
The
Science of

Brute
Force
Data Science

Hacker-Proof Coding

Building the Future
Communications of the ACM

The Natural Science
of Computing

COMMUNICATIONS
OF THE ACMCACM.ACM.ORG� 08/2017 VOL.60 NO.08

Association for
Computing Machinery

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=Cover&exitLink=http%3A%2F%2FCACM.ACM.ORG

Dr. Jerald has recognized a
great need in our community
and filled it. The VR Book is a
scholarly and comprehensive
treatment of the user interface
dynamics surrounding the
development and application
of virtual reality. I have
made it required reading for
my students and research
colleagues. Well done!”

- Prof. Tom Furness, University
of Washington, VR Pioneer

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=CII&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=CII&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Fvr

Organized bySponsored by

THE CELEBRATION OF LIFE & TECHNOLOGY

CONFERENCE 27 – 30 November 2017
EXHIBITION 28 – 30 November 2017
BITEC, Bangkok, Thailand

SA2017.SIGGRAPH.ORG

ANIMATION & VISUAL EFFECTS

AUGMENTED REALITY

IMAGING

COMPUTER

GRAPHICS

GAMING
TECHNOLOGIES

VISUALIZATION

& MANY MORE!

VIRTUAL REALITY

& SIMULATION

CLOUD BASED

SYSTEMS

INTERACTIVE & INNOVATIVE

TECHNOLOGIES

BANGKOK

CALL FOR SUBMISSIONS
Submit your works & be a presenter at SIGGRAPH Asia!

SIGGRAPH Asia 2017 invites you to submit your works and
showcase your outstanding creative ideas and innovations
at the 10th ACM SIGGRAPH Conference and Exhibition on
Computer Graphics and Interactive Techniques in Asia,
taking place from 27 – 30 November, in Bangkok, Thailand.

Log-on to sa2017.siggraph.org/submitters to submit
your works.

CALL FOR EXHIBITORS & SPONSORS
Be a part of the SIGGRAPH Asia Exhibition – Asia’s Digital Media
Marketplace

Meet close to 7,000 technical and creative industry experts and
individuals from over 60 countries and regions face-to-face to explore
business opportunities, partnerships, and to strengthen existing
relations – all in person at SIGGRAPH Asia 2017. Book your stand now
to secure your preferred location.

Contact Clariss Chin at +65 6500 6722 or clariss.chin@siggraph.org
for more information on the exhibit space options and fees, as well as
sponsorship packages.

DEADLINES PROGRAMS

27 April 2017 Workshops' Proposals

23 May 2017 Technical Papers

30 May 2017 Emerging Technologies

1 June 2017 Art Gallery

13 June 2017 Symposium on Education

21 June 2017
Symposium on Mobile Graphics
and Interactive Applications

28 June 2017 Courses

29 June 2017 Symposium on Visualization

15 July 2017
Student Volunteers -
Team Leaders Application

19 July 2017 Computer Animation Festival

30 July 2017 VR Showcase

12 August 2017 Student Volunteers Application

15 August 2017
Posters
Technical Briefs
Workshops’ Papers

CONFERENCE PROGRAMS’ SUBMISSION DEADLINES*:

Visit sa2017.siggraph.org for more details.

*The submission time for all dates is 23:59 UTC/GMT

Organized bySponsored by

THE CELEBRATION OF LIFE & TECHNOLOGY

CONFERENCE 27 – 30 November 2017
EXHIBITION 28 – 30 November 2017
BITEC, Bangkok, Thailand

SA2017.SIGGRAPH.ORG

ANIMATION & VISUAL EFFECTS

AUGMENTED REALITY

IMAGING

COMPUTER

GRAPHICS

GAMING
TECHNOLOGIES

VISUALIZATION

& MANY MORE!

VIRTUAL REALITY

& SIMULATION

CLOUD BASED

SYSTEMS

INTERACTIVE & INNOVATIVE

TECHNOLOGIES

BANGKOK

CALL FOR SUBMISSIONS
Submit your works & be a presenter at SIGGRAPH Asia!

SIGGRAPH Asia 2017 invites you to submit your works and
showcase your outstanding creative ideas and innovations
at the 10th ACM SIGGRAPH Conference and Exhibition on
Computer Graphics and Interactive Techniques in Asia,
taking place from 27 – 30 November, in Bangkok, Thailand.

Log-on to sa2017.siggraph.org/submitters to submit
your works.

CALL FOR EXHIBITORS & SPONSORS
Be a part of the SIGGRAPH Asia Exhibition – Asia’s Digital Media
Marketplace

Meet close to 7,000 technical and creative industry experts and
individuals from over 60 countries and regions face-to-face to explore
business opportunities, partnerships, and to strengthen existing
relations – all in person at SIGGRAPH Asia 2017. Book your stand now
to secure your preferred location.

Contact Clariss Chin at +65 6500 6722 or clariss.chin@siggraph.org
for more information on the exhibit space options and fees, as well as
sponsorship packages.

DEADLINES PROGRAMS

27 April 2017 Workshops' Proposals

23 May 2017 Technical Papers

30 May 2017 Emerging Technologies

1 June 2017 Art Gallery

13 June 2017 Symposium on Education

21 June 2017
Symposium on Mobile Graphics
and Interactive Applications

28 June 2017 Courses

29 June 2017 Symposium on Visualization

15 July 2017
Student Volunteers -
Team Leaders Application

19 July 2017 Computer Animation Festival

30 July 2017 VR Showcase

12 August 2017 Student Volunteers Application

15 August 2017
Posters
Technical Briefs
Workshops’ Papers

CONFERENCE PROGRAMS’ SUBMISSION DEADLINES*:

Visit sa2017.siggraph.org for more details.

*The submission time for all dates is 23:59 UTC/GMT

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=1&exitLink=http%3A%2F%2FSA2017.SIGGRAPH.ORG
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=1&exitLink=http%3A%2F%2Fsa2017.siggraph.org%2Fsubmitters
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=1&exitLink=mailto%3Aclariss.chin%40siggraph.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=1&exitLink=http%3A%2F%2Fsa2017.siggraph.org

2 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

COMMUNICATIONS OF THE ACM

Viewpoints

22	 Historical Reflections
Prophets, Seers, and Pioneers
Reflections on historical
prognostications for the future.
By David P. Anderson

26	 Education
Is the U.S. Education System
Ready for CS for All?
Insights from a recent Google-Gallup
national research study seeking
to better understand the context
of K–12 CS education.
By Jennifer Wang

29	 Kode Vicious
The Observer Effect
Finding the balance between
zero and maximum.
By George V. Neville-Neil

31	 Viewpoint
The Natural Science of Computing
As unconventional computing
comes of age, we believe
a revolution is needed in
our view of computer science.
By Dominic Horsman, Vivien Kendon,
and Susan Stepney

Departments

5	 Editor’s Letter
Building the Future
Communications of the ACM
By Andrew A. Chien

7	 Cerf’s Up
In Praise of Under-Specification?
By Vinton G. Cerf

8	 Letters to the Editor
Embed Ethical Guidelines
in Autonomous Weapons

10	 BLOG@CACM
How Adults Ages 60+
Are Learning to Code
Philip Guo discusses his project
studying older adults that have chosen
to learn computer programming.

27	 Calendar

100	 Careers

Last Byte

104	 Future Tense
Turing’s Taxi
Ride with an autonomous AI cab
driver that might actually know too
much about where it’s going …
By Brian Clegg

News

12	 Hacker-Proof Coding
Software verification helps find
the faults, preventing hacks.
By Esther Shein

15	 Why Virtual Reality Will Transform
a Workplace Near You
A clutch of companies are changing
how work gets done—by using
virtual reality and augmented
reality technologies.
By Logan Kugler

18	 AI in Contact Centers
Artificial intelligence technologies
are being deployed to improve
the customer service experience.
By Keith Kirkpatrick

20	 Charles P. ‘Chuck’ Thacker:
1943–2017
By Lawrence M. Fisher

(L
)

P
H

O
T

O
:

R
O

B
I

N
 V

A
N

 L
O

N
K

H
U

I
J

S
E

N
/A

F
P

/G
E

T
T

Y
 I

M
A

G
E

S
;

(R
)

I
M

A
G

E
 B

Y
 T

O
N

I
 V

/S
H

U
T

T
E

R
S

T
O

C
K

15 22

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 3

08/2017
VOL. 60 NO. 08

Practice

36	 Now That We Can Write
Simultaneously, How Do We Use
That to Our Advantage?
Word processors now make it
possible for many authors to work
on the same document concurrently.
But what can they actually do?
By Ricardo Olenewa, Gary M. Olson,
Judith S. Olson, and Daniel M. Russell

44	 Small-Data Computing:
Correct Calculator Arithmetic
Rounding errors are usually
avoidable, and sometimes
we can afford to avoid them.
By Hans-J. Boehm

Contributed Articles

50	 Turing’s Pre-War Analog Computers:
The Fatherhood of the Modern
Computer Revisited
Turing’s machines of 1936 were
a purely mathematical notion,
not an exploration of possible
blueprints for physical calculators.
By Leo Corry

59	 Data Science: Challenges
and Directions
While it may not be possible to build
a data brain identical to a human,
data science can still aspire to
imaginative machine thinking.
By Longbing Cao

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/
videos/turings-pre-war-
analog-computers

Review Articles

70	 The Science of Brute Force
Mathematics solves problems
by pen and paper. CS helps us
to go far beyond that.
By Marijn J.H. Heule
and Oliver Kullmann

Research Highlights

82	 Technical Perspective
Unexpected Connections
By Marc Shapiro

83	 The Scalable Commutativity Rule:
Designing Scalable Software
for Multicore Processors
By Austin T. Clements,
M. Frans Kaashoek, Eddie Kohler,
Robert T. Morris,
and Nickolai Zeldovich

91	 Technical Perspective
Linking Form, Function,
and Fabrication
By Helmut Pottmann

92	 Spin-It: Optimizing Moment of
Inertia for Spinnable Objects
By Moritz Bächer, Bernd Bickel,
Emily Whiting,
and Olga Sorkine-Hornung

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/
videos/the-science-of-
brute-force

(L
)

I
M

A
G

E
 C

O
M

P
O

S
I

T
I

O
N

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
,

U
S

I
N

G
 S

H
U

T
T

E
R

S
T

O
C

K
;

(R
)

P
H

O
T

O
:

N
A

T
I

O
N

A
L

 P
H

Y
S

I
C

A
L

 L
A

B
O

R
A

T
O

R
Y

 ©
 C

R
O

W
N

 C
O

P
Y

R
I

G
H

T
/S

C
I

E
N

C
E

 P
H

O
T

O
 L

I
B

R
A

R
Y

Association for Computing Machinery
Advancing Computing as a Science & Profession

About the Cover:
Brute force—an exhaustive
search of all viable
configurations of a
problem—is one way to
find a workable solution.
But what would it take to
trust the result of running
complex algorithms on a
multitude of computers
over a long period of time?
Marijn Heule and Oliver
Kullmann explore the
power of the proof
beginning on p. 70. Cover

illustration by Peter Crowther Associates.

5036

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fthe-science-of-brute-force
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fthe-science-of-brute-force
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fthe-science-of-brute-force

COMMUNICATIONS OF THE ACM
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
Bobby Schnabel
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Darren Ramdin
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Scott E. Delman

ACM COUNCIL
President
Vicki L. Hanson
Vice-President
Cherri M. Pancake
Secretary/Treasurer
Elizabeth Churchill
Past President
Alexander L. Wolf
Chair, SGB Board
Jeanna Matthews
Co-Chairs, Publications Board
Jack Davidson and Joseph Konstan
Members-at-Large
Gabriele Anderst-Kotis; Susan Dumais;
Elizabeth D. Mynatt; Pamela Samuelson;
Eugene H. Spafford
SGB Council Representatives
Paul Beame; Jenna Neefe Matthews;
Barbara Boucher Owens

BOARD CHAIRS
Education Board
Mehran Sahami and Jane Chu Prey
Practitioners Board
Terry Coatta and Stephen Ibaraki

REGIONAL COUNCIL CHAIRS
ACM Europe Council
Dame Professor Wendy Hall
ACM India Council
Srinivas Padmanabhuni
ACM China Council
Jiaguang Sun

PUBLICATIONS BOARD
Co-Chairs
Jack Davidson; Joseph Konstan
Board Members
Karin K. Breitman; Terry J. Coatta;
Anne Condon; Nikil Dutt; Roch Guerrin;
Carol Hutchins; Yannis Ioannidis;
M. Tamer Ozsu; Eugene H. Spafford;
Stephen N. Spencer; Alex Wade;
Keith Webster

ACM U.S. Public Policy Office
Renee Dopplick, Director
1701 Pennsylvania Ave NW, Suite 300,
Washington, DC 20006 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Mark R. Nelson, Executive Director

STAFF
DIRECTOR OF PUBLICATIONS
Scott E. Delman
cacm-publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Lawrence M. Fisher
Web Editor
David Roman
Rights and Permissions
Deborah Cotton
Editorial Assistant
Jade Morris

Art Director
Andrij Borys
Associate Art Director
Margaret Gray
Assistant Art Director
Mia Angelica Balaquiot
Advertising Sales Account Manager
Ilia Rodriguez

Columnists
David Anderson; Phillip G. Armour;
Michael Cusumano; Peter J. Denning;
Mark Guzdial; Thomas Haigh;
Leah Hoffmann; Mari Sako;
Pamela Samuelson; Marshall Van Alstyne

CONTACT POINTS
Copyright permission
permissions@hq.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmhelp@acm.org
Letters to the Editor
letters@cacm.acm.org

WEBSITE
http://cacm.acm.org

AUTHOR GUIDELINES
http://cacm.acm.org/

ACM ADVERTISING DEPARTMENT
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 626-0686
F (212) 869-0481

Advertising Sales Account Manager
Ilia Rodriguez
ilia.rodriguez@hq.acm.org

Media Kit acmmediasales@acm.org

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

EDITORIAL BOARD
EDITOR-IN-CHIEF
Andrew A. Chien
eic@cacm.acm.org

SENIOR EDITOR
Moshe Y. Vardi

NEWS
Co-Chairs
William Pulleyblank and Marc Snir
Board Members
Mei Kobayashi; Michael Mitzenmacher;
Rajeev Rastogi; François Sillion

VIEWPOINTS
Co-Chairs
Tim Finin; Susanne E. Hambrusch;
John Leslie King; Paul Rosenbloom
Board Members
William Aspray; Stefan Bechtold;
Michael L. Best; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Mark Guzdial; Rachelle Hollander;
Richard Ladner; Carl Landwehr;
Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen;
Marshall Van Alstyne; Jeannette Wing

 PRACTICE
Chair
Stephen Bourne
Board Members
Eric Allman; Samy Bahra; Peter Bailis;
Terry Coatta; Stuart Feldman; Camille Fournier;
Benjamin Fried; Pat Hanrahan; Tom Killalea;
Tom Limoncelli; Kate Matsudaira;
Marshall Kirk McKusick; Erik Meijer;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo; Meredith Whittaker

CONTRIBUTED ARTICLES
Co-Chairs
James Larus and Gail Murphy
Board Members
William Aiello; Robert Austin; Elisa Bertino;
Gilles Brassard; Kim Bruce; Alan Bundy;
Peter Buneman; Carlo Ghezzi; Carl Gutwin;
Yannis Ioannidis; Gal A. Kaminka;
Karl Levitt; Igor Markov; Gail C. Murphy;
Bernhard Nebel; Lionel M. Ni; Adrian Perrig;
Sriram Rajamani; Marie-Christine Rousset;
Krishan Sabnani; Ron Shamir;
Yoav Shoham; Michael Vitale;
Hannes Werthner; Reinhard Wilhelm

RESEARCH HIGHLIGHTS
Co-Chairs
Azer Bestavros and Gregory Morrisett
Board Members
Martin Abadi; Amr El Abbadi; Sanjeev Arora;
Michael Backes; Maria-Florina Balcan;
Andrei Broder; Doug Burger; Stuart K. Card;
Jeff Chase; Jon Crowcroft; Alexei Efros;
Alon Halevy; Sven Koenig; Steve Marschner;
Tim Roughgarden; Guy Steele, Jr.;
Margaret H. Wright; Nicholai Zeldovich;
Andreas Zeller

WEB
Chair
James Landay
Board Members
Marti Hearst; Jason I. Hong;
Jeff Johnson; Wendy E. MacKay

ACM Copyright Notice
Copyright © 2017 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@hq.acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $269.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current advertising rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0686.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

COMMUNICATIONS OF THE ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

4 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Acacm-publisher%40cacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Apermissions%40hq.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Acalendar%40cacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Aacmhelp%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Aletters%40cacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fcacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fcacm.acm.org%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Ailia.rodriguez%40hq.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Aeic%40cacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Apermissions%40hq.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.copyright.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.acm-media.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=4&exitLink=mailto%3Aacmhelp%40acm.org

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 5

editor’s letter

C
H A N G E I S C O N T I N UA L . All liv-
ing things are changing—con-
tinual growth and renewal.
A healthy bacteria colony
regenerates hourly; Atlantic

cod mature in 2 to 8 years, regenerat-
ing their shoals every few years. Even
our bodies, seemingly static, create 225
billion new cells every day, replacing
our 35 trillion cells every six months.
Likewise, the Communications of the
ACM team is dynamic; a collection of
passionate leaders, making change
and creating the future CACM through
the actions, initiatives, and goals that
we—the community of contributors,
the editorial and production team, and
the ACM membership—are pursuing
today. In that vein, here are some of my
ambitions for the Future CACM.

Building on Success and Excellence.
CACM is excellent. Nearly every day, an
ACM member tells me “it’s the only pub-
lication I always read,” and CACM’s web-
site and app provide easy access. Many
members contribute articles to CACM
as well. This is fantastic! But in 2017, the
leading computing professional society,
can and must do more.

First and foremost, we will maintain
and grow CACM’s excellence, continu-
ing to highlight and disseminate com-
pelling research, critical news, and inci-
sive viewpoints. Central to this objective
is CACM’s position as a key leadership
voice of the computing community.
Leveraging computing’s rise, CACM
should become a broader and more in-
fluential voice. We will expand coverage
and, as appropriate, create new features
and venues that stimulate and lead the
discourse where computing’s progress
and impact is most dramatic (for ex-
ample, artificial intelligence, Internet
of Things (IoT), and online issues from
“radicalization,” “fake news,” “cyberse-

curity,” and more). But beyond its core,
CACM has several key dimensions of
challenge and opportunity.

˲˲ How should CACM exploit new me-
dia to increase reach, access, and engage-
ment? The millennial computing pro-
fessionals were raised on smartphones,
many where smartphones define Inter-
net access. How can CACM reach and
engage information “snackers” on hand-
helds? CACM must be engaging, and per-
haps interactive, immersive, and more.

˲˲ Can CACM grow an energized, inter-
active community, creating a new venue
for the voice of ACM members? (Show-
casing and empowering their leader-
ship, expertise, activities, and impact.)
Our greatest unique strength is ACM
members’ deep and broad technical ex-
pertise. If CACM can give the leadership
of individual members greater voice,
ACM’s impact and global relevance will
increase around the world.

Grow the Computing Professional
Community. ACM is the leading global
society of computing professionals. Can
CACM be relevant for all computing
professionals across the globe? CACM’s
core strength today is excellence and
breadth across research, practice, and
policy; topics that reach across technol-
ogy companies and academe. As “every-
one codes” and information underpins
every aspect of society, the professional
community and its needs are growing
rapidly. ACM membership should be in-
dispensable for computing profession-
als working at the state of the art from
academe to the tech industry world-
wide. To reach this broad and expand-
ing community, CACM must not only
build on our successes, but also think
and engage ambitiously!

ACM’s membership today is stron-
gest in North America and Europe,
but it’s clear that sustained global

leadership must recognize the demo-
graphics of growing communities in
Asia (China, India, and more), South
America, and even the Middle East and
Africa. How will we make CACM rele-
vant in these varied settings? How can
we give members in every geography a
sense of ownership and participation?
These significant challenges surely re-
quire creative engagement of leaders
from all of these regions.

We need YOU!
These are my ambitions for CACM,

but your ambitions can shape CACM
too! Can we do more? Certainly. Are
there other critical directions? Per-
haps. How can they be achieved? ACM
is a volunteer organization, so progress
depends on your inspired and creative
efforts. We need your help!

We need new members of the edi-
torial board to drive ambitious new
agendas, but also to sustain excellence.
We need new member volunteers in
diverse geographical, technical, and
institutional settings to bring their cre-
ative perspectives, passion, and energy.
They will create new CACM elements,
and enable CACM to reach the broad-
est computing community. And we also
need volunteers with vision and ambi-
tion to create a CACM that is not only
a publication, but also gives members
new venues and voice for their leader-
ship and impact. Join us in building
the future Communications of the ACM.

Email your ideas (eic@cacm.acm.org)!
And, of course your offers to help!

Andrew A. Chien, EDITOR-IN-CHIEF

Andrew A. Chien is the William Eckhardt Distinguished
Service Professor in the Department of Computer Science
at the University of Chicago, Director of the CERES Center
for Unstoppable Computing, and a Senior Scientist at
Argonne National Laboratory.

Copyright held by author.

Building the Future
Communications of the ACM

DOI:10.1145/3121002		 Andrew A. Chien

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3121002
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=5&exitLink=mailto%3Aeic%40cacm.acm.org

The ACM Europe Conference, hosted in Barcelona by the Barcelona Supercomputing Center,
aims to bring together computer scientists and practitioners interested in exascale high
performance computing and cybersecurity.

The High Performance Computing track includes a panel discussion of top world experts in HPC
to review progress and current plans for the worldwide roadmap toward exascale computing.
The Cybersecurity track will review the latest trends in this very hot field. High-level European
Commission officials and representatives of funding agencies are participating.

Keynote Talk by ACM 2012 Turing Award Laureate Silvio Micali,
“ALGORAND: A New Distributed Ledger”

Co-located events:
• ACM Europe Celebration of Women in Computing: WomENcourage 2017
 (Requires registration, https://womencourage.acm.org/)
• EXCDI, the European Extreme Data & Computing Initiative (https://exdci.eu/)
• Eurolab-4-HPC (https://www.eurolab4hpc.eu/)
• HiPEAC, the European Network on High Performance and Embedded Architecture
 and Compilation (https://www.hipeac.net/)

Conference Chair: Mateo Valero, Director of the Barcelona Supercomputing Center

Registration to the ACM Europe Conference is free of charge
for ACM members and attendees of the co-located events.

ACM Europe Conference
Barcelona, Spain | 7 – 8 September 2017

Europe Council

http://acmeurope-conference.acm.org

acm-europe-conference-cacm-ad-2017.indd 1 5/30/17 12:18 PM

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Fwomencourage.acm.org%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Fwww.hipeac.net%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Facmeurope-conference.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Fwww.eurolab4hpc.eu%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Fexdci.eu%2F

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 7

cerf’s up

Eric Schmidt, executive chairman of Alphabet
(Google’s parent company), recently drew my
attention to the notion of “under-specification.”
He reminded me that the Internet had benefited

strongly from this concept. Several spe-
cific examples came to mind. The Inter-
net Protocol (IP) specification does not
contain any information about routing.
It specifies what packets look like as
they emerge from or arrive at the hosts
at the edge of the Internet, but routing
is entirely outside of that specificationa
partly because it was not entirely clear
what procedures would be used for In-
ternet routing at the time the specifica-
tion was developed and, indeed, a num-
ber of them have been developed over
time. There is nothing in the specifica-
tion that describes the underlying trans-
mission technology nor is there any-
thing in the specification that speaks
to how the packet’s payload (a string of
bits) is to be interpreted. These matters
are open to instantiation independent
of the specification of packet formats.

Some of the under-specification can
be a manifestation of layering that fig-
ured strongly in the ARPANET host-host
protocols and was carried over in the
Internet Protocol suite. The idea is that
while there is a well-defined interface
between the layers that specifies how
information crosses the layer bound-
ary, the details of the layer above or be-
low are hidden. This feature allows for
changes in the implementation of and
even the characteristics of the upper or
lower layer. For example, above the IP
layer, one finds a number of different

a	 This is not precisely correct since the notion of
“source routing” is part of the specification and
allows a host to force packets to flow along a
path specified by intermediate IP addresses, but
the general route generation and selection proc-
ess is independent of the IP specification itself.

protocols such as User Datagram Pro-
tocol (UDP) or Transmission Control
Protocol (TCP) or Real-Time Protocol
(RTP) that all send and receive Internet
packets but they use and interpret the
IP packet payloads in different ways.
Below the IP layer one finds a variety of
different transmission technologies in-
cluding Ethernet, Multi-protocol Label
Switching, Frame Relay, Asynchronous
Transfer Mode, Dense Wave-Length Di-
vision Multiplexing, and many others.
The IP layer doesn’t really care how the
packets are transported.

What is interesting to contemplate
is whether the notion of under-spec-
ification that induces flexibility and
anticipates new but unknown develop-
ments can be codified in a concrete way
beyond the purely conceptual. Is there
a way to measure the degree of specifi-
cation in the way that Claude Shannon
found to specify information as entropy
independent of semantics? Can some-
thing be fully specified, partly specified,
or completely unspecified and how
would these be described or measured
more precisely? In circuit design, for
instance, there is the notion of “don’t
care” for some values in a Boolean rep-
resentation. Can this notion be applied
to program specification as well as to
protocol specifications? Are there de-
sign principles that one can derive from
this notion of under-specification?

I am reminded of an anecdote told
about doing business with Chinese
manufacturers. American companies
produced very detailed specifications
of what was to be fabricated down to
the last detail and the Chinese compa-

nies produced exactly what was asked,
at a price. But a Chinese company
produced a less specific specification,
leaving room for the manufacturer to
innovate, leading to a design that was
less expensive, easier to manufacture,
and to maintain.

One of my oldest friends, Jonathan
Postel, was the Internet Assigned Num-
bers Authority for many years and was
often quoted: “Be liberal in what you
accept and conservative in what you
send,” in reference to the implementa-
tion of protocols. His dictum was aimed
at improving interoperability. Of course,
people who are particularly concerned
about security might take issue with this
particular nostrum (and some have!).

As may be apparent to readers who
have gotten this far, I am not yet sure
there is a there there, but I am fascinated
by the possibility that it might be pos-
sible to extract some design principles
from this notion that would lead to po-
tentially more robust and adaptable de-
signs. Think about what makes a chair a
chair. It’s a thing to sit on, has legs and
usually a back and maybe some arms.
But there are so many things we recog-
nize as chairs that are quite varied in
their specifics. Flexible design suggests
to me that under-specification has some-
thing to do with essence or core concepts.
I hope interested readers will take a mo-
ment to share their thoughts, particu-
larly if they see more deeply into this idea
than I have at the present. 	

Vinton G. Cerf is vice president and Chief Internet Evangelist
at Google. He served as ACM president from 2012–2014.

Copyright held by owner/author.

In Praise of Under-Specification?
DOI:10.1145/3110531		 Vinton G. Cerf

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F+3110531

8 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

letters to the editor

ence would usually hear only the boss’s
side of the conversation; see, for exam-
ple, the “Bob Newhart Tobacco video
(Sir Walter Raleigh phone conversa-
tion)” at https://www.youtube.com/
watch?v=_XDxAzVEbN4. Consider
Tim Berners-Lee or other World Wide
Web evangelist trying to convince his
boss that letting the whole world tap
the organization’s expensive and se-
cure CPU cycles to support the Web for
the benefit of all humanity would in-
deed be a good idea. As with Newhart,
we would imagine hearing it from the
boss’s perspective. For me, I knew
Berners-Lee was onto something when
only a month or so after I began experi-
menting with Mosaic and Netscape, I
saw http://www.coca-cola.com printed
on a can of Coke.

�W. Terry Hardgrave,
Cross Junction, VA
ACM Member since 1967

How to Really Encourage
Women in Computing
Reflecting on my involvement in the
software profession in the 1950s and
1960s, when male and female partici-
pation were roughly equal, I can to-
tally agree with Valarie Barr’s view in
her “From the ACM W-Chair” column
“Gender Diversity in Computing: Are
We Making Any Progress?” (Apr. 2017)
and am astonished how few women
enter or stay in the field 60-odd years
later. Barr wrote that women are
“hemorrhaging out the side and back
doors” of the field after five years.
The women I knew who headed out
those doors did so because they be-
came mothers, so I think it important
to compare the female dropout rate
among software professionals with
similar dropout rates in other fields. I
suspect, at least in earlier times, they
would be similar, though I am less cer-
tain about those rates today. Neverthe-
less, this kind of data is vital for under-
standing what is happening. Also, Barr
mentioned ACM financial support for

A
S A C O M B AT veteran and
more recently an indus-
try technologist and uni-
versity professor, I have
observed with concern

the increasing automation—and de-
humanization—of warfare. Sarah Un-
derwood’s discussion of autonomous
weapons in her news story “Potential
and Peril” (June 2017) highlighting
this trend also reminded me of the cur-
rent effort to update the ACM Code of
Ethics, which says nothing about the
responsibilities of ACM members in
defense industries building the soft-
ware and hardware in weapons sys-
tems. Underwood said understanding
the limitations, dangers, and poten-
tial of autonomous and other warfare
technologies must be a priority for
those designing such systems in order
to minimize the “collateral damage”
of civilian casualties and property/in-
frastructure destruction.

Defense technologists must be
aware of and follow appropriate ethi-
cal guidelines for creating and man-
aging automated weapons systems of
any kind. Removing human control
and moral reasoning from weapons
will not make wars less likely or less
harmful to humans.

 Harry J. Foxwell, Fairfax, VA

When the Web Arrived for Me
Regarding Neil Savage’s excellent
news story on Tim Berners-Lee, “Weav-
ing the Web,” and Leah Hoffman’s
likewise excellent Q&A with Berners-
Lee, “This Is for Everyone,” (both June
2017), I would also add that the cost of
computing has come down so much
that organizations today are able (if
willing) to allow outsiders to use their
CPU resources. This would have been
unthinkable in the mid-1980s. A com-
puting colleague later suggested a rou-
tine based on the Bob Newhart-humor
model, characterized by a phone call
with a skeptical boss regarding new
products or technologies. The audi-

DOI:10.1145/3117849		

Embed Ethical Guidelines
in Autonomous Weapons

ACM
Transactions on

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3117849
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_XDxAzVEbN4
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.coca-cola.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.acm.org%2Ftaccess
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.acm.org%2Fsubscribe
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_XDxAzVEbN4

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 9

letters to the editor

female computer science students “to
attend research conferences.” But at-
tending research conferences and the
longevity of practitioner employment
have almost nothing in common.
Surely ACM’s “encouragement” mon-
ey could be spent in more direct and
effective ways.

Robert L. Glass, Toowong, Australia

Author Responds:
There is no data about women’s
persistence in scientific and engineering
fields, including computer science, in
the 1950s and 1960s, and we cannot
draw conclusions based on anecdotal
information alone. Current studies
show engineering today has the highest
turnover rate for women when compared
to, say, accounting, law, and medicine,
though the vast majority continues
working; only 22% who have left report
they are now doing “family care.” Other
research shows engineering and science
culture is a much more significant factor
in women’s lack of persistence than are
family concerns. While attendance at
research conferences may not translate
directly into long-term practitioner
employment, conference attendance does
help sustain and increase excitement
about staying in computer science.

Valerie Barr, South Hadley, MA

Causal Connections for Predictive AI
As part of the “ACM Panels in Print”
section “Artificial Intelligence” (Feb.
2017), panelist David Blei said he
believes computer science needs to
identify the causal connections be-

tween data components, concluding
that artificial intelligence, with its
predictive capabilities, will be en-
hanced through causal inference. For
example, the first step toward using AI
in database systems is to analyze and
create a data map of the complexity of
the causal interconnections between
the data components in a problem
space. A data map connects a data
component to other data components
through causal interrelationships.
A data map can be created through
qualitative analysis of data collected
for a particular problem. The qualita-
tive analysis could then take the form
of “thematic analysis,”1 using systems
diagramming to gain greater insight
into the data. At that point it might be
advantageous to start applying AI di-
rectly to the data.

Researching the complexity of data-
base systems, I have thus created such
a data map, which is now ready to move
to the next stage of automation where
predictive analytics can help improve
management of database systems.
Using an analogy of the CODEX, or
Control of Data Expediently, my
research into causal connections
has identified a potential role for AI
in automating continuously chang-
ing best practice, thus representing
an agile approach to deciphering the
complexity of interconnections and
promising to help create an autono-
mous way to deliver best practice in
database management.

Reference
1.	 Braun, V. and Clarke, V. Using thematic analysis in

psychology. Qualitative Research in Psychology 3, 2
(2006), 77–101.

Victoria Holt, Bath, U.K.

Correction
In the ACM Member News column
(May 2017), Dragomir Radev was mis-
takenly identified as a professor at the
University of Michigan. Radev teach-
es at Yale University, where he also
leads the Language, Information, and
Learning at Yale (LILY) lab.

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit yourself to 500 words or
less, and send to letters@cacm.acm.org.

©2017 ACM 0001-0782/17/08

“Studies show
engineering has the
highest turnover rate
for women compared
to, say, accounting,
law, and medicine,
though the majority
continues working.”

Moving Beyond
the Turing Test with
the Allen AI Science
Challenge

The Calculus of
Service Availability

Data Sketching

10 Ways to Be
A Better Interviewer

Scribe: Deep Integration
of Human and
Machine Intelligence

Security in
High-Performance
Computing
Environments

Trust and Distrust
in Online Fact-Checking
Services

Why Agile Teams Fail
without UX Research

When Does
Law Enforcement’s
Demand to Read
Your Data Become
a Demand to Read
Your Mind?

Plus the latest news about GPS
spoofing, laser broadband,
and training image recognizers.

�C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=9&exitLink=mailto%3Aletters%40cacm.acm.org

10 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

over are now learning to code.
Why study older adults in par-

ticular? Because this population is
already significant and also quickly
growing as we all (hopefully!) con-
tinue to live longer in the coming de-
cades. The United Nations estimates
that by 2030, 25% of North Ameri-
cans and Europeans will be over 60
years old, and 16% of the worldwide
population will be over 60. There has
been extensive research on how old-
er adults consume technology, and
some studies of how they curate and
produce digital content such as blogs
and personal photo collections. But
so far nobody has yet studied how old-
er adults learn to produce new technolo-
gies via computer programming.

Thus, to discover older adults’ mo-
tivations and frustrations when learn-
ing to code, I designed a 10-question
online survey that asked about their
employment status (such as working,
semi-retired, retired), occupation,
why they are learning, what resources
they use to learn, and what has been
the most frustrating part of their
learning experience thus far.

The first challenge was finding a
large-enough group of older adult

learners to fill out my survey. Fortu-
nately, I created a popular learn-to-
code website called Python Tutor
(pythontutor.com), which has gotten
over 3.5 million total visitors from
over 180 countries throughout the
past decade. Approximately 16% of
its user base self-report as aged 55
and older, so there are plenty of older
adults learning to code on there.

I deployed my survey to the Python
Tutor website from March 2015 to
August 2016 and collected 504 re-
sponses. Respondents were, on aver-
age, 66.5 years old, and came from 52
different countries. Unsurprisingly,
most were highly educated profes-
sionals in STEM (science, technol-
ogy, engineering, mathematics)
fields, since they are amongst the
most tech-savvy of their generation.
Specifically, 18% of respondents
were (either current or retired) scien-
tists and engineers, 18% were K–12
and college teachers, 12% were soft-
ware developers hoping to learn new
technologies, and 8% were business
executives and managers.

Motivations
Why were our respondents learning

Philip Guo
Older Adults
Learning Computer
Programming:
Motivations,
Frustrations,

and Design Opportunities
http://bit.ly/2rmGIa5

May 15, 2017

I recently published and presented a
paper at CHI 2017 (the annual ACM
Conference on Human Factors in
Computing Systems, https://chi2017.
acm.org) called “Older Adults Learn-
ing Computer Programming: Motiva-
tions, Frustrations, and Design Op-
portunities” (http://bit.ly/2snS4LN).
This paper won an Honorable Men-
tion award at the conference. Here’s a
summary of the project.

There is now tremendous mo-
mentum behind initiatives to teach
computer programming to a broad
audience, yet many of these efforts
(for example, Code.org, Scratch,
ScratchJr, and Alice) target the young-
est members of society: K–12 and col-
lege students. In contrast, I wanted to
study the other end of the age spec-
trum: how older adults aged 60 and

How Adults Ages 60+
Are Learning to Code
Philip Guo discusses his project studying older adults
that have chosen to learn computer programming.

