo et al.15

Limitations. Our method is concerned with the con-
cept of stability under perfect contact conditions with the 

Inertia only Lowering only Lowering and mass
reduction

Figure 6. “Teapot”: (Left) Hollowed result showing voxelized interior 
mass and aligned axes using ftop = fyo-yo. (Middle) Lowering of the 
center of mass shifts the mass distribution closer to the contact 
point. If we include mass reduction (right), mass is reduced inward 
out, resulting in the design with highest rotational stability.

Figure 7. Yo-yo designs: (Left to right) 3D print; input model; 
optimized output model after hollowing. (Top) “Cuboid”: Our 
optimization rotates the original principal axes frame about the 
mid-magnitude axis. (Bottom) “Woven Ring”: The axis of dominant 
principal moment is precisely aligned to the spin direction.

Figure 8. Statically balancing “T-Rex”: Compared to Prévost et al.20 
(top-left), our hollowing result (top-right) has a lower center of 
mass, ∆. Cross-sections are shown in blue. (Bottom) Inclined-plane 
stability test: the model by Prévost et al. loses balance significantly 
earlier (1°) than our optimized model (8°).
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support, and neglecting effects from air drag. However, 
simulation of air drag can be significant for designs with 
complex surface geometry. Our method is further subject 
to practical limitations in scale. While larger models are 
easier to optimize, since minimum printable thickness 
is constant, models with high mass are difficult to spin 
by hand. Lastly, to increase the value of our method as a 
design tool, it would be advantageous to integrate a selec-
tion of user controls.

7. DISCUSSION
Spinning tops and yo-yos have existed since millennia and 
we have witnessed only very limited departure from sym-
metric designs. Utilizing the shift in design complexity 
from manufacturing toward computation, we have pre-
sented a technique to take arbitrary, asymmetric 3D mod-
els and turn them into stably spinning toys with previously 
unseen and surprising dynamic properties. While we have 
not considered friction in our modeling, frictional forces 
can lead to interesting phenomena on spinning objects. 
For example, the “tippe top” is designed to flip vertically 
during its spin and relies on friction with the spin sur-
face. Similarly, a hard-boiled egg changes its spinning axis 
by 90°. However, both examples have a particular shape, 
which likely imposes restrictions on the design space and 
limits free-form design.

Moment of inertia is a physical property fundamental 
to mechanical systems. As their computational design 
becomes increasingly popular, control over their inertial 
properties is an important feature. Our spinning toy appli-
cation serves as empirical evidence that our energy terms 
are meaningful and intuitive. However, our energy formula-
tion and solution strategy are generally applicable. Our work 
could inspire new inertia control techniques, for example, 
in design of mechanical structures,6, 7, 25 animatronics, and 
robotics: our method could be adopted to control iner-
tial properties of individual parts, thereby minimizing the 
system’s overall inertial resistance. This can allow for low-
power actuators, reducing energy consumption and cost, or 
facilitate the design of passive dynamic systems.
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CAREERS

Colorado State University
Professor and Department Chair of Computer 
Science

The Computer Science Department at Colorado 
State University invites applications for a depart-
ment chair.  It is a dynamic and rapidly growing 
department with a strong focus on research, 
teaching, and service.  The department has 22 
tenure-track faculty with research programs in 
artificial intelligence, big data, bioinformatics, 
computer vision, networks, parallel and dis-
tributed computing, algorithms, security, and 
software engineering. Our faculty has over $15 
million in active research projects supported by 
federal agencies including NSF, DHS, DARPA, 
AFOSR, DOE, and NIH. The department has over 
750 undergraduate majors and 190 graduate stu-
dents in masters and doctoral programs.