DOI:10.1145/3105421 			 http://cacm.acm.org/blogs/blog-cacm

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3105421
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Ftwitter.com%2FblogCACM
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fpythontutor.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fbit.ly%2F2rmGIa5
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Fchi2017.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fbit.ly%2F2snS4LN
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2FCode.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fcacm.acm.org%2Fblogs%2Fblog-cacm
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Fchi2017.acm.org

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 11

blog@cacm

programming? The most common
age-related motivations were:

˲˲ 22% wanted to learn to make up
for missed opportunities during their
youth.

˲˲ 19% wanted to keep their brains
challenged, fresh, and sharp as they
aged.

˲˲ 5% were directly motivated by
younger relatives such as children or
grandchildren.

Here’s a great anecdote about learn-
ing to make up for missed opportuni-
ties during youth. A 67-year-old retired
chief information officer wrote in his
survey response:

“I did a little programming when I
was in school, and when I first started
working. However, I got “kicked up-
stairs” [into management] quite quickly,
and was never able to program profes-
sionally. […] I always wanted to be able
to create programs but between work
and family, never took the time. Now
that I am retired, I am trying to fulfill the
dream and learn.”

Relatedly, a 64-year-old retired net-
working engineer wrote about his de-
sire to keep his brain sharp and to cre-
ate technologies that benefit peers in
his generation:

“First, by endlessly learning new
things, I hope to delay or reduce the ef-
fects of senility on my brain. […] Second,
to take advantage of data produced by
the many health-related, sensor-based
monitors, I want to help myself and oth-
er senior citizens maintain an indepen-
dent living lifestyle that is affordable by
the masses.”

Frustrations
What got our respondents frustrated
as they were learning to code? The
three most commonly reported age-
related frustrations were:

˲˲ 14% were frustrated by perceived
cognitive impairments, such as mem-
ory loss and difficulty in concentrat-
ing.

˲˲ 11% were frustrated by lack of
free time since they often had other
duties, such as being a spousal care-
taker.

˲˲ 10% were frustrated by lack of
human contact with tutors or peers,
since they must learn online and do
not have convenient access to in-
person classroom environments.

A 71-year-old retired IT technician

humorously wrote about his own per-
ceived cognitive impairments:

“Given that I was a VERY early adopt-
er of microprocessor/microcontroller
technology, I have NO fear of the equip-
ment or the concepts. But things that
were “automatic” a few years back seem
to take a lot more time and effort to di-
gest and store than they used to. Early
onset Alzheimer’s? Probably not. ACS?
(Advanced curmudgeon syndrome)—
Probably some of that.”

Design Opportunities
Inspired by the findings from this
study, I applied the Learner-Centered
Design framework developed by Mark
Guzdial in his book Learner-Centered
Design of Computing Education: Re-
search on Computing for Everyone
(http://bit.ly/2seYahY) to propose de-
sign ideas for improving the learning
experience for this older adult popu-
lation. Three main themes emerged
from my design process:

˲˲ Targeting: Like everyone else,
older adults want to feel that program-
ming curricula and tools “look like
they’re for me”—that is, that they are
properly targeted to the motivations,
needs, and aesthetic preferences of
this population. They do not want to
be patronized, to be talked down to, or
made to play with “kids’ toys.” Several
survey respondents mentioned brain
training games (for example, from
Lumosity) as being popular with their
peers, so perhaps framing program-
ming education in terms of brain-
training games could work well for
this audience.

˲˲ Contextualizing: It is also im-
portant to ground learning materials

in contexts that engage this learner
population, rather than trying to find
a generic “one-size-fits-all” solution.
Examples of relevant contexts here
include structuring curricula around
coding projects to help older adults
curate digital media, to perform
genealogical and historical storytell-
ing, and to organize their personal
healthcare data.

˲˲ Universal Design: The promise of
universal design is that designing for
the specific needs of a target popula-
tion (such as older adults) can lead
to designs that benefit everyone. In
this case, we may want to design next-
generation pedagogical program-
ming environments that mitigate the
effects of both cognitive and motor
impairments, which will hopefully
make it easier for older adults to learn
to code without as many frustrations.
If properly designed, these environ-
ments may actually end up benefiting
learners of all ages.

Parting Thoughts
The tech world is notoriously youth-
centered: popular conceptions of who
learns and does programming are
filled with images of young people,
often under 30 years old. Also, age
discrimination (see https://bloom.
bg/2qCdIv6) is an all-too-common
reality in the technology sector. To
counteract these prevailing trends as
people keep living longer in the com-
ing decades, it is vital for older adults
to have equal access to high-quality
computing and programming educa-
tion throughout their lives.

We have already made great
strides in broadening participation
of computing to traditionally under-
represented groups ... but there is still
much, much more work to be done.
Efforts to spread the power and joy of
computing for all should also include
people of all ages.

That’s it for now! You can read my
paper for more details: Older Adults
Learning Computer Programming:
Motivations, Frustrations, and De-
sign Opportunities, at http://bit.
ly/2snS4LN. 	

Philip Guo is an assistant professor of cognitive science at
the University of California, San Diego.

© 2017 ACM 0001-0782/17/08 $15.00

Older adults do
not want to be
patronized,
to be talked down to,
or made to play
with “kids’ toys.”

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fbit.ly%2F2seYahY
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fbit.ly%2F2snS4LN
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fbit.ly%2F2snS4LN
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=11&exitLink=https%3A%2F%2Fbloom.bg%2F2qCdIv6
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=11&exitLink=https%3A%2F%2Fbloom.bg%2F2qCdIv6

12 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

 N
news

L
O

G
O

S
 C

O
U

R
T

E
S

Y
 O

F
 D

E
E

P
S

P
E

C
.O

R
G

ing tools to manual proofs written by
hand and checked by a proof assistant
(a program that checks the correct-
ness of proofs in expressive logic).

Preventing Software Hacks
Generally, computer code is written
without any formal processes, and the
main metric for testing it is simply trying
it out and seeing whether it or not works.
Testing does not necessarily guaran-
tee all the bases have been covered that
might occur at runtime, or that it would
prevent a malicious attacker who reads
the program from devising something
clever with which to undermine it. For-
mal software verification relies on math-
ematical theorems and reasoning and
uses deductive techniques to check the
most critical aspects of a system. Pro-
ponents say this technique is making
hacker-proof software possible.

“A lot of the ways attackers take
over programs on machines and the
Internet is by exploiting security vul-
nerabilities, and there are many kinds,
such as the buffer overrun vulnerabil-
ity, to which safe languages are just im-
mune,’’ notes Andrew Appel, professor
of computer science at Princeton Uni-
versity, who is considered an expert in
the program verification field.

Formal software verification uses
methods that don’t rely on running the
program; rather, they analyze program
text to prove things about its behavior

A
T THE UN IVERSITY of Wash-
ington (UW) Medical Cen-
ter, a radiotherapy system
shoots high-powered ra-
diation beams into the

heads of patients, to treat cancers of
the tongue and esophagus. Any soft-
ware errors in the system could prove
fatal, so engineers at the medical cen-
ter have teamed with a group of com-
puter scientists from the university to
ensure the system will not fail, and that
the beam will shut off if prescribed set-
tings go out of tolerance.

This is made possible by a process
known as software verification, and
verifying implementations of critical
systems like that radiotherapy setup is
one of the things about which Zachary
Tatlock is passionate. Over three years
ago, Tatlock was a Ph.D. candidate giv-
ing a talk at the university on his thesis
research in program verification. The
lead engineer for the medical center’s
radiotherapy team was in the audience,
and asked Tatlock how they could apply
verification to that system. “That prob-
ably helped me get hired,” Tatlock re-
calls. Today, he’s an assistant professor
of computer science at the university
and, with other colleagues and students
at UW, has also been working with the
team at the medical center ever since.

What makes the software verifica-
tion process challenging in the case
of the radiotherapy system described

here is that it is written in a variety of
languages, so different techniques
have to be deployed to verify the soft-
ware in its entirety. The system has
about a dozen components, each with
different levels of criticality.

Software for logging an event, for
example, is not as critical as soft-
ware that verifies the beam power has
not become too high, Tatlock notes.
“What we want to be able to do is en-
sure the reliability of all pieces,’’ he
says. “We want to make sure there are
no bugs that can affect the parts that
are critical.” There are two or three
components “where the rubber meets
the road, and it’s super-critical to get
them right,” he says.

The radiotherapy system team uses
powerful verification methods rang-
ing from automated theorem prov-

Hacker-Proof Coding
Software verification helps find the faults, preventing hacks.

Science | DOI:10.1145/3105423 	 Esther Shein

 N

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=12&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3105423
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=12&exitLink=http%3A%2F%2FDEEPSPEC.ORG

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 13

news

 N on any possible input. Even using so-
called “safe” languages such as Java
to write programs doesn’t necessarily
guarantee they are correct, says Appel;
they can still have bugs and do wrong
things, just nothing catastrophic. Safe-
ty is always important, but correctness
is crucial when it comes to the critical
infrastructure components of a sys-
tem, he emphasizes.

Safety has been proven to be an issue
with critical systems before, and in at

least one case, put patients’ lives at risk.
In 1982, Atomic Energy of Canada Lim-
ited (AECL) produced the Therac-25
radiation therapy machine. The system
was involved in at least six accidents be-
tween 1985 and 1987, in which patients
were given massive overdoses of radia-
tion—sometimes as much as hundreds
of times greater than normal, resulting
in death or serious injury.

Among the findings of a commis-
sion that investigated the Therac-25
was that AECL did not have the soft-
ware code independently reviewed, nor
did it ever test the system’s software
and hardware until it was assembled at
the hospital.

“So if you want your programs to
be correct and not just safe, then you
need to prove that your program be-
haves according to some specifica-
tion,’’ Appel says. “You have to write
down in a formal way what would be
correct in terms of how its output re-
lates to its input, and then you have to
find a way to assure that for any pos-
sible input, your implementation will
satisfy its specification.”

Appel is a member of a research
project called DeepSpec, whose mis-
sion is to examine the full functional
correctness of software applications

and hardware so programs run the way
they are supposed to run. To do this,
DeepSpec is building tools for verifying
that programs conform to deep speci-
fications—granular, precise descrip-
tions of how software behaves based
on formal logic and mathematics—
and that software components such as
OS kernels provably conform to their
deep specifications.

Another DeepSpec member, Yale
University computer science profes-
sor Zhong Shao, along with a team of
researchers there, wrote an operating
system called CertiKOS which uses for-
mal verification to ensure the code be-
haves exactly as is intended. “If the code
and spec do not match, there is a bug or
loophole,’’ explains Shao. “What a certi-
fied operating system provides you with
is a guarantee there are no such loop-
holes; under every situation, the code
will behave exactly like its specifica-
tion.” This guarantees hackers cannot
exploit the operating system, he says.

In addition to verification, the other
factor that sets CertiKOS apart from
other OSs is that it has an extensible
operating system kernel, meaning it
can easily be customized and adapted
for many different settings so more
features can be added, Shao says. Certi-
KOS also can run multiple threads
(small sequences of programmed in-
structions) simultaneously on multiple
central processing unit (CPU) cores, a
process known as concurrency.

The major questions facing Certi-
KOS and other examples have to do
with “semantics engineering,” the
process of defining specifications and
proof methodologies to minimize the

cost of revalidation, observes Suresh
Jagannathan, a computer science pro-
fessor at Purdue University.

“I don’t consider this a limitation
of these systems as much as an aspect
of formal verification that will likely
be increasingly important as we gain
more experience with verification tools
and proof assistants, and as we achieve
more success in using these tools for
verifying realistic systems,” he says. It
will be critical to determine what pro-
cesses and methodologies need to be
adopted to make proofs robust as spec-
ifications and implementations evolve,
Jagannathan adds.

DeepSpec vs. Other Principles
The UW team uses DeepSpec princi-
ples to check the more heavy-duty com-
ponents of the radiotherapy system. To
assess the parts of the system that are
not as critical, the team uses “lighter-
weight, less-powerful techniques to
ensure the correctness, so the guaran-
tees for those parts aren’t as strong,
but it’s a better engineering trade-off,”
Tatlock says. That’s because the Deep-
Spec principles typically require highly
trained humans to prove they function
correctly, he says. “They take a lot of ef-
fort in that style, but you’re rewarded
by having a much stronger guarantee.’’

This begs the question: if the Deep-
Spec techniques could make absolute,
iron-clad guarantees of the verification
of software, why don’t we use them all
the time to avoid crashes and bugs in all
types of systems? The reason, says Tat-
lock, is cost. The proof system used by
DeepSpec and the UW medical center
radiotherapy team for the most critical
components is too expensive to apply to
all components, because it requires an
expert to sit at a computer and type out

DeepSpec is building
tools for verifying
programs, and
software components
such as OS kernels,
conform to deep
specifications.

14 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

news

ware need to be verified. Already, Appel
points out, some verification tools are
commercially viable. For example, an
optimizing C compiler in France called
CompCert is being evaluated by Airbus
and European certification agencies
for use in compiling the fly-by-wire
software used to fly the Airbus jetliner.

“Compared with the compiler Air-
bus currently uses, CompCert has the
advantage of being proved correct, no
matter what program is compiled,”
he says.

Other aeronautics agencies are also
starting to use them. Formal verifica-
tion tools “have been shown to be ef-
fective at finding defects in safety-crit-
ical digital systems including avionics
systems,” according to a 2017 report
released by the U.S. National Aeronau-
tics and Space Administration (NASA)
Langley Research Center. Also, the U.S.
Federal Aviation Administration (FAA)
has issued guidelines that allow the
use of formal methods tools to replace
some of the methods it uses for “certi-
fication credit.”

NASA acknowledges this will be a
slow process, noting, “There are still
many issues that must be addressed
before formal verification tools can
be injected into the design process for
digital avionics systems.” The report
points out, “Most developers of avion-
ics systems are unfamiliar with even
the basic notions of formal verifica-
tion, much less which tools are most
appropriate for different problem do-
mains,” and skills and expertise will be
needed to master the tools effectively.

The U.S. Defense Advanced Re-
search Projects Agency (DARPA) has
developed a program called High-As-
surance Cyber Military Systems that

takes a “clean-slate, formal meth-
ods-based approach to enable semi-
automated code synthesis from ex-
ecutable, formal specifications.” The
approach ensures a hacker-proof sys-
tem and “illustrates that we’re now
at a point where such systems can be
deployed in truly mission-critical envi-
ronments,’’ notes Jagannathan.

In recent years, the auto industry
has become aware of how vulnerable
cars are to hacking, and “they are ea-
gerly looking for solutions from se-
curity researchers and verification
researchers,” Appel says. He believes
in the next decade there will be more
industries using software verification,
and more software available for pur-
chase that has been verified.

For software verification to become
widespread, however, there must be
trusted compilers to translate these for-
mal software verification methods, since
they are written in high-level languages.
Progress is being made, however, and
when a trusted compiler becomes wide-
ly available, the issue of hacker-proof
software may no longer be a wistful no-
tion, but a concrete reality. 	

Further Reading

Shao, Z.
Certified Software, Communications of the
ACM, 53(12), pages 56-66, December 2010

Serna-M. E., and Morales-V. D.
State of the Art in the Research of Formal
Verification, Ingeniería, Investigación y
Tecnología, Oct.-Dec. 2014, pgs. 615-623.
Volume 15, Issue 4.

D’Silva, V., Kroening, D., and Weissenbacher, G.
A Survey of Automated Techniques
for Formal Software Verification, IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, July 2008,
Vol. 27, No. 7.

Souyris, J., Wiels, V., Delmas, D., and Delseny, H.
Formal Verification of Avionics Software
Products, FM 2009: Formal Methods,
Second World Congress, Eindhoven, The
Netherlands, Nov. 2-6, 2009, Proceedings,
pp. 532-546

Hoare, T.
The Verifying Compiler: A Grand Challenge
for Computing Research. In: Hedin G. (eds)
Compiler Construction. CC 2003. Lecture
Notes in Computer Science, 2003, vol 2622.
Springer, Berlin, Heidelberg

Esther Shein is a freelance technology and business
writer based in the Boston area.

© 2017 ACM 0001-0782/17/08 $15.00

proofs so the computer can check them
for every version of the system.

This can be time-consuming and
inefficient. “Ideally, if you proved one
version and made a small change, you’d
only make a small change to the proof,
but that’s not the way it works,’’ Tatlock
says. Whenever even a small change is
made to software code, “it can have very
large consequences,’’ resulting in a big
change in the proof. It might change
some fact that’s relied upon throughout
the rest of the proof, he adds.

Other techniques are less powerful,
like bounded model checking, which is a
form of exhaustive testing, Tatlock says.
This involves considering some compo-
nent and showing every possible execu-
tion of steps up to some bound is correct.
“So I might make sure for the logging
system, there’s no execution within 100
steps that ever crashes. I get that by au-
tomatically testing every execution up to
100 steps.” Yet, he reiterates, the guaran-
tee isn’t as strong, and bounded model
checking up to 100 steps does not tell you
anything about the 101st step.

Tatlock and his colleagues have built
a suite of tools the engineers use in their
regular development process. They in-
clude a checker that allows them to for-
mally describe the entire radiotherapy
system to a computer and ensure the key
components are individually correct.
The researchers are now working on
building verified replacements for those
parts of the system. When all those in-
dividual system components are put
together, he says, essentially, they are as-
sured top-level safety verification.

The radiotherapy system is checked
daily because “we want to make sure
the code written by the engineers on
that team will correctly turn off the
beam if anything goes wrong,’’ Tat-
lock says. The work is similar to Deep-
Spec’s; it just emphasizes a different
degree of automation.

While CertiKOS prevents one app
from incorrectly reading the memory
of another application, the UW team
does not use it because CertiKOS is
a traditional Unix OS meant for run-
ning Unix-style apps, and the pre-
ponderance of components in the
radiotherapy system are embedded
systems and just run code directly on
the hardware, he says.

Like Tatlock, Appel and Shao stress
that only certain types of critical soft-

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 15

news
P

H
O

T
O

 B
Y

 R
O

B
I

N
 V

A
N

 L
O

N
K

H
U

I
J

S
E

N
/A

F
P

/G
E

T
T

Y
 I

M
A

G
E

S

VR and AR’s potential, too; each com-
pany has its own consumer-facing VR
and AR hardware.

Today, Oculus’ Rift headset and
Touch hand sensors retail for just under
$600. AR apps abound on smartphones.
Solutions like Sony’s PlayStation VR
and Samsung’s Gear VR headsets have
entered the market. More consumers—
and developers—are discovering the
power of VR and AR.

Except it’s no longer just for fun
and games; thanks to relatively cheap
and better technology, VR and AR are
poised to transform how we work.

VR and AR companies see the
technology as the natural evolution

C
O L L A B O R AT I O N I S I N . From
offices with open floor plans
to new apps that promise to
reinvent messaging and col-
laboration, companies find

it buzz-worthy and attractive to the
bottom line when their teams work
better together.

Need proof? Messaging app Slack
has a $3.8-billion valuation. In Janu-
ary, collaboration app Trello was sold
for $425 million to software company
Atlassian. Tech heavyweight Amazon
in February dropped Chime, a Skype
and GoToMeeting competitor, seeing
a potential profit center in the already
crowded collaboration market.

Yet in the next few years, none of
these companies may matter at all.
That is a bold claim, but one that will
come true sooner than anticipated if
champions of virtual reality (VR) and
augmented reality (AR) technology
have their way.

VR places users in a virtual world,
typically via a headset that immerses
them fully in a digital environment. AR,
however, lays digital visuals over what
you see in the real world. Neither is
new, but only recently have the technol-
ogies become affordable—and power-
ful enough—for adoption by consum-
ers and businesses, thanks to advanced
VR systems like the Oculus Rift.

The Rift headset immerses the user
in a digital world to a degree unseen in
the VR tech of the 1990s and early 2000s.
Oculus’ quality of VR was so impressive,
the company was bought by Facebook
for north of $2 billion in 2014.

At the other end of the spectrum,
simple but popular apps like the
smash-hit Pokemon Go put AR in the
hands of anyone with a smartphone. In
Pokemon Go, users hunt cartoon mon-

sters in the real world, walking around
their communities and interacting
with digital content laid over real im-
ages captured by their smartphone’s
camera. While the app does not match
Oculus’ degree of realism, it became
wildly popular nonetheless, break-
ing Apple’s App Store record for most
downloads in a week.

Facebook’s investment in Oculus
jolted companies into action, send-
ing a market signal that VR was here
to stay. Pokemon Go’s popularity
proved that users were comfortable
with—and even keen on—AR expe-
riences. Companies like Microsoft,
HTC, and Sony have acknowledged

Technology | DOI:10.1145/3105444	 Logan Kugler

Why Virtual Reality
Will Transform
a Workplace Near You
A clutch of companies are changing how work gets done—by using
virtual reality and augmented reality technologies.

Microsoft’s Hololens in use in a warehouse facility in The Netherlands.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=15&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3105444

16 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

news

far more effectively, changing how her
colleagues do their jobs and how her
company hires.

This becomes even more compelling
when the sensors and smart machinery
that comprise the Internet of Things
(IoT) enter the picture. The company’s
DottyView product works with Autodesk
CAD software to visualize assets in 3D,
along with live data from that equip-
ment or vehicle’s sensors. For instance,
a ship captain could view a 3D model
of his vessel complete with real-time
status reports on various components.
From there, problems could be diag-
nosed and solved from thousands of
miles away. In an industry like commer-
cial shipping, this reduces—or elimi-
nates completely—the need for costly,
time-consuming ship inspections that
take place in all types of weather and
conditions, including dangerous ones.

“These types of AR solutions allow
remote workers to coordinate in real
time on complex models and assess so-
lutions much quicker for field teams,”
says Shah.

Workers Without an Office
AR and VR in the workplace can be
life-changing, especially when your
workplace is a hospital tasked with
saving lives. Osso VR is a surgical
simulation platform that trains resi-
dents and helps veteran surgeons
warm up for procedures in a highly
realistic virtual environment.

“During my surgical training, I no-
ticed that healthcare providers mainly
learned their technical skills on the
job, often taking the expression ‘see
one, do one, teach one’ quite literally,”
says Justin Barad, cofounder of the
company and a board-certified ortho-
pedic surgeon. “This led to frequent
situations where teams didn’t seem to
be as proficient as they could be dur-
ing certain procedures because of a
lack of knowledge and experience.”

Users practice specific procedures us-
ing Osso VR and a set of controllers that
track hand movements. That speeds up
how surgeons go about their work.

“If I want to learn about a new tech-
nique or device, I typically will attend
a course,” explains Barad. “These are
usually weekend affairs in a remote
location, sometimes even across the
country. Finding the time to make it
to one of these courses is difficult as

of popular collaboration apps; in-
stead of desktop interfaces or ping-
ing phone apps, however, they envi-
sion a world in which we collaborate
with coworkers and peers in highly
realistic virtual or virtually augment-
ed environments—a more immer-
sive, versatile, and natural way to get
business done.

This is no pipe dream like the VR of
decades past. Thanks to the commer-
cial viability of popular systems and
apps, ambitious VR/AR products are
already changing how professionals
work, train, and cooperate. Company
reps use the technologies to better
train for customer-service interac-
tions and to troubleshoot issues fast-
er in real time using digital models.
Manufacturers rely on the technology
to better collaborate on the design
and maintenance of components,
and hospital systems employ VR and
AR to remotely train doctors faster,
less expensively, and more effectively.

This is just the beginning. Your
next meeting might take place in a VR
environment that makes it easier to
identify who’s speaking and how oth-
ers feel about your ideas (if Peter Dia-
mandis’ company High Fidelity, which
creates “open source software for cre-
ating, hosting, and exploring shared
VR experiences,” has its way). Entire
collaboration exercises or corporate re-
treats might be hosted in virtual envi-
ronments (courtesy of technology like
that offered by AltspaceVR, a virtual re-
ality software company building a new
communication platform already used
by people in more than 150 countries)
Training on everything from operating
equipment to combatting sexual ha-
rassment at work could become a lot
easier and more effective, thanks to VR
in the workplace.

“Phones will disappear,” predicts
Ajay Shah, cofounder and business de-
velopment head at Dotty Digital, maker
of the first collaborative environment
for working on three-dimensional (3D)
models over a Web browser, a system
which includes AR components. “Ev-
erything is moving to wearable tech
and everything will be viewed with AR,
so you can still capture your true en-
vironment. Everything will be synced
from voice commands and eye tracking
with potentially a watch for touch. The
tech already exists.”

That tech could make your work-
place very different from the one you
know today.

Real Business—Virtually
Dotty’s AR solutions work with smart-
glasses from ODG, which raised the
largest Series A (first significant round
of venture capital financing) in wear-
ables when it scored $58 million in
2016. Thanks to Dotty’s tech, users see
3D models projected on their lenses;
they can then collaborate digitally with
other users viewing the same model or
visuals, completely hands-free. Right
now, Dotty sees the biggest use cases
in retail, oil and gas, and manufactur-
ing workplaces.

Such technology can change how
retailers work and consumers shop.
As an example, the company’s 3D
scanning app could be used by a sun-
glasses retailer to scan customer faces
and digitally overlay different styles
of shades. That fundamentally alters
how service reps do their jobs; instead
of answering sizing or availability
questions, reps can provide higher-
level consultations that require more
training, but also increase the per-
ceived value of the product or service
they are selling.

Collaborative 3D models could
change how manufacturers work, too.
Instead of a field engineer constantly
traveling between locations, she could
troubleshoot machinery and refine
product designs in real time, in tan-
dem with colleagues back at the home
office, from anywhere in the world us-
ing Dotty’s collaborative AR environ-
ment. In turn, she could scale herself

Thanks to the
commercial viability
of popular systems
and apps, ambitious
VR/AR products are
already changing how
professionals work,
train, and cooperate.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 17

news

surgeons barely have enough time
outside of the hospital as it is.”

With a system like Osso VR, hospi-
tals and healthcare systems can ensure
these professionals are completely
prepared and confident before they
perform life-and-death procedures, re-
ducing the likelihood of mistakes and
improving outcomes—all with a frac-
tion of the time and hassle required by
in-person training.

Yet AR and VR in the workplace do
not need to save lives to improve them.
Atheer creates AR/VR hardware and
software solutions for deskless employ-
ees. The company’s AiR Suite provides
visual and non-interruptive collabora-
tion, communication, and workflow
management on commercially avail-
able smartglasses. The result? Work-
ers can collaborate with headquarters
without taking their hands, or eyes, off
the job in front of them.

The company also manufactures its
own smartglasses that are compatible
with the system, the AiR Glasses. Pow-
ered by the Android operating system,
the glasses connect to Wi-Fi, Bluetooth,
and 4G LTE for maximum access to
digital information in the field. Work-
ers control applications displayed on
the glasses using hand gestures, head
movements, and voice commands.

The company cites applications
in logistics/warehousing, construc-
tion, and industrial sectors as target
sectors for the technology. These in-
dustries share commonalities: field
workers who need to learn and com-
municate, but who may not have the
ability to use a mobile device or on-
site machine to do so.

Then, of course, there are the com-
panies who want to be the new Slack
(that is, a popular collaboration solu-
tion), but for VR.

Software from AltspaceVR gives
companies and individuals the abil-
ity to connect with others in a shared
digital environment. Using a VR head-
set like the Oculus Rift, HTC Vive, or
Samsung Gear VR, users can visually
brainstorm like they are in the same
room, or conduct more natural meet-
ings than otherwise possible through
video or voice conferencing.

VR company High Fidelity also has
a platform-first approach. The compa-
ny provides users with an open-source
system that works with major com-

mercial VR headsets, which allows
them to create highly scalable virtual
environments using common tools.

These virtual environments offer
real benefits to companies—especial-
ly as many firms implement remote
work policies.

“A good portion of our team is re-
mote and we’re already seeing VR be-
come useful as a productivity tool,”
says Barad at Osso VR. “We often have
our daily meetings in VR. This allows
us to function like we’re all in the same
physical space.

“I can see this supplanting video-
conferencing in the near future.”	

Further Reading

Myers, B.
Going to Work in VR Will Actually Be Pretty
Great—We Swear, WIRED, May 7, 2016,
https://www.wired.com/2016/05/going-
work-vr-will-actually-pretty-great-swear/

Lopez, M.
Augmented And Virtual Reality Fuel The
Future Workplace, Forbes, December
11, 2016, http://www.forbes.com/sites/
maribellopez/2016/11/11/augmented-
and-virtual-reality-fuel-the-future-
workplace/#68575e5c198e

McGhee, B.
How VR Will Change the Workplace,
AndroidPit, February 9, 2017, https://www.
androidpit.com/how-vr-will-change-the-
workplace

Logan Kugler is a freelance technology writer based in
Tampa, FL. He has written for over 60 major publications.

© 2017 ACM 0001-0782/17/08 $15.00

A ship captain could
view a 3D model
of his vessel with
real-time status
reports on
various components.
From there, problems
could be diagnosed
and solved
from thousands
of miles away.

ACM
Member
News
PURSUING ENERGY
EFFICIENT COMPUTING

“I am excited
about making
computing as
energy efficient
as possible,
which means
affordable and

accessible,” says Luca Benini,
professor of Digital Circuits and
Systems in the Department of
Information Technology and
Electrical Engineering at ETH
Zurich. “This is what my
research has focused on my
entire career: having energy
efficient computing at your
fingertips whenever you need
it—at a minimal cost and with
high availability.”

Benini earned his
undergraduate degree in
electrical engineering from
the Università di Bologna, and
received both his master’s and
Ph.D. degrees in that discipline
from Stanford University.

Watching people at Stanford
learn about things and then
bring them into being struck a
chord with Benini. “Science is
not only learning, but making
things practical and changing
peoples’ lives,” he explains.
“This was an attribute I first saw
at Stanford and it changed my
approach to problems and made
me excited by what I was doing.”

After graduating from
Stanford, Benini started
working at Hewlett Packard.
Within a year, he had received
an offer from his alma mater to
become a professor of electrical
engineering, which he accepted.
While there, he also served
as a visiting professor, first at
Stanford and then at EFPL in
Switzerland.

Benini has also worked as a
consultant for industry.

He joined ETH Zurich in 2012.
“I wanted to move from abstract
research into making chips,
which what I have been doing the
past four years,” he says.

Benini’s focus remains
on making computation
increasingly energy efficient.

—John Delaney

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.wired.com%2F2016%2F05%2Fgoing-work-vr-will-actually-pretty-great-swear%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.androidpit.com%2Fhow-vr-will-change-the-workplace
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.wired.com%2F2016%2F05%2Fgoing-work-vr-will-actually-pretty-great-swear%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.forbes.com%2Fsites%2Fmaribellopez%2F2016%2F11%2F11%2Faugmented-and-virtual-reality-fuel-the-future-workplace%2F%2368575e5c198e
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.androidpit.com%2Fhow-vr-will-change-the-workplace
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.androidpit.com%2Fhow-vr-will-change-the-workplace

18 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

news

H
E

A
D

S
E

T
 I

M
A

G
E

 B
Y

 D
A

C
I

A
N

 G
;

H
A

L
 9

0
0

0
 I

M
A

G
E

 B
Y

 C
R

Y
T

E
R

I
A

/C
C

-B
Y

-3
.0

For example, according to George,
“80% of the calls an airline receives to
change a ticket do not result in the tick-
et changing,” because the person may
not efficiently be made aware of all of
the terms and conditions involved,
such as change fees or scheduling is-
sues. The AI system can quickly pro-
vide this pertinent and relevant infor-
mation to the caller, without engaging
the services of a live agent. “By using
bots, customer call volume can be re-
duced [significantly].”

Indeed, AI is being used by customer
contact centers as a contextual knowl-
edge management system. “Some of
the work we do is around specifically
making sure that customers and con-
tact center agents have the right in-
formation in real time,” George says,
which allows them to serve customers
with the information they need imme-
diately, eliminating the need to esca-
late an issue to a specialist or manager.

Astute Solutions also uses machine
learning to track the behavior of its
agents, so the system can learn the most
appropriate responses to questions, for
use in its automated bots and to train
other agents. The company using the
system can specify thresholds for what
constitutes a successful behavior—such
as requiring that 80% of agents must
recommend a specific course of action
in order for the system to recognize that
action as the “ideal” response, and can
set the appropriate learning period, re-
viewing interactions over the past day,
week, month, or other time frame.

Multi-Channel Support
Artificial intelligence can do more than
simply recognize patterns in call center
interactions. Andrew Burgess, a stra-
tegic advisor at Celaton, a U.K.-based
provider of machine learning technol-
ogy to contact centers, says that when
deployed correctly, AI can provide en-
hanced service across a variety of plat-
forms, which is how today’s customers
demand to engage with companies.

C
USTOM E R CONTACT CENTERS

are most efficient when they
are able to automate routine
tasks and quickly route call-
ers to human agents who can

solve issues in a timely and courteous
fashion. In years past, rules-based de-
cision matrices (such as “press 1 for
sales, press 2 for technical support”)
were the de facto standard for “intel-
ligent” customer service systems, and
often left customers frustrated and an-
gry by the time they reached a live hu-
man being.

Advances in artificial intelligence
are yielding significant benefits for or-
ganizations that deploy the technology
in their call centers. Indeed, rather than
simply being used to replace contact
center workers, artificial intelligence
(AI)-based technologies, including ma-
chine learning, natural language pro-
cessing, and even sentiment analysis,
are being strategically deployed to im-
prove the overall customer experience
by providing functionality that would
be too time-consuming or expensive to
do manually.

“It’s a lot more prevalent than peo-
ple think,” explains Justin Robbins,
content director for the International
Customer Management Institute and
HDI. He cites the example of cross-
language email support that is made
more seamless by the integration of
natural language processing.

“You may be speaking German, but
when it comes to me as an agent, I read
it in English that is fully contextual, and
when I reply in English, thanks to natu-
ral language processing, it is returned
to you in German, and it’s back in your
natural language, in context,” Robbins
says, discussing the technology that
is currently available and deployed in
some international contact centers via
their text-based chat applications. “To
the customer, it has no impact on your
experience, but we as agents, it now al-
lows me to help you without the frus-
tration of language barriers.”

Adoption Driven by
Customer Expectations
Perhaps the biggest driver of AI in cus-
tomer contact centers is the consumer
acceptance of AI technology in devices
such as Apple’s Siri, Amazon’s Alexa,
and Google’s Home Assistant, which
have conditioned consumers to be able
to ask a question in a conversational,
natural tone, and have the answer re-
turned to them quickly. That has con-
ditioned consumers to demand the
same level of interaction when dealing
with the customer care division of the
companies and brands with which they
interact on a regular basis.

“There’s a set of evolutions in con-
sumer behavior,” says Alex George,
chief technology officer of Astute So-
lutions, a provider of call center tech-
nology to businesses such as McDon-
ald’s Corp., British Airways, L’Oreal,
and Dunkin’ Donuts. “We see that
people are trying to achieve more in
short conversations.”

Astute Solutions uses artificial in-
telligence technology in a few distinct
ways. The company uses AI “bots” to
handle routine tasks by utilizing natu-
ral language processing to interpret
what customers are asking, search the
business knowledge base system for
an answer, and then interpreting this
raw data into an intelligent, human-
friendly response.

Society | DOI:10.1145/3105442 	 Keith Kirkpatrick

AI in Contact Centers
Artificial intelligence technologies are being deployed
to improve the customer service experience.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3105442

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 19

news

For example, Celaton’s inSTREAM
platform allows many routine informa-
tion requests, which often come in via
email, to be automatically handled by
an intelligent ‘bot’ that assesses the
nature of the request, and then routes
the query to the proper second-level
live agent, rather than relying on costly
front-line service agents.

“The best example we have at the mo-
ment is with one of our clients, a train
operating company,” Burgess says. “A
lot of people email them, and they may
be complimenting, complaining, or
querying something. For example, the
customer could be emailing in because
they were on the 8:56 from London to
Manchester and the Wi-Fi was out.”

Burgess highlights the power of ma-
chine learning and natural language
processing to quickly process front-end
requests, which often make up a signifi-
cant amount of call volume and labor
costs. “inSTREAM essentially reads that
email, understands what the customer
is asking, and then will categorize that
email and send it to the right person in
the organization,” he says.

“It’s really taking that front-end in-
put, understanding what the problem
is, and then finding the best person to
[handle] it,” Burgess says. The technol-
ogy has “reduced the requirement for
labor by 85% on that task.”

AI technologies such as machine
learning can also be used to help cus-
tomer service agents in their real-time
phone interactions with customers.
One of the ways AI has been used is to
monitor and analyze speech patterns
and inflections of callers, as well as re-
viewing specific words, to determine
when an interaction may be in danger
of escalating. Indeed, “sentiment anal-
ysis,” where a system will detect chang-
es in tone, speech patterns, or volume,
can often be useful not only in address-
ing a situation in real time that needs
to be escalated to a manager, it can also
be used as a training aid so agents can
learn to better recognize signs of stress
or anger during an interaction. It can
also suggest ways for an agent to re-
duce the stress level of a conversation.

Challenges with AI
Despite the ability of AI to improve cus-
tomer experiences, many call centers
and organizations have not yet adopted
the technology.

“Cost is the upfront issue,” Robbins
says, noting the initial implementation
of new technology can be a barrier for an
organization that has already made sub-
stantial investments into existing tech-
nology and agents. However, “the hid-
den one, which [companies that want to
deploy AI-based customer service] don’t
realize until they start talking to people,
is the work and effort that’s required to
program on the back end. That’s the
other thing about analytics and AI—it’s
not fine-tuned out of the box.”

The sheer number of possible phras-
es, words, and interactions does make
it more challenging to automate the
customer service experience, though
with machine learning technology that
can review thousands or millions of in-
teractions, organizations can tailor re-
sponses based on its learnings.

“The other area where inSTREAM
has additional capability is it will sug-
gest possible answers,” Burgess says,
noting that Celaton’s machine learn-
ing technology can review thousands
of possible answers to a particular
question, and then filter and return
three or four choices that best address
the question.

“It makes the whole process much
more efficient,” Burgess says. “It’s
the ability to extract meaningful,
structured data from unstructured
input,” like text or email messages
sent by customers.

Nevertheless, ICMI’s Robbins
notes most of the systems currently

available—even those that feature
some degree of machine learning—
still require a significant amount of
training and programming to incor-
porate organization-specific terminol-
ogy and processes. Even similar types
of companies may not use the same
words or phrases to refer to similar
tasks, and it’s up to the organization
to customize the system for their
needs, which can be a costly and time-
consuming process.

 “When [customer service] is done
well, you still need live agents,” Robbins
says, noting that customer service fea-
tures far more variability than other in-
dustries that have been successfully auto-
mated, such as automobile production.

“With production, to make a car it’s
the same process, the parts all need to
come out the same, and programming
the machines is always the same,”
Robbins says. “With this industry, hu-
mans aren’t the same—they’re highly
volatile. The programming for [contact
centers] varies; the language isn’t al-
ways logical. That’s where it gets more
complicated.”

That said, researchers are still en-
couraged by the progress being made
in this area, and expect advances to
continue.

“The amazing pace of technical in-
novation in the speech-to-text and text
analysis area has lured researchers
from diverse areas to work in fun and
productive teams,” says Mei Kobayashi,
manager, Data Science/Text Analysis,
for NTT Communications, formerly of
IBM Research Japan. “There has never
been a more exciting time to be work-
ing in this area.”	

Further Reading

White Paper: How are Artificial Intelligence
& Virtual Assistance Changing
the Contact Center?:
https://www.callcentrehelper.com/report.
php?id=185

Let’s Chat: 4 Limitations of Automated Agents
in the Contact Center:
http://www.bitpipe.com/detail/
RES/1483926562_479.html

Video-IPSoft’s Amelia:
https://www.youtube.com/
watch?v=KgSw8ckG7Jo

Keith Kirkpatrick is principal of 4K Research &
Consulting, LLC, based in Lynbrook, NY.

© 2017 ACM 0001-0782/17/08 $15.00

One issue slowing
the proliferation
of AI in customer
contact centers
is “the work and
effort that’s required
to program on
the back end ...
it’s not fine-tuned out
of the box.”

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fwww.callcentrehelper.com%2Freport.php%3Fid%3D185
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fwww.bitpipe.com%2Fdetail%2FRES%2F1483926562_479.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fwww.bitpipe.com%2Fdetail%2FRES%2F1483926562_479.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKgSw8ckG7Jo
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fwww.callcentrehelper.com%2Freport.php%3Fid%3D185
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKgSw8ckG7Jo

20 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 21

news
P

H
O

T
O

G
R

A
P

H
 B

Y
 R

I
C

H
A

R
D

 M
O

R
G

E
N

S
T

E
I

N

Charles P. ‘Chuck’ Thacker:
1943–2017

In Memoriam | DOI:10.1145/3107180 	 Lawrence M. Fisher

ceive the 2009 ACM A.M. Turing Award
“for the pioneering design and realiza-
tion of the first modern personal com-
puter—the Alto at Xerox PARC—and
seminal inventions and contributions
to local area networks (including the
Ethernet), multiprocessor worksta-
tions, snooping cache coherence pro-
tocols, and tablet personal computers.”

In an interview in the July 2010 issue
of Communications, Thacker said, “I can
lurk at a lot of different levels. I have de-
signed chips, I can design logic, I can
design systems, and I can write software
up to and including user interfaces.” He
said his work on Ethernet at PARC, and
on Firefly and fault-tolerant networks at
DEC, “have a common thread, which is
they are part of a distributed system—
they don’t stand in isolation.” The Alto,
he recalled, was a “nice” single-user
machine, but its “real power” was un-
leashed by networking.

Thacker said the “secrets for his de-
cades of continual success” included:
strive for simplicity, build a kit of reus-
able tools, insist on sound specifica-
tions, think broadly, and make sure
your collaborators also succeed.

In 2010, ACM then-president Wen-
dy Hall said Thacker’s “contributions
have earned him a reputation as one
of the most distinguished computer
systems engineers in the history of the
field. His enduring achievements—
from his initial innovations on the PC
to his leadership in hardware develop-
ment of the multiprocessor worksta-
tion to his role in developing the tab-
let PC—have profoundly affected the
course of modern computing.”

Communications editor-in-chief An-
drew A. Chien observed, “Chuck not
only made seminal contributions to
computer architecture, but was a tre-
mendous inspiration to the computer
systems community through the beau-
tiful simplicity of his designs and gen-
erous mentoring of young researchers
and new ideas.”	

—Lawrence M. Fisher

M
I C R O S O F T R E S E A R C H E R

Ch a r l e s P. T h a c k e r ,
awarded the 2009 ACM
A.M. Turing Award in rec-
ognition of his pioneer-

ing design and realization of the first
modern personal computer, and for his
contributions to Ethernet and the tablet
computer, died Monday, June 12, at the
age of 74, after a brief illness.

Thacker, born in Pasadena, CA, on
Feb. 26, 1943, earned his bachelor of
science degree in physics from the
University of California, Berkeley (UC
Berkeley) in 1967.

In 1968, Thacker joined UC Berkeley’s
“Project Genie” to finance a graduate
degree in physics. Instead, he recalled,
“I went to work for this computer project,”
which the Berkeley Time-sharing System,
commercialized by Scientific Data
Systems as the SDS 940.

Thacker joined Butler Lampson (re-
cipient of the 1992 ACM A.M. Turing
Award) and others to launch the startup
Berkeley Computer Corporation (BCC).
While BCC was not successful, this
group became the core technologists
of the Computer Systems Laboratory at
Xerox Palo Alto Research Center (PARC).

Thacker spent the 1970s and 1980s
at PARC. There, he led the project that
developed the Xerox Alto personal com-
puter system, the first computer de-
signed from the ground up to support
an operating system based on a graphi-
cal user interface. The hardware of the
Alto was designed mostly by Thacker,
with Lampson developing its software.

He also is credited as co-inventor
(along with Robert Metcalfe, David
Boggs, and Lampson) of the Ethernet
family of networking technologies, de-
veloped at PARC between 1973 and 1974.

In 1983, Thacker was part of the
group of computer scientists led by
Robert Taylor (manager of PARC’s Com-
puter Science Laboratory) that left PARC
to found the Systems Research Center
(SRC) of Digital Equipment Corp. (DEC).
During his tenure there, Thacker devel-

oped Firefly, one of the first multiproces-
sor workstation systems.

In 1997, he joined Microsoft Re-
search, where he helped establish Mi-
crosoft Research Cambridge at Eng-
land’s University of Cambridge.

Returning to the U.S., Thacker de-
signed the hardware for Microsoft’s Tab-
let PC, based on PARC’s “interim Dyna-
book” (which was never built), and the
Lectrice, a pen-based hand-held com-
puter prototype developed at DEC SRC.

In 1984, Thacker, Lampson, and
Taylor received the ACM Software Sys-
tems Award “for conceiving and guid-
ing the development of the Xerox Alto
System, which clearly demonstrates
that a distributed personal computer
system could provide a desirable and
practical alternative to time-sharing.”
They also were named ACM Fellows in
1994 in recognition of that work.

In 2004, the National Academy of
Engineering awarded Thacker, along
with Alan C. Kay, Lampson, and Taylor,
its Charles Stark Draper Prize “for
the vision, conception, and develop-
ment of the first practical networked
personal computers.”

In 2007, Thacker was awarded the
IEEE John von Neumann Medal for his
“central role in the creation of the per-
sonal computer and the development of
networked computer systems.”

In 2010, ACM chose Thacker to re-

“I have designed
chips, I can design
logic, I can design
systems, and I can
write software up to
and including user
interfaces.”

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3107180

22 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

V
viewpoints

had a good journey. But quite aside
from being a socially graceful exercise,
the questions also produced some
interesting responses. These range
from F.C Williams’ typically terse and
somewhat cheeky ‘no-comment’ re-
sponse, “I’m not really interested in
computers. I mean it’s just no good
asking me a question like that. I made
one, and I thought one out of one
was a good score so I didn’t make any
more”b to Allen Coombs’ much more
loquacious 1,500-word response.

It is fair to say that predicting the
future with any degree of accuracy is
a tricky business. For my own part, my
recent track record leads me to agree
with Jane Austen’s Emma, who opines
“I begin to doubt my having any such
talent.”c

As part of my work I lead a research
team that has a very successful track
record in being awarded research
grants from the European Commis-
sion, and others. This funding is
critical for keeping together our in-

b	 All the quotations from the Pioneers record-
ings are drawn from my own transcriptions.

c	 Austen, J. Emma, Chapter XI.

I
N THE 1970S, Chris Evans, a psy-
chologist and computer scien-
tist on the staff of the National
Physical Laboratory, Tedding-
ton, observed that many of the

first-generation pioneers of modern
computing; the people who can rea-
sonably be crediting with laying the
foundations of the digital age, were still
with us. Chris conceived the idea that
these people should be interviewed,
and their recollections of the projects
they led, the people they worked with,
and the genesis of their ideas should be
recorded for future generations. Tragi-
cally, aged only 48, Chris succumbed to
cancer before he was able to complete
the interview series he planned. Further
interviews were carried out by Brian
Randell, Simon Lavington, and others,
but without intending any disservice to
their sterling efforts, the conversations
featuring Chris demonstrated standard
of professionalism and ease within the
milieu that really sets them apart.

The Evans interviews were released
by the Science Museum, London,a as

a	 Published by Computer Capacity Manage-
ment Limited Reading and Hugo Informatics.

a set of 20 audio recordings under
the title “The Pioneers of Comput-
ing.” Almost 20 years ago, I became
closely involved with the “Pioneers”
series, transcribing, documenting,
and annotating the interviews in col-
laboration with the Science Museum.
One of the signature features of Chris
Evans’ interviewing technique was to
conclude most of his recorded con-
versations with a couple of questions
broadly concerned with prognostica-
tion. The first was to ask the interview-
ee to consider their state of mind at
the time they were undertaking their
pioneering work, and to say how they
would have expected computing to
have developed up to the present day
(that is, the mid-1970s).

The second signature question
of the Evans interviews encouraged
the pioneers to look forward 10 or 20
years and indicate how they expected
computing to progress into the 1990s.
These questions have always struck
me as being a good way to close out a
somewhat technical conversation in
a relaxing and informal way; more or
less the complement of opening an
interview by asking if the interviewee

Historical Reflections
Prophets, Seers,
and Pioneers
Reflections on historical prognostications for the future.

DOI:10.1145/3108926	 David P. Anderson

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3108926

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 23

viewpoints

V
I

M
A

G
E

 B
Y

 T
O

N
I

 V
/S

H
U

T
T

E
R

S
T

O
C

K

we’re going to have to make comput-
ing facilities available everywhere.”

Arthur W. Burks, senior engineer
on the ENIAC, drew a distinction be-
tween engineering and theory: “Well,
we need to divide computing science
into the computers proper and the
theory of computers. I think for com-
puters it is clear that they become
cheaper and faster and that the revo-
lution of computers in terms of how
they interact with us and that the uses
that we make of them will continue
apace at least for the next 10 years. I
think the theory of computers has de-
veloped much more slowly and I am
not sure when there will be important
breakthroughs in the theory of com-
puters.”

Konrad Zuse, the prodigious Ger-
man computer pioneer contrasted
the development of hardware and
software, but also wanted to sound a
cautionary note: “When I was a pio-
neer in the field and my colleagues
were working in the two fields and
translating one and another. Today,
you have specialists for hardware and
specialists for storage techniques,
specialists for languages, specialists

ternational team of experts, and for
recruiting new talent. The work that
it supports keeps us embedded in the
leading research in our field and sup-
ports international research collabo-
ration on a reasonably large scale. For
these reasons, it is important to have a
keep a close eye on any broadly ‘politi-
cal’ developments that might affect
us, as well as paying attention to pure
research matters. More than one year
ago, as I considered how the Brexit
vote would turn out, I was certain the
result would be close, but I was very
confident that the voters would, in the
end, decide that continued member-
ship of the EU was the wisest course
of action. Areas of the country that
benefitted most from regional and
other support would surely realize
where their interests were best served.
Things would go on pretty much as
they were. Having learned little from
the experience of getting wrong a crit-
ically important prediction on mat-
ters where I am very well informed, I
turned my attention to the 2016 U.S.
Presidential election. It turns out that
being relatively ignorant did nothing
to improve my crystal-ball gazing.

One of the themes that emerged
from the responses given to Chris Ev-
ans by the Pioneers, concerned an ex-
pectation that the costs of computing
would fall. Another concerned com-
munications infrastructure.

John M.M. Pinkerton, one of the
leading figures involved with the
LEO computer hit the nail fairly well
on the head in saying: “Well a great
many things are going to happen but
the major influences I think are these:
that first of all the cost of processing
and the cost of storage is continuing
to fall, it’s fallen a lot in the last 10
years and it’s continuing to fall and as
far as I can see its going to go on fall-
ing. But what doesn’t fall is the cost of
communications, and also the cost of
using people doesn’t fall, it tends to
go up. The result of this is there won’t
be anything like the obsession there
has been with the efficient use of pro-
cessing or storage but there will be
concern over the costs of communica-
tions. Not only that, there will be a de-
sire for everybody to have direct per-
sonal access to computing potential
and because data arises everywhere
and because people are everywhere

24 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

come right down. So that, high band-
width shouldn’t cost very much. This
is all extrapolating and glossing over
all the political and organizational
problems. With regard to semicon-
ductor technology it’s not quite so
clear but I think one could say that
there’s probably a factor of at least
two and perhaps as much as 10 avail-
able in the speed, power bandwidth,
and so on. Derived from things like
iron implantation and so forth so
that there’s quite a lot to be gained
but perhaps not as … not quite so
much as in communications. Again,
in storage—the technology is proba-
bly tied rather closely to that of semi-
conductors. So, in general you can
say there will be cheaper machines,
slightly faster machines and almost
unlimited communications.”

Harold L. Hazen, who contributed
significantly to the theory of servo-
mechanisms and feedback control
systems, was somewhat diffident ob-
serving: “I have been so far away from
active participation in these things
that, and I never was a great specula-
tor. For large extrapolations, one sees
sizes going down, the limits of almost
microns of element size seem not too
much further compressible. Reliabili-
ty is at an impressive level now, proba-
bly will go up. See, what is it? Cost per
unit of computation has been halving
every two or three years or something
of that sort, I don’t remember the ex-
act figure. It seems that such series
must become asymptotic somewhere,
where that will be I’m not sure! But ex-
trapolation for me or imagining what
lies ahead would have to be based on
the rather plebian and earthy process
of simply extrapolating what’s hap-
pened the last 10 years . When is the

for theoretical, informatic and so
on ... today we have a breakdown of
the prices of the integrated circuits
and the first consequence is that you
can have very cheap and very small
computers and this will go on. That
means that processing units will be-
come relatively cheap, I think in one
or two years you will have already
the machine like the Z3, I made in
1941, which to that time took a whole
room, where you can put in the pock-
et. And this development will go on
and I am not quite sure that the …
hardware engineers and the software
engineers, will work good enough to-
gether to take all the consequences
of this development. And, I can’t say
exactly how the computers will look
in 10 years or 20 years, but the devel-
opment is not just finished not at all.
We are in the full development now
and the consequences of these new
techniques will be that intelligence
will get cheaper and cheaper. I don’t
think this is good. There is surely …
there is some danger in this.”

John V. Atanasoff remarked with
great modesty: “I don’t think I’m
very wise. I think we see the main at-
tributes of computers during the
next years. They will become smaller,
they will require less electricity. Once
speaking about computers, I felt as if I
should say something good to the peo-
ple that were before me, and I said one
thing you can say about computers is
they will give great benefits without
great losses of energy and I think this
will one of the facets of new comput-
ers, the energy of which they use at the
present time is of no consequence.”

Donald W. Davies, developer of the
notion of packet switching, opined:
“To do this you first have to do some
extrapolation of the technology, you
need to know how far that’s going
to go and to examine, for example,
how much steam there is left in semi-
conductor development, store devel-
opment, communications develop-
ment. We could start, perhaps, with
communications. Here the digit rates
that are available on long lines in
this country can be multiplied by fac-
tors of thousands with the technol-
ogy which is almost available now. In
other words, there’s really no limit to
the digit rates available and therefore
the cost per digit could, in principle,

XRDS

Association for
Computing Machinery

A Manifest for

Digital Fabrication

Soft Printing with Fabric

Fabrication Lends a Hand

Digital

Fabrication

Cros
sroa

ds T
he ACM Magazine for Students

SPRING 2016 VOL .22 • N
O.3

XRDS.ACM.ORG

XRDSXRDS

A Manifest for

Digital Fabrication

Soft Printing with Fabric

Fabrication Lends a Hand

Fabrication

XRDS.ACM.ORG

XRDS
SUMMER 2016 VOL .22 • N

O.4

Cros
sroa

ds T
he ACM Magazine for Students

The Center and The Periphery:

Beyond Eurocentrism

Designing Locally,

Cannibalizing Globally

Jian Guan on Design and

Innovation in China

Cultures of

Computing

XRDS
Cros

sroa
ds T

he ACM Magazine for Students

Prospects for the

Internet of Things

Global Synchronization

and the Challenges of

Building Network Awareness

The

Internet

of Things

Cros
sroa

ds T
he ACM Magazine for Students

W IN T ER 201 5 VOL .22 • N
O.2

XRDS.ACM.ORG

XRDS

A Manifest for

Digital Fabrication

Soft Printing with Fabric

Fabrication Lends a Hand

Digital

Fabrication
Digital

Fabrication
Digital

Cros
sroa

ds T
he ACM Magazine for Students

XRDSXRDS

A Manifest for

Digital Fabrication

Soft Printing with Fabric

Fabrication Lends a Hand

Fabrication

W IN T ER 201 5 VOL .22 • N
O.2

XRDS.ACM.ORG

XRDSXRDS

XRDS.ACM.ORG

FA L L 201 5 VOL .22 • N
O.1

Cros
sroa

ds T
he ACM Magazine for Students

Seeks Student
Volunteers
Are you a student who
enjoys staying up to
date with the latest
tech innovations, and is
looking to make an impact
on the ACM community?

Editorial positions
are now open.

For more information
and to apply visit:
http://xrds.acm.org/
volunteer.cfm

It is fair to say
that predicting
the future with any
degree of accuracy
is a tricky business.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=24&exitLink=http%3A%2F%2FXRDS.ACM.ORG
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=24&exitLink=http%3A%2F%2FXRDS.ACM.ORG
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fxrds.acm.org%2Fvolunteer.cfm
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fxrds.acm.org%2Fvolunteer.cfm

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 25

viewpoints

advance perhaps in electronic com-
puters will be to go to ultra-parallel
computers in my opinion, like the
brain. I see that as the biggest poten-
tial advance in computers apart from
the possibilities of programming
reaching intelligent machinery.”

Donald Michie responded that:
“The theme which I see coming to the
fore is the transfer of systematized
human knowledge, for example from
books where most of it now is, but in-
cluding in the brains of experts, into
computing systems. Not just as look-
up systems but in the form of opera-
tional knowledge which the comput-
ing systems can utilize to perform
skilled tasks of interest to particular
professional specialists. Now once that
process gets under way it is inherently
a tear away process, it’s a bootstrap-
ping process, because then you have
machine intelligence systems which
are able assistants, not only in organic
Chemistry, or astronomy or whatever
branch of science a particular scien-
tist’s assistant program has been engi-
neered for, but don’t forget that there
is one other branch of science namely
machine intelligence and that branch
will also acquire powerful and teach-
able and self-adaptable research assis-
tants and that is the beginning of a tear
away process. And I would say myself
that sometime between 1980 and 1985,
I would expect it to spread through the
science community, the realization for
good or otherwise that this tear away
process has now started.”

Perhaps the most remarkable thing
about these various attempts to look
into the future, is the very great extent
to which all of the people who ven-
tured an opinion got nearly everything
right. We live in a time when provable
falsehoods are presented as ‘alterna-
tive facts’ and expertise is routinely
disparaged. In that context, I find the
modestly expressed prescience of the
pioneers who laid the foundations of
the digital age both encouraging and
uplifting. These voices from the past,
captured by Chris Evans, give me re-
newed hope for the future. 	

David P. Anderson (cdpa@btinternet.com) is Professor
of Digital Humanities at the Centre for Research &
Development (Arts)/Cultural Informatics Research Group,
University of Brighton, U.K.

Copyright held by author.

software going to be the limitation
rather than the hardware? I just don’t
know.”

Ralph J. Slutz, who worked in the
IAS and SEAC computers, looked for-
ward to increasing miniaturization,
and networking: “What I see in the
very near future is a growth of more
small computers, say associated with
individual engineering work or labo-
ratory work such as that which really
are stand-alone computers and can
work by themselves perhaps in real
time with a laboratory experiment but
which, when the need occurs, comes
around for something bigger than
they customarily can handle, can be
connected to a big central computer
utility. In a sense, I sort of refer to it
at the present time as the invisible
computer network because 99% of the
time it wouldn’t exist but then you dial
up on a telephone line or high speed
line to your computer utility and get
the advantage of large facilities.”

There were a number of pioneers
like Freddie Williams, who, perhaps
sharing my own lack of confidence in
their ability to see clearly into an un-
certain future, were reluctant to say
much.

Herman H. Goldstine, for example,
responded: “I don’t think I would even
try that. Every time I’ve watched that
kind of thing, I’ve seen how terribly
badly the seers have missed the boat.
For example, it was only a decade ago,
I think, that people … everybody was
saying that the terminal was going to
be “the answer to a maiden’s prayer.”
It turns out now, I think that people
want small computers which are more
or less stand-alone with some capacity
to be connected up to a big computer
and I don’t know what it will be in a
decade. I just wouldn’t guess.”

John W. Mauchly was similarly re-
luctant: “This is sort of like writing sci-
ence fiction. Science fiction and the
comic strips like Buck Rogers try to be
way ahead of the actuality but really,
we don’t see much further than the
end of our nose. And human beings
usually extrapolate from what they
now know, don’t really predict any-
thing that is so remarkable and I am
afraid I have that same limitation. “

The theme of the likely emergence
of learning computers and A.I., was
taken up by British Pioneers who had

worked with Alan Turing at Bletchley
Park, and elsewhere.

Allen W.M. Coombs, in a very full
response remarked: “Well, now I
think the future of the computer lies
in this. With large-scale integration
we are going to be able to do this on
a much bigger scale, it’s getting big-
ger all the time … bigger and bigger in
numbers and smaller and smaller in
bulk, we can get closer and closer to
a brain which can learn. I think prob-
ably that the next stage of the comput-
er is to be large scale learning of re-
ally difficult and complicated things.
Not just shapes, which are rather
simple, but more difficult things. It
is said that there are several stages of
learning machine. There is the adap-
tive machine which can be changed
… modified, that is the learning ma-
chine which really means an adaptive
machine with a human teacher and
there is the self-organizing machine,
which is a machine which can … which
is adaptive and can learn but doesn’t
need a human to tell it what to learn, it
finds out for itself. Every child in this
sense is a self-organizing system. And
the next stage of computer technology
is to make self-organizing systems.
That is something that hasn’t been
done yet. A lot of people have got ideas
but there is a chance of doing it now
that we have got large scale integra-
tion available to us and getting more
and more understanding of what goes
on in a brain when it learns things.”

I.J. (Jack) Good thought that: “The
main development will probably be
in software I think, in machine intel-
ligence work. But the main potential

I find the modestly
expressed prescience
of the pioneers who
laid the foundations
of the digital age
both encouraging
and uplifting.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=25&exitLink=mailto%3Acdpa%40btinternet.com

26 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

V
viewpoints

P
H

O
T

O
 B

Y
 P

H
I

L
 R

O
E

D
E

R
/F

L
I

C
K

R

interested in learning CS.b Among par-
ents, 91% wanted their children to learn
CS, with 84% indicating CS is at least
as important as required subjects like
math, science, history, and English and
24% indicating CS is more important
than these required subjects. Approxi-
mately 60% of educators agreed that CS
should be required if available. In fact,

b	 Students indicated whether they were “very,”
“somewhat,” or “not at all” interested. The
full research report from which this column
was developed is available at http://atg.co/
cseduresearch.

T
H E I N C R E A S I N G F O C U S on
K–12 computer science (CS)
education in the last few years
has been driven by two key
factors: producing enough

computing professionals to support
the workforce and drive innovation,
and ensuring that this workforce is
sufficiently diverse to represent all
perspectives. However, the diversity
gap persists. Stereotypes and educa-
tor biases start young, as early as
preschool.1–3 One way Google is con-
tributing to CS education efforts is
through new research that identifies
structural and social barriers, as well
as strategies to overcome them.

This column presents insights de-
rived from the Google-Gallup national
research. With CS education relatively
young in the K–12 space, our multi-
year study sought to understand the
context of K–12 CS education. Over
two years, we surveyed about 16,000
nationally representative students,
parents, teachers, principals, and su-
perintendents across the U.S. in the
fall/winter of both 2014–2015 and
2015–2016. Students, parents, and
teachers were surveyed via telephone
while principals and superintendents
were surveyed online via an email in-
vitation. We also designed the study
with a focus on diversity—particularly
girls, Blacks/African Americans, and
Hispanics/Latinx. We wanted to un-
cover any structural barriers as well
as social perceptions and biases that
may be affecting these groups.

We found that overall, there was
large demand and interest in CSa edu-
cation among students, parents, and
educators. Specifically, 82% of students
were at least somewhat interested in
learning CS, with Black and Hispanic
students 1.5 and 1.7 times as likely as
white students, respectively, to be very

a	 The survey provided a definition of CS and re-
minded respondents multiple times through-
out: “Computer science involves using pro-
gramming/coding to create more advanced
artifacts, such as software, apps, games, web-
sites and electronics, and computer science is
not equivalent to general computer use.”

DOI:10.1145/3108928	 Jennifer Wang

Education
Is the U.S. Education System
Ready for CS for All?
Insights from a recent Google-Gallup national research
study seeking to better understand the context of K–12 CS education.

Members of an Iowa elementary school coding club demonstrate projects during a May 2017
campaign promoting more computer science education.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3108928
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Fatg.co%2Fcseduresearch
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Fatg.co%2Fcseduresearch

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 27

viewpoints

V
viewpoints

lower-income parents and teachers
at schools with greater proportions of
students receiving free-/reduced-lunch
were more likely to value CS learning.

Despite this high demand from
parents, our study revealed structural
barriers at school and at home. Even
though our study found an increase
in the percentage of K–12 principals
reporting their schools offer CS with
programming/coding—from 25% in
2014–2015 to 40% in 2015–2016—we
saw persistent disparities in who had
access to and who had learned CS.
Black students reported significantly
less access to classes with CS com-
pared to white students (47% vs. 58%).
Also, lower-income students were less
likely to report access to CS learning
opportunities in general. Hispanic and
Black students reported less exposure
to computers at school and at home
compared to white students (30% of
Black and 26% of Hispanic vs. 45% of
white students reported using comput-
ers every day at home; 34% of Black and
31% of Hispanic vs. 42% of white stu-
dents reported using computers every
day at school), and Hispanic students
were less likely to indicate they knew
someone who worked in tech (49% of
Hispanic students vs. 68% of white and
65% of Black students). Girls were less
likely to say they had learned CS (50%
of girls vs. 59% of boys), while boys
were more likely to say they learned
CS on their own (of students who have
learned CS, 54% of boys vs. 41% of girls).

Interestingly, we also found that
regardless of race/ethnicity or gender,
80% of students who have learned CS
said that they learned CS in a class at
school, about twice the rate of any
other means of learning, including on
their own, through afterschool clubs,
online, or in any other program outside
of school. This data strongly suggests
formal education remains the best way
to ensure widespread and equitable ac-
cess to CS learning.

Yet, we found schools faced many
barriers to offering CS classes. We asked
principals and superintendents why
they did not offer CS in their schools
and districts. The most commonly cited
barriers had to do with lack of qualified
teachers and competing demands of
standardized test preparation. Lack of
qualified teachers was cited by 63% of
principals and 74% of superintendents.

Not enough funding to train teachers
was cited by 55% of principals and 57%
of superintendents. The need to devote
time to testing requirements was cited
by 50% of principals and 55% of super-
intendents. This indicates computing
professionals can play an important
role in expanding access to CS by sup-
porting organizations that train teach-
ers and by providing mentoring and re-
sources to teachers and students.

Despite the high demand and interest
among parents, nearly half of adminis-
trators (principals and superintendents)
cited a lack of demand from parents as a
barrier to offering CS. In fact, less than
8% of administrators believed parent
demand was high and less than 30% of
educators agreed that CS was a top pri-
ority at their school or district. We found
that even though 91% of parents wanted
their child to learn CS, less than 29% of
parents reported they have expressed
support for CS to their schools. This lack
of direct parent engagement indicates
that parents feel unprepared or unable
to effectively advocate with school ad-
ministrators on behalf of their children.

Finally, we also identified social bar-
riers in CS education. Not surprisingly,
students and parents see media images
of those who practice CS as mostly male,
white, and wearing glasses. And these
perceptions expanded beyond media to
beliefs among students, parents, and
educators. The belief that you need to be
“smart” prevailed—49% of students and
57% of parents reported that “people
who do CS need to be very smart” while
62% of teachers and 56% of principals
agreed that students good at math and
science are more likely to succeed in

These findings point
to proactive ways
that computing
professionals
(both industry and
academic) can
support and advocate
for CS education.

Calendar
of Events
August 7–11
SIGIR ‘17: The 40th International
ACM SIGIR Conference on
Research and Development in
Information Retrieval
Shinjuku, Tokyo, Japan,
Sponsored: ACM SIG,
Contact: Hiroaki Ohshima,
Email: ohshima@ai.u-hyogo.
ac.jp

August 11–13
SIGDOC ‘17: The 35th ACM
International Conference on the
Design of Communication
Halifax, NS, Canada,
Sponsored: ACM SIG,
Contact: Rebekka Andersen,
Email: randersen@ucdavis.edu

August 13–17
KDD ‘17: The 23rd ACM SIGKDD
International Conference on
Knowledge Discovery and Data
Mining
Halifax, NS, Canada,
Co-Sponsored: ACM SIG,
Contact: Stanislaw J. Matwin,
Email: stan@site.uottawa.ca

August 17–21
ICER ‘17: International
Computing Education Research
Conference
Tacoma, WA,
Sponsored: ACM SIG,
Contact: Donald Chinn,
Email: dchinn@u.washington.
edu

August 21–25
SIGCOMM ‘17: ACM SIGCOMM
2017 Conference
Los Angeles, CA,
Sponsored: ACM SIG,
Contact: K.K. Ramakrishnan,
Email: kk@cs.ucr.edu

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Aohshima%40ai.u-hyogo.ac.jp
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Arandersen%40ucdavis.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Astan%40site.uottawa.ca
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Akk%40cs.ucr.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Aohshima%40ai.u-hyogo.ac.jp
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Adchinn%40u.washington.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=27&exitLink=mailto%3Adchinn%40u.washington.edu

28 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

learning CS. Gendered stereotypes also
persisted, with 74% of students, 64% of
parents, and 63% of teachers indicat-
ing that boys are more interested in CS
than girls and 44% of students, 37% of
parents, and 36% of teachers saying that
boys are more likely to succeed in learn-
ing CS compared to girls.

The stereotypes played out in who
is and is not encouraged—only 26%
and 27% of girls reported being told by
a teacher or parent, respectively, that
they would be good at CS compared to
39% and 46% of boys. Girls were also
less likely to see role models in the me-
dia, with 31% of those who see CS in the
media saying they never see someone
“like me” engaged in CS, nearly twice
the rate of boys. In a previous study,4 we
found that encouragement was the big-
gest factor influencing whether girls
intended to pursue CS or not. In fact,
our Google-Gallup study found that
girls not only had lower confidence
in learning CS (48% of girls vs. 65% of
boys were very confident they could
learn CS), they were also less likely to
be aware of CS learning opportunities
outside of classes at school and were
less likely to learn CS at all (50% of girls
vs. 59% of boys). Anyone can help chal-
lenge these stereotypes by promoting
broader perceptions of those who en-
gage in CS and building more inclusive
environments in computing.

While we see large support for CS
education among students, parents,
and educators, many barriers stand in
the way. What can ACM members do?
Education is a deeply rooted system,
so solutions need to tackle these chal-
lenges from both the bottom up and
the top down and through structural
and social modes.

Our Google-Gallup research uncov-
ered a number of persistent barriers
that hamper the education system’s
readiness of CS for All students, and
these findings point to proactive
ways that computing professionals
(both industry and academic) can
support and advocate for CS educa-
tion. To tackle structural barriers and
increase access, companies and com-
puting professionals can speak up
and advocate for CS in their commu-
nities and local schools to amplify stu-
dents’ and parents’ interest and value
of CS learning. From the top down lev-
el, they can call state legislators and ask

for support for CS in their state — for
example, share state data (see https://
goo.gl/EjiVFp), Google’s policy advo-
cacy brief (see https://goo.gl/gzVOlf)
and resources on code.org/promote
(see https://code.org/promote).

However, increasing access alone
will not enable all students to learn
CS; we need to also remove social bar-
riers. To ameliorate social challenges
and enable diverse students to take
advantage of available opportunities,
computing professionals can spend
time with teachers and students, par-
ticularly those who would otherwise
not engage in CS. They can also avoid
unintentionally supporting stereo-
types with comments about who and
what is nerdy or geeky. Rather, it is
important to emphasize computing
as advancing a variety of industries,
from healthcare to agriculture to the
arts, as well as the diversity of back-
grounds of the people who practice
computing. As influential adults, we
can each do the small gesture of en-
couraging students no matter where
they come from or who they are, and
supporting them through positive,
inclusive environments.

This is only the beginning of the jour-
ney. Increasing access to CS learning is
an early needed step, but without indi-
vidual and societal support to remove
social barriers, the diversity gap will per-
sist in our education system. Comput-
ing professionals can play an essential
and active role in making CS accessible
for all students. They can advocate with
school leaders and help empower and
enable young people. Each of us has the
power to help build and strengthen the
computing field by encouraging and
welcoming all K–12 students.	

References
1.	 Bian, L., Leslie, S.J., and Cimpian, A. Gender

stereotypes about intellectual ability emerge early
and influence children’s interests. Science 355 6323,
(2017), 389–391.

2.	 Cvencek, D., Meltzoff, A.N., and Greenwald, A.G. Math–
gender stereotypes in elementary school children.
Child Development 82, 3 (2011), 766–779.

3.	 Gilliam, W.S. et al. Do Early Educators’ Implicit
Biases Regarding Sex and Race Relate to Behavior
Expectations and Recommendations of Preschool
Expulsions and Suspensions? Yale Child Study Center
(Sept. 2016), 991–1013.

4.	 Google Inc. Women Who Choose Computer Science—
What Really Matters. 2014; https://goo.gl/rLX6ax.

Jennifer Wang (jennifertwang@google.com) is the
Research Program Manager on Google’s Computer
Science Education Team.

Copyright held by author.

C
O
M
M
U
N
IC
A
T
IO
N
S
A
P
P
S

Available for iPad,
iPhone, and Android

Available for iOS,
Android, and Windows

http://cacm.acm.org/
about-communications/
mobile-apps

Access the

latest issue,

past issues,

BLOG@CACM,

News, and

more.

Available for iPad,

Available for iOS,

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fgoo.gl%2FEjiVFp
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fgoo.gl%2FgzVOlf
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcode.org%2Fpromote
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fcode.org%2Fpromote
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fgoo.gl%2FrLX6ax
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=mailto%3Ajennifertwang%40google.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcacm.acm.org%2Fabout-communications%2Fmobile-apps
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fgoo.gl%2FEjiVFp
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcacm.acm.org%2Fabout-communications%2Fmobile-apps
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Fcacm.acm.org%2Fabout-communications%2Fmobile-apps

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 29

V
viewpoints

I
M

A
G

E
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

ing the values you asked for. Every time
you ask the system for some stats, it
has to do work to get those stats, and
the system doesn’t account for your re-
quest separately from any other work it
has to do. If your monitoring system is
banging away at the server asking for
data every minute, then what you will
see in your monitoring system is the
load that the system itself is generat-
ing. Such Heisen-monitoring, where
your monitoring system is overwhelm-
ingly affecting the measurements, is
completely pointless.