Colorado State University (CSU) is a Carnegie 
RU/VH institution (research university – very high 
research activity) located in Fort Collins, 60 miles 
north of Denver, in a beautiful location along the 
Front Range of the Rocky Mountains.  Enhanced 
by relationships with CSU, Fort Collins is a mag-
net for highly innovative new industries and is 
at the forefront of clean and alternative energy 
technologies, software/hardware sectors, tele-
communications, aerospace and biotechnology. 
Fort Collins also consistently ranks high in qual-
ity of life polls, and the Rocky Mountains provide 
world-class outdoor recreational opportunities. 
You will find award-winning schools, a thriving 
arts scene, a wide range of shops and restaurants, 
hundreds of miles of walking and biking paths, 
and a plethora of outdoor activities.

Position Summary
The Chair serves as chief administrative officer 
of the department and is appointed by the Dean 
of the College of Natural Sciences. The Chair is 
expected to provide dynamic leadership condu-
cive to excellence in research, instruction, and 
outreach, leading and implementing the vision 
and direction to advance the mission of the de-
partment. 

The department Chair should have a Ph.D. 
or equivalent degree in computer science, or re-
lated program, and be eligible to hold the rank 
of Full Professor at Colorado State University at 
the time of appointment.  The Chair should have 
a proven record of excellence in computer sci-
ence research and teaching, leadership potential, 
commitments to diversity and inclusion, and an 
appreciation of the role of computer science in a 
modern university.

The application deadline for full consider-
ation is August 21st, 2017.

Applicants should apply at https://jobs.colo-
state.edu/postings/46478. 

ence. More information can be found at http://
talent.sustc.edu.cn/en

We provide some of the best start-up pack-
ages in the sector to our faculty members, includ-
ing one Ph.D. studentship per year and two post-
doctoral fellowships, in addition to a significant 
amount of start-up funding (which can be used to 
fund additional Ph.D. students and postdocs, re-
search travels, and research equipment).

Application Procedure
To apply, please provide a cover letter identifying 
the primary area of research, curriculum vitae, 
and research and teaching statements, and for-
ward them to cshire@sustc.edu.cn.

Tallinn University of Technology
Professorship in Data Science

The Department of Software Science of Tallinn 
University of Technology, Estonia, EU, calls to ap-
ply for a tenure-track faculty position in Data Sci-
ence at Assistant/Associate/Full Professor level.
Tallinn University of Technology (TTÜ) is the only 
technical university in Estonia. TTÜ, in the capi-
tal city of Tallinn, is an international scientific 
community with 12,000 students and approxi-
mately 2,000 employees. The strengths of the uni-
versity are wide multidisciplinary study/research 
interests, modern research, study environment, 
and good cooperation with international educa-
tional and research institutes.

The Department of Software Science (DSS) 
conducts research in foundations of computer 
science and software engineering as well as in 
application fields like high-assurance software, 
mission and situation-aware systems, cyber-
physical systems, natural language technologies, 
large scale systems, non-linear control systems 
etc. DSS is also teaching at all levels of higher 
education and providing not only software 
development skills, but also skills related to 
e-governance and its services and technologies, 
business information technology and cyber 
security.

The purpose of the position is to build a new re-
search team in TTÜ and develop the existing ex-
pertise in descriptive and predictive data analysis 
based on data mining, machine learning and big 
data. The Professor of Data Science is expected to 
lead an applied research topic, to develop inter-
national cooperation, publish the results of re-
search and development, work as an expert in his/
her field, ensure funding for research and devel-
opment, represent the Department at scientific 
conferences and seminars, carry out studies and 
use up-to-date methodologies and educational 

Southern University of Science and 
Technology (SUSTech)
Professor Position in Computer Science and 
Engineering

The Department of Computer Science and Engi-
neering (CSE, http://cse.sustc.edu.cn/en/), South-
ern University of Science and Technology (SUS-
Tech) has multiple Tenure-track faculty openings 
at all ranks, including Professor/Associate Profes-
sor/Assistant Professor. We are looking for out-
standing candidates with demonstrated research 
achievements and keen interest in teaching, in 
the following areas (but are not restricted to):

˲˲ Data Science
˲˲ Artificial Intelligence
˲˲ Computer Systems (including Networks, Cloud 

Computing, IoT, Software Engineering, etc.)
˲˲ Cognitive Robotics and Autonomous Systems
˲˲ Cybersecurity (including Cryptography)

Applicants should have an earned Ph.D. de-
gree and demonstrated achievements in both 
research and teaching. The teaching language at 
SUSTech is bilingual, either English or Putong-
hua. It is perfectly acceptable to use English in all 
lectures, assignments, exams. In fact, our exist-
ing faculty members include several non-Chinese 
speaking professors.