In a monitoring system, there is al-
ways the tension between too much
and too little information. When you’re
debugging a problem, you always wish
you had more data, but when your sys-
tem is running normally, you want
it to do the work for which it was de-
ployed. Unless you enjoy just pushing
monitoring systems—and, yes, there

Dear KV,
The company I work for rolled out a
new monitoring system one weekend,
and it didn’t go as well as we would
have liked. When we first brought up
the monitoring system, several of our
servers started to show very high CPU
load. Initially, we could not figure out
why. The monitoring processes on each
server were very busy, so we turned off
the monitoring system and the serv-
ers got less busy. Eventually, we real-
ized it was the number of polls being
issued by the monitoring system that
was causing the servers to use so much
CPU time. We decreased the polling
frequency to every 10 minutes, and this
seemed to be the sweet spot for sys-
tem performance. What I would like to
know is how one should go about tun-
ing such systems, as it seems still to be
done via trial and error.

Polled Too Frequently

Dear Polled,
Trial and error? The problem here is
usually a failure to appreciate just what
you are asking a system to do when
polling it for information. Modern sys-
tems contain thousands—sometimes
tens of thousands—of values that can
be measured and recorded. Blindly re-
trieving whatever it is that might be ex-
posed by the system is bad enough, but
asking for it with a high-frequency poll
is much worse for several reasons.

The first reason is the one that you
bring up in your letter: the amount of
overhead introduced by simply ask-
ing for the data. Whenever you ask
the system for its configuration state,
whether that’s a routing table or the

state of various sysctls (system con-
trol variables), the system has to pause
other work to provide a consistent
picture of what’s going on. KV knows
that in recent years the idea of consis-
tency has been downplayed in favor of
performance—in particular, by vari-
ous database projects. In the systems
world, however, we still think that con-
sistency is a good thing™ and therefore
the system will try either to snapshot
the data you request or to pause other
work while the data is read out. If you
ask for a few thousand items, and a
random sysctl -a shows 9,000+ ele-
ments on a server I am using, then that
is going to take time—not forever but
not nothing, either.

The second reason that polling for
data frequently is a problem is that
it actually hides the information you
might be looking for in the noise gen-
erated by retrieving and communicat-

Kode Vicious
The Observer Effect
Finding the balance between zero and maximum.

DOI:10.1145/3108930	 George V. Neville-Neil

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3108930
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=29&exitLink=http%3A%2F%2FSHUTTERSTOCK.COM

30 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

system to find bugs!” I hear the DevO-
ps folks cry. And cry they will, because
sorting through all that data to find the
needle in the noise will definitely not
make them happier or give them the
ability to find the bug.

What is needed in any monitoring
system is the ability to increase or re-
duce the level of polling and data col-
lection as system needs dictate. If you
are actively debugging a system, then
you probably want to turn the volume
of data up to 11, but if the system is
running well, you can dial the vol-
ume back down to 4 or 5. The volume
can be thought of as the polling fre-
quency times the amount of data be-
ing captured. Perhaps you want more
frequent polling but less data per re-
quest, or perhaps you want more data
for a broader picture but polled less
frequently. These are the horizontal
and vertical adjustments you should be
able to make to your system at runtime.
A one-size-fits-all monitoring system
fits no one well. The fear, of course,
is that by not having the volume at 11
you will miss something important—
and that is a valid fear—but unless the
whole reason for your existence is to
capture all events at all times, you will
have to find the right balance between
0 and maximum volume.

KV

 Related articles
 on queue.acm.org

Scaling in Games and Virtual Worlds
January 02, 2009
http://queue.acm.org/detail.cfm?id=1483105

Kode Vicious Bugs Out
Tackling the uncertainties of heisenbugs
http://queue.acm.org/detail.cfm?id=1127862

A Conversation with Bruce Lindsay
Designing for failure may be the key to
success.
http://queue.acm.org/detail.cfm?id=1036486

Software Needs Seatbelts and Airbags
Emery D. Berger

Finding and fixing bugs in deployed
software is difficult and time-consuming.
Here are some alternatives.
http://queue.acm.org/detail.cfm?id=2333133

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and co-chair of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

is definitely a handle for those people
somewhere on social media—you need
to find the Goldilocks zone for your
monitoring system. To find that zone,
you must first know what you’re ask-
ing for. Figure out which commands
the monitoring system is going to ex-
ecute on your servers, and then run
them individually in a test environ-
ment and measure the resources they
require. You care about runtime, which
can be found to a coarse level with the
time(1) command. Here is an ex-
ample from the server just mentioned.

time sysctl -a > /dev/null
sysctl -a > /dev/null 0.02s
user 0.24s system 98% cpu
0.256 total

Here, grabbing all of the system’s
various system-control variables takes
about a quarter of a second of CPU time,
most of which is system overhead—that
is, time spent in the operating system
getting the information you requested.
The time(1) command can be used on
any utility or program you choose.

Now that you have a rough guess
as to the amount of CPU time that the
request might take, you need to know
how much data you’re talking about.
Using a program that counts charac-
ters, such as wc(1), will give you an
idea of how much data you’re going to
be gathering and moving off the sys-
tem for each polling request.

sysctl -a | wc -c
378844

You would be grabbing more than
a quarter of a megabyte of data here,
which in today’s world isn’t much, but
it still averages out to 6,314 bytes per
second if you poll every minute; and, in
reality, the instantaneous rate is much
higher, causing a 3Mbps blip on the
network every time you request those
values.

Of course, no one in his or her right
mind would just blindly dump all the
sysctl values from the kernel every
minute—you would be much more nu-
anced in asking for data. KV has seen
a lot of unsubtle things in his time, in-
cluding monitoring systems that were
set up to do just this sort of ridiculous
level of monitoring. “We don’t want to
lose any events; we need a transparent

Students and faculty
can take advantage of
ACM’s Distinguished
Speakers Program
to invite renowned
thought leaders in
academia, industry
and government
to deliver compelling
and insightful talks
on the most important
topics in computing
and IT today.
ACM covers the cost
of transportation
for the speaker
to travel to your event.

Distinguished
Speakers Program

http://dsp.acm.org

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1483105
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1127862
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1036486
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D2333133
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=mailto%3Akv%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Fdsp.acm.org

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 31

V
viewpoints

P
H

O
T

O
 B

Y
 T

O
B

I
N

 F
R

I
C

K
E

/F
L

I
C

K
R

next big step will come from technolo-
gies outside the framework of silicon
hardware and binary logic. Quantum
computing is now being developed on
an international scale, with active re-
search and use from Google and NASA
as well as numerous universities and
national laboratories, and a proposed
€1 billion quantum technologies flag-
ship from the European Commission.
Biological computing is also being de-
veloped, from data encoding and pro-

T
E CHN OLOGY CHANG ES SCI-

E N CE . In 2016, the scientific
community thrilled to news
that the LIGO collaboration
had detected gravitational

waves for the first time. LIGO is the
latest in a long line of revolutionary
technologies in astronomy, from the
ability to ‘see’ the universe from radio
waves to gamma rays, or from detect-
ing cosmic rays and neutrinos (the
Laser Interferometer Gravitational-
Wave Observatory—LIGO—is an NSF-
supported collaborative effort by the
U.S National Science Foundation and
is operated by Caltech and MIT). Each
time a new technology is deployed,
it can open up a new window on the
cosmos, and major new theoretical de-
velopments can follow rapidly. These,
in turn, can inform future technolo-
gies. This interplay of technological
and fundamental theoretical advance
is replicated across all the natural sci-
ences—which include, we argue, com-
puter science. Some early computing
models were developed as abstract
models of existing physical computing
systems. Most famously, for the Turing
Machine these were human ‘comput-
ers’ performing calculations. Now, as
novel computing devices—from quan-
tum computers to DNA processors,
and even vast networks of human ‘so-
cial machines’—reach a critical stage
of development, they reveal how com-
puting technologies can drive the ex-
pansion of theoretical tools and mod-
els of computing. With all due respect

to Dijkstra, we argue that computer
science is as much about computers as
astronomy is about telescopes.

Non-standard and unconventional
computing technologies have come to
prominence as Moore’s Law, that pre-
viously relentless increase in comput-
ing power, runs out. While techniques
such as multicore and parallel pro-
cessing allow for some gains without
further increase of transistor density,
there is a growing consensus that the

Viewpoint
The Natural Science
of Computing
As unconventional computing comes of age, we believe
a revolution is needed in our view of computer science.

DOI:10.1145/3107924	 Dominic Horsman, Vivien Kendon, and Susan Stepney

Image of the Laser Interferometer Gravitational-Wave Observatory 40m beam tube.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3107924

32 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

mented in the physical device itself.
Neural nets, for example, can be mod-
eled using real-valued activation func-
tions, and arguments have been made
that these networks are in actuality
computing those real values to arbi-
trary precision, and hence far outper-
forming the capabilities of standard
computers. In practice, however, such
purely abstract infinite real-valued pre-
cision is completely outside the physi-
cal capabilities of the device: it can nei-
ther be observed, nor exploited.

Computing theory should not be
imposed top-down without taking
into account the physical theory of the
device: computer science is not math-
ematics. The computing ability of the
system is not always identical with the
computing capability of the physical
device theory: computer science is not
physics. What is it, then? We believe
that it has features of both, consisting
in the complex interplay of mathemat-
ics and physical theory through a cru-
cial relation: representation.

Understanding computers can be
seen as the key to understanding com-
puter science. A computer crosses
the boundary between the abstract
domain of logic/computation, and
the physical realm of semiconductors
or quantum ions or biological mol-
ecules; and it does so in a way that
we can precisely characterize. Con-
sider part (a) of the the figure here, in
which a ‘compute cycle’ starts with an
abstract problem, such as adding two
numbers, or finding prime factors, or
calculating a shortest path. Usually ex-
pressed in some high-level language,
this is then encoded into the comput-
er’s native language. This encoding is
still in essence an abstract process: the
description of the computation has
been transformed from one language
to another. Now the actual computer is
brought in, and the native language in-
put is instantiated in the target physi-
cal device. The device is configured,
and the physical processes of com-
puting initialized. Then the computer
runs, as a physical process with a physi-
cal output in the final state of the com-
puter. To find the output of the com-
putation, we ask to what abstract state
the physical one corresponds: which
state of the program is represented by
the physical state of the computer?
This is then (abstractly) decoded from

cessing in DNA molecules, to neuro-
silicon hybrid devices and bio-inspired
neural networks, to harnessing the
behavior of slime molds. The huge ad-
vance of the internet has enabled ‘so-
cial machines’—Galaxy Zoo, protein
FoldIt, Wikipedia, innumerable citizen
science tools—all working by network-
ing humans and computers, to perform
computations not accessible on cur-
rent silicon-based technology alone.

What all these devices, from the
speculative to the everyday, share
is that they currently lie beyond the
reach of conventional computer sci-
ence. Standard silicon-based technol-
ogy is built on a toolkit of theoretical
models and techniques, from lambda
calculi through to programming, com-
pilation, and verification. These tools
seem to be largely inaccessible to the
new technologies. How do you pro-
gram a slime mold? What is the assem-
bly language of protein folding? How
do you compile for a human in a social
machine? New technologies may be
one or more of stochastic, continuous
time, continuous space, sloppy, asyn-
chronous, temperature dependent,
sub-symbolic, evolving systems, with
computationally complex encodings
and decodings, and one shot construc-
tion-and-execution.

Without the ability to define and
characterize how and when comput-
ing is happening in these systems, and
then to import or develop the full suite
of theoretical tools of computer sci-
ence, we claim that the information-
processing capabilities of these devices
will remain underexploited. We believe
we need an extended computer sci-
ence that will enable us to treat these
systems with theoretical and practical
rigor to unlock their potential, and also
to enable us to combine them with ex-
isting technology to make scalable and
hybrid devices.

Computer science has histori-
cally been conceived and developed
around abstract Turing Machines and
equivalent calculi. This discrete, sym-
bolic logical, deterministic underly-
ing model is realized equivalently, but
differently, in one specific technology,
the von Neumann stored program ar-
chitecture. This technology has proved
so successful, and is now so ubiqui-
tous, that other models of computing
have tended to be ignored; one ex-

ample is Shannon’s largely forgotten
GPAC computational model, based on
the technology of differential analys-
ers. As a consequence of using only a
single model, standard approaches to
computing abstract away the physical
implementation, leaving a theoretical
computer science that is frequently
viewed as a branch of mathematics,
rather than as a physical science that is
expressed in mathematical language.
With little connection to actual physi-
cal devices, this theoretical framework
can be at a loss when faced with non-
standard computing systems. Often
the response is to impose top-down
a standard bit-and-logic-gate frame-
work, in the belief that this is the way
to compute. The delicate systems in
a quantum computer, for instance,
can be forced to act like standard bits
obeying classical logic. However, these
devices gain their real power when
allowed to act as natively ‘quantum
bits,’ or qubits, with their own quan-
tum logic gates. It is as inefficient (or
simply impossible) to impose the stan-
dard computing framework on many
nonstandard systems as it would be to
use a sophisticated optical telescope
to detect cosmic neutrinos. We do not
believe that we can unlock the true
potential of unconventional systems
by forcing them into the mold of stan-
dard computing models.

While traditionally computer sci-
ence tends to view itself as a branch
of mathematics, the field of uncon-
ventional computing has tended to go
too far the other way, seeing comput-
ing merely as an outgrowth of physics,
or chemistry, or biology. Arguments
around computing power often over-
focus on the physical theory of the
device, rather than what can be imple-

It is inefficient
(or simply impossible)
to impose the
standard computing
framework on many
nonstandard systems.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 33

viewpoints

modeled, gives the abstract specifi-
cation to be instantiated; this engi-
neering in turn requires a sufficiently
good scientific understanding of the
system’s properties. Not all abstract
systems that can be imagined denote
something in the physical world (“the
present king of France”), or can be
physically instantiated (faster-than-
light travel).

Just like a telescope, a computer is
a highly engineered device. LIGO went
through many years of testing of its
various components before scientists
were happy that it would function as a
gravitational wave detector. With the
tests complete, it can now be used as
a telescope to observe the universe in
terms of those ripples. Similarly, com-
puters require engineering before they
can be used for computation: we need
to be confident that their physical be-
havior parallels that of the abstract
program so that the device can be used
to predict its outcome (there can be en-
gineering bugs in hardware). Comput-
ers start with computer science: with
experiments on novel substrates and
with new ways of performing comput-
ing. Only once that cycle is complete,
and we know enough about how the
system behaves, can a new device be en-
gineered to instantiate a computation.

What does AR theory mean for our
understanding of computer science?
We claim that we now have a way to
understand that computational logic
arises from the physical structure of
a potential computing substrate, and
that it may vary widely across different
classes of substrate. Computer science,
in addition to its theoretical compo-
nent, covers both the experimentation

the abstracted output to a language to
answer the original problem. The com-
puter has output the solution.

If a computer is a good one, and
running without errors, the aim of the
compute cycle is to parallel the physi-
cal and abstract behaviours. The solu-
tion is an abstract answer to an abstract
question; were it possible to “run” the
program entirely abstractly, then the
solution could be found without in-
cluding any physical device in the cy-
cle, be that an engineered computer, or
a pencil-and-paper based human emu-
lation. Computers are used as a physi-
cal proxy for this abstract mapping.
A good computer is engineered such
that the result of letting the physical
dynamics run will parallel the abstract
behavior of the program. A computer is
a device that manipulates the physical
instantiation of abstract concepts, in
order to solve problems. It is not iden-
tical with a computation: computation
is abstract, a computer is physical, and
they relate through (nontrivial) repre-
sentation and instantiation.

This centrality of representation
is the core of a new formalism devel-
oped by the authors: Abstraction/Rep-
resentation Theory (AR theory). With
diagrams such as part (a) of the figure
here, and an associated algebraic-like
structure, AR theory is a toolkit for
the foundations of computer science,
and beyond. The complex interplay
of mathematics, physical theory, and
representation is not confined to the
field of computing. It also drives the
mechanism of experimental testing of
abstract theories throughout the natu-
ral sciences. We can, for instance, give
a diagram for the relation between as-

tronomy and telescopes, with crucial
similarities and differences to com-
puting. Part (b) of the figure shows
how theory and experiment relate in
the LIGO experiment. Again abstract
and physical are parallel, but now the
process of running the experiment
starts with the physical apparatus,
rather than with an encoding of an ab-
stract computational problem. There
is an abstract representation of the ap-
paratus in the theory of gravitational
waves: that it can detect them. Also in
the abstract realm there is a theoreti-
cal prediction for how the apparatus
will behave if such waves indeed exist.
If the experiment is successful, as with
LIGO, then the theory and the abstract
interpretation of the physical outcome
coincide up to some error margin ε. If
a theory is sufficiently good, the physi-
cal system can be removed altogether:
abstract theory can be used to predict
physical behavior.

Looking at these two diagrams, we
uncover a deep truth. Just as a math-
ematical theory allows us to predict
physical behavior, in a computer the
physical behavior of a device is used
to ‘predict’ the result of an abstract
computation. Computing and natural
science are fundamentally linked; the
link is technology. Notice the direction
of the arrows of representation in the
two diagrams. In an experiment, they
go only one way, upward: this is the
representation of physical systems by
an abstract model. In computing there
is another type of relation: instantia-
tion of abstract theory in physical sys-
tems. Instantiation is more complex
than modelling, and requires engineer-
ing to construct a system that, when

Computers and telescopes: The interplay of abstract theory/programming and physical devices in (a) computing and (b) physical sciences
(given here by the LIGO experiment).

Problem

input

computer
initial state

computer
final state

LIGO
initial state

LIGO
final state

Abstract

Physical

Abstract

Physical

(a) (b)

Solution

output
theoretical

model
gravity wave

detected

encode

instantiate

device
runs

experiment
runs

theoretical
prediction

represent represent represent

decode

34 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

viewpoints

ology—and even, with the interactions
of social machines, for networks of
human beings. We believe this could
be of immediate practical importance
to scientists in those areas, enabling
them to describe high-level function-
ing of complex systems, and to find
new and unforeseen connections be-
tween disparate systems and scenari-
os. These process languages could be
as revolutionary for the physical sci-
ences as for computer science.

Computers have come a long way
since the days of valves and punched
cards. Now computer science itself is
branching off in new directions with
the development of unconventional
computing technologies. As the do-
main of computer science grows, as
one computational model no longer
fits all, its true nature is being revealed.
Just like astronomy, computer science
could describe physical systems in ab-
stract language with predictive power,
and thereby drive forward the dual in-
terplay of technology and theoretical
advancement. New computers could
inform new computational theories,
and those theories could then help us
understand the physical world around
us. Such a computer science would in-
deed be a natural science.	

Further Reading

Copeland, J. et al. Time to reinspect the
foundations? Commun. ACM 59, 11 (Nov.
2016), 34–36.

Horsman, C. et al. When does a physical
system compute? In Proceedings of the
Royal Society of London, 470:20140182,
2014.

Horsman, D.C. Abstraction/Representation
Theory for heterotic physical computing.
In Philosophical Transactions of the Royal
Society, 373:20140224, 2015.

Horsman, D.C. Abstraction and
representation in living organisms: When
does a biological system compute? In G.
Dodig-Crnkovic and R. Giovagnoli, Eds.
Representation and Reality in Humans,
Animals, and Machines. Springer, 2017.

Dominic Horsman (dominic.horsman@durham.ac.uk) is
a Postdoctoral Research Associate at the University of
Durham, U.K.

Vivien Kendon (viv.kendon@durham.ac.uk) is a Reader in
the Department of Physics at the University of Durham, U.K.

Susan Stepney (susan.stepney@york.ac.uk) is Professor
of Computer Science in the Department of Computer
Science, University of York, U.K.

Copyright held by authors.

and engineering phases of computing,
as well as the eventual use in deploy-
ment as a computer. This understand-
ing tells us to use an experimental and
engineering process when developing
new formal models and methods of
computer sciences for our new devices,
paralleling the process of developing
new models and instruments to tackle
new phenomena in rest of the natural
sciences. A computational logic for
a system arises, but we then abstract
away from the specific device to a for-
mal model of it. Programming these
new devices is then a matter of look-
ing for a natural internal process logic
of the system, as opposed to forcing a
one-size-fits-all model of computation
onto some candidate computing sys-
tem. Rather than looking to impose
top-down the machinery of standard
logic gates, we should look at the natu-
ral behaviour of the system and what
‘gates’ or subroutines or problem-solv-
ing it is intrinsically good at. By extract-
ing an intrinsic computational logic of
their physical components we can har-
ness the true potential of unconven-
tional computers.

Using our physical understanding
of a substrate to inform a computa-
tional logic does not mean that such
a logic is the only one possible. Just
as a quantum computer can run as ei-
ther quantum or classical, other non-
standard systems may be capable of
supporting multiple computational
models. This again is found through-
out the natural sciences: for example,
in physics a particular system might
be modelled as a continuous fluid, or
as a collection of discrete particles.
With different potential computa-
tional representations of a system un-
der investigation, the key is to extract
out the ones that do something useful
and novel and better than other sub-
strates—and then use that computa-
tional theory to engineer our next gen-
eration of computers.

We can then go further. With an ab-
stract computational language that de-
scribes the native operation of uncon-
ventional devices, we would then have
a logical language in which to describe
the physical systems themselves, even
outside a specifically computational
device. Computer science could then
provide high-level logical process lan-
guages for physics, chemistry, and bi-

ACM
Journal on

Computing and
Cultural
Heritage

◆ ◆ ◆ ◆ ◆

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

◆ ◆ ◆ ◆ ◆

www.acm.org/jocch
www.acm.org/subscribe

CACM_JOCCH_one-third_page_vertical:Layout 1 7/30/09 5:50 PM Page 1

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fwww.acm.org%2Fjocch
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fwww.acm.org%2Fsubscribe
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=34&exitLink=mailto%3Adominic.horsman%40durham.ac.uk
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=34&exitLink=mailto%3Aviv.kendon%40durham.ac.uk
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=34&exitLink=mailto%3Asusan.stepney%40york.ac.uk

A personal walk down the computer industry road.
BY AN EYEWITNESS.

Smarter Than Their Machines: Oral Histories of the Pioneers of Interactive Computing
is based on oral histories archived at the Charles Babbage Institute, University of Minnesota.
Included are the oral histories of some key pioneers of the computer industry selected by John
Cullinane that led to interactive computing, such as Richard Bloch, Gene Amdahl, Herbert W.
Robinson, Sam Wyly, J.C.R. Licklider, Ivan Sutherland, Larry Roberts, Robert Kahn, Marvin
Minsky, Michael Dertouzos, and Joseph Traub, as well as his own.

These oral histories contain important messages for our leaders of today, at all levels, including
that government, industry, and academia can accomplish great things when working together
in an effective way.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Facm

36 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

MODERN WORD PROCESSORS, like Microsoft Word
OneDrive, SharePoint, and Google Docs, allow people
to work on the same document at the same time. While
systems that allow simultaneous writing have been
demonstrated in research labs for some time, only
relatively recently have such systems been available
commercially for widespread use. Google Docs, for
example, enables people to be at the same place in the
document while adding, deleting, and moving text at
will. Google Docs is very popular (for example, there
are over 60 million users of Google Apps for Education
worldwide and two million businesses use Google
Apps for Work) and many people see the simultaneous
writing feature as a great asset.

For example, when we analyzed in de-
tail the writing patterns of undergradu-
ate students enrolled in an advanced
university course on project manage-
ment, 95% of the documents exhibited
simultaneous writing. Three documents
were only written simultaneously.9

We, the four co-authors of this article,
have experienced numerous sessions
where simultaneous writing created no-
table benefits. Given that we can work si-
multaneously now, how can we harness
that capability to make the work more
efficient? What can you do with simul-
taneous writing? When might you not
want to write simultaneously?

To answer these questions, we col-
lected our stories, grouped them, and
noted patterns across them. Each of the
stories is told with the voice of one of the
authors except the last, which is co-writ-
ten by all four of us because it reflects
how we wrote this article. Subsequently,
we note the similarities and differences
among our stories, and with “plural uni-
ty” created the scheme of six patterns
and two epiphenomena. We believe the
stories will serve as an inspiration to
readers to work in new, beneficial ways.

Google Docs is relatively new and al-
though some of our stories refer to the
use of Docs, a number of the stories in-
volve research prototypes or early com-
mercial systems, some going as far back
as the 1980s. Before we get to the stories,
we first provide brief descriptions of the
characteristics of each of these systems,
listed in order of creation.

The Systems We Refer To
IDE, for Instructional Design Environ-
ment,10 was a tool to create instruc-
tional content by helping designers or-
ganize and create materials rapidly. IDE
was built on top of the Notecards hyper-
media system.5,6 IDE featured “cards”
with different kinds of links between
sections of text. While IDE was not
originally intended as a multi-person
collaborative system, people quickly re-
alized they could partition work among
a number of writers and get things done
more quickly by working on different
cards simultaneously. When someone

Now That We
Can Write
Simultaneously,
How Do
We Use That to
Our Advantage?

DOI:10.1145/2983527

Word processors now make it possible for
many authors to work on the same document
concurrently. But what can they actually do?

BY RICARDO OLENEWA, GARY M. OLSON,
JUDITH S. OLSON, AND DANIEL M. RUSSELL

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=36&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F2983527

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 37

I
M

A
G

E
 C

O
M

P
O

S
I

T
I

O
N

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
,

U
S

I
N

G
 S

H
U

T
T

E
R

S
T

O
C

K

was working on a card, it was locked to
the others. While this is technically not
the kind of simultaneous editing that
other tools have, the story where this
was used for parallel simultaneous edit-
ing has some valuable lessons.

ShrEdit was a collaborative writing
tool built in 1990.7,8 A shared document
was hosted on a server and individu-
als accessed it from client machines on
the same local network. The architec-
ture allowed multiple people to write in
the same document at the same time.
ShrEdit had “selection locking,” mean-
ing that one could write simultaneously
within one character of one another.

Aspects was a commercial product
available in the 1990s.4 Like ShrEdit,
people could edit at the same time
within one character of each other.
Whereas ShrEdit supported only text,
Aspects supported spreadsheets, draw-
ings, and presentations in addition to
text, similar to Google Apps but run-

ning on a local network and only avail-
able for Macintoshes.

Centra Symposium was a commer-
cial system that allowed for audio and
video conferencing as well as sharing of
an object, like a document or a presen-
tation. One could allow others to edit
the shared object.

Google Docs is a commercial, multi-
user, shared document editing system
provided by Google beginning in 2006.
Docs lets multiple people edit a docu-
ment simultaneously, view the revision
history of the document, and share the
doc with specific people or broadly on
the open internet.

The Power of Simultaneous Writing
We now move to telling our stories
about how the power of simultaneous
writing creates significantly more pro-
ductive work settings. The stories that
follow are grouped into five categories:

˲˲ Writing large documents (Stories 1–3)

˲˲ Writing short documents for class
assignments (Story 4)

˲˲ Displaying and collaboratively cre-
ating meeting minutes (Stories 5–6)

˲˲ Teaching through shared docu-
ments (Story 7)

˲˲ Writing this document. (Story 8)
Story 1: Doc Build-It using Google

Docs, told by Ricardo. To be useful to oth-
ers, software needs to be documented.
Many times software needs to be rewrit-
ten from scratch because the original
could not be found or once found, could
not be understood. Unfortunately, many
software developers hate to document.
Although technical writers, like me, can
do the job, there are too few of us, and
the process of understanding a technol-
ogy and writing appropriate documenta-
tion can take years. Consequently, only
core technologies get documented.

To solve this problem, I developed
a documentation method called the
Doc Build-It. A Doc Build-It is a single-

38 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

linear, book-like output, incorporating
diagrams and text from each node.

Every Monday, we would meet to
review the work done during the pre-
ceding week. The team discussed and
resolved any overarching issues, and
clarified interactions between sec-
tions. Since each author could work
more-or-less independently (except
when they had to edit a node together
sitting side-by-side), issues could be re-
solved fairly easily. The most common
issues the team needed to resolve were
questions about style, tone, language,
and the framing of concepts.

Before each weekly meeting, we
would print the graph of all the work
done-to-date and post it on the wall
for the entire group to see. This poster
showed the week-by-week work done
by each team member and the links be-
tween sections and various subparts.
Not only was the graph useful for see-
ing where issues might arise, but it
was also a powerful motivator for other
team members to keep up.

During any single week, the authors
could work independently in parallel,
writing their nodes and creating any
substructures as needed. When they
discovered new prerequisites, they
were responsible for creating those ex-
plicit links between the nodes as nec-
essary. Of course, other authors could
create new prerequisite links into their
territory as well. For the cross-links,
authors sometimes chose to work to-
gether side-by-side synchronously with
one acting as scribe to the discussion.

After eight weeks, the project was
completed—all the chapters had com-
plete text, and all the cross-section pre-
requisite issues had been solved. The
printout resulted in a 220-page textbook.

Insights. The book was primar-
ily written in parallel, solo-author ses-
sions, with some short, key moments
of simultaneous work when issues
arose and resolutions needed to be
reached. The book was created over the
course of eight weeks, contrasting with
the Build-It which had preparation
work, one long day of dumping mate-
rial, and a few days of cleanup. Atlas,
O’Reilly (atlas.oreilly.com) and Book-
Sprints (www.booksprints.net) support
a process similar to this story.

This story is also similar to the one
told by Boellstorf et al.,2 where four au-
thors detail the creation of their coau-

day event where a small group of engi-
neers gather to simultaneously write
documentation about a specific piece
of technology. The Doc Build-It is a con-
strained activity, carefully designed to
enable engineers to impart their exper-
tise in a way that seems natural to them.

The Doc Build-It has three phases:
preparation, composition, and edit-
ing. During the preparation phase,
the writer meets with the techni-
cal lead to get a detailed overview of
the technology to be documented.
The writer then generates a prospec-
tive outline for the final document.
The outline is granular to the point
where each topic has two to three bul-
let points that suggest what content
should appear in the topic.

The composition phase is a single-
day event. The writer asks the techni-
cal lead to invite three to five key en-
gineers from the team to the event. At
the event, the writer first asks the engi-
neers to give a verbal explanation of the
technology to get them into a teaching
mindset, a mindset that fits documen-
tation. The writer then adjusts the pro-
spective outline based on the explana-
tion provided. Once the Build-It team
agrees on the outline, the writer invites
the engineers to claim responsibility
for the topics in which they feel they
have the most expertise. Their task is
only to capture the ideas in the words
that were spoken during the explana-
tion phase. They then all write simul-
taneously in the same document. The
fact that they can see each other as they
produce the sections allows them to
align their styles (like level of detail),
make cross-references and double
check for accuracy.

The writer encourages the engi-
neers to avoid concerns about diction,
spelling, punctuation, grammar, or
structure. Their contribution to the
document is their knowledge. This ses-
sion normally takes about three hours
for relatively simple topics, and up to
seven hours for deeper topics.

After the composition phase, the
technical writer alone polishes the
document. Because the editing proc-
ess can introduce semantic errors, the
writer circulates the edited document
for review with the engineering team.

The Build-It method had an enor-
mous impact on productivity. The cost
for one Build-It that I ran was an order

of magnitude smaller than a traditional
documentation approach costing an
estimated $1,900 instead of $18,000.
Other Build-Its produce similar re-
sults, and had ancillary benefits like
the identification of subtle bugs in the
technology. These discoveries are pos-
sible because the event captures the
attention of the most knowledgeable
people about a topic, who focus close-
ly on the design of the software in the
process of creating a document.

Insights. Doing work in clear phases
clarified the roles and simplified the
whole process. The technical writer
created an outline; the outline was
then edited after the explanation. Then
experts wrote down as much of their
knowledge as they could. This knowl-
edge was then cleaned up by the tech-
nical writer and reviewed for accuracy.
A number of the following Stories have
similar mixes of asynchronous and
synchronous work.

Story 2: Writing a textbook using
IDE, told by Dan. During the sum-
mer of 1988, I organized a team of 10
graduate students from the Stanford
School of Education to help write a
high school algebra textbook, fulfilling
a requirement to have experience in
designing coursework. The goal was to
create a complete textbook with a team
in less than 10 weeks. The team wrote
this text using IDE.

Of the 10 students, two acted as
lead designers and created an initial
outline, assigning each chapter to a
student author to create. To “write”
a chapter, the author had to create a
network of nodes in IDE, each linked
to other nodes signifying whether the
linked-to nodes were abstract con-
cepts, conceptual details, refinements,
practice problems or dependencies.

During writing, the authors had to
identify any prerequisites that they
needed to assume while writing their
material. For example, the chapter on
Trigonometric functions relied on the
Pythagorean theorem to be introduced
in an earlier chapter, written by a dif-
ferent author. For that dependency, an
explicit prerequisite link would be cre-
ated to signal that this concept (in one
chapter) depended on another concept
in another chapter (usually preceding).

The resulting network could then
be graph-walked (by following links of
a specified type) to produce a single,

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=38&exitLink=http%3A%2F%2Fatlas.oreilly.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=38&exitLink=http%3A%2F%2Fwww.booksprints.net

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 39

practice

thored book, written in Google Docs.
It recounts initial hand-offs of respon-
sibilities and sections to write. Later
they capitalized on the ability to write
simultaneously, to find who is writing
and where they are writing, and initi-
ate a conversation either by voice or
associated chat feature. This was use-
ful, they said, for both quick fixes and
encouragement. They also report ses-
sions where one typed while another
was dictating, with a third coming
along closely behind to make small
edits, similar to the upcoming Story 5
about meeting minutes.

Story 3: Creating a committee report
using ShrEdit, told by Judy. The com-
puter science department at a major
university has an external review every
few years. An advisory committee of
about eight people from outside the
university comes to campus for a few
days to hear what the various research-
ers are doing, review the curriculum,
hear statistics on admissions, place-
ment, and so on. Normally, after two-
days of presentations, the commit-
tee would plan how they were going
to write up their report, writing their
parts, then reading and commenting
on others asynchronously over the next
four weeks.

Having found ShrEdit useful in our
own work, we organized something like
a Doc Build-It, but with some interest-
ing differences. We brought the advisory
committee to a special room that was set
up with a large number of computers.

We had a single ShrEdit document
open with an outline that I had written,
which reflected the topics that had been
presented over two days prior. All eight
people began to write their reactions to
and evaluation of the topics. The com-
mittee members read the input of oth-
ers and added their own input. They
chose to write wherever they wished,
often adding to others’ writing, and oc-
casionally having text-based debates.

The committee worked for over
an hour, all typing simultaneously.
They produced an 11-page document;
rough in its style, but full of good con-
tent. At the end, one committee mem-
ber asked, “Where is the cleanup but-
ton?” All had a much-needed laugh.
The leader of the team volunteered to
take this rough draft and make it into
good text, taking on a role very much
like Ricardo’s in the Build-It story. The

leader was grateful for the volume of
raw material on which to build. This
material was far richer than the min-
utes of a discussion would have been.
And when they traveled home, all
members of the committee, except the
leader, were done.

Insights. Of interest in this story
is the fact the writing was not divide-
and-conquer like the two previous
stories, but rather what we might call
a “swarm,” for the large number of co-
authors involved in this process with-
out a structured process. Everyone con-
tributed to each of the sections at will,
sometimes typing very close to another
person’s current entry. Except for the
occasional laugh, the room was silent
for an hour with only the sounds of
keys clicking softly.

Story 4: Students writing assign-
ments in class using Google Docs, told
by Judy. My students in a Project Man-
agement course worked in groups to
do a small project during the academic
quarter. They had to turn in various doc-
uments that were common in formal
project management practice, such as
a business case, a scope statement, and
so on. The students were required to
use Google Docs and share their final
document with me for grading.

With their permission, we ana-
lyzed three years worth of the docu-
ments—96 in all. We examined their

collaborative writing styles and work
patterns, and correlated some key fea-
tures with the quality of the final docu-
ment. Work patterns were revealed
through a tool, DocuViz11 that shows
a picture of the revision history, with
slices in time of who wrote what when.
The accompanying figure shows the
DocuViz timeline visualization of one
group’s style. Students are represented
with different colors, with the size of
the stripe indicating length of contri-
bution and different slices indicating
when in time they were produced. This
team had a lot of simultaneous work
near the end.

Some 95% of those documents
showed evidence of simultaneous writ-
ing, where we defined “simultaneous”
as writing activity within seven min-
utes of the last action without closing
and opening the document. One might
expect these sessions of simultaneous
work to be a “divide and conquer” style.
While nearly one-third were, a large
number of them showed editing by sev-
eral people in the same paragraph or
even in the same cell of a table.

Insights. We have less detail in this
story about how the students managed
to create, edit, and vet their work. But
traces in the revision histories show
not only explicit project management
of assigning people to sections, but
also freeform editing of their own en-

The DocuViz visualization of a team showing a session of simultaneous work near the end.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Thanh Le
Warren Trinh
Tri Pham

Myron Cotran
Judith Olson

[INF 151] Team Awesome Possum Communication Convenant

01
-0

4
13

:4
4

01
-0

4
18

:0
7

01
-0

5
00

:2
4

01
-0

5
01

:2
6

01
-0

5
03

:0
4

01
-0

5
11

:5
4

01
-0

5
13

:2
4

01
-0

5
18

:2
7

01
-0

5
18

:4
6

01
-0

5
18

:5
5

01
-0

5
19

:1
8

01
-0

5
19

:2
4

01
-0

5
19

:4
9

01
-0

5
20

:1
5

01
-0

5
20

:2
0

40 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

the top. This archive has proven use-
ful in a number of occasions where
someone could resurrect a forgotten
“tabled” item.

Insights. This story shares the col-
laborative note taking with Story 5, but
adds the feature of using the emerging
document as low bandwidth confer-
encing and closed captioning.

Story 7: Teaching through noticing
things in simultaneous work using As-
pects, told by Judy. A former doctoral
student of mine, who had graduated
recently and was now employed at an-
other university, was scheduled to give
a presentation of our joint work at an
upcoming conference. I asked the for-
mer student to prepare his talk in As-
pects’ presentation tool, and share it
with me.

In a session in which both of us
could see the presentation while speak-
ing over the phone, the former student
gave his presentation uninterrupted
for timing purposes. At the end, I gave
general feedback about the timing and
order of things. I also suggested in-
cluding different figures than those he
had chosen. While he searched for the
new figures and replaced them in the
presentation, I made some small for-
matting changes on a number of slides
starting near the end of the deck. When
the former student returned, having
completed the replacement of figures,
he said, “Oh, I see what you’re doing.”
He then changed earlier slides to fit the
style of the changes that I was making.
We discussed a few more changes in
wording. When we were both satisfied
with the result, he gave the presenta-
tion again without interruption. After
two more small changes, we were done.

Gary had a similar experience using
Centra screen sharing with the abil-
ity to write simultaneously. They went
over a draft presentation, discussed it,
and made changes in real time. The
shared view focused the discussion; si-
multaneous editing sped the revisions.

Insights. What would have normally
taken hours or days of back and forth
took one hour. Modeling the types of
changes that I wanted enabled the for-
mer student to “get it” without discus-
sion. There could have been objections
and discussion, but in this case he just
copied my style changes without either.

Story 8: Writing this document to-
gether with Google Docs: How we did

tries and, importantly, those of others.
There was also a great deal of simulta-
neous work.

Story 5: Displaying and collabora-
tively creating meeting minutes using
ShrEdit, told by Gary. In addition to us-
ing ShrEdit to conduct research,8 I used
it to take minutes during research meet-
ings. In these meetings, the ShrEdit
document was shared and open on ev-
eryone’s workstation, and we often pro-
jected it on a large screen at the front of
the room. One person, usually me, took
the lead, but everyone could edit.

Meeting participants would com-
monly fix typos and other errors (like
correcting the spelling of someone’s
name) that I or another scribe created
while typing rapidly. We often com-
mented that the document looked
as if Pac-Man was nibbling along be-
hind the note taker. The shared view
of the notes (either from the projected
view or the individuals’ views on their
own computers) helped to maintain
the group’s focus, and make sure the
points were captured correctly. The
tool enabled efficient meetings and
more accurate notes.

Normally, scribes for a meeting are
so busy they cannot contribute eas-
ily to the conversation. But when we
used ShrEdit, someone else took over
the scribe role while the main scribe
spoke. This allowed the main scribe to
be a full contributor to the meeting.

In one important meeting with
corporate sponsors, we projected the
meeting minutes on a screen visible to
everyone in the room. There were nine
agenda items to cover in the afternoon-
long meeting. After several hours of
talking and taking copious notes, the
meeting coordinator noted that we had
covered only the first two items with
seven still left to go. We had to move
on. One of the sponsors said that he
was not involved in any of the remain-
ing items, but he had much more to say
about the current topic. Consequently,
the rest of us went on with the meet-
ing while he continued to write in the
appropriate section, hidden from our
view. He titled his section “You haven’t
seen this yet.” He wrote his thoughts
for an hour, being able to refer to ear-
lier parts of the minutes, while the rest
of us finished our agenda. His time
was not wasted, and we completed our
task. The fact that this was a single doc-

ument (not an add-on of his thoughts
from another document) made his ad-
ditions easier to read in context.

Insights: Like Stories 1-4, the shared
document had a prepared form (the
agenda). While three of the previous
stories divided the work and gave par-
ticipants specific assignments to ac-
complish, in Story 5, one person was
the main scribe. Other participants
could silently and in parallel, add de-
tail, correct errors, and in this case,
continue to contribute while other
meeting members went on with agen-
da items he wasn’t involved in. Time
was not wasted.

Story 6: Meeting minutes collabora-
tively and remotely created in Google
Docs, told by Gary. The ACM SIGCHI
Executive Committee has periodic
meetings that last 2–3 days. An agenda
is circulated in advance, and modified
via email as new items arise. We use
Google Docs to take minutes, the docu-
ment seeded by pasting in the agenda
from email. The agenda is often reor-
ganized and modified on the fly.

Like the previous story, one mem-
ber is designated as the main scribe,
but any of us can edit at any time, and
when the scribe speaks, someone else
temporarily takes over his role.

Occasionally, some members at-
tend parts or even the entire meeting
remotely. We would often call remote
members for specific items on the
agenda, but they observed other parts
of the meeting as well. Some even
joined without having an audio or vid-
eo connection. In this case, the Google
Doc served as a kind of poor man’s
conferencing tool. The very low rate
of change in the Doc works well for a
remote participant who can then task
switch at appropriate times. We noted
also that non-native English speakers
benefit from the minutes being a form
of “closed captioning.”

Often a member of the committee
uses PowerPoint slides during their
report; these are almost always pasted
directly into the shared Google Doc.
Occasionally, other kinds of materials
are pasted into the Doc, such as links
to some web material relevant to what
we are discussing.

At another regular research group
meeting, the minutes are never de-
leted but just pushed down, with the
new agenda and notes appearing at

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 41

practice

it. Having discovered that all four of us
had stories about writing simultane-
ously, Ricardo suggested that we write
an article on this topic using Build-It.
We all happily agreed, wanting both
to write this article and to experience
Build-It. We scheduled a day for the
writing about a month after this initial
meeting, with three of us collocated
and Dan joining remotely.

We had a videoconference in ad-
vance of this day, where we discussed
the general framework of the article
and the kinds of stories we would use.
This was all captured in a Google Doc
that we co-wrote. Ricardo created a
tentative outline based on this discus-
sion. When we were together, in the
first hour we discussed ideas and direc-
tions. Initially we were hampered by
not having a clear idea of what the arti-
cle was going to be. Build-It is designed
for a divide-and-conquer strategy, not
for the stage where we have to discover
what we want to say. The outline Ri-
cardo came in with did not capture the
discussion we were developing, so we
abandoned it.

Eventually we decided the best next
step was to simply write up the set of sto-
ries that would serve as the raw materi-
al. We could read while others wrote. We
often read something someone else had
written and went back to add or change
our own contribution. When everyone
was finished, we then read them all in
context which then led us to discuss a
better organization for the article.

Indeed, in both writing the details
and then reading each other’s stories,
we noted some similarities and differ-
ences. We made a working table directly
in the document, to compare and con-
trast the stories. We hoped this would
help in both ordering the stories in a
sensible way and then supporting the
development of the Discussion section.

In the course of creating this table,
each of us recognized that we had left
something out of the stories. Having
noticed these emergent similarities,
we combed our own memories for
more examples. We named these gath-
ered extra points “epiphenomena.”

After about six hours of talking, writ-
ing and talking again, we were exhaust-
ed, but we had to decide on our next
steps. Someone had to do the first pass
of ordering the stories, making them a
bit more similar in style, and then writ-

ing a draft of the Discussion using the
table as a guide. Judy volunteered.

This next stage required someone
to “own” the document temporarily,
without others editing, because a re-
organization and a first draft of a dis-
cussion required understanding the
whole document to make the appropri-
ate connections. When Judy finished,
she alerted the others. But we didn’t
want everyone to edit at once. We first
tagged Ricardo, a technical writer, to
perform a more fine-grained copy-
edit. He tried to harmonize the voice
and pace of the writing and identify or
resolve features of the document that
seemed to break the flow.

We then had a videoconference to
talk through several important issues,
making a list of things to do. We asked
Judy and Gary to take the first pass at
their parts of this list and then have
Ricardo and Dan edit or comment fur-
ther. Again, noting who was in control
was important.

We had not talked about how we
were going to manage edits, wheth-
er we would just make the changes
and count on the revision history to
undo things that we disagreed with,
use Docs “suggest” mode, which is
similar to Word’s tracking changes,
or use comments to discuss and sug-
gest changes. Judy and Ricardo made
changes directly. Dan then used com-
ments to say, for example, “This needs
to be spelled out.” Dan later clarified
that he did not want to edit someone
else’s work. These examples show that
people come to the document with dif-
ferent ideas as to who has the author-
ity or responsibility to change things.
As Birnholtz and Ibara1 found, making
changes to others’ writing is a social
act with consequences having to do
with trust and relationships.

The final stage of this collaboration
involved putting the Google Doc into
Word to fit the required two-column
format that this journal requires. From
there the editing was entirely hand-off
with clear mention of responsibilities
and time lines.

Insights. Unlike Build-It, the outline
for this article emerged after the stories
were written down, shared, and dis-
cussed. This article also involved using
the document as a “holding place” to
keep things (like the table) that might
help the writing, or material that was

The writer
encourages
the engineers to
avoid concerns
about diction,
spelling,
punctuation,
grammar,
or structure.
Their contribution
to the document
is their knowledge.

42 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

mosphere or their expertise and abili-
ties are not on par with your own. In
some competitive cultures, there can
be sabotage. In addition, many of the
sessions of simultaneous work that we
outline were for rough work, not for
the final draft (although Story 7 con-
tained the collaborative reformatting
of a final presentation).

And, there can be technical difficul-
ties, such as edit wars because with
direct editing, one does not see what
something was changed from. Also,
if two people are in exactly the same
point with one adding and one delet-
ing, it can get very confusing. And, to
write simultaneously, one has to be on
a network, having to rely on server con-
nectivity. In addition, if using a service
in the cloud, some may have concerns
about privacy.

Patterns of using simultaneous writ-
ing. When we examine the stories, it is
striking that there was not more di-
versity in the experiences, but rather
just a few different patterns of writing
together. The stories cluster into two
sets: Four patterns of simultaneous
work and two patterns of accompany-
ing asynchronous hand-offs.

The first four stories and the account
of writing this article employ a simul-
taneous divide-and-conquer strategy.
At some points in the creation of the
document, all co-authors wrote at the
same time. Most often they wrote in
different sections of the document.

Stories 5 and 6 employ a main
scribe, with a second or third scribe in-
volved either to immediately take over
when the primary scribe speaks or to
do ancillary additions or edits. We call
this the rotating scribe pattern.

Story 5 employs a branching pattern,
where when one person is not involved
in the immediate conversation, they
use the time productively to write more
for others to read later. In essence, the
one person is creating a new branch in
the minutes, while the others proceed.
This pattern is a variant of the divide-
and-conquer.

The fourth pattern is exemplified in
Story 3, what we call the swarm. In this
pattern, everyone is in the document
writing their parts, reading other’s and
commenting or correcting them. No
one is assigned a section; they all are
responsible for the whole document.
This is also similar to the teaching sto-

eventually deleted. There were times
when simultaneous divide-and-con-
quer was appropriate; there were times
when one person had to be in charge
while she captured the organization
of the emerging article; and there were
times when serial hand-off for edit-
ing was appropriate. We realized that
we should have explicitly discussed
whether we would just edit, suggest, or
comment for changes.

Discussion
The ability to write simultaneously in
a shared document is a powerful ad-
vancement in technology. However,
the literature has said little about the
social process that harnesses the tech-
nological advancement of simultane-
ous writing for real benefit to the users.
These stories attempt to shed light on
this social process.

In almost all of these stories, some-
one led the effort by making some sort
of structure: the tree in IDE, the out-
line in ShrEdit and Docs, the agenda
in meetings, the presentation draft in
Aspects and Centra. The one exception
was the writing of this article. We had
that discussion after we wrote our sto-
ries and read each other’s. The struc-
ture emerged.

Writing simultaneously offers sev-
eral benefits, including productivity
gains, a deeper sense of satisfaction for
time well spent, and practical training
by imitation of a collaborator’s style.
On a tactical level, participants can
move quickly toward a quality docu-
ment because participants can see and
emulate what others are doing. As peo-
ple join in writing, they can view recent
work in order to make their contribu-
tions fit the overall vision. The ability to
work simultaneously on meeting min-
utes has benefits beyond the recording
and correcting the content. Everyone
was “on the same page.”

Of course, not all collaborations
may benefit from simultaneous work.
There are sensitivities when someone
changes your writing. There are sensi-
tivities when others can see your pro-
cess of writing (for example, if you are
slow or a bad speller). Some may find
it distracting to see the edits of oth-
ers while they are writing or editing.
Working simultaneously is not appro-
priate if you mistrust your colleagues,
either because it is a competitive at-

When we examine
the stories,
it is striking that
there is not more
diversity in
the experiences,
but rather just
a few different
patterns of writing
together.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 43

practice

ries, where the “teacher” exemplifies
what the “student” is to emulate, and
they collectively finish the document.

The fifth pattern, the cleanup, is a
solo kind of work that appears in many
of the stories. For example, in our own
writing, there was one big simultaneous
session and then Judy took over to both
re-organize the stories into clusters
and write the text that represented the
discussion captured in the table. In the
committee report, the chair took on the
role of cleaning up the rough text and
synthesizing content. In BuildIt, Ricar-
do takes on the responsibility of clean-
ing up the text and coordinating tone,
turning rough text into good prose.

The sixth pattern, again often rep-
resented in many of the stories, is the
hand-off, where different authors are
“in charge” for periods of time for re-
organization or fact-checking and sim-
pler editing. This often accompanied
sessions of simultaneous work.

We also note that collocation for
synchronous writing was important
but not necessary. Collocation provides
immediate access to other participants
for things such as clarification, seeing
people’s expressions, indicating that
one wanted a turn to speak, and so
on. However, many of the stories had
successful contributions from remote
people, even without audio or video
connectivity. In one case, remote par-
ticipants only saw the evolving Google
Doc. For some purposes, this level of
participation was sufficient.

Epiphenomena. Late in our discus-
sion of the similarities and differences
among the stories, we noted some epi-
phenomena—unusual behavior gener-
ated by the fact the work was being cre-
ated synchronously in view of all.

One epiphenomenon involved
humor, often an important social com-
ponent of intense work. For example,
as the scribe in meetings where the
minutes are projected, Gary would
often type slightly snide comments
about what was being said and quickly
erase them. For example, if someone
was talking too long, Gary would write
in big letters but out of the speaker’s
view, “Is it time for lunch yet?” and
then quickly erase it.

A student in one Project Manage-
ment team, deep in discussion in a
long simultaneous-editing session
about their client, pasted in a funny

picture of a grizzly man wearing a bear
hat and the text “this guy!” The picture
was in the document for about a min-
ute then deleted. The Visiting Commit-
tee read emerging debates inside the
report, eliciting giggles occasionally. At
the end, one member of the committee
also remarked for humor, “Where is
the Clean-It-Up button?” The collective
laugh was one of appreciation and re-
lief that the session was over.

A second epiphenomenon we noted
is that visibility is motivating. In using
IDE to write the textbook, the visible
presentation of progress on the book
motivated people. Similarly, while the
document is live and worked on simul-
taneously, one can see where the activ-
ity is and be motivated to read carefully
and talk about any arising issues either
through text chat or voice conversa-
tion. When there is visible activity,
people feel compelled to focus on the
document being created. One attends
to “seismic activity.” We believe the
student who pasted in a funny picture
during a simultaneous working ses-
sion used the humor to induce motiva-
tion to keep working. One student in
another team pasted in a picture of a
shovel and wrote “Work Hard!”

Conclusion
Writing simultaneously is an extreme-
ly powerful capability, now widely
available in commercial software. It
is often successfully mixed with some
hand-off writing and some sessions
where one person takes charge to in-
tegrate the material and voice. But
technology alone does not make en-
hanced productivity and satisfaction,
people do. What we offer here are a
number of stories and commentary
on what makes this kind of writing so
powerful.

We follow the stories with six pat-
terns of writing when simultaneous
work is possible. Team members now
need to plan the style of work (some of
which will include simultaneous writ-
ing) that would fit the kinds of goals at
hand. As outlined by Glushko3 some
of the overall collaborations will be
preplanned (what he calls hierarchi-
cal collaboration), co-developed by
the authors (what he calls consensus
collaboration), or a free-for-all (what
he calls open collaboration). Each
approach has its strengths and weak-

nesses, so choosing appropriately for
the task at hand is important. And, as
mentioned earlier, not all teams and
occasions will benefit; cooperation
and trust are essential.

We have provided a set of examples
where we have worked in new ways
that are very productive, and therefore
satisfying. The next step is for you to
analyze the collaborative writing situa-
tions you are in day-by-day and craft a
method that best suits. The possibili-
ties are very rich.

Acknowledgments. Portions of this
work were supported by National Sci-
ence Foundation grant ACI-1322304
and a Google Focused Research Award
to Judy and Gary Olson. Helpful com-
ments on an earlier draft were provided
by Tom Boellstorf, Bonnie Nardi, and
Bob Glushko along with anonymous
reviewers. 	

References
1.	 Birnholtz, J. and Ibara, S. Tracking changes in

collaborative writing: Edits, visibility, and group
maintenance. In Proceedings of CSCW’12, 2012,
809–818.

2.	 Boellstorff, T., Nardi, B., Pearce, C., and Taylor, T.L.
Words with friends: Writing Collaboratively Online.
Interactions 20, 5 (Sept.-Oct. 2013), 58-61.

3.	 Glushko, R. Collaborative authoring, evolution, and
personalization for a ‘Transdisciplinary’ textbook. In
Proceedings of OpenSim 2015.

4.	 Group Technologies. Aspects: The first simultaneous
conference software for the Macintosh, Version 1.
Manual, (1991). Group Technologies, Inc., Arlington,
VA.

5.	 Halasz, F.G., Moran, T.P., and Trigg, R.H. Notecards
in a nutshell. In Proceedings of the SIGCHI-GI
Conference on Human Factors in Computing Systems
and Graphics Interface (1987), 45–52.

6.	 Irish, P.M., and Trigg, R.H. Supporting collaboration
in hypermedia: Issues and experiences. J. American
Society for Information Science 40, 3 (1989), 192–199.

7.	 McGuffin, L. and Olson, G.M. ShrEdit: A shared
electronic workspace. CSMIL Tech. Report, 1992. The
University of Michigan, Ann Arbor, MI.

8.	 Olson, J.S., Olson, G.M, Storrosten, M. and Carter,
M. Groupwork Close Up: A Comparison of the Group
Design Process With and Without a Simple Group
Editor. ACM Trans. on Information Systems 11, 4
(1993), 321–348.

9.	 Olson, J.S., Wang, D., Zhang, J. and Olson, G.M. How
people write together now. Trans. Computer-Human
Interaction 24, 1 (2017), 1–40.

10.	 Russell, D.M., Burton, R.R., Jordan, D.S., Jensen, A-M.,
Rogers, R.A., and Cohen, J.R. Creating instruction with
IDE: Tools for instructional designers. Intelligent
Tutoring Media 1,1 (2009), 3–16.

11.	 Wang, D., Olson, J.S., Zhang, J., Nguyen, T. and Olson,
G.M. DocuViz: Visualizing Collaborative Writing. In
Proceedings of the Conference on Human Factors in
Computing Systems, (2015), 1865–1874.

Ricardo Olenewa is a technical writer living in Waterloo,
Ontario, Canada.

Gary M. Olson (gary.olson@uci.edu) is Professor
Emeritus of Informatics at the University of California at
Irvine.

Judith S. Olson (jolson@uci.edu) is Professor Emerita of
Informatics at the University of California at Irvine.

Daniel M. Russell (drussell@google.com) is a senior
research scientist at Google, Mountain View, CA.

Copyright held by owner(s)/author(s).

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=43&exitLink=mailto%3Agary.olson%40uci.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=43&exitLink=mailto%3Ajolson%40uci.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=43&exitLink=mailto%3Adrussell%40google.com

44 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

COMPUTERS COMMONLY PERFORM numerical computations
using floating point arithmetic,a typically representing
numbers as specified by the IEEE 754 standard. Numbers
are represented as m x be, where b is base, m is a fixed
bit length length fraction (mantissa), with an implicit
“decimal point” on the left, and e is an exponent. For
conventional IEEE “double precision” floating point, the
base b is 2, and the mantissa m is 53 bits (approximately
16 decimal digits) long. For a hardware calculator, we might
use b = 10, with a 12-digit mantissa.b

Floating-point representations are used pervasively,
from large-scale scientific computing problems down

a	 Goldberg, D. What every computer scientist should know about floatingpoint arithmetic. ACM Com-
puting Surveys 23, 1 (1991), 5–48.

b	 Cochran, D.S. Internal programming of the 9100A Calculator. HP Journal, Sept. 1968.

to pocket calculators. They provide
a great time-honored compromise
between speed of computation and
sufficient accuracy to usually provide
meaningful results. A 53-bit mantissa
can often provide 10 to 15 decimal dig-
its of accuracy in the final result, and
modern processors can often perform
more than one floating-point opera-
tion per cycle.

But conventional floating point
arithmetic remains a compromise.
The results can be computed quick-
ly, but they are only usually precise
enough to be meaningful. Usually the
precision loss from rounding to 53 bits
is not noticeable, because we are usu-
ally computing on measured physical
quantities that are far less accurate to
start with, and usually well-designed
algorithms do not compound these in-
coming measurement errors too much.
But none of those “usually” qualifiers
can be dropped, and algorithms are
not always well designed.

Most of us are familiar with some of
the programming hazards of floating
point. We may have observed, for ex-
ample, that the loop

for (x = 0.0; x != 10.0; x += 0.1) { … }

usually fails to terminate. But we are will-
ing to deal with these issues, and write
more careful code, in order to get high
performance numerical computation.

But sometimes performance, at
least in the conventional sense, re-
ally doesn’t matter. Calculators, which
normally target expressions with few
operations, are probably the canoni-
cal example for this category of appli-
cations. That is particularly true when
the calculator is really an application
running on a smartphone with four
2GHz processor cores. This is also an
environment in which users are un-
likely to think much about formulating
algorithms to optimize floating point
precision properties.

Even for calculators, the hazards of
floating point extend to more than a
few digits off in the last place. For ex-
ample, if we try to compute:

Small-Data
Computing:
Correct
Calculator
Arithmetic

DOI:10.1145/2911981

Rounding errors are usually avoidable, and
sometimes we can afford to avoid them.

BY HANS-J. BOEHM

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F2911981

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 45

I
M

A
G

E
 B

Y
 A

L
I

C
I

A
 K

U
B

I
S

T
A

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

which is clearly equivalent to √0, on any
standard calculator, the result is just an
error message. The problem is that 1 +
10–16 is rounded to 1. When we subtract
1, we get 0 instead of 10–16. This is com-
monly known as “catastrophic cancel-
lation:” We are subtracting two nearly
equal numbers, effectively magnifying
the input error, yielding a result with
few or no meaningful digits. When we
then subtract 10–16, the result is a nega-
tive number, which can now be repre-
sented accurately. Taking the square
root of a negative number produces the
error. For a more interesting and subtle
example along these lines, see the side-
bar entitled “A Fixed-Precision Fail.”

√1 + 10–16 - 1 - 10–16 There are other cases for which we
do get correct answers, but the first
16 digits fail to expose the interesting
properties of the result. We may want
to see when the decimal expansion of
a rational number repeats. Or we may
want to see how close Ramanujan’s
constant (eπ√163) is to an integer. These
tend to be “mathematical” rather than
“physical” problems. But we suspect a
significant fraction of calculator use is
in schools for just that purpose.

The Space Beyond
Machine Floating Point
Perhaps the most serious problem with
conventional calculator arithmetic is
that it has trained us not to even at-
tempt certain problems.

Every calculus class teaches us that
we can approximate derivatives with
finite differences. We can, usually very
accurately, approximate f'(x) by (f(x +
h) – f(x))/h, with a sufficiently small h.
For example, since the derivative of ex
is ex, we should expect that (e1+h – e1)/h
evaluates to a very good approxima-
tion of e, if we use h = 10–1000.

This of course does not work on
normal calculators. The expressions
e1+h and e1 agree to far more digits
than the evaluation precision, and the
numerator evaluates to zero, yielding
a “derivative” of 0 rather than e.

In fact, the idea of limited preci-
sion seems to be sufficiently drilled
into us that it occurs to few people
to even try something like this. And

46 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

The calculator rounded the result
to a smaller number of decimal digits
than the 16 provided by the underlying
arithmetic. This reduced the probabil-
ity that a number with a finite decimal
expansion like 12.34, but an infinite
binary expansion, would be displayed
as 12.399999999. But there was an un-
avoidable tension between not drop-
ping enough digits and generating un-
pleasant representations, and dropping
too many. The latter would either intro-
duce additional error for intermediate
results, or it would force the calculator
to display a result significantly different
from its internal representation. Both
could produce unpleasant surprises.
A Web search for “Android Calculator
bug” shows some of the results. The
nature of the complaints also confirms
that most users are not happy to toler-
ate the kind of floating-point issues that
a numerical analyst would expect.

Accurate Answers From a Calculator
Our goal was to replace the arithmetic
evaluation engine in the Android Cal-
culator with one that was not subject
to floating point-rounding errors. We
wanted to ensure at a minimum that the
displayed final answer was never off by
one or more in the final displayed digit.

This can be done using “construc-
tive real arithmetic.”d,e Rather than
computing a fixed number of digits for
each intermediate result, each subex-
pression is computed to whatever pre-
cision is needed to ensure sufficient
accuracy of the final result.

Let’s say we want to compute π+ 1/3,
and the calculator display has 10 digits.
We would compute both π and 1/3 to 11
digits each, add them, and round the
result to 10 digits. Since π and 1/3 were
accurate to within 1 in the 11th digit, and
rounding adds an error of at most 5 in
the 11th digit, the result is guaranteed
accurate to less than 1 in the 10th digit,
which was our goal.

Other operations are somewhat
more complex to implement. Multipli-
cation to 10 digits beyond the decimal
point might involve evaluating one ar-
gument to five digits. If that is zero, we

d	 E. Bishop, and D. Bridges. Constructive Analysis.
Springer Science & Business Media, 1985.

e	 Boehm, HJ., and Cartwright, R. Exact real
arithmetic: Formulating real numbers as func-
tions. Rice University, Department of CS, 1988.

people often seem surprised when we
suggest it.

For numerical differentiation with
machine floating point, there is a sub-
tle trade-off in the choice of h, which
is likely to be well beyond the exper-
tise of a high school student trying to
check a formula on a calculator. And
yet there is no reason calculations
like this shouldn’t just work, even
with h = 10–1000. The sidebar entitled
“Derivatives on a Calculator” pushes
this example a bit further.

Our Starting Point
The Android Open Source Project has
always included a relatively simple
calculator application. This is the de-
fault calculator on Pixel phones and
many other Andriod devices. Histori-
cally some other third-party Android
calculators have also extended the
same source code base. This calcula-

tor is designed to be as simple as pos-
sible, targeting primarily nontechni-
cal users rather than engineers. It has
always offered “scientific calculator”
functionality, with trigonometric
functions, among others. But the em-
phasis has been on simple use cases
and conformance to Android user in-
terface guidelines.

In versions prior to Android 6.0
Marshmallow, the calculator internal-
ly used the “arity” expression evalua-
tion library.c The calculator uses this
library to evaluate traditional infix
expressions. Conventional syntax is
mildly extended to allow dropping of
trailing parentheses and a few other
shortcuts. The actual evaluation is
performed using double precision
machine floating point.

c	 Mihai Preda, https://code.google.com/p/arity
calculator/

A Fixed-Precision Fail
Although conventional calculators usually provide plenty of precision for most
purposes, they are prone to occasional misbehavior on surprisingly simple problems.
These are more likely to be problems encountered by high school or college students
experimenting with mathematical laws, than they are real engineering problems.

One particularly small example involves the trigonometric tangent (tan) and
arctangent (tan–1) functions. The expression tan(tan–1(x)) maps a slope x to
the corresponding angle and back, and should clearly always give us back x. But
evaluating this expression correctly for large x tends to be quite tricky, since tan–1 of
a large argument produces a result very close to π/2 radians (or 90 degrees), which is a
singularity for the tan function.

On software-based calculators (Android or Web), a result something like the one
shown here is common for tan(tan-1(1020)).

On old-fashioned hardware calculators we tried, the arguably better answer shown
below is more common.

The standard Microsoft Windows calculator we tried uses more precision, and
hence fails only with even larger values of x.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fcode.google.com%2Fp%2Farity-calculator%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fcode.google.com%2Fp%2Farity-calculator%2F

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 47

practice

evaluate the other argument to five dig-
its. If both are zero, zero is an accept-
able answer. Once we have a nonzero
argument, we can get a reasonably tight
bound on the number of digits needed
for the other argument, and use that
to reevaluate the initial nonzero argu-
ment to the correct precision.

Some functions, such as square roots,
can be easily evaluated to any required
precision using Newton iteration. Com-
mon transcendental functions can be
evaluated using Taylor series, taking
care to evaluate sufficiently many terms
to sufficient precision to guarantee the
1-digit-in-the-last-place error bound.

A number of detailed representa-
tions for the constructive reals have
been explored.f,g,h,i

We started with an existing Java
library,j mildly enhancing it as needed.
The library represents real numbers as
class CR Java objects with an appr()
method. A call to appr(n), where n is
typically negative, produces an approxi-
mation accurate to 2n. The actual result
returned is implicitly scaled (multiplied)
by 2–n, so that it can be represented as an
integer. For example, if THREE is the con-
structive real representation of 3, then
THREE.appr(–3) would yield 24, that
is, 3 multiplied by 23 or 8. That would be
the only acceptable answer, since the re-
sult always has an error of < 1.

To add two numbers in this repre-
sentation, we produce an instance of a
subclass of CR, implemented as:

class add_CR extends CR {
	 CR op1; CR op2;
	 ...
	� protected BigInteger

appr(int p) {
		� return scale(op1.appr(p-2).

 add(op2.appr(p-2)), -2);
	 }
}

Here scale(..., n) multiplies by

f	 Aberth, O. A precise numerical analysis pro-
gram. Commun. ACM 17, 9 (Sept. 1974), 509–513.

g	 Ménissier Morain, V. Arbitrary precision real
arithmetic: Design and algorithms. J. Logic and
Algebraic Programming 64, 1 (2005), 13–39.

h	 Vuillemin, J.E. Exact real computer arithmetic
with continued fractions. IEEE Trans. Comput-
ers 39, 8 (1990), 1087–1105.

i	 Lee, Jr, V.A. and Boehm, H-J. Optimizing pro-
grams over the constructive reals. ACM, 1990.

j	 Boehm, H.J. The constructive reals as a Java
library. J. Logic and Algebraic Programming 64,
1 (2005), 3–11.

2n and rounds to the nearest integer,
ensuring a final rounding error of ≤ ½.
The arguments are evaluated to two ad-
ditional bits, ensuring that each con-
tributes an error of < ¼.

The real implementation caches
the highest precision prior evaluation,
so reevaluating an expression to fewer
digits of precision is essentially free.

Calculators based on constructive
real arithmetic are not new. The library
we use as a basis contains a basic Java
applet calculator. WolframAlpha also
appears to use a technique along these
lines.k However, we had two additional,
previously unsatisfied, goals:

1.	 It was essential that the calcula-
tor remain usable as a general-purpose
tool, for example, for balancing check-
books and calculating tips, and for
mathematically unsophisticated users.
We wanted behavior universally better
than machine floating point.

2.	 We want an intuitive way to pres-
ent numbers with nonterminating
decimal representations as infinite ob-
jects, as opposed to explicitly entering
a result precision.

We now focus on these issues.

k	 It also appears to use a few, but not all, of the
techniques described in this article. We could
not find a detailed description.

Scrollable Results
Since we must be able to produce an-
swers to arbitrary precision, we can also
let the user specify how much precision
she wants, and use that to drive the eval-
uation. In our calculator, the user speci-
fies the requested precision by scrolling
the result, as one would expect with a
primarily touch-based user interface.l

In order to preserve the illusion of
an infinite result as much as possible,
we precompute a higher precision re-
sult in the background, as soon as we
have displayed about 4/5 of the digits
computed. The number of addition-
al digits computed each time is a bit
more than 1/5 of the number we have
computed so far, so we recompute
in larger chunks the further the user
scrolls, and the more expensive the
computations become. This typically
succeeds in hiding scrolling latency
for a few thousand digits, even if the
user resorts to “fling” gestures to
scroll quickly.m

l	 A brief demonstration video can be found at
https://vimeo.com/219144100.

m	 The computation cost of a Taylor series ex-
pansion is typically around O(n2.6) for n digits
(O(n) terms, each of which requires a constant
number of Karatsuba multiplications on O(n)
digits), this eventually falls behind a constant
speed scroll, even if the reevaluation frequency
decreases linearly.

Derivatives on a Calculator
We explore tiny finite differences to approximate derivatives a bit further. We continue
to use the exponential function as an easy-to-type and easy-to-check example.

The figure here illustrates the result of computing the derivative of ex at 1, by
computing (e1+h – e1)/h, with h = 10–100:

As expected, the result is unsurprising to anyone untrained in floating point
arithmetic. It looks exactly like e. We can now easily ask what error resulted from
approximating the derivative as a finite difference, rather than computing its limit. The
following figure shows what we get if we take the preceding result and subtract e:

A trained numerical analyst might cringe at the observation that this computation
involves a second catastrophic cancellation in a row. The astute reader might also notice
that this is itself astonishingly close to ½e x 10–100. We leave it to the interested reader
to go for three catastrophic cancellations in a row and calculate the difference.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Fvimeo.com%2F219144100

48 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

practice

sult were exactly 0.99999999999, and
we could only display 10 characters
at a time, we would see an initial dis-
play of 1.00000000. As we scroll to see
more digits, we would successively see
...000000E-6, then ...000000E-7, and
so on until we get to ...00000E-10, but
then suddenly ...99999E-11. If we scroll
back, the screen would again show ze-
roes. We decided this would be exces-
sively confusing, and thus try to trun-
cate toward zero rather than rounding.

It is still possible for previously dis-
played digits to change as we are scroll-
ing. But we always compute a number
of digits more than we actually need, so
this is exceedingly unlikely.

Since our goal is an error of strictly
less than one in the last displayed digit,
we will never, for example, display an
answer of exactly 2 as 1.9999999999.
That would involve an error of exact-
ly one in the last place, which is too
much for us.

It turns out there is exactly one
case in which the display switches
between 9s and 0s: A long but finite
sequence of 9s (more than 20) in the
true result can initially be displayed
as a slightly larger number ending in
0s. As we scroll, the 0s turn into 9s.
When we immediately scroll back,
the number remains displayed as 9s,
since the calculator caches the best-
known result (though not currently
across restarts).

We prevent 9s from turning into
0s during scrolling. If we generate a
result ending in 9s, our error bound
implies that the true result is strictly
less (in absolute value) than the value
(ending in 0s) we would get by incre-
menting the last displayed digit. Thus
we can never be forced back to gener-
ating zeros and explicitly ensure that
we always continue to generate 9s,
and 9s never turn into 0s.

Coping with Undecidability
The calculator essentially represents
a number as a program for comput-
ing approximations. This represen-
tation has many nice properties, like
never resulting in the display of in-
correct results. It has one inherent
weakness: Exact equality of two num-
bers is fundamentally undecidable.
We can compute more and more dig-
its of both numbers, and if they ever
differ by more than one in the last

Indicating position. We would like
the user to be able to see at a glance
which part of the result is currently be-
ing displayed.

Conventional calculators solve the
vaguely similar problem of displaying
very large or very small numbers by us-
ing scientific notation. We use the same
approach for the initial display.n If the
user enters “1÷3X10^20”, computing
1/3 times 10 to the 20th power, the result
may be displayed as 3.3333333333E19.
In this version of scientific notation,
the decimal point is always displayed
immediately to the right of the most
significant digit.