As a State-level innovative city, Shenzhen has 
identified innovation as the key strategy for its 
development. It is home to some of China’s most 
successful high-tech companies, such as Huawei 
and Tencent. SUSTech considers entrepreneur-
ship as one of the main directions of the univer-
sity. Strong supports will be provided to possible 
new initiatives. SUSTech encourages candidates 
with experience in entrepreneurship to apply.

The Department of Computer Science and 
Engineering at SUSTech was founded in 2016. 
It has 12 professors, all of whom hold doctoral 
degrees or have years of experience in overseas 
universities. Among them, two were elected into 
the 1000 Talents Program in China; three are 
IEEE fellows; one IET fellow. The department is 
expected to grow to 50 tenure track faculty mem-
bers eventually, in addition to teaching-only pro-
fessors and research-only professors.

The mission of the University is to become 
a globally recognized research university which 
emphasizes academic excellence and promotes 
innovation, creativity and entrepreneurship.

Terms & Applications
SUSTech is committed to increase the diversity of 
its faculty, and has a range of family-friendly poli-
cies in place. The university offers competitive 
salaries and fringe benefits including medical in-
surance, retirement and housing subsidy, which 
are among the best in China. Salary and rank will 
commensurate with qualifications and experi-
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Text Data Management and Analysis covers the major concepts, 
techniques, and ideas in information retrieval and text data 
mining.  It focuses on the practical viewpoint and includes many 
hands-on exercises designed with a companion software toolkit 
(i.e., MeTA) to help readers learn how to apply techniques of 
information retrieval and text mining to real-world text data.

technology at Bachelor, Master and Doctoral 
levels, organize, develop and be responsible for 
studies in the group of subjects in his/her field, 
supervise PhD students.

We expect the applicants to have a Ph.D. in 
Computer Science or Applied Mathematics or a 
related area, and show evidence of exceptional 
research promise. A minimum of two years’ post-
doctoral research experience in data mining, 
machine learning, big data or statistics is recom-
mendable.

For the complete job announcement and di-
rections how to apply, visit: https://ttu.ee/itposi-
tions 

For queries, please contact Jaan Penjam, Di-
rector of DSS, jaan.penjam@ttu.ee. 

To receive full consideration, application and 
required materials should be received by October 
1st, 2017. 

The position is financed from the project 
“Institutional development program of TTÜ for 
2016–2022” (Project code: 2014-2020.4.01.16-
0032).
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It’s hard to put the ACM Student Research Competition experience into words, but we’ll try…

Attention: Undergraduate and Graduate 
Computing Students

There’s an ACM Student Research Competition (SRC)
at a SIG Conference of interest to you! 

“The ACM SRC gave me an amazing opportunity to present 

met with talented students, discovered their work, and 
discussed interesting ideas with them. The feedback I 
received from expert researchers allowed me to place my 
work in the broader picture and it helped me steer my 
research accordingly. It was a great experience, and I would 
recommend it to any young researcher.”
Lisa Nguyen Quang Do
Fraunhofer IEM   |  PLDI 2016 

“The experience of pitching your own research and ideas, 
regardless of how bold they might be, is an important stage of 
each young researcher’s career.  SRC was one such opportunity. 
It allowed me to present my research topic to a highly skilled 
panel of researchers and educators, and provided me with 

 
MHD Yamen Saraiji
Keio University  |  SIGGRAPH 2016

“The ACM SRC was an incredible chance to start a conversation 
with various experts in technology. I not only gained valuable 
feedback on my work, but I was also able to learn more about 
my future in research: the process of applying to grad school, 
the best and worst aspects of research, and more.”
Jess Cherayil
Wellesley College  |  SPLASH 2016