Once the decimal point is scrolled
off the display, this style of scientific no-
tation is not helpful; it essentially tells
us where the decimal point is relative to
the most significant digit, but the most
significant digit is no longer visible. We
address this by switching to a different
variant of scientific notation, in which
we interpret the displayed digits as a
whole number, with an implied decimal
point on the right. Instead of display-
ing 3.3333333333E19, we hypotheti-
cally could display 33333333333E9 or
33333333333 times 109. In fact, we use
this format only when the normal scien-
tific notation decimal point would not
be visible. If we had scrolled the above
result two digits to the left, we would
in fact be seeing ...33333333333E7.
This tells us the displayed result is very
close to a whole number ending in
33333333333 times 107. The two forms
of scientific notation are easily distin-
guishable by the presence or absence of
a decimal point, and the ellipsis charac-
ter at the beginning.

Rounding vs. scrolling. Normally
we expect calculators to try to round
to the nearest displayable result.
If the actual computed result were
0.66666666666667, and we could
only display 10 digits, we would ex-
pect a result display of, for example
0.666666667, rather than 0.666666666.
For us, this would have the disadvan-
tage that when we scrolled the result
left to see more digits, the “7” on the
right would change to a “6”. That
would be mildly unfortunate. It would
be somewhat worse if the actual re-

n	 Numbers that differ from zero by less than
10–320 may be displayed as 0.0000000000. See
section Coping with Undecidability.

Perhaps the most
serious problem
with conventional
calculator
arithmetic is that it
has trained us not
to even attempt
certain problems.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 49

practice

computed digit, we know they are not
equal. But if the two numbers were in
fact the same, this process would go
on forever.

This still improves on floating-
point arithmetic—equality is easily
decidable, but tells us even less about
equality of the true mathematical real
numbers approximated by the floating
point values.

This undecidability of equality does
create some interesting issues. If we di-
vide a number by x, the calculator will
compute more and more digits of x un-
til it finds some nonzero ones. If x was,
in fact, exactly zero, this process will
continue forever.

We deal with this problem using two
complementary techniques:

1.	 We always run numeric com-
putations in the background, where
they will not interfere with user inter-
actions, just in case they take a long
time. If they do take a really long time,
we time them out and inform the
user that the computation has been
aborted. This is unlikely to happen by
accident, unless the user entered an
ill-defined mathematical expression,
like a division by zero.

2.	 As we will see, in many cases we
use an additional number representa-
tion that does allow us to determine
that a number is exactly zero. Although
this easily handles most cases, it is
not foolproof. If the user enters “1÷0”
we immediately detect the division by
zero. If the user enters “1÷(π2÷π–π)” we
time out.

Zeros Further Than the Eye Can See
Prototypes of our calculator, like
mathematicians, treated all com-
puted results as infinite objects, with
infinitely many digits to scroll through. If
the actual computation happened to be 2
– 1, the result was initially displayed as
1.00000000, and the user could keep
scrolling through as many thousands of
zeroes to the right of that as he desired.
Although mathematically sound, this
proved unpopular for several good rea-
sons, the first one probably more seri-
ous than the others:

1.	 If we computed $1.23 + $7.89, the
result would show up as 9.1200000000
or the like, which is unexpected and
confusing.

2.	 Many users consider the result of
1+2 to be a finite number, and find it

confusing to be able to scroll through
lots of zeros on the right.

3.	 Since the calculator could not
ever tell that a number was not going to
be scrolled, it could not treat any result
as short enough to allow the use of a
larger font.

These problems were largely ad-
dressed by evaluating expression to
not just a constructive real number,
but also to a rational number repre-
sented as a (numerator, denomina-
tor) pair. The latter is unavailable if
the computation involved an irratio-
nal number, or the rational represen-
tation is too large.

This allows us to tell whether a re-
sult has a finite decimal representa-
tion, and if so, how many digits there
are to the right of the decimal point.
We simply look at the fraction in low-
est terms. If the denominator has
a prime factor other than 2 or 5, the
decimal expansion is clearly infinite;
no number of multiplications by 10
can turn the fraction into an integer.
Otherwise the denominator can be
factored as 2n5m and the number of
nonzero digits to the right of the deci-
mal point is max(m,n).

If the expansion is finite, we pre-
vent scrolling past that point. We
also prevent scrolling through a large
number of trailing zeroes to the left of
the decimal point. This often leaves
us with a short nonscrollable result,
for which we can use a larger font. Un-
like the floating-point case, such short,
large font results are always exact, and
never attributable to a number that
was merely close to a short decimal
representation.

This is, however, fallible in the other
direction. For example, we do not
compute a rational representation for
1÷(π2÷π–π), and hence it is still possible
to scroll through as many zeros of that
result as you like.

This underlying fractional repre-
sentation of the result is also used to
directly detect, for example, division by
zero, making it much less likely that a
casual user will ever see a timeout.

Looking Back
The calculator described here is
available through Google Play Store,
and is also the default calculator dis-
tributed with Android 6.0 Marshmal-
low and later.

Initial reviews of the calculator
liked several unrelated UI and func-
tionality changes, but failed to notice
the change in arithmetic.o We were ap-
parently successful in having the ac-
curacy guarantees not interfere with
normal use.

The calculator now exposes the ratio-
nal representation to the user when it
is available. That has turned out to be a
useful feature on its own, though it was
motivated by other considerations.

Feedback has been quite positive.
But it, together with our own experi-
ence, has also suggested some im-
provements:

˲˲ Scrolling results have generated
far more interest than the much more
subtle precision improvements. The
latter seem to have been recognized
only by an absence of bug reports. As a
result, performance of a different kind
actually does matter: Users did notice
sluggishness when scrolling through
30,000 digits of π. And we subsequent-
ly switched to the better-performing
Gauss-Legendre algorithm for π.

˲˲ The semantics of calculator ex-
pressions are more subtle and contro-
versial than we had realized. Is 50+10%
equal to 50.1 or 55? If the latter, what’s
50x5%? If 2π is a valid expression, what
about π2?

˲˲ The most recent versions of our
calculator explicitly track rational mul-
tiples of π and some other common
irrational constants. This allows us to
compute a rational result for sin(π/6)
in radian mode, as we already did for
sin(30°).

Acknowledgments
The calculator UI design and imple-
mentation of course relied on contri-
butions from several others, most no-
tably Justin Klaassen.	

o	 For example, see http://www.androidpolice.
com/2015/06/12/android-m-feature-spotlight-
the-stock-calculator-app-has-been-overhauled-
no-longer-uses-floating-point-arithmetic/.

Hans-J. Boehm (boehm@acm.org) is a software engineer
at Google, Palo Alto, CA.

Copyright held by owner/author.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=49&exitLink=mailto%3Aboehm%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fwww.androidpolice.com%2F2015%2F06%2F12%2Fandroid-m-feature-spotlight-the-stock-calculator-app-has-been-overhauled-no-longer-uses-floating-point-arithmetic%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fwww.androidpolice.com%2F2015%2F06%2F12%2Fandroid-m-feature-spotlight-the-stock-calculator-app-has-been-overhauled-no-longer-uses-floating-point-arithmetic%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fwww.androidpolice.com%2F2015%2F06%2F12%2Fandroid-m-feature-spotlight-the-stock-calculator-app-has-been-overhauled-no-longer-uses-floating-point-arithmetic%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fwww.androidpolice.com%2F2015%2F06%2F12%2Fandroid-m-feature-spotlight-the-stock-calculator-app-has-been-overhauled-no-longer-uses-floating-point-arithmetic%2F

50 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

ALAN TURING IS often praised as the foremost figure
in the historical process that led to the rise of the
modern electronic computer. Particular attention has
been devoted to the purported connection between
a “Universal Turing Machine” (UTM), as introduced
in Turing’s article of 1936,27 and the design and
implementation in the mid-1940s of the first stored-
program computers, with particular emphasis on the
respective proposals of John von Neumann for the
EDVAC30 and of Turing himself for the ACE.26

In some recent accounts, von Neu-
mann’s and Turing’s proposals (and the
machines built on them) are unambigu-
ously described as direct implementa-
tions of a UTM, as defined in 1936. Most
noticeable in this regard are the writ-
ings of Jack Copeland and his collabora-
tors, as stated in the following example:

“What Turing described in 1936 was
not an abstract mathematical notion
but a solid three-dimensional machine
(containing, as he said, wheels, levers,
and paper tape); and the cardinal prob-
lem in electronic computing’s pioneer-
ing years, taken on by both ‘Proposed
Electronic Calculator’ and the ‘First
Draft’ was just this: How best to build a
practical electronic form of the UTM?”9

Similar is the following by Andrew
Hodges:

“[The] essential point of the stored-
program computer is that it is built to
implement a logical idea, Turing’s idea:
the universal Turing machine of 1936.”18

This statement is of particular inter-
est because, in his authoritative biogra-
phy21 of Turing (first published 1983),
Hodges typically follows a much more
nuanced and careful approach to this
entire issue. For instance, when refer-
ring to a mocking 1936 comment by Da-
vid Champernowne, a friend of Turing,
to the effect that the universal machine
would require the Albert Hall to house
its construction, Hodges commented
that this “was fair comment on Alan’s
design in ‘Computable Numbers’ for if
he had any thoughts of making it a prac-

Turing’s
Pre-War Analog
Computers:
The Fatherhood
of the Modern
Computer
Revisited

DOI:10.1145/3104032

Turing’s machines of 1936 were a purely
mathematical notion, not an exploration of
possible blueprints for physical calculators.

BY LEO CORRY

 key insights
˽˽ There is no straightforward, let alone

deterministic, historical path leading
from Turing’s 1936 ideas on the Universal
Machine to the first stored-program
electronic computers of the mid-1940s.

˽˽ Turing’s own pre-war ideas on the
Universal Machine were not intended
as a possible blueprint for the actual
construction of physical automatic
calculating machines.

˽˽ Turing’s personal interaction with von
Neumann while at Princeton had little
impact, if at all, on the later involvement
of both men on the design and
construction of the early stored-program
computers, beginning in the mid-1940s.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=50&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3104032

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 51

P
H

O
T

O
:

N
A

T
I

O
N

A
L

 P
H

Y
S

I
C

A
L

 L
A

B
O

R
A

T
O

R
Y

 ©
 C

R
O

W
N

 C
O

P
Y

R
I

G
H

T
/S

C
I

E
N

C
E

 P
H

O
T

O
 L

I
B

R
A

R
Y

tical proposition they did not show in
the paper.”21 Or, even more cautiously,
in the following:

“Did [Turing] think in terms of con-
structing a universal machine at this
stage? There is not a shred of direct
evidence, nor was the design as de-
scribed in his paper in any way influ-
enced by practical considerations ...
My own belief is that the ‘interest’ [in
building an actual machine] may have
been at the back of his mind all the
time after 1936, and quite possibly mo-
tivated some of his eagerness to learn
about engineering techniques. But as
he never said or wrote anything to this
effect, the question must be left to tan-
talize the imagination.”21

Discussions of this issue tend to be
based on retrospective accounts, some-
times even on hearsay. The most-often
quoted one comes from Max Newman,
who had been Turing’s teacher and
mentor back in the early Cambridge
days and, later, became a leading fig-
ure in the rise of the modern electronic
computer, sometimes collaborating
with Turing. In an obituary published in
1954, he wrote:

“The description that [Turing] gave
of a ‘universal’ computing machine
was entirely theoretical in purpose,
but Turing’s strong interest in all

kinds of practical experiment made
him even then interested in the pos-
sibility of actually constructing a ma-
chine on these lines.”6

This and other similar testimonies
have been cited repeatedly as solid his-
torical evidence but are invariably vague
and unsupported.a Similar is the case
with the anecdotes about the purported
early influence of Turing’s paper on von
Neumann; see, for example, Hodges.21

This article is intended as a further
contribution to the historical ongoing
debates about the actual role of Tur-
ing in the history of the modern elec-
tronic computer and, in particular, the
putative connection between the UTM
and the stored-program computer. I
contend that in order to achieve a com-
plete and balanced historical picture,
one must explicitly abandon the idea
of a straightforward (let alone neces-
sary) transition from the mathematical
idea of 1936 to the physical machine
(or even the design of that machine) in
1945. More specifically, by exploring
the details of Turing’s pre-war involve-
ment with various fields of mathemat-

a	 Newman repeated this claim in an oft-cited
oral interview of 1976, but, curiously, in 1955 he
wrote a memoir on Turing for the Royal Society
in which this point was not mentioned at all.21

ics, both at Cambridge and at Princ-
eton, and with the actual construction
of two calculating machines, I claim
that to the extent that early stored-pro-
gram computers of the mid-1940s can
be seen as physically embodying ideas
discussed in the 1936 paper, “Comput-
able Numbers,” this is mostly a result of
hindsight and says little about Turing’s
ideas before the war.

The purported connection I call into
question involves, in the first place, a
technical claim, namely that the UTM as
defined in 1936 comprises a representa-
tive mathematical model of the stored-
program electronic computers of the
late-1940s. Turing, in 1947, said, for ex-
ample, that digital computing machines
(such as the ACE) “are in fact practical
versions of the universal machine.”6 But
the full validity of this technical claim
is debatable in various ways. For one,
a stored-program machine is only one
way to construct a practical realization
of a UTM. For another, even when the
connection was mentioned in relation
to the new machines, reference was to
re-cast versions of Turing’s ideas rather
than to the original ones.12

Notoriously, neither von Neumann
nor Turing himself suggested this con-
nection in 1945 in their original propos-
als. In a brief note apparently drafted

Alan Turing finishing a race, 1946.

52 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

and I do so by relying on a variety of al-
ready published, mostly well-known,
primary sources. I argue that the “ma-
chines” Turing discussed at the time
were purely mathematical constructs.
They were not conceived as possible
blueprints for building physical calcula-
tors. Moreover, I claim the very idea of a
modern computer in the sense of either
von Neumann’s “First Draft” or of Tur-
ing’s “Proposed Electronic Calculator”
was in 1936 not only beyond the scope
of Turing’s capabilities but also of his
concerns. This is true in the obvious
(yet crucial) sense that the specific elec-
tronic technology that would allow their
construction was then beyond Turing’s
horizon but also true in the less-obvious
sense of the question: What should an
automatic calculating device be in the
first place?

Turing did become involved during
this time in the construction of two ac-
tual devices, and in both cases the idea
of a UTM was of no use, provided no
inspiration, and was not even remotely
mentioned or hinted at. Neither did
Turing suggest that the right approach
to building a real computing machine
would be along the lines of the UTM
and that he would not pursue this direc-
tion just for reasons related to technical
limitations or to lack of time.

Turing’s Computers
Let us start with the 1936 paper itself.
Beyond superficial appearance, there
is nothing in the original text of “Com-
putable Numbers” that might indicate
Turing was referring to, or had in mind,
actual physical devices as part of his
analysis. The “computers” he referred
to in the article were humans who cal-
culate. The aim was to “construct a ma-
chine to do the work of this computer,”
and this is what his famous “machines”
were indeed meant to do. Clearly, “con-
struct” was not intended in this text as
“physically construct,” just as it was not
intended when Turing speaks about
“constructing” a proof “by the methods
of Hilbert and Bernays” or “construct-
ing” a number about which he asks
whether or not it is “computable.”

The non-physical spirit of Turing’s
conception of “machines” is highlight-
ed by specific comments that do involve
what could be taken on first sight to
mean physical components (such as
ink or a square) in the (infinite) paper

ribbon but which are actually treated
as truly abstract entities, when, for in-
stance, he explains the assumption
that the number of symbols that may
be printed is finite. The reason for this
assumption is that otherwise we would
have, as Turing said, “symbols that dif-
fer from each other to an arbitrarily
small extent.” A footnote explaining
this comment leaves no doubt that, in
spite of the wording, Turing is thinking
here not as an engineer but purely as a
mathematician analyzing the situation
with conceptual tools taken from mea-
sure theory and topology:

“If we regard a symbol as literally
printed on a square we may suppose
that the square is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The
symbol is defined as a set of points in
this square, viz. the set occupied by
printer’s ink. If these sets are restricted
to be measurable, we can define the ‘dis-
tance’ between two symbols as the cost
of transforming one symbol into the
other if the cost of moving unit area of
printer’s ink unit distance is unity, and
there is an infinite supply of ink at x =
2, y = 0. With this topology, the symbols
form a conditionally compact space.”27

Some time around May 1936 Turing
prepared a two-page French summary
of “Computable Numbers.” This time
he did not mention human computers,
explicitly stating that a number may be
called “computable” if its decimals can
be written by a machine. In describing
what he meant by a machine, he explic-
itly characterized the various configura-
tions of which the machine is “suscep-
tible” as different arrangements of “the
levers, the wheels, etc.”c But even when
he used this suggestive wording, it is
clear he was speaking figuratively, and
that the machines in question were to
his mind purely mathematical entities.
We can see this from what he writes fur-
ther:

“A real ‘computing machine’ should
be able to write as many digits as one
wishes; “A machine M is called ‘mali-
cious’ (méchant) [what in English he
called ‘circular’] if there is a number
N such that M will never write N digits;
and “An application of Cantor’s diago-

c	 See http://www.turingarchive.org/browse.php/K/4
In the quotation from Copeland and Somma-
ruga,9 the authors refer to this French sum-
mary as evidence for their statement about a
“three-dimensional machine.”

in 1945 while working on his proposal,
Turing implicitly clarified that the origi-
nal context of the ideas from 1936 could
not allow for thinking about a physical
calculator, as proposed on the basis
of electronic components. He did not
mention the issue of instructions stored
as data, that might be seen, at least ret-
rospectively, as connecting the current
design with the idea of a UTM. Rather,
Turing referred only to the issue of ac-
cessing the data in reasonable time:

“In ‘Computable Numbers’ it was as-
sumed that all the stored material was
arranged linearly, so in effect the acces-
sibility time was directly proportional to
the amount of material stored, being es-
sentially the digit time multiplied by the
number of digits stored. This was the
essential reason why the arrangement
in ‘Computable Numbers’ could not be
taken over as it stood to give a practical
form of machine.”7

But beyond the questionable paral-
lel between a UTM and a stored-pro-
gram machine, there are more purely
historical questions that require clari-
fication. Of particular interest is the
actual, direct influence of Turing’s
paper on von Neumann at the time
when the latter wrote his famous “First
Draft.” Some authors have recently ap-
proached this issue and shown (con-
vincingly, in my opinion) that, to the
extent von Neumann (or even Turing
himself) actually took inspiration from
Turing’s 1936 paper when engaged in
the design of a stored-program com-
puter, these ideas provided at most ad-
ditional input (arguably not decisive)
that was incorporated into a broader,
complex array of (mostly engineering
and only partly mathematical) consid-
erations; see, for example, Daylight,12
Haigh,15 and Haigh et al.16,b To what
has been said in such works, I add only
some specific remarks here. But I think
my analysis, by focusing on the earlier
part of the story, naturally connects to
the views expressed therein and gives
them greater credence.

I do not explore the important issue
of contemporary developments in dif-
ferent national settings.3 I limit myself
to Turing’s work before being recruited
to Bletchley Park in September 1939,

b	 It should be remarked that the term “stored-
program” was introduced in 1949 by IBM engi-
neers in Poughkeepsie, NY.11

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fwww.turingarchive.org%2Fbrowse.php%2FK%2F4

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 53

contributed articles

these are of such a nature as obviously
to cause no loss of generality—in partic-
ular, a human calculator, provided with
pencil and paper and explicit instruc-
tions, can be regarded as a kind of Tur-
ing machine.”4

Note that Church used the term
“computing machine” to mean any cal-
culating machine of finite size, rather
than the specific kind of “machines” in-
troduced by Turing. The latter are then
characterized by further restrictions,
and Turing’s human calculator becomes
a particular example of the Turing ma-
chine. This goes in just the opposite di-
rection from Turing in his original for-
mulation. Moreover, as Hodges20 wrote,
Turing had not referred to machines of
finite size as Church did here, and cer-
tainly did not define computability in
terms of the alleged power of finite ma-
chines. Such machines would eventu-
ally repeat themselves, and Turing had
attempted precisely to show how a ma-
chine with finite specifications would
not be constrained to do so. The finite-
ness of Turing’s machines concerned
only the number of configurations, but
the tape, for instance, could not be lim-
ited. So we see that Church’s account
somewhat obscured rather than clarified
Turing’s powerful, original point of view.

Turing, however, never seems to have
explicitly reacted negatively to Church’s
characterization. Neither did he react to
similar remarks by Gödel, who character-
ized Turing’s work in the 1930s as a gen-
eral analysis of arbitrary machines.22 It is
likely that Turing did not consider such
accounts of his ideas as totally unreason-
able. But, as Hodges further suggested,20
it is likely that the participants in this
discourse about computability were us-
ing the word “machine” in a loose man-
ner and without qualifications to signify
“mechanical processes” in general. The
machines and the mechanical proce-
dures they referred to were conceived as
part of the meta-mathematical attempt
to provide the rigorous mathematical
characterization of the informal idea of
computing rather than suggesting, in
any way, some practical guidance on how
to build a physical machine.

Yet another contemporary account
emphasizes from a different direction
the purely mathematical character of
Turing’s view of his machines, this one
by British mathematician Alister Wat-
son. Watson, who, like Turing, was a fel-

nal argument proves that there exists
no machine that, if provided with a de-
scription of an arbitrary machine M, can
decide if M is malicious.”

It would make little sense to say that
by appealing to this abstract argument,
used to tackle situations involving infi-
nite sets, Turing intended to say some-
thing about an actual physical device.

We can take this analysis one step
further by considering Turing’s ideas in
the context of the well-known contem-
porary debates of the mid-1930s involv-
ing other logicians who came up with
their own attempts to provide rigorous
mathematical formulations of ideas re-
lated to the general notion of “effective
computability” or “mechanical proce-
dure.” Kurt Gödel, Alonzo Church, Ste-
phen Cole Kleene, Paul Bernays, and
Emil Post are among the most promi-
nent names associated with this “period
of confluence.” Their motivations, the
specific problems they were addressing,
and the approach they followed were
slightly different in each case, and I am
unable to delve into them here; see, for
example, DeMol13 and Sieg.22 For all of
them though, the search for mathemati-
cally precise concepts, corresponding
to what were then informal ideas, only
vaguely understood, was crucial.

Turing was the first to introduce into
such discourse the word “machine.”
The more specific term “Turing Ma-
chine” was coined by Church in a fa-
mous review from 1937. Church, as is
well known, had completed at roughly
the same time—but following a rather
different approach—his own contribu-
tion to solving Hilbert’s Entscheidung-
sproblem, which was also the focus of
Turing’s paper. After becoming aware
of this, Turing sent it for publication
in August 1936, with an appendix prov-
ing the equivalence of both approaches
and of the ensuing results. In the re-
view, Church described the “Turing Ma-
chines” as follows:

“[Turing] proposes as a criterion that
an infinite sequence of digits 0 and 1 be
‘computable’ that it shall be possible to
devise a computing machine, occupy-
ing a finite space and with working parts
of infinite size, which will write down
the sequence to any desired number of
terms if allowed to run for a sufficiently
long time. As a matter of convenience,
certain further restrictions are imposed
on the character of the machine, but

Between publication
of “Computable
Numbers” and
his recruitment
to Bletchley,
Turing was
involved in
the design
and possible
construction
of two different
physical
calculators.

54 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

With the help of the oracle, Turing thus
wrote, “We could form a new kind of
machine (call them o-machines),
having as one of its fundamental
processes that of solving a given
number theoretic problem.”

Turing in this context used the term
“number theoretic problem” with a pre-
cise meaning, namely, problems involv-
ing statements of the form “for all ...,
there exists ...” He proposed the meta-
mathematical task of establishing the
completeness of such problems. The
twin prime conjecture and the state-
ment of Fermat’s last theorem fall with-
in the scope of these problems. But of
special importance for Turing was the
fact that the Riemann Hypothesis was
also a “number theoretic” problem in
his sense. As American logician Solo-
mon Feferman indicated,14 it is not
really clear why Turing concentrated
specifically on such statements rather
than on arithmetical statements in
general. After all, there are other im-
portant problems, including the finite-
ness of the number of solutions of a
diophantine equation or the statement
of Waring’s problem, that do not fit into
this definition.

At this stage, Turing was already
involved in the design of two actual
calculating devices, as I explore in the
following sections. And yet, even more
than in “Computable Numbers,” there
is nothing in the way “machines” are re-
ferred to in Turing’s thesis that may be
taken to suggest the idea of building an
actual device. Much less does the text
suggest that a UTM should be taken as

the most appropriate basis for build-
ing some kind of “general purpose” or
“stored program” calculator. On the
other hand, since the “oracle” by its
very nature, cannot be a machine in the
restricted sense of the Turing machine,
it brings to the fore the idea of various
possible ways to conceive appropriate
models of addressing different mathe-
matical situations. So, in exploring the
capabilities of the o-machines, Turing
actually meant to explore aspects of
mathematical proof and of calculation
that would not be covered by the ma-
chine as defined in 1936.

Turing’s Princeton
Turing’s encounter with von Neu-
mann at Princeton is one topic that
arises repeatedly in texts by scholars
who argue for the connection between a
UTM and the stored-program computer.
A most explicit example of this ap-
pears in the following passage from
2011, cited from a text by Jack Copeland
and Diane Proudfoot:

“John von Neumann shared Turing’s
dream of building a universal stored-
program computing machine. Von
Neumann had learned of the universal
Turing machine before the war; he and
Turing came to know each other during
1936–1938 when both were at Prince-
ton University.”8

Indeed, the range of the mutual math-
ematical interests of these two bright
men was very broad. Von Neumann in
the 1920s had been a leading figure in
the Hilbert circle and Hilbert’s collabora-
tor in matters related to the foundations
of mathematics. In 1933 he became pro-
fessor of mathematics at the Institute for
Advanced Study. Turing met him in the
summer of 1935 in Cambridge when von
Neumann lectured there on “almost pe-
riodic functions.” This was a topic of in-
terest to Turing at the time, and he most
certainly attended the course.

Given the later prominence of both
Turing and von Neumann in the devel-
opment of the modern computer, it may
seem natural to assume their encounter
in Princeton was a period of intense
intellectual interchange, particularly
around the possibility of building calcu-
lating machines. However, a closer look
at the evidence tells a completely dif-
ferent story of the encounter and of its
relevance to our story. Take for example
the following passage from Turing’s let-

low at King’s College and also the per-
son who introduced Turing to Ludwig
Wittgenstein in the summer of 1937.
What interests us here is Watson’s de-
scription of Turing’s machines in an ar-
ticle he published in 1938:

“Turing’s theory of computable
numbers is essentially that of math-
ematical expressions, but he has put
it in a rather striking way in terms of
machines, which would calculate deci-
mals in accordance with rules that
correspond to different mathematical
expressions for sequences of this kind.
He shows how each such machine can
be given a number, different for each
machine, and so concludes that the ma-
chines and therefore the numbers cal-
culated by them form an enumerable
set. Although we can give every machine
a number, it is impossible to give a me-
chanical method by which we can ascer-
tain whether any particular machine is
really [circle-free] ...”31

Turing’s Thesis
Invited to take his Ph.D. under the
direction of Church, Turing worked
at the Institute for Advanced Study
in Princeton from September 1936
to July 1938. His dissertation pro-
vides further insight into the rela-
tionship between his “machines” and
any thoughts he might have had about
building an actual physical calculator.

A main innovation of the thesis is
the idea of an “oracle” that “cannot be
a machine” and which, by definition,
involves “some unspecified means of
solving number theoretic problems.”

Tide predicting machine. I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 N

A
T

I
O

N
A

L
 O

C
E

A
N

O
G

R
A

P
H

Y
 C

E
N

T
R

E
,

L
I

V
E

R
P

O
O

L
,

U
K

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 55

contributed articles

and much less that they shared (or dis-
cussed) during these years anything like
a “dream of building a universal stored-
program computing machine.”

Turing’s Analog Machine
Between publication of “Comput-
able Numbers” and his recruitment to
Bletchley, Turing was involved in the
design and possible construction of
two different physical calculators. The
first, in the Fall of 1937, was essentially
an electric multiplier. This was for Tur-
ing an early and rather rudimentary
(though no doubt original) foray into
machine-based cryptanalysis. On the
mathematical side, it appealed to a sim-
ple but theretofore not very well noticed
parallel between binary arithmetic and
Boolean algebra. On the physical side, it
brought to bear the possibility of using,
as the basis for a computing device, the
kind of electromagnetic relays that had
already been in use for approximately
100 years in the context of telegraphy.

In his account of this interest-
ing episode, Hodges19 explained it
as an attempt, on the side of Turing,
to build a physical embodiment of
a specific “Turing Machine” meant
to deal with a specific mathematical
problem, with the network of relay-
operated switches acting as material
counterparts of the “configurations”:

“The idea would be that when a num-
ber was presented to the machine, pre-
sumably by setting up currents at a se-
ries of input terminals, the relays would
click open and closed, currents would
pass through, and emerge at output ter-
minals, thus in effect ‘writing’ the enci-
phered number.”21

We have no evidence that Turing
himself would have described in these
terms what he was doing here or that, in
his view, with the relay multiplier, “‘Tur-
ing machines’ were coming to life,” as
Hodges further remarked. But one way
or another, as Hodges himself clearly
stated elsewhere,19 “This offbeat ama-
teur engineering was the closest Turing
came to developing his ideas of general
computation in a practical direction.”
This episode underscores, in my view,
the unlikeliness of seeing Turing’s 1936
UTM as a blueprint for a counterpart
physical device that would be general-
purpose, digital, and, more important,
stored-program. An engineering project
involving such ideas was simply well be-

ter written October 6, 1936, soon after
his arrival at Princeton:

“The mathematics department
here comes fully up to expectations.
There is a great number of the most
distinguished mathematicians here.
J.v.Neumann, Weyl, Courant, Hardy,
Einstein, Lefschetz, as well as hosts of
smaller fry. Unfortunately, there are
not nearly so many logic people here as
last year. Church is here of course, but
Gödel, Kleene, Rosser and Bernays ...
have left. I don’t think I mind very much
missing any of these except Gödel.”6

Turing did not include von Neu-
mann among the “logic people,” and
with good reason. Right after becom-
ing aware of Gödel’s results in 1930,
von Neumann deliberately abandoned
his previous, very active and important
involvement with the foundations of
mathematics.1 The prominent math-
ematicians listed in Turing’s letter
showed little interest in the newcomer
from Cambridge and in his work on log-
ic. Von Neumann was no exception, nor
was Godfrey H. Hardy, who was on visit
at the IAS. It is fair to say that Church
was Turing’s only real interlocutor on
logic while Turing was at Princeton.

Both Turing and Church were far
from the overly extroverted style of
von Neumann, and all evidence indi-
cates there was no personal or friendly
relationship with him. We do know
Church’s few active attempts to make
Turing’s work better known in Princ-
eton were not particularly successful.
Shortly before “Computable Numbers”
was published in 1937, Church urged
Turing to deliver a talk before the distin-
guished local mathematical communi-
ty. Obviously, Turing was thrilled about
the opportunity and thought it might
bring his work to greater attention.
However, it all ended up in disappoint-
ment, as we read in one of his letters:

“There was rather bad attendance at
the Maths Club for my lecture on Dec.
2. One should have a reputation if one
hopes to be listened to.”6

Turing was also disappointed by
the rather limited reaction—besides
Church’s review essay—aroused by the
publication of his paper at the end of
1936. We know that only two persons
requested offprints. Even Hermann
Weyl, who had been a most prominent
member of Hilbert’s inner circle and a
main figure in the late-1920s debates

around the Hilbert program, made
not a single remark about the paper.
Naturally, Turing was particularly dis-
appointed by Weyl’s lack of reaction.21
And it seems that he did not expect von
Neumann to react in any way to his pa-
per. To be sure, besides the letter, von
Neumann is not mentioned in any of
the letters Turing wrote from Princeton
in 1936–1937 to either his mother or his
teacher, Philip Hall.

In April 1938, von Neumann ap-
proached his younger colleague to of-
fer him a job as assistant, and Turing
turned it down. His fellowship at Cam-
bridge had just been renewed, and
he was not eager to remain in the U.S.
anyway. These may have been the main
reasons for Turing’s decision. But what
about von Neumann’s reasons for ap-
proaching Turing? Hodges21 suggested
that by this time von Neumann “was
aware of ‘Computable Numbers,’ even
if he had not been a year earlier.” This is
likely, though there is no direct evidence
for it. But what is more than evident is
that the offer had nothing to do with a
direct interest in Turing’s work on com-
putability and logic, either as developed
in the now famous article of 1936 or as
then pursued in his Ph.D. dissertation.28

Indeed, back in June 1937, von Neu-
mann had written a letter of recom-
mendation on behalf of Turing for the
Procter Fellowship, indicating Turing
“had done good work in branches of
mathematics in which I am interested,
namely: theory of almost periodic func-
tions and theory of continuous groups.”
Von Neumann, let me emphasize again,
had by then completely abandoned his
interest in logic, and there is no indica-
tion that at the time (and indeed any-
time before he became involved in the
war effort) he had in any way started to
think about computing machines or
even about mathematical topics related
to massive calculations.1

If, as Copeland and Proudfoot8 em-
phasized, “von Neumann had learned
of the universal Turing machine before
the war,” there is no indication he de-
voted special attention to it. While
obviously, according to Copeland
and Proudfoot, “he and Turing came
to know each other... at Princeton,”
their interaction was rather limited in
scope and intensity. There is no indi-
cation that the two devoted any time to
discussing Turing’s ideas on the topic

56 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

ber x where this change of sign happens
is smaller than 10101034

.
While at Princeton, and during his

visit to Cambridge in the Summer of
1937, Turing actively pursued research
related to RH. Among other things, he
improved the value of Skewes’s bound,
and, more important, improved the
existing methods for calculating zeros
of ζ(s). Shortly before that, Edward Ch.
Titchmarsch had been involved with
such calculations at Oxford and was
able to establish that the first 1,041
nontrivial zeros of ζ(s) all satisfy RH.24,25
Turing’s plan from 1939 for building a
calculating device is directly connected
to Titchmarsch’s work.

Titchmarsch’s calculations were
based on approximation formulas that
required massive iterations of addition
and multiplication, as well as the use
of cosine tables. For “planning and su-
pervising the calculations, which were
carried out with Brunsviga, National,
and Hollerith machines,” Titchmarsch
explicitly thanked J.L. Comrie,25 who
had, since 1929, been “Secretary of the
British Mathematical Tables Commit-
tee” and the driving force behind a great
amount of important projects of scien-
tific table making conducted in the U.K.
at the time.10

Astronomical tables were of particu-
lar importance among such projects,
and their preparation involved repeti-
tive summations of circular functions
involving different frequencies for plot-
ting the positions of planets. Comrie’s
recent introduction of Hollerith punch-
card techniques to scientific table mak-
ing5 signified a remarkable innovation
in the field. As it happened, the calcu-
lations required in Titchmarsch’s ap-
proach to calculating zeros of ζ(s) were
quite similar to them. Comrie was clear-
ly the right person to provide the neces-
sary technical assistance.

Comrie did not typically perform any
calculations himself. Rather, he had
teams of “human computers” (mainly
women) to do that work. Each computer
received data to be worked out, and, with
the help of “Brunsviga, National, and
Hollerith machines,” would perform a
specific task, clearly defined in advance
according to the kind of input presented
to her. She would then deliver the result
to another person in the team who also
carried out a respective task, well de-
fined in advance, again depending on

the kind of input at stake. Note while
Turing’s “machines” of 1936 provided
a mathematical model meant to ana-
lyze the nature and scope of the calcula-
tions that individual human computers
could and did effectively perform, those
machines can also be taken to describe
adequately (and perhaps even better)
the model of what coordinated teams of
human computers were actually doing
in Turing’s time when addressing heavy
computational tasks that went beyond
what an individual could achieve.

When Turing in 1939 undertook to
perform relatively massive calculations
in one of his main mathematical topics
of interest other than logic—the Rie-
mann Hypothesis—he was aware that
precisely at that time, one of Comrie’s
teams had recently been involved in the
same task, with the aid of mechanical
calculators. The conceptual similarity
between Turing’s model and Comrie’s
activities could not have escaped Tur-
ing’s notice. And yet, for his own calcula-
tions, he did not choose to follow or im-
prove the direction previously pursued
by Titchmarsch. Neither did he take
a step further toward anything like a
UTM. Rather, he went into the totally dif-
ferent direction of designing an analog
machine, specifically conceived for sup-
porting his work on what for him was
such an important mathematical task.

Turing’s analog design relied on a
machine built some years earlier for
tide prediction at Liverpool, England.
It performed trigonometrical summa-
tions based on a combination of pulley
wheels, each representing one of the
gravitational effects that give rise to tid-
al phenomena. A thin nickel tape con-
nected the various pulley wheels and
“summed up,” as it were, their separate
movements. The tidal highs and lows
were thereby registered on a chart locat-
ed at the bottom of the machine.

Turing thought similar principles
would be useful for constructing an ap-
paratus for calculating trigonometric
sums that were at the heart of his meth-
od for the zeros of ζ(s). In some cases,
he thought, the apparatus would not be
accurate enough and it would then be
necessary to work out the calculations
manually. But he believed such cases
would be extremely rare. He specifically
stressed that the apparatus would be so
closely analog to the simulated math-
ematical situation to the extent that he

yond the horizon of what Turing had in
mind at this point.

But all such intent becomes even
more evident when we take a close look
at a second calculating device Turing
designed and started to build in 1939.
This was one specifically conceived for
calculating approximate values of the
Riemann zeta-function on its critical
line. Hodges’s Turing website “Alan Tur-
ing: the Enigma” (http://www.turing.
org.uk/index.html), the foremost reposi-
tory of scholarly information for anyone
interested in Turing’s life and work, dis-
plays the application submitted by Tur-
ing to the Royal Society for a grant sup-
port for building the device, as well as
a blueprint with some details about its
technical design.d This is not the place
for details about the mathematical sig-
nificance of the Riemann Hypothesis, or
RH, of Turing’s overall involvement with
this problem, or of his specific contribu-
tion to it; such information can be found
in Booker2 and in Hejhala and Odlyzko.17
But there are some specific points that
are highly relevant to our concerns here
and proceed to discuss them now.

Turing’s interest in RH was sparked
shortly after matriculating at King’s Col-
lege in 1931. There he attended a course
by Albert E. Ingham, who in 1932 pub-
lished an important text on the distribu-
tion of prime numbers. At King’s, Tur-
ing also befriended Stanley Skewes,
who in 1933 made a remarkable contri-
bution to research on RH. Briefly, Skew-
es calculated an upper bound for the
smallest value of x for which π(x) > Li(x).
Here π(x) represents the number of
primes that are smaller than a given in-
teger x, while Li(x) is the value of the in-
tegral . It is well known that RH
concerns the question of the nontrivial
zeros of the Riemann zeta-function ζ(s)
and its relation to the estimation of the
value of the difference between the two
functions. John E. Littlewood had
proved, in 1912, contrary to the com-
mon belief at the time, that the differ-
ence π(x) – Li(x) changes sign infinitely
many times, both if RH is true and if RH
is false. Skewes’s proof involved two dif-
ferent values of the upper bound for the
respective cases, and both were amaz-
ingly high. For instance, if RH is true,
then he proved that the smallest num-

d	 See http://www.turing.org.uk/sources/zetama-
chine.html

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Findex.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Fsources%2Fzetamachine.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Fsources%2Fzetamachine.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Findex.html

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 57

contributed articles

Intuition and Turing’s Machines
Turing left Cambridge in September
1939 for Bletchley Park, and would over
the next few years devote all of his intel-
lectual energies to war-related projects
while temporarily setting aside mathe-
matical research in his other fields of in-
terest. By 1945 he would have added im-
portant skills, as well as familiarity with
electronic valves and with machines of
various kinds, to the already impressive
arsenal of knowledge he had brought
with him at the time of his recruitment.
His activities after 1945, including, of
course, all of his involvement with elec-
tronic computers, were deeply influ-
enced by his years at Bletchley.

But over the first months following
his recruitment, Turing and Newman
continued to correspond and discuss is-
sues connected to their pre-war activity.
This correspondence bears witness to
the way the two went on to speak about
“Turing machines” at a time when Tur-
ing had already gained actual experi-
ence, not only with the two calculating
devices he had been involved with, but
also with what he had now started to
learn at Bletchley. Remarkably, they
stuck to the language of “machines,”
not in the sense of physical devices
but rather as the relevant, purely math-
ematical idea on the basis of which
they would discuss issues related to the
foundations of arithmetic.

In a particularly interesting passage,
under the heading “Ingenuity and In-
tuition,” Turing replied to a previous
letter from Newman in which Newman
seems to have commented on matters
related to the Hilbert program:

“I think you take a much more radi-
cally Hilbertian attitude about mathe-
matics than I do. You say ‘If all this whole
formal outfit is not about finding proofs
which can be checked on a machine it’s
difficult to know what it is about.’ [D]o
you have in mind that there is (or should
be or could be, but has not been actu-
ally described anywhere) some fixed
machine ... and that the formal outfit
is, as it were about this machine. If you
take this attitude ... there is little more
to be said: we simply have to get used to
the technique of this machine and re-
sign ourselves to the fact that there are
some problems to which we can never
get the answer ... If you think of various
machines I don’t see your difficulty. One
imagines different machines allowing

could not think “of any application that
would not be connected with” ζ(s). The
project, at any rate, was never complet-
ed because of the outbreak of war, and
none of its parts has survived.

I find it quite interesting that when
Hodges describes the project on his
website, he mentions “a special ma-
chine to calculate approximate val-
ues for the Riemann zeta-function on
its critical line.” This is not the only
place where the term “special ma-
chine,” which was not used by Tur-
ing, is used in this context, as in, for
example, Booker2 and Hejhala and
Odlyzko.17 I take it to be a revealing,
subtly misleading description of what
Turing had in mind in 1939, particu-
larly because the project is often men-
tioned in conjunction with Turing’s
later efforts of 1950 to attack the same
problem using a “general purpose”
electronic computer, the Manchester
University Mark I.29

My point is that in 1939 Turing ap-
proached the actual construction of an
apparatus the way he did, not because—
for lack of time or resources—he was
compelled to make do with it. This was
not a “special” limited or rudimentary
version of what for him would be the
real thing, namely, a general-purpose,
stored-program, digital and electronic
computer (presumably being a physi-
cal embodiment of a UTM). Rather, it
is that a putative physical version of a
UTM was not within the horizon of pos-
sible or convenient approaches to be
followed. To the contrary, what the evi-
dence shows is that, at the time, Turing
considered the analog approach to be
the most intrinsically appropriate for
the task at hand.

In fact, the tremendous success of
modern digital computers has nega-
tively affected the way the history of ana-
log computers in general has been told.
The case of Turing’s 1939 project is just
one example of such retrospective mis-
reading, though one seldom mentioned
in this context. Analog computers were
not only a natural choice in many situ-
ations before the war but even after the
emergence of digital computing in the
post-war period were not immediately
displaced.23 A most remarkable exam-
ple of this is precisely the Liverpool tide-
predicting machine, which remained in
use until the 1960s, before being super-
seded by electronic computers.

By its very nature,
Turing’s oracle
could not be
a standard
Turing machine.

58 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

models as suggesting blueprints for de-
signing physical devices, then an analog
machine (such as planned by Turing
in 1939) would come much closer than
anything built along the lines of a UTM
to embodying specific, “fundamental
processes” associated with a particular
number theoretic problem, in the sense
suggested in his Ph.D. thesis.

When Turing in 1950 returned to
the task of calculating zeros of ζ(s) the
sea changes that had revolutionized the
world of automatic computation had
rendered all those pre-war consider-
ations obsolete. The natural approach
to follow for Turing was now to write a
specific program to run in a stored-pro-
gram, general-purpose machine. But the
Mark I, like all other similar machines at
the time, was not only stored-program.
It was also electronic, large-scale, high-
speed, general purpose, and digital. In
1939, all these crucial components of the
machines that started to be built in the
late 1940s were far beyond the horizon.

Acknowledgments
This article is a somewhat belated elab-
oration of a talk I gave at the “Turing in
Context II” conference in Brussels, Oc-
tober 10–12, 2012 (http://www.dijkstras-
cry.com/Corry). I want to thank Edgar
Daylight for transcribing the talk and
for his continued encouragement to
publish my ideas on this topic. Thanks,
too, to three anonymous referees for
valuable comments. 	

References
1.	 Aspray, W. John von Neumann and the Origins of

Modern Computing. MIT Press, Cambridge, MA, 1990.
2.	 Booker, A.R. Turing and the primes. In The Once and

Future Turing: Computing the Worldy, S.B. Cooper
and A. Hodges, Eds. Cambridge University Press,
Cambridge, U.K., 2016, 34–50.

3.	 Bruderer, H. Meilensteine der Rechentechnik. Zur
Geschichte der Mathematik und der Informatik. De
Gruyter Oldenbourg, Berlin/Boston, 2015.

4.	 Church, A. Review: A.M. Turing, on computable numbers,
with an application to the Entscheidungsproblem.
Journal of Symbolic Logic 2, 1 (1937), 42–43.

5.	 Comrie, L.J. The application of the Hollerith tabulating
machine to Brown’s tables of the moon. Monthly
Notices of the Royal Astronomical Society 92, 7 (1932),
694–707.

6.	 Copeland, B.J., Ed. The Essential Turing. Clarendon
Press, Oxford, 2004.

7.	 Copeland, B.J., Ed. Alan Turing’s Automatic Computing
Engine. The Master Codebreaker’s Struggle to Build
the Modern Computer. Oxford University Press, Oxford,
U.K., 2005.

8.	 Copeland, B.J. and Proudfoot, D. Alan Turing: Father of
the modern computer. Rutherford Journal 4 (2011–2012).

9.	 Copeland, B.J. and Sommaruga, G. The stored-program
universal computer: Did Zuse anticipate Turing and
von Neumann? In Turing’s Revolution. The Impact of
His Ideas about Computability, G. Sommaruga and T.
Strahm, Eds. Springer International Publishing, Cham,
Switzerland, 2015, 43–101.

10.	 Croarken, M. Table making by committee: British table
makers 1871–1965. In The History of Mathematical

Tables: From Sumer to Spreadsheets, R.F.M. Campbell-
Kelly, M. Croarken, and E. Robson, Eds. Oxford
University Press, Oxford, U.K., 2003, 235–267.

11.	 Daylight, E.G. A Turing tale. Commun. ACM, 57, 10 (Oct.
2014), 36–38.

12.	 Daylight, E.G. Towards a historical notion of ‘Turing: The
father of computer science.’ History and Philosophy of
Logic 36, 3 (Sept. 2015), 205–228.

13.	 DeMol, L. Closing the circle: An analysis of Emil Post’s
early work. The Bulletin of Symbolic Logic 12, 2 (June
2006), 267–289.

14.	 Feferman, S. Turing’s thesis. Notices of the American
Mathematical Society 53, 10 (Nov. 2006), 2–8.

15.	 Haigh, T. Actually, Turing did not invent the computer.
Commun. ACM 57, 1 (Jan. 2014), 36–41.

16.	 Haigh, T., Priestley, M., and Rope, C. Reconsidering the
stored-program concept. IEEE Annals of the History of
Computing 36, 1 (Jan.-Mar. 2014), 4–17.

17.	 Hejhala, D.A. and Odlyzko, A.M. Alan Turing and the
Riemann zeta function. In Alan Turing: His Work and
Impact, S.B. Cooper and J. van Leeuwen, Eds. Elsevier
Science, Waltham, MA, 2013, 265–279.

18.	 Hodges, A. The Alan Turing Internet Scrapbook. Who
Invented the Computer?; http://www.turing.org.uk/
scrapbook/computer.html

19.	 Hodges, A. Alan Turing: The logical and physical basis
of computing. In Proceedings of the 2004 International
Conference on Alan Mathison Turing: A Celebration
of his Life and Achievements (Swinton, U.K.). British
Computer Society, London, U.K., 2004.

20.	 Hodges, A. Did Turing have a thesis about machines?
In Church’s Thesis After 70 Years, J.W.A. Olszewski
and R. Janusz, Eds. Ontos Verlag, Frankfurt am Main,
Germany, 2006, 242–252.

21.	 Hodges, A. Alan Turing: The Enigma. The Book that
Inspired the Film ‘The Imitation Game.’ Princeton
University Press, Princeton, NJ, 2014.

22.	 Sieg, W. Gödel on computability. Philosophia
Mathematica 14, 2 (Jan. 2006), 189–207.

23.	 Small, J.S. The Analogue Alternative: The Electric
Analogue Computer in Britain and the USA, 1930–1975.
Routledge, London, U.K., 2001.

24.	 Titchmarsh, E.C. The zeros of the Riemann zeta-
function. Proceedings of the Royal Society of London.
Series A, Mathematical, Physical and Engineering
Sciences 151, 873 (Sept. 1935), 234–255.

25.	 Titchmarsh, E.C. The zeros of the Riemann zeta-
function. Proceedings of the Royal Society of London.
Series A, Mathematical, Physical and Engineering
Sciences 157, 891 (Nov. 1936), 261–263.

26.	 Turing, A.M. Proposed Electronic Calculator (report
submitted to the Executive Committee of the National
Physical Laboratory), 1945; republished in Copeland,
B.J, Ed.,7 369–454.

27.	 Turing, A.M. On computable numbers, with an
application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society 42, 1 (Nov. 1937),
230–265.

28.	 Turing, A.M. Systems of logic based on ordinals.
Proceedings of the London Mathematical Society 45, 1
(Jan. 1939), 161–228.

29.	 Turing, A.M. Some calculations of the Riemann zeta-
function. Proceedings of the London Mathematical
Society 3, 3 (Jan. 1953), 99–117.

30.	 von Neumann, J. First Draft of a Report on the
EDVAC. Technical Report. University of Pennsylvania,
Philadelphia, PA, 1945.

31.	 Watson A.G.D. Mathematics and its foundations. Mind
47, 188 (Oct. 1938), 440–451.

Leo Corry (corry@post.tau.ac.il) is the Bert and Barbara
Cohn Professor of History and Philosophy of Science and
Dean of the Lester and Sally Entin Faculty of Humanities at
Tel-Aviv University.

© 2017 ACM 0001-0782/17/08 $15.00

different sets of proofs, and by choos-
ing a suitable machine one can ap-
proximate ‘truth’ by ‘provability’ better
than with a less suitable machine, and
can in a sense approximate it as well as
you please. The choice of a machine in-
volves intuition,... or as [an] alternative
one may go straight for the proof and
this again requires intuition.”6

The fact that still, in 1940, when the
classical debates on the foundations
of arithmetic had almost totally faded
away, Newman and Turing continued
their exchanges on such matters, is
worthy of attention in itself. But no less
interesting is the subtle twist Turing
introduced into this discussion when
he mentioned the possibility of having
various kinds of machines according to
different kinds of intuitions that are rel-
evant to different mathematical situa-
tions. The UTM was not for Turing “uni-
versal” in this important sense.

It seems that now—in those few op-
portunities when he could think about
the foundations of mathematics and
about questions of “truth” or “prov-
ability”—Turing also incorporated new
directions (such as he had explored in
his Ph.D. dissertation). This included,
no doubt, the oracle, but also, so it
seems, alternatives to the basic “ma-
chine” he had defined in 1936.

Conclusion
I conclude with a final, somewhat con-
jectural suggestion. By its very nature,
Turing’s oracle could not be a standard
Turing machine. “Solving a given num-
ber theoretic problem” is one of “its fun-
damental processes.” And the Riemann
Hypothesis is one such problem. Now,
it seems to me, Turing’s construction
of his analog machine and the variety of
machines he mentioned in his response
to Newman shed interesting light, retro-
spectively, on that passing, somewhat
unclear comment Turing advanced in
his thesis. From the letter we learn that
each mathematical situation calls for
the choice of a suitable machine and
these choices rely on the right intuition
to do so in each case. The UTM had been
a highly successful, specific choice for
dealing with the Entscheidungsprob-
lem, but that would not mean—even in
principle—it would provide a model for
a physical universal machine, suitable
for all mathematical tasks. If we may
somehow think of these mathematical

Watch the author discuss
his work in this exclusive
Communications video.
https://cacm.acm.org/videos/
turings-pre-war-analog-
computers

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fwww.dijkstrascry.com%2FCorry
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Fscrapbook%2Fcomputer.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=mailto%3Acorry%40post.tau.ac.il
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fwww.turing.org.uk%2Fscrapbook%2Fcomputer.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fturings-pre-war-analog-computers
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fwww.dijkstrascry.com%2FCorry

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 59

WHILE DATA S CIEN CE has emerged as an ambitious
new scientific field, related debates and discussions
have sought to address why science in general needs
data science and what even makes data science a
science. However, few such discussions concern the
intrinsic complexities and intelligence in data science

Data Science:
Challenges
and Directions

DOI:10.1145/3015456

While it may not be possible to build a data
brain identical to a human, data science can
still aspire to imaginative machine thinking.

BY LONGBING CAO

problems and the gaps in and op-
portunities for data science research.
Following a comprehensive literature
review,5,6,10–12,15,18 I offer a number of
observations concerning big data and
the data science debate. For example,
discussion has covered not only data-
related disciplines and domains like
statistics, computing, and informat-
ics but traditionally less data-related
fields and areas like social science
and business management as well.
Data science has thus emerged as a
new inter- and cross-disciplinary field.
Although many publications are avail-
able, most (likely over 95%) concern
existing concepts and topics in statis-
tics, data mining, machine learning,
and broad data analytics. This limited
view demonstrates how data science
has emerged from existing core dis-
ciplines, particularly statistics, com-
puting, and informatics. The abuse,
misuse, and overuse of the term “data
science” is ubiquitous, contributing
to the hype, and myths and pitfalls are
common.4 While specific challenges
have been covered,13,16 few scholars

have addressed the low-level complex-
ities and problematic nature of data
science or contributed deep insight
about the intrinsic challenges, direc-
tions, and opportunities of data sci-
ence as an emerging field.

Data science promises new opportu-
nities for scientific research, addressing,
say, “What can I do now but could not do
before, as when processing large-scale
data?”; “What did I do before that does
not work now, as in methods that view

 key insights
˽˽ Data science problems require

systematic thinking, methodologies,
and approaches to help spur
development of machine intelligence.

˽˽ The conceptual landscape of data
science assists data scientists trying to
understand, represent, and synthesize
the complexities and intelligence in
related problems.

˽˽ Data scientists aim to invent data-
and intelligence-driven machines to
represent, learn, simulate, reinforce,
and transfer human-like intuition,
imagination, curiosity, and creative
thinking through human-data interaction
and cooperation.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=59&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3015456

60 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

and synthesizes a number of relevant
disciplines and bodies of knowledge,
including statistics, informatics, com-
puting, communication, management,
and sociology, to study data following
“data science thinking”6 (see Figure 1).
Consider this discipline-based data
science formula

data science = {statistics ∩ informatics
∩ computing ∩ communication ∩
sociology ∩ management | data ∩
domain ∩ thinking }

where “|” means “conditional on.”

X-Complexities in Data Science
A core objective of data science is ex-
ploration of the complexities19 inher-
ently trapped in data, business, and
problem-solving systems.3 Here, com-
plexity refers to sophisticated charac-
teristics in data science systems. I treat
data science problems as complex sys-
tems involving comprehensive system
complexities, or X-complexities, in
terms of data (characteristics), behav-
ior, domain, social factors, environ-
ment (context), learning (process and
system), and deliverables.

Data complexity is reflected in terms
of sophisticated data circumstances

and characteristics, including large
scale, high dimensionality, extreme
imbalance, online and real-time inter-
action and processing, cross-media
applications, mixed sources, strong
dynamics, high frequency, uncertainty,
noise mixed with data, unclear struc-
tures, unclear hierarchy, heteroge-
neous or unclear distribution, strong
sparsity, and unclear availability of spe-
cific sometimes critical data. An impor-
tant issue for data scientists involves
the complex relations hidden in data
that are critical to understanding the
hidden forces in data. Complex rela-
tions could consist of comprehensive
couplings2 that may not be describ-
able through existing association, cor-
relation, dependence, and causality
theories and systems. Such couplings
may include explicit and implicit,
structural and nonstructural, seman-
tic and syntactic, hierarchical and ver-
tical, local and global, traditional and
nontraditional relations, and evolution
and effect.

Data complexities inspire new per-
spectives that could not have been
done or done better before. For ex-
ample, traditional large surveys of
sensor data, including statisticians’
questions and survey participants,
have been shown to be less effective,
as seen in related complications (such
as wrongly targeted participants, low
overall response rate, and questions
unanswered). However, data-driven
discovery can help determine who is to
be surveyed, what questions need to be
answered, the actionable survey opera-
tion model, and how cost-effective the
survey would be.

Behavior complexity refers to the
challenges involved in understanding
what actually takes place in business
activities by connecting to the seman-
tics and processes and behavioral sub-
jects and objects in the physical world
often ignored or simplified in the data
world generated by physical-activity-
to-data conversion in data-acquisition
and -management systems. Behavior
complexities are embodied in coupled
individual and group behaviors, behav-
ior networking, collective behaviors,
behavior divergence and convergence,
“nonoccurring”8 behaviors, behavior-
network evolution, group-behavior
reasoning, recovery of what actually
happened, happens, or will happen in

data objects as independent and identi-
cally distributed variables (IID)?”; “What
problems not solved well previously are
becoming even more complex, as when
quantifying complex behavioral data?’’;
and “What could I not do better before,
as in deep analytics and learning?”

As data science focuses on a system-
atic understanding of complex data and
related business problems,5,6 I take the
view here that data science problems
are complex systems3,19 and data sci-
ence aims to translate data into insight
and intelligence for decision making.
Accordingly, I focus on the complexi-
ties and intelligence hidden in com-
plex data science problems, along with
the research issues and methodologies
needed to develop data science from a
complex-system perspective.

What It Is
The concept of data science was origi-
nally proposed within the statistics and
mathematics community23,24 where it
essentially concerned data analysis.
Data science today17 goes beyond specif-
ic areas like data mining and machine
learning or whether it is the next genera-
tion of statistics.9,11,12 But what is it?

Definition. Data science is a new
trans-disciplinary field that builds on

Figure 1. Transdisciplinary data science.

Communication

Sociology
Management

Informatics

Statistics

Thinking

DomainData

Data

Science

Computing

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 61

contributed articles

easy to understand and interpretable
by nonprofessionals, revealing in-
sights that directly inform and enable
decision making and possibly having
a transformative effect on business
processes and problem solving.

X-Intelligence in Data Science
Data science is a type of “intelligence
science” that aims to transform data
into knowledge, intelligence, and
wisdom.21 In this transformation,
comprehensive intelligence,3 or “X-
intelligence,” is often used to address
a complex data science problem, re-
ferring to comprehensive and valuable
information. X-intelligence can help in-
form the deeper, more structured and
organized comprehension, representa-
tion, and problem solving in the under-
lying complexities and challenges.

Data intelligence highlights the most
valuable information and narratives in
the formation and solution of business
problems or value in the corresponding
data. Intelligence hidden in data is dis-
covered by data science through its abili-
ty to understand data characteristics and
complexities. Apart from the usual focus
on complexities in data structures, dis-
tribution, quantity, speed, and quality,
the focus in data science is on the intel-
ligence hidden in the unknown “Space
D” in Figure 2. For example, in addition
to existing protocols for cancer treat-
ment, determining what new and exist-
ing treatments fail on which patients
might be informed by analyzing health-
care data and diversified external data
relevant to cancer patients. The level of
data intelligence depends on how much
and to what extent a data scientist is able
to deeply understand and represent data
characteristics and complexities.

Data scientists discover behavior in-
telligence by looking into the activities,
processes, dynamics, and impact of
individual and group actors, or the be-
havior and business quantifiers, owners,
and users in the physical world. Such dis-
covery requires they be able to bridge the
gap between the data world and the physi-
cal world by connecting what happened
and what will happen in the problem and
discovering behavior insights through
behavior informatics.1 For example, in
monitoring online shopping websites,
regulators must be able to recognize
whether ratings and comments are
made by robots, rather than humans;

the physical world from the highly de-
formed information collected in the
purely data world, insights, impact,
utility, and effect of behaviors, and the
emergence and management of behav-
ior intelligence. However, limited sys-
tematic research outcomes are available
for comprehensively quantifying, rep-
resenting, analyzing, reasoning about,
and managing complex behaviors.

Data scientists increasingly recog-
nize domain complexity7 as a critical
aspect of data science for discovering
intrinsic data characteristics, value,
and actionable insight. Domain com-
plexities are reflected in a problem
domain as domain factors, domain
processes, norms, policies, qualitative-
versus-quantitative domain knowl-
edge, expert knowledge, hypotheses,
meta-knowledge, involvement of and
interaction with domain experts and
professionals, multiple and cross-do-
main interactions, experience acquisi-
tion, human-machine synthesis, and
roles and leadership in the domain.
However, existing data analytics focus-
es mainly on domain knowledge.

Social complexity is embedded in
business activity and its related data
and is a key part of data and business
understanding. It may be embodied
in such aspects of business problems
as social networking, community
emergence, social dynamics, impact
evolution, social conventions, social
contexts, social cognition, social intel-
ligence, social media, group formation
and evolution, group interaction and
collaboration, economic and cultural
factors, social norms, emotion, senti-
ment and opinion influence processes,
and social issues, including security,
privacy, trust, risk, and accountability
in social contexts. Promising interdis-
ciplinary opportunities emerge when
social science meets data science.

Environment complexity is another
important factor in understanding
complex data and business problems,
as reflected in environmental (contex-
tual) factors, contexts of problems and
data, context dynamics, adaptive en-
gagement of contexts, complex contex-
tual interactions between the business
environment and data systems, signifi-
cant changes in business environment
and their effect on data systems, and
variations and uncertainty in interac-
tions between business data and the

business environment. Such aspects
of the system environment have con-
cerned open complex systems20 but not
yet data science. If ignored, a model
suitable for one domain might produce
misleading outcomes in another, as is
often seen in recommender systems.

Learning (process and system) com-
plexity must be addressed to achieve
the goal of data analytics. Challenges
in analyzing data include developing
methodologies, common task frame-
works, and learning paradigms to han-
dle data, domain, behavioral, social,
and environmental complexity. Data
scientists must be able to learn from
heterogeneous sources and inputs, par-
allel and distributed inputs, and their
infinite dynamics in real time; support
on-the-fly active and adaptive learning
of large data volumes in computational
resource-poor environments (such as
embedded sensors), as well as multi-
source learning, while considering the
relations and interactions between
sensors; enable combined learning
across multiple learning objectives,
sources, feature sets, analytical meth-
ods, frameworks, and outcomes; learn
non-IID data-mixing coupling relation-
ships with heterogeneity;2 and ensure
transparency and certainty of learning
models and outcomes.

Other requirements for manag-
ing and exploiting data include ap-
propriate design of experiments and
mechanisms. Inappropriate learning
could result in misleading or harmful
outcomes, as in a classifier that works
for balanced data but could mistak-
enly classify biased and sparse cases
in anomaly detection.

The complexity of a deliverable data
product, or “deliverable complexity”
becomes an obstruction when action-
able insight7 is the focus of a data sci-
ence application. Such complexity
necessitates identification and evalua-
tion of the outcomes that satisfy tech-
nical significance and have high busi-
ness value from both an objective and
a subjective perspective. The related
challenges for data scientists also in-
volve designing the appropriate evalu-
ation, presentation, visualization, re-
finement, and prescription of learning
outcomes and deliverables to satisfy
diverse business needs, stakeholders,
and decision support. In general, data
deliverables to business users must be

62 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

is crucial for addressing complex data
problems, data scientists must be able
to apply subjective factors, qualitative
reasoning, and critical imagination.

Network intelligence emerges from
both Web intelligence and broad-based
networking and connected activities and
resources, especially through the Inter-
net of Things, social media, and mobile
services. Information and facilities from
the networks involved in target busi-
ness problems can contribute useful
information for complex data-science
problem solving; a relevant example is
crowdsourcing-based open source sys-
tem development and algorithm design.

Organizational intelligence emerges
from the proper understanding, in-
volvement, and modeling of organiza-
tional goals, actors, and roles, as well
as structures, behaviors, evolution and
dynamics, governance, regulation, con-
vention, process, and workflow in data
science systems. For example, the cost
effectiveness of enterprise analytics
and functioning of data science teams
rely on organizational intelligence.

Social intelligence emerges from the
social complexities discussed earlier.
Human social intelligence is embedded
in social interactions, group goals and
intentions, social cognition, emotional
intelligence, consensus construction,
and group decision making. Social in-
telligence is also associated with social-
network intelligence and collective
interactions among social systems, as
well as the business rules, law, trust,
and reputation for governing social in-
telligence. Typical artificial social sys-
tems include social networks and social
media in which data-driven social com-

plexities are understood through social-
influence modeling, latent relation
modeling, and community formation
and evolution in online societies.

Environmental intelligence is also
hidden in data science problems, as
specified in terms of the underlying do-
main and related organizational, social,
human, and network intelligence. Data
science systems are open, with interac-
tions between the world of transformed
data and the physical world functioning
as the overall data environment. Exam-
ples include context-aware analytics in-
volving contextual factors and evolving
interactions and changes between data
and context, as in infinite-dynamic-rela-
tion modeling in social networks.

Known-to-Unknown
Transformation
Complex data science problem-solving
journeys taken by data scientists repre-
sent a cognitive progression from un-
derstanding known to unknown com-
plexities in order to transform data into
knowledge, intelligence, and insight
for decision taking by inventing and
applying respective data-intelligence
discovery capabilities. In this context,
knowledge represents processed in-
formation in terms of information
mixture, procedural action, or propo-
sitional rules; resulting insight refers
to the deep understanding of intrinsic
complexities and mechanisms in data
and its corresponding physical world.

Figure 2 outlines data science pro-
gression aiming to reduce the imma-
turity of capabilities and capacity (y-
axis) to better understand the hidden
complexities, knowledge, and intel-
ligence (CKI) in data/physical worlds
(x axis) from the 100% known state K
to the 100% unknown state U. Based
on data/physical world visibility and
capability/capacity maturity, data
science can be categorized into four
data challenges:

“Space A” represents the known
space; that is, “I (my mature capabil-
ity/capacity) know what I know (about
the visible world).” This is like the
ability of sighted people to recog-
nize an elephant by seeing the whole
animal, whereas non-sighted people
might be able to identify only part of
the animal through touch. Knowledge
concerning visible data is known to
people with mature capability/capac-

likewise, in social media, detecting algo-
rithms, or robot-generated comments,
in billions of daily transactions is itself a
computational challenge. Constructing
sequential behavior vector spaces and
modeling interactions with other ac-
counts in a given time period and then
differentiating abnormal behaviors may
be useful for understanding the differ-
ence between proactive and subjective
human activity and the reactive and pat-
ternable behaviors of software robots.

Domain intelligence emerges from
relevant domain factors, knowledge,
meta-knowledge, and other domain-
specific resources associated with a
problem and its target data. Qualitative
and quantitative domain intelligence
can help inform and enable a data sci-
entist’s deep understanding of domain
complexities and their roles in discov-
ering unknown knowledge and action-
able insight. For example, to learn high-
frequency trading strategies for use with
stock data, a strategy modeler must in-
clude the “order book” and microstruc-
ture of the related “limit market.”

Human intelligence plays a central
role in complex data science systems
through explicit, or direct, involvement
of human intuition, imagination, em-
pirical knowledge, belief, intention, ex-
pectation, runtime supervision, evalu-
ation, and expertise. It also concerns
the implicit, or indirect, involvement
of human intelligence in the form of
imaginative thinking, emotional intel-
ligence, inspiration, brainstorming,
reasoning inputs, and embodied cogni-
tion, as in convergent thinking through
interaction with fellow humans. For
example, as “data-science thinking”6

Figure 2. Known-to-unknown discovery in data science.

Blind CKI
(Space C)

Unknown CKI

Hidden CKI
(Space B)

Im
m

at
u

ri
ty

 o
f

C
ap

ab
il

it
y/

C
ap

ac
it

y

Invisibility of Data/Physical WorldsLow High

High

Known CKI
(Space A)

Know à Do Not Know

K
no

w

 à

 D
o

N
ot

 K
no

w

K

U

(Space D)

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 63

contributed articles

data science systems and widening
gap between world invisibility and ca-
pability/capacity immaturity yield new
research challenges that motivate de-
velopment of data science as a disci-
pline. Figure 4 outlines the conceptual

ity; that is, their capability/capacity
maturity is sufficient to understand
data/physical-world invisibility. This
insight corresponds to well-under-
stood areas in data science. Examples
include profiling and descriptive
analysis that applies existing models
to data deemed by data analysts to fol-
low certain assumptions.

“Space B” represents the hidden
space; that is, “I know what I do not
know (about the unseen world).”
For some people or disciplines, even
though certain aspects of their capabil-
ity/capacity is mature, CKI is hidden
to (so cannot be addressed by) current
data science capability/capacity, thus
requiring more-advanced capability/
capacity. Examples include existing IID
models (such as k-means and the k-
nearest neighbors algorithm) that can-
not handle non-IID data.

“Space C” represents the blind
space; that is, “I (my immature capabil-
ity) do not know what I know (about the
world).” Although CKI is visible to some
people or disciplines, their capability/
capacity is also mature, but CKI and ca-
pability/capacity do not match well; im-
maturity thus renders them blind to the
world. An example might be when even
established social scientists try to ad-
dress a data science problem.

“Space D” represents the unknown;
that is, “I do not know what I do not
know, so CKI in the hidden world is
unknown due to immature capabil-
ity.” This is the area today on which
data science focuses its future research
and discovery. Along with increased
invisibility, the lack of capability ma-
turity also increases. In the world of
fast-evolving big data, CKI invisibility
increases, resulting in an ever-larger
unknown space.

The current stage of data science
capability and maturity, or “We do not
know what we do not know,” can be
explained in terms of unknown per-
spectives and scenarios. As outlined in
Figure 3, the unknown world presents
“unknownness” in terms of certain de-
finable categories, including problems
and complexities; hierarchy, struc-
tures, distributions, relations, and het-
erogeneities; capabilities, opportuni-
ties, and gaps; and solutions.

Data Science Directions
Here, I consider the applied data sci-

ence conceptual landscape, followed
by two significant aspirational goals:
non-IID data learning and human-
like intelligence.

Data science landscape. The X-com-
plexity and X-intelligence in complex

Figure 3. Hidden world in data science.

Figure 4. Data science conceptual landscape.

Data Products and Profession

Value, impact, and usability Data-to-Decision and ActionsO
u

tp
u

t
D

a
ta

-d
ri

ve
n

 D
is

co
ve

ry
In

p
u

t

Domain-specific Data Applications and Problems

X-Analytics and Data/Knowledge Engineering

B
eh

av
io

r
an

d
E

ve
nt

 P
ro

ce
ss

in
g

D
at

a
S

to
ra

ge
 a

nd

M
an

ag
em

en
t

S
ys

te
m

s

D
at

a
Q

ua
lit

y
E

nh
an

ce
m

en
t

D
at

a
M

od
el

in
g

an
d

R
ep

re
se

nt
at

io
n

D
ee

p
A

na
ly

tic
s,

Le

ar
ni

ng
, a

nd
 D

is
co

ve
ry

S
im

ul
at

io
n

an
d

E
xp

er
im

en
t

D
es

ig
n

H
ig

h-
P

er
fo

rm
an

ce

P
ro

ce
ss

in
g

an
d

A
na

ly
tic

s

A
na

ly
tic

s
an

d
C

om
pu

tin
g

A
rc

hi
te

ct
ur

es
 a

nd
 I

nf
ra

st
ru

ct
ur

e

N
et

w
or

ki
ng

,
C

om
m

un
ic

at
io

n,
 I

nt
er

op
er

at
io

n

M
at

he
m

at
ic

al
 a

nd
 S

ta
tis

tic
al

 F
ou

nd
at

io
ns

X-Complexities X-Intelligence

S
oc

ia
l I

ss
ue

s:
 P

ri
va

cy
, S

ec
ur

it
y,

 a
nd

 T
ru

st

64 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

main-specific analytic theories, tools,
and systems not available in the rel-
evant body of knowledge to represent,
discover, implement, and manage
the data, knowledge, and intelligence
and support the corresponding data
and analytics engineering. Examples
include automated analytical soft-
ware that automates selection and
construction of features and models,
as well as the analytics process in its
self-understanding of intrinsic data
complexities and intelligence, and
that self-monitors, self-diagnoses,
and self-adapts to data characteristics,
domain-specific context and learning
objectives and potential, and learns al-
gorithms that recognize data complex-
ities and self-trains the corresponding
optimal models customized for the
data and objectives;

Data quality and social issues. The
aim here is to identify, specify, and
respect social issues in domain-spe-
cific data, business-understanding,
and data science processes, including
use, privacy, security, and trust, and
make possible social issues-based
data science tasks not previously han-
dled well. Examples include privacy-
preserving analytical algorithms and
benchmarking the trustworthiness of
analytical outcomes;

Data value, impact, utility. The aim
is to identify, specify, quantify, and
evaluate the value, impact, and utility
of domain-specific data that cannot be
addressed through existing measure-
ment theories and systems. Examples
involve data actionability, utility, and
value; and

Data-to-decision and action-taking
challenges. The aim is to develop de-
cision-support theories and systems
to enable data-driven decisions and
insight-to-decision transformation,
incorporating prescriptive actions and
strategies that cannot be managed
through existing technologies and sys-
tems. Examples include ways to trans-
form analytical findings into decision-
making strategies.