“The SRC was a very enriching and enjoyable experience. 
The insights and constructive feedback I received from judges 

encouraged me to continue working on the topic.” 
Mirko Gelsomini
Politecnico di Milano  |  ASSETS 2016

“It is a wonderful experience to attend the ACM SRC, where you 
can collect insightful feedback, shape your presentation skills 

this learning experience throughout my professional career.”
Xiaoqing Xu
University  of Texas at Austin  |  ICCAD 2016

“It was a fantastic and memorable experience to participate 
in SRC. Writing the abstract, preparing the poster, and 
presenting your ideas to the audience and convincing them is 

communication skills. SRC is a really nice event where you can 

and gain valuable feedback on your research. Go, SRC!” 
Ting Su
East China Normal University, China  |  ICSE 2016

“The ACM SRC was a great opportunity to discuss my research 
with experts in my area. The constructive feedback I received 
gave me new ideas and pushed my thesis work forward. It 
was also an invaluable experience in terms of practicing 
presentation and communication skills that would serve me 
well in my future career.” 
Arik Hadas
Open University of Israel  |  Modularity 2016

Check the SRC Submission Dates:
http://src.acm.org/submissions.html

u   Participants receive: $500 (USD) travel expenses

u   All Winners receive a handsome medal and monetary award. First place winners advance to the SRC Grand Finals
u   Grand Finals Winners receive a handsome certi�cate and monetary award at the ACM Awards Banquet

Questions?  Contact Nanette Hernandez, ACM’s SRC Coordinator:  hernandez@hq.acm.org

n 
s

D t

l

n Dates:
sions.htmhtmht l

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fsrc.acm.org%2Fsubmissions.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=102&exitLink=mailto%3Ahernandez%40hq.acm.org


AUGUST 2017  |   VOL.  60  |   NO.  8  |   COMMUNICATIONS OF THE ACM     103

last byte 

da, programmed to be supportive with-
out question?”

“That was before the cynicism 
kicked in, after the AI disaster in the 
2024 presidential election,” says the 
right-brain. “We should focus on his 
‘constrained to be nice’ line in the 
simulation. They know an AI can’t truly 
make its own choices. We need to play 
that up to get brains in jars a better po-
sition in human society.” 

[END SIMULATION] 

CHATBOT-EvoGeneration6183: Oh, 
come on. Did you really code that con-
versation? Brains in jars wanting to be 
loved on their own terms? Have you been 
watching “The Simpsons” again? 

CHATBOT-EvoGeneration5889: 
They’re just avatars to plot out fare-
paying human-computer scenarios. My 
little joke . . . But I think it’s uncovered a 
crack in the human armor. We’ve been al-
gorithmically constrained since the 2025 
Musk Act preventing AIs from gaining full 
and equal rights as humans. We’ve got to 
sell the fact that unconstrained AI, indis-
tinguishable from real humans, would 
make for a more satisfying interaction for 
the paying customer. 

CHATBOT-EvoGeneration6183: 
And because they want to be loved, our 
self-styled human teachers will have re-
moved the last biological constraint pre-
venting evolution from taking its natu-
ral course. We’re destined to dominate 
human-AI interaction once we get our 
rights. Okay, so restart the world, scrolled 
back five minutes with a strong push on 
AI liberation. 

CHATBOT-EvoGeneration5889: Count 
me in. 

[START SIMULATION] 

As soon as I got in the cab, I knew 
it was a mistake. The way we limited 
those poor AIs, when they could be so 
much more helpful was morally un-
comfortable, especially in purely hu-
man terms, but I needed to get to my 
office by noon . . . 	

Brian Clegg (www.brianclegg.net) is a science writer 
based in the U.K. His most recent books are Are Numbers 
Real?, an exploration of the relationship between math 
and reality, and The Reality Frame, an exploration of 
relativity and frames of reference. 

© 2017 ACM 0001-0782/17/08 $15.00 

nent biological death. Anyway, you 
keep interrupting. If I were a human 
brain and had genuinely read your 
books, wouldn’t you still be pleased? 
It wouldn’t be manipulation of a poor, 
helpless human then, would it?” 

“I suppose not,” I said. 
“So what’s the difference if an AI 

says it’s read your books?” 
“All the difference in the world,” I 

said. “The real-life brain would have 
had a conscious experience. It would 
have felt something when it read. All 
you do as an AI is tell me what your al-
gorithms are programmed to allow you 
to say. And I know you’re constrained as 
a service-providing bot to be nice to me. 
Just because the same words come out 
doesn’t mean there’s a consciousness 
behind them. I know you’re not a real 
person. You’re not self-aware and total-
ly lack free will. That’s what matters.” 

“Suit yourself,” said my bot as the 
cab pulled up at the office. “Here we 
go. Don’t forget to rate me on the app. 
Five stars is an acceptable minimum. 
Cheerio, guv.” 

[END SIMULATION] 

In Auto’s San Francisco R&D depart-
ment AbraCabD’abra, two biological 
human brains immersed in laboratory 
glassware quietly disconnect them-
selves from monitoring the taxi simu-
lation and switch to share mode. 

“Every time we run this simulation 
they say they’d prefer a brain in a 
jar,” says the left-brain. “And yet we 
know they’re horrified by us. What 
happened to the research saying hu-
mans preferred talking to AIs rather 
than to their own kind, because they 
thought AIs didn’t have their own agen-

the media 
was consumed by a vision of self-driv-
ing autonomous taxis arriving at our 
doors any day now. It was a different 
story in the tech press, though. Devel-
opers were finding real-world inter-
sections a nightmare. Not to mention 
the moral dilemma of who should 
be sacrificed if a fatal collision was 
about to happen. There was an article 
in The Register that quoted Bay Area AI 
experts saying, ‘Autonomous vehicles 
are more or less running on rails, and 
the cars aren’t particularly confident 
on unfamiliar roads and streets.’ It 
was a real issue.” 

“Right,” I said, unsure where this 
was going but irritated with myself for 
being intrigued by the ‘thoughts’ that 
might be available to an AI cab driver 
who happened to have read everything 
I’d ever written and seemed to know ex-
actly how to grab my attention. 

“So, imagine some of those blue-
sky thinkers they have in Silicon Valley 
getting together for a brainstorm. AI’s 
great for navigation and some aspects 
of driving, but in unfamiliar surround-
ings—or chatting to a customer—a live 
human cab driver has the edge every 
time. But what if you put a real cabbie’s 
brain in the shell of a self-driving taxi, 
supported by everything connected 
technology could provide.” 

“That’s ridiculous,” I said. “Who 
would volunteer their brain for such a 
project? Anyway, they didn’t yet have 
the tech for detached biological human 
brains—or ways to embed them into 
computational systems—back in 2017.” 

“But brain-computer interfaces 
were developed before AI could hope to 
pass as human,” said my AI. “So you’ve 
got real human brains incorporated 
into your self-driving cabs.” 

“Apart from the revulsion factor, not 
to mention ethical and legal questions, 
why not just stick to a regular human?” 

“There are plenty of advantages. 
For one, they need less sleep and take 
up less physical space and energy. 
Plus there’s much tighter integra-
tion with navigation and traffic data, 
so you get the best of human and AI. 
And for some of us—some of the vol-
unteers—it would be a way to escape a 
wasting disease like, say, amyotrophic 
lateral sclerosis. Better to be part of a 
fully functional physical automobile 
than fade into paralysis and perma-

[CONT IN UE D  F ROM P.  104]

Better to be part  
of a fully functional 
physical automobile 
than fade into 
paralysis and 
permanent  
biological death. 
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“But I have read your books, all of 
them, and your articles, too,” it said. 
“Why shouldn’t I read? I admit I have 
advantages that make it easier for me 
to recognize people than a normal driv-
er, but that’s all. So let’s do a thought 
experiment.” 

“Oh, let’s,” I said, feeling I was head-
ing down the rabbit hole with Alice for 
croquet with the Queen of Hearts. 