Since data/knowledge engineering
and advanced analytics6 play a key role
in data science, the focus is on specific
research questions not previously ad-
dressed. Data-quality enhancement is
fundamental to handling data-quality
issues like noise, uncertainty, miss-
ing values, and imbalance that may

landscape of data science and its major
research challenges by taking an inter-
disciplinary, complex-system-based,
hierarchical view.

As in Figure 4, the data science land-
scape consists of three layers: “data in-
put,” including domain-specific data
applications and systems, and X-com-
plexity and X-intelligence in data and
business problems; “data-driven dis-
covery” consisting of discovery tasks
and challenges; and “data output” con-
sisting of results and outcomes.

Research challenges and opportu-
nities emerge in all three in terms of
five areas not otherwise managed well
through non-data-science methodolo-
gies, theories, or systems:

Data/business understanding. The
aim is for data scientists, as well as
data users, to identify, specify, repre-
sent, and quantify the X-complexities
and X-intelligence that cannot be man-
aged well through existing theories
and techniques but nevertheless are
embedded in domain-specific data and
business problems. Examples include
how to understand in what forms, at
what level, and to what extent the re-
spective complexities and intelligence
interact with one another and to devise
methodologies and technologies for
incorporating them into data science
tasks and processes;

Mathematical and statistical foun-
dation. The aim is to enable data sci-
entists to disclose, describe, repre-
sent, and capture complexities and
intelligence for deriving actionable
insight. Existing analytical and com-
putational theories may need to be
explored as to whether, how, and
why they are insufficient, missing, or
problematic, then extended or rede-
veloped to address the complexities
in data and business problems by,
say, supporting multiple, heteroge-
neous, large-scale hypothesis testing
and survey design, learning incon-
sistency, and uncertainty across mul-
tiple sources of dynamic data. Results
might include deep representation of
data complexities, large-scale, fine-
grain personalized predictions, sup-
port for non-IID data learning, and
creation of scalable, transparent,
flexible, interpretable, personalized,
parameter-free modeling;

Data/knowledge engineering and
X-analytics. The aim is to develop do-

The metasynthesis
of X-complexities
and X-intelligence
in complex data
science problems
might ultimately
produce even
super machine
intelligence.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 65

contributed articles

randomization, and measurement that
apply to population data and analysis.

Fundamental work on detecting
and verifying such validations is lim-
ited, and even less has sought to invent
new theories and tools to manage and
circumvent assumption violations in
big data. One such violation I high-
light here is the IID assumption, as
big, complex data (referring to objects,
attributes, and values2) is essentially
non-IID, whereas most existing analyti-
cal methods are IID.2

In a non-IID data problem (see Fig-
ure 5a), non-IIDness, as outlined in
Figure 5c, refers to the mixture of cou-
plings, including co-occurrence, neigh-
borhood, dependence, linkage, corre-
lation, and causality, and other poorly
explored and unquantified relations
involving, say, sophisticated cultural
and religious connections and influ-
ence, as well as heterogeneity within
and between two or more aspects of a
data system (such as entity, entity class,
entity property like a variable, process,
fact, and state of affairs) or other types
of entities or properties (such as learn-
ing algorithms, and learned results)
appearing or produced prior to, dur-
ing, or after a target process (such as a
learning task). By contrast, IIDness es-
sentially ignores or simplifies all these
properties, as outlined in Figure 5b.

Learning visible and especially in-
visible non-IIDness is fundamental for
data scientists looking for deep under-
standing of data with weak and/or un-

be present due to the increasing scale
of complexity and data-quality issues
(such as cross-organizational, cross-
media, cross-cultural, and cross-eco-
nomic mechanisms) emerging in the
big-data and Internet-based data/busi-
ness environment.

Data scientists seek to model, learn,
analyze, and mine data, including X-
complexities and X-intelligence. For
example, being able to perform deep
analytics is essential for discovering
unknown knowledge and intelligence
in the unknown space in Figure 2 that
cannot be handled through existing
latent learning and descriptive and
predictive analytics; another option
might be to integrate data-driven and
model-based problem solving, bal-
ancing common learning models and
frameworks and domain-specific data
complexities and intelligence-driven
evidence learning.

X-complexity and X-intelligence
pose additional challenges to simula-
tion and experimental design, includ-
ing how to simulate the complexities,
intelligence, working mechanisms,
processes, and dynamics in data and
corresponding business systems and
how to design experiments to explore
the effect of business managers’ data-
driven decisions. Big-data analytics
requires high-performance processing
and analytics that support large-scale,
real-time, online, high-frequency,
Internet-based, cross-organizational
data processing and analytics while
balancing local and global resource
objectives. Such an effort may require
new distributed, parallel, high-per-
formance infrastructure, batch, array,
memory, disk, and cloud-based pro-
cessing and storage, data-structure-
and-management systems, and data-
to-knowledge management.

Complex data science also chal-
lenges existing analytics and comput-
ing architectures and infrastructure
to, say, invent analytics and computing
architectures and infrastructure based
on memory, disk, cloud, and Internet
resources. Another important issue for
developers of data systems is how to
support the networking, communica-
tion, and interoperation of the various
data science roles within a distributed
data science team. Such coordination
requires distributed cooperative man-
agement of projects, data, goals, tasks,

models, outcomes, work flows, task
scheduling, version control, reporting,
and governance.

Addressing them involves system-
atic and interdisciplinary approaches
possibly requiring synergy among many
related research areas. Such synergy is
due to taking on complex data science
problems that cannot be addressed
through one-off efforts. For instance,
data structures, computational infra-
structure, and detection algorithms
are required for high-frequency real-
time risk analytics in extremely large
online businesses like electronic com-
merce and financial trading.

Violating assumptions in data
science. Big data includes X-complex-
ities, including complex coupling
relationships and/or mixed distribu-
tions, formats, types and variables,
and unstructured and weakly struc-
tured data. Complex data poses sig-
nificant challenges to many math-
ematical, statistical, and analytical
methods built on relatively narrow
assumptions, owing to the fact that
they are routinely violated in big-data
analytics. When assumptions are vio-
lated, modeling outcomes may be in-
accurate, distorted, or misleading. In
addition to general scenarios (such as
whether data violates the assumptions
of normal distribution, t-test, and linear
regression), an assumption check ap-
plies to broad aspects of a business
problem’s data, including indepen-
dence, normality, linearity, variance,

Figure 5. IIDness vs. non-IIDness in data science problems.

66 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

objects and developing new theories
and algorithms for selecting, mining,
and constructing features;

Non-IID learning theories, algorithms,
and models. The aim is to create new
theories, algorithms, and models for
analyzing, learning, and mining non-
IID data by considering various cou-
plings and heterogeneity; and

Non-IID similarity and evaluation
metrics. The aim is to develop new simi-
larity and dissimilarity learning meth-
ods and metrics, as well as evaluation
metrics that consider non-IIDness in
data and business.

More broadly, many existing data-
oriented theories, designs, mecha-
nisms, systems, and tools may have to
be reinvented in light of non-IIDness.
In addition to incorporating non-
IIDness into data mining, machine
learning, and general data analytics,
non-IIDness is found in other well-es-
tablished bodies of knowledge, includ-
ing mathematical and statistical foun-
dations, descriptive-analytics theories
and tools, data-management theories
and systems, information-retrieval the-
ories and tools, multimedia analysis,
and various X-analytics.6

Data characteristics and X-complex-
ities. To address critical issues in data-
driven discovery like assumption vio-
lations, I assume data characteristics
and X-complexities determine the val-
ues, complexities, and quality of data-
driven discovery. Data characteristics
refer to the profile and complexities
of data (generally a dataset) that can
be described in terms of data factors
(such as distribution, structure, hierar-
chy, dimension, granularity, heteroge-
neity, and uncertainty).

Understanding data characteris-
tics and X-complexities involves four
fundamental data science challenges
and directions:6 definition of data
characteristics and X-complexities;
how to represent and model data char-
acteristics and X-complexities; data-
characteristics- and X-complexities-
driven data understanding, analysis,
learning, and management; and how
to evaluate the quality of data un-
derstanding, analysis, learning, and
management in terms of data charac-
teristics and X-complexities. Unfortu-
nately, only limited theories and tools
are available for addressing them.

Data-brain and human-like ma-

ing systems seek to understand non-
IIDness in data-analytics systems, from
values, attributes, objects, methods, and
measures to processing outcomes (such
as mined patterns).

I now explore the prospects for
inventing new data science theories
and tools for non-IIDness and non-
IID data learning,2 including how to
address non-IID data characteristics
(not just variables), in terms of new
feature analysis:

Deep understanding of non-IID data
characteristics. The aim is to identify,
specify, and quantify non-IID data
characteristics, factors, types, and
levels of non-IIDness in data and
business, and identify the difference
between what can be captured and
what cannot be captured through
existing technologies;

Non-IID feature analysis and con-
struction. The aim is to invent new
theories and tools for analyzing feature
relationships by considering non-IID-
ness within and between features and

clear structures, distributions, relation-
ships, and semantics. In many cases,
locally visible but globally invisible
(or vice versa) non-IIDness takes a
range of forms, structures, and layers
on diverse entities. Individual learners
cannot tell the whole story due to
their inability to identify such com-
plex non-IIDness. Effectively learn-
ing the widespread, visible, and
invisible non-IIDness of big data is
crucial for data scientists trying to
gain a complete picture of an underly-
ing business problem.

Data analysts often focus on learn-
ing explicit non-IIDness, or visible and
easy to learn. The hybridization of mul-
tiple analytical methods on combina-
tions of multiple sources of data into
a big table for analysis typically falls
into this category of non-IID systems.
Computing non-IIDness refers to un-
derstanding, formalizing, and quantify-
ing the non-IID aspects of data2 (such as
entities, interactions, layers, forms, and
strength of non-IIDness). Non-IID learn-

Figure 6. Synthesizing X-intelligence in data science.

Intelligence meta-synthesis

(actionable data science systems)

Organizational Network

Social

HumanDataDomain

Behavior

Environmental

Figure 7. Complex data science problems: qualitative-to-quantitative X-intelligence
metasynthesis.

Complex
analytics tasks

Identify issues and iternatively and hierarchivally refine each step

Data
and

environment

Input
� Data
� Information
� Knowledge
� Hypothesis

Motivation
� New goals
� New tasks

Preliminary
� Initial estimate
� New hypothesis

Analytics
� New models
� New parameters

Evaluation
� Feedback
� Refinement
� Optimization

Goals
and

tasks

Hypothesis
and

estimation

Models
and

methods

Evaluation
and

simulation

Quantitative and
actionable knowledge

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 67

contributed articles

To enable an X-intelligence-driven
complex data science problem-solv-
ing process, data scientists need new
methodologies and system-engineer-
ing methods. The theory of “metasyn-
thetic engineering”3,20 and integration
of ubiquitous intelligence might pro-
vide useful guidance for synthesizing
X-intelligence in complex data and
business systems.

The principle of “intelligence
metasynthesis” of multiple types of
intelligence3,20 involves, synthesizes,
and uses ubiquitous intelligence in
the complex data environment to un-
derstand the nature of data and re-
lated problems, invent discovery sys-
tems, discover interesting knowledge,
and generate actionable insights.7
Intelligence metasynthesis applies to
solving complex data science prob-
lems involving complex system engi-
neering in which multiple aspects of
complexity and intelligence may be
embedded in the data, environment,
and problem-solving process. The “re-
ductionism” methodology3 for data
and knowledge exploration may not
work well because the problem may
not be clear, specific, and quantitative
so cannot be decomposed and ana-
lyzed effectively. In contrast, analysis
through a holistic lens does not equal
the sum of the analysis of the parts, a
common challenge developing com-
plex systems.20

Accordingly, in light of the theory
of “system complexities” and corre-
sponding methodologies “system-
atism,”3,20 a methodology that synthe-
sizes reductionism and “holism”6,7
may then be more applicable for ana-
lyzing, designing, and evaluating com-
plex data problems.

When a data science problem in-
volves large-scale data objects, multiple
levels of subtasks, objects, sources, and
types of data from online, business,
mobile, or social networks, complicat-
ed contexts, human involvement and
domain constraints, the problem thus
reflects the characteristics of an open
complex system.3,20 The problem is also
likely to involve common system com-
plexities, including openness, scale, hi-
erarchy, human involvement, societal
characteristics, dynamic characteris-
tics, uncertainty, and imprecision.3,19,20

Although specific big-data analyti-
cal tasks are manageable by follow-

chine intelligence. Computer scien-
tists, economists, and politicians,
as well as the general public, debate
whether and when machines might
replace humans.22 While it may not be
possible to build data-brain or thinking
machines with human-like abilities,
data science, especially big-data ana-
lytics, is driving a technological revolu-
tion, from implementing logical-think-
ing-centered machine intelligence to
creative-thinking-oriented machine
intelligence. It may be partially re-
flected in Google’s AlphaGo (https://
deepmind.com/) defeat of top-ranked
Chinese Go player Ke Jie in 2017 and
South Korean grandmaster Lee Sedol
in 2016, as well as the Facebook emo-
tion experiment,14 but none has actu-
ally exhibited human-like imagination
or thinking. This revolution (such as
through data science thinking6), if tru-
ly able to mimic human intelligence,
may transform machine intelligence,
changing the human-machine separa-
tion of responsibilities.

Curiosity is a critical human ca-
pability, starting the moment we are
born. We want to know what, how,
and why everything. Curiosity connects
other cognitive activities, particularly
imagination, reasoning, aggregation,
creativity, and enthusiasm to produce
new ideas, observations, concepts,
knowledge, and decisions. Humans
manage to upgrade their own intel-
ligence through experience, explora-
tion, learning, and reflection. Accord-
ingly, a critical goal for data scientists
is to enable data- and X-intelligence-
driven machines to generate, re-
tain, and simulate human curiosity
through learning inquisitively from
data and X-intelligence.

Imaginative thinking differenti-
ates humans from machines designed
with sense-effect, learning, reasoning,
and optimization mechanisms. Hu-
man imagination is intuitive, creative,
evolving, and uncertain. It also repre-
sents a great yet challenging opportu-
nity for transforming logic, patterns,
and predefined sense-effect-mecha-
nisms-driven machines into human-
like data systems. Such a transforma-
tion would require machines able to
simulate human-imagination pro-
cesses and mechanisms. Existing
knowledge representation, aggrega-
tion, computational logic, reasoning,

and logic thinking incorporated into
machines may never quite deliver ma-
chine curiosity, intuition, or imagi-
nation. Existing data and computer
theories, operating systems, system
architectures and infrastructures,
computing languages, and data man-
agement must still be fundamentally
reformed by, say, simulating, learn-
ing, reasoning, and synthesizing origi-
nal thoughts from cognitive science,
social science, data science, and intel-
ligence science to render machines
creative. They also must be able to
engage X-intelligence in a non-pre-
defined, “non-patternable” way, un-
like existing simulation, learning, and
computation, which are largely pre-
defined or design-based by default.

To enable discovery, data-analytical
thinking, a core aspect of data science
thinking,6 needs to be built into data
products and learned by data profes-
sionals. Data-analytical thinking is
not only explicit, descriptive, and pre-
dictive but also implicit and prescrip-
tive. Complex data problem solving
requires systematic, evolving, imagi-
native, critical, and actionable data
science thinking. In addition to com-
putational thinking, a machine might
ultimately be able to mimic human
approaches to information processing
by synthesizing comprehensive data,
information, knowledge, and intel-
ligence through cognitive-processing
methods and processes.

Developing Complex Systems
The X-complexities and X-intelligence
discussed earlier render a complex
data system equivalent to an open
complex intelligent system.3 Use of X-
intelligence by a data scientist could
take one of two paths: “single intelli-
gence engagement” or “multi-aspect
intelligence engagement.” An example
of the former is domain knowledge in
data analytics and user preferences in
recommender systems. Single-intelli-
gence engagement applies to simple
data science problem solving and sys-
tems. In general, multi-aspect X-intel-
ligence can be found in complex data
science problems.

As outlined in Figure 6, the per-
formance of a data science-problem-
solving system depends on recogni-
tion, acquisition, representation, and
integration of relevant X-intelligence.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Fdeepmind.com%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Fdeepmind.com%2F

68 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

contributed articles

ing these iterative and hierarchical
steps toward qualitative-to-quantita-
tive intelligence transformation would
thus disclose and quantify the initial
problem “unknownness.” Finally, ac-
tionable knowledge and insight would
be identified and delivered to busi-
nesspeople who would address data
complexities and business goals.

As an example of how to deliver
actionable knowledge, domain-driv-
en data mining7 aims to integrate X-
intelligence and X-complexities for
complex knowledge-discovery prob-
lems. Domain-driven data mining
advocates a comprehensive process
of synthesizing data intelligence with
other types of intelligence to prompt
new intelligence to address gaps in
existing data-driven methods, deliv-
ering actionable knowledge to busi-
ness users. The metasynthesis of X-
complexities and X-intelligence in
complex data science problems might
ultimately produce even super ma-
chine intelligence. Super-intelligent
machines could then understand,
represent, and learn X-complexities,
particularly data characteristics; ac-
quire and represent unstructured,
ill-structured, and uncertain human
knowledge; support involvement of
business experts in the analytics pro-
cess; acquire and represent imagina-
tive and creative thinking in group
heuristic discussions among human
experts; acquire and represent group/
collective interaction behaviors; and
build infrastructure involving X-in-
telligence. While a data brain cannot
mimic special human imagination,
curiosity, and intuition, the simula-
tion and modeling of human behavior
and human-data systems interaction
and cooperation promise to approach
human-like machine intelligence.

Conclusion
The low-level X-complexities and X-
intelligence characterizing complex
data science problems reflect the gaps
between the world of hidden data and
existing data science immaturity. Fill-
ing them requires a disciplinewide
effort to build complex data science
thinking and corresponding method-
ologies from a complex-system per-
spective. The emerging data science
evolution means opportunities for
breakthrough research, technological

innovation, and a new data economy.
If parallels are drawn between evolu-
tion of the Internet and evolution of
data science, the future and the socio-
economic and cultural impact of data
science will be unprecedented indeed,
though as yet unquantifiable. 	

 References
1.	 Cao, L.B. In-depth behavior understanding and use:

The behavior informatics approach. Information
Science 180, 17 (Sept. 2010), 3067–3085.

2.	 Cao, L.B. Non-IIDness learning in behavioral and
social data. The Computer Journal 57, 9 (Sept. 2014),
1358–1370.

3.	 Cao, L.B. Metasynthetic Computing and Engineering
of Complex Systems. Springer-Verlag, London, U.K.,
2015.

4.	 Cao, L.B. Data science: Nature and pitfalls. IEEE
Intelligent Systems 31, 5 (Sept.-Oct. 2016), 66–75.

5.	 Cao, L.B. Data science: A comprehensive overview.
ACM Computing Surveys (to appear).

6.	 Cao, L.B. Understanding Data Science. Springer, New
York (to appear).

7.	 Cao, L.B., Yu, P.S., Zhang, C., and Zhao, Y. Domain
Driven Data Mining. Springer, Springer-Verlag, New
York, 2010.

8.	 Cao, L.B., Yu, P.S., and Kumar, V. Nonoccurring behavior
analytics: A new area. IEEE Intelligent Systems 30, 6
(Nov. 2015), 4–11.

9.	 Cleveland, W.S. Data science: An action plan for
expanding the technical areas of the field of statistics.
International Statistical Review 69, 1 (Dec. 2001),
21–26.

10.	 Diggle, P.J. Statistics: A data science for the 21st
century. Journal of the Royal Statistical Society: Series
A (Statistics in Society) 178, 4 (Oct. 2015), 793–813.

11.	 Donoho, D. 50 Years of Data Science. Computer
Science and Artificial Intelligence Laboratory, MIT,
Cambridge, MA, 2015; http://courses.csail.mit.
edu/18.337/2015/docs/50YearsDataScience.pdf

12.	 Huber, P.J. Data Analysis: What Can Be Learned
from the Past 50 Years. John Wiley & Sons, Inc.,
New York, 2011.

13.	 Jagadish, H., Gehrke, J., Labrinidis, A.,
Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R.,
and Shahabi, C. Big data and its technical challenges.
Commun. ACM 57, 7 (July 2014), 86–94.

14.	 Kramer, A.D., Guillory, J.E., and Hancock, J.T.
Experimental evidence of massive-scale emotional
contagion through social networks. Proceedings of the
National Academy of Sciences 111, 24 (Mar. 2014),
8788–8790.

15.	 Lazer, D., Kennedy, R., King, G., and Vespignani, A.
The parable of Google flu: Traps in big data analysis.
Science 343, 6176 (Mar. 2014), 1203–1205.

16.	 Manyika, J. and Chui, M. Big Data: The Next Frontier for
Innovation, Competition, and Productivity. McKinsey
Global Institute, 2011.

17.	 Matsudaira, K. The science of managing data science.
Commun. ACM 58, 6 (June 2015), 44–47.

18.	 Mattmann, C.A. Computing: A vision for data science.
Nature 493, 7433 (Jan. 24, 2013), 473–475.

19.	 Mitchell, M. Complexity: A Guided Tour. Oxford
University Press, Oxford, U.K., 2011.

20.	 Qian, X., Yu, J., and Dai, R. A new discipline of science—
The study of open complex giant system and its
methodology. Journal of Systems Engineering and
Electronics 4, 2 (June 1993), 2–12.

21.	 Rowley, J. The wisdom hierarchy: Representations
of the DIKW hierarchy. Journal of Information and
Communication Science 33, 2 (Apr. 2007), 163–180.

22.	 Suchma, L. Human-Machine Reconfigurations: Plans
and Situated Actions. Cambridge University Press,
Cambridge, U.K., 2006.

23.	 Tukey, J.W. The future of data analysis. The Annals of
Mathematical Statistics 33, 1 (Mar. 1962), 1–67.

24.	 Tukey, J.W. Exploratory Data Analysis. Pearson, 1977.

Longbing Cao (longbing.cao@gmail.com) is a professor
in the Advanced Analytics Institute at the University of
Technology Sydney, Australia.

Copyright held by the author.
Publication rights licensed to ACM. $15.00

ing existing analytical methodologies,
typical cross-enterprise, global, and
Internet-based data science projects
(such as global financial crisis and
terrorist activities) satisfy most if
not all such complexities. This level
of complex data science involves X-
complexities problems, and their
resolution must first synthesize the
X-intelligence in the problems. One
approach to instantiate the system-
atism methodology is “qualitative-
to-quantitative metasynthesis,”3,20 as
proposed by Chinese scientist Xue-
sen Qian (also known as Hsue-Shen
Tsien) to guide system engineering
in large-scale open systems.20 Such
qualitative-to-quantitative metasyn-
thesis supports exploration of open
complex systems through an iterative
cognitive and problem-solving pro-
cess on a human-centered, human-
machine-cooperative problem-solving
platform in which human, data, and
machine intelligence, along with X-
intelligence, must be engaged, quanti-
fied, and synthesized. Implementing
it for open complex intelligent sys-
tems, the “metasynthetic computing
and engineering” (MCE) approach3
provides a systematic computing and
engineering guide and suite of system-
analysis tools.

Figure 7 outlines the process of ap-
plying the qualitative-to-quantitative
metasynthesis methodology to com-
plex data science problems. MCE sup-
ports an iterative, hierarchical prob-
lem-solving process, incorporating
internal and external inputs, includ-
ing data, information, domain knowl-
edge, initial hypotheses, and underly-
ing environmental factors. Data
scientists would start by presetting
analytics goals and tasks to be ex-
plored on the given data by incorporat-
ing domain, organizational, social and
environmental complexities and intel-
ligence. They would then use prelimi-
nary observations obtained from do-
main and experience to identify and
verify qualitative and quantitative hy-
potheses and estimations that guide
development of modeling and analyt-
ics methods. Findings would then be
evaluated and fed back to the corre-
sponding procedures for refining and
optimizing understanding of previ-
ously unknown problem challenges,
goals, and discovery methods. Follow-

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=68&exitLink=mailto%3Alongbing.cao%40gmail.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fcourses.csail.mit.edu%2F18.337%2F2015%2Fdocs%2F50YearsDataScience.pdf
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Fcourses.csail.mit.edu%2F18.337%2F2015%2Fdocs%2F50YearsDataScience.pdf

This book is the first full-length biography of Edmund Berkeley, a computer pioneer and social activist who
has been called “the conscience of the computer industry.” Through his work with other early computer
developers, he became aware of the potential dangers of these machines to society at large. He believed that
computer developers had an obligation to address the complex social problems facing a Cold War world; the
threat of suicidal nuclear war and the ethics of computer professionals using their expertise to build self-
guided weapons systems.

This is an historical narrative of a man ultimately in favor of engineering peace, instead of war, and how
his career was ultimately damaged by politicians determined to portray him as a Communist sympathizer.
Berkeley’s life work provides a lens to understand social and political issues surrounding the early
development of electronic computers which ties directly to current debates about the use of autonomous
intelligent systems.

This entertaining biography offers a humanistic approach to understanding technology and society via the
successes and trials of Edmund Berkeley, a founding member of the Association for Computing Machinery
(ACM). Telling Berkeley’s story provides a more nuanced and dimensional picture of how the computers we
use today came into being and why we ask the questions we do about our relationships with them. It explores
ways in which Berkeley’s life illuminates issues we still deal with regarding the social responsibilities of
computer developers and human-computer relationships.

This book is the first full-length biography of Edmund Berkeley, a computer pioneer and social activist who
has been called “the conscience of the computer industry.” Through his work with other early computer
developers, he became aware of the potential dangers of these machines to society at large. He believed that
computer developers had an obligation to address the complex social problems facing a Cold War world; the
threat of suicidal nuclear war and the ethics of computer professionals using their expertise to build self-
guided weapons systems.

This is an historical narrative of a man ultimately in favor of engineering peace, instead of war, and how
his career was ultimately damaged by politicians determined to portray him as a Communist sympathizer.
Berkeley’s life work provides a lens to understand social and political issues surrounding the early
development of electronic computers which ties directly to current debates about the use of autonomous
intelligent systems.

This entertaining biography offers a humanistic approach to understanding technology and society via the
successes and trials of Edmund Berkeley, a founding member of the Association for Computing Machinery
(ACM). Telling Berkeley’s story provides a more nuanced and dimensional picture of how the computers we
use today came into being and why we ask the questions we do about our relationships with them. It explores
ways in which Berkeley’s life illuminates issues we still deal with regarding the social responsibilities of
computer developers and human-computer relationships.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Fberkeley

70 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

review articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

RECENT PROGRESS IN automated reasoning and super-
computing gives rise to a new era of brute force.
The game changer is “SAT,” a disruptive, brute-reasoning
technology in industry and science. We illustrate its
strength and potential via the proof of the Boolean
Pythagorean Triples Problem, a long-standing open
problem in Ramsey Theory. This 200TB proof has been
constructed completely automatically—paradoxically,
in an ingenious way. We welcome these bold new proofs
emerging on the horizon, beyond human understanding—
both mathematics and industry need them.

Many relevant search problems,
from artificial intelligence to combi-
natorics, explore large search spaces to
determine the presence or absence of a
certain object. These problems are hard
due to combinatorial explosion, and
have traditionally been called infea-
sible. The brute-force method, which
at least implicitly explores all possibili-
ties, is a general approach to systemati-
cally search through such spaces.

Brute force has long been regarded
as suitable only for simple problems.
This has changed in the last two de-
cades, due to the progress in Satisfi-
ability (SAT) solving, which by adding
brute reason renders brute force into
a powerful approach to deal with many
problems easily and automatically.
Search spaces with far more possibili-
ties than the number of particles in the
universe may be completely explored.

SAT solving determines whether a
formula in propositional logic has a
solution, and its brute reasoning acts
in a blind and uninformed way—as a
feature, not a bug. We focus on apply-
ing SAT to mathematics, as a system-
atic development of the traditional
method of proof by exhaustion.

Can we trust the result of run-
ning complicated algorithms on
many machines for a long time? The
strongest solution is to provide a
proof, which is also needed to show
correctness of highly complex sys-
tems, which are everywhere, from
finance to health care to aviation.

The
Science
of Brute
Force

DOI:10.1145/3107239

Mathematics solves problems by pen and
paper. CS helps us to go far beyond that.

BY MARIJN J.H. HEULE AND OLIVER KULLMANN

 key insights

˽˽ Long-standing open problems in
mathematics can now be solved
completely automatically resulting in
clever though potentially gigantic proofs.

˽˽ Our time requires answers to hard
questions regarding safety and security.
In these cases knowledge is more
important than understanding as long as
we can trust the answers.

˽˽ Powerful SAT-solving heuristics facilitate
linear speedups even when using
thousands of cores. Combined with the
ever-increasing capabilities of high-
performance computing clusters they
enable solving challenging problems.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=70&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3107239

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 71

72 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

review articles

triple. SAT solving has revolutionized
hardware verification,5 and now SAT
can come to the rescue of mathemat-
ics, solving very hard combinatorial
problems previously completely out
of reach. This collaboration works in
both directions, as the applications
in mathematics, especially Ramsey
Theory, sharpen SAT algorithms: the
Cube-and-Conquer method16 was devel-
oped for computing van der Waerden
numbers,1 and recently the Cube-and-
Conquer solver Treengelingb won the
parallel track of the 2016 SAT compe-
tition.c Deeper mathematical inves-
tigations into the structure of the SAT
instances could help with understand-
ing and improving SAT in general.

Well known early mathematical
proofs using Proof by Exhaustion are the
Four-Color Theorem37 and the proof
that no projective plane of order 10
exists.24 The former is actually a rather
small case-distinction by modern stan-
dards (only hundreds of cases). The lat-
ter invokes a larger, but also man-made
case-split (billions of cases), for which it
can be determined in advance whether
this will succeed. In contrast, we have
currently no way of knowing whether
the SAT solver’s “magic” is sufficient to
solve a given problem.

Throughout this article we use the
Boolean Schur Triple Problem as an
example: does there exists a red/blue
coloring of the numbers 1 to n, such
that there is no monochromatic solu-
tion of a + b = c with a < b < c ≤ n.
Compared to the Boolean Pythagorean
Triples Problem, all natural numbers
are involved, not just square num-
bers. As a result, there are many more
triples, and unsatisfiability is reached
much sooner. For n = 8 such a coloring
exists: color the numbers 1, 2, 4, 8 red
and 3, 5, 6, 7 blue. However such a col-
oring is not possible for n = 9. A naive
brute-force algorithm would consider
all 29 = 512 possible red/blue colorings.
We will show that with brute reasoning
only six (or even four) red/blue color-
ings need to be evaluated.

The Art of SAT Solving
A SAT problem uses Boolean variables v
(they can be assigned to either true or
false), which are constrained using

b	 http://fmv.jku.at/lingeling/.
c	 http://www.satcompetition.org/.

Many problems arising from areas
such as Ramsey Theory and formal
methods appear to be intrinsically
hard and may be only solvable by SAT.
Any proof for such problems may be
huge, in which case mathematicians
will not be able to produce a paper
proof. The enormous size of such
proofs hardly influences confidence
in the correctness, as highly trusted
systems can validate them.

We argue that obtaining such
results is meaningful regardless of our
ability to understand them.

The Rise of Brute Force
We all know that brute force does not
work, or at least is brutish, do we not?
In our case it is even “brute reasoning.”

 I can stand brute force, but brute
reason is quite unbearable. There
is something unfair about its use.
It is hitting below the intellect.
� O. Wilde

A mathematician using “brute force” is
a kind of barbaric monster, is she not?
Case distinctions play an important
role for thinking, but if the number of
cases gets too big, it seems impossible
to obtain an overview, and one has to
slavishly follow the details. But per-
haps this is what our times demand?

In the beginning of the 20th century
there was a very optimistic outlook for
mathematics. Gödel’s Incompleteness
Theorem seemed to destroy the
positive spirit of the time, famously
expressed by Hilbert’s “We must know.
We will know.” That said, even Gödel
anticipated the relevance of SAT solv-
ing in his letter to von Neumanna,
shifting the attention to finitizing infi-
nite problems. Today, SAT solving on
high-performance computing systems
enables us to conquer problems of high
complexity, driven by practice. This
combination of enormous computa-
tional power with “magical brute force”
can now solve very hard combinatorial
problems, as well as proving safety of
systems such as railways.

Our guiding example is the Pythag
orean Triples Problem,15,25 a typical
problem from Ramsey Theory: we con-
sider all partitions of the set {1, 2, . . .}
of natural numbers into finitely many

a	 https://rjlipton.wordpress.com/the-gdel-letter/.

parts, and the question is whether
always at least one part contains a
Pythagorean triple (a, b, c) with a2 + b2 = c2.
For example when splitting into odd and
even numbers, then the odd part does
not contain a Pythagorean triple (due
to odd plus odd = even), but the even
part contains for example 62 + 82 = 102.
We show that the answer is yes,15 when
partitioning into two parts, and we
conjecture the answer to be yes for any
finite size of the partition.

To solve the Boolean Pythagorean
Triples Problem, it suffices to show
the existence of a subset of the natu-
ral numbers, such that any partition
of that subset into two parts has one
part containing a Pythagorean triple.
We focus on subsets {1, . . ., n}, and
determined by SAT solving that the
smallest n for which the property
holds is 7825. Plain brute force cannot
help, since 27825, the number of pos-
sible partitions into two parts, is way
too big. So really “clever” algorithms
are needed. An interesting aspect
here is that there is no known ordi-
nary mathematical existence proof for
any form of the Pythagorean Triples
Problem, even when generalizing the
problem from triples a2 + b2 = c2 to
tuples 2 2 2

1 1k kt t t−+ + = . Only computa-
tional proofs are known and, so far at
least, only SAT solving can deal with
the harder problems. We show that
{1, . . ., 107} can be partitioned into
three parts, such that no part contains
a Pythagorean triple. Thus if there
is an n such that every 3-partitioning
of {1, . . ., n} has a part containing a
Pythagorean triple, then n > 107. Due
to this enormous size, it is thus con-
ceivable that the truth of the three-val-
ued Pythagorean Triples Problem might
never be known.

Before considering the solution
process, one may ask, why should we
care? Are there problems, for which
such reasoning is really useful? Yes,
the same techniques are used to prove
correctness of hardware and soft-
ware systems. Finding a bug in a large
hardware system is essentially the
same as finding a counter-example,
and thus is similar to finding a parti-
tion avoiding all Pythagorean triples.
Proving correctness of a system, that
is, there is no counter-example, is
similar to proving that each parti-
tion must contain some Pythagorean

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=http%3A%2F%2Ffmv.jku.at%2Flingeling%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=http%3A%2F%2Fwww.satcompetition.org%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=72&exitLink=https%3A%2F%2Frjlipton.wordpress.com%2Fthe-gdel-letter%2F

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 73

review articles

clauses, which are disjunctions of liter-
als x. Literals are either variables x = v
or their negations x = v–. A literal x (or x–)
is true if the corresponding variable v
is assigned to true (or false, respec-
tively). A clause is satisfied if at least one
of its literals is assigned to true. A SAT
formula is a conjunction of clauses.
We refer to a solution of a SAT formula
as an assignment to its variables that
satisfies all its clauses. Formulas with
a solution are called satisfiable, while
formulas without solutions are called
unsatisfiable. Let ∨ and ∧ refer to the
logical OR and AND operators, respec-
tively. For example, the formula (x ∨ y–)
∧ (x– ∨ y) with two clauses is satisfiable.
The solutions for this formula are the
two assignments that assign both x and
y to the same value.

SAT solvers, programs that solve
SAT formulas, have become extremely
powerful over the last two decades.
Progress has been by leaps and bounds,
starting with the pioneering work by
Davis and Putnam until the early 1990s
when solvers could handle formulas
with thousands of clauses. Today’s solv-
ers can handle formulas with millions
of clauses. This performance boost
resulted in the SAT revolution:3 encode
problems arising from many interest-
ing applications as SAT formulas, solve
these formulas, and decode the solu-
tions to obtain answers for the original
problems. This is in a sense just using
the NP-completeness of SAT:6,11,19 every
problem with a notion of “solution”—
where these solutions are relatively
short and where an alleged solution can
be verified (or rejected) quickly—can
be reduced to SAT efficiently. For many
years NP-completeness was used only as a
sign of “you can not solve it!”, but the SAT

revolution has put this back on its feet.
For many applications, including hard-
ware and software verification,7, 18 SAT
solving has become a disruptive tech-
nology that allows problems to be solved
faster than by other known means.

The main paradigms of SAT solving
are the incomplete local search,20 which
can only find satisfying assignments,
and the two complete paradigms (which
can also determine unsatisfiability),
look-ahead17 and Conflict-Driven Clause