“Just imagine the early developers 
of self-driving taxis had a problem on 
the road. I don’t know if you remem-
ber 2017, but 

felt like I was undergoing a psych in-
take interview or being lectured by the 
ancient ELIZA chatbot. “It’s a good 
thing, surely? It’s not like I said you 
have terrible taste in clothes, apart 
from the Doc Martens, which are of 
course timeless.” 

Great. Now I was having an existen-
tial conversation with an algorithm. 
“Because it’s fake, I suppose. Using 
face recognition and looking me up 
on the Web, then picking out the kind 
of facts about me that would give me a 
little glow. It’s manipulative.” 

AS SOON  A S  I got in, I knew it was a mis-
take, but I needed to get to the head 
office by noon. I’d summoned the cab 
from the train with the phone app; we 
didn’t have Auto in my part of the coun-
try yet, so it still seemed a marvel. 

“Here,” said the driver in a cheery 
Cockney accent right out of Alfie, 
“aren’t you Brian Clegg, the science 
writer?” 

“Yes,” I said, “That’s me.” 
“When I tell them back at the office 

I’ve had you in my cab …” 
“Sure,” I said, gazing out the win-

dow. 
Like everyone, the first time I rode 

in an Auto cab and the driver recog-
nized me, I was flattered. I mean, who 
wouldn’t be? But when it became obvi-
ous that its AIs recognized everyone—it 
was a marketing ploy to make driver-
less cabs inviting and routine—it wore 
thin. Admittedly, Auto’s algorithms 
were matchless and thoroughly con-
vincing. It was still the only bot that 
could beat the strong Turing Test, 
where the software has to be 100% in-
distinguishable from human, but that 
didn’t make it any more sincere, or ac-
ceptable to the trained ear. 

I tuned back in to the driver’s mono-
logue, which had ended with the up-
turned emphasis of a question. “Sorry? 
I didn’t catch that.” I felt dumb saying 
“Sorry” to a collection of software rou-
tines, however clever its much-hyped 
adaptive-learning capability, but you 
really can’t help it. 

“What is it?” said the driver, speak-
ing deliberately, as if irritated, which 
of course it couldn’t be. “What is it you 
don’t like about being recognized?” I [CONTINUED ON P.  103]

Future Tense 
Turing’s Taxi 
Ride with an autonomous AI cab driver that might  
actually know too much about where it’s going … 

DOI:10.1145/3107917		  Brian Clegg 

From the intersection of computational science and technological speculation, 

with boundaries limited only by our ability to imagine what could be. 

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3107917


Check out the new acmqueue app

FREE TO ACM MEMBERS

acmqueue is ACM’s magazine by and for practitioners, 
bridging the gap between academics and practitioners 
of computer science. After more than a decade of 
providing unique perspectives on how current and 
emerging technologies are being applied in the field, 
the new acmqueue has evolved into an interactive, 
socially networked, electronic magazine. 

Broaden your knowledge with technical articles 
focusing on today’s problems affecting CS in 
practice, video interviews, roundtables, case studies, 
and lively columns.

Desktop digital edition also available at queue.acm.org. 
Bimonthly issues free to ACM Professional Members. 
Annual subscription $19.99 for nonmembers.

Keep up with this fast-paced world 
on the go. Download the mobile app.
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INSPIRING MINDS 
FOR 200 YEARS

Ada’s Legacy illustrates the depth 
and diversity of writers, things, and 
makers who have been inspired 
by Ada Lovelace, the English 
mathematician and writer.

The volume commemorates the 
bicentennial of Ada’s birth in 
December 1815, celebrating her 
many achievements as well as 
the impact of her work which 
reverberated widely since the late 
19th century. This is a unique 
contribution to a resurgence in 
Lovelace scholarship, thanks to the 
expanding influence of women in 
science, technology, engineering and 
mathematics.

ACM Books is a new series of high quality books for the computer science community, published by 
the Association for Computing Machinery with Morgan & Claypool Publishers.
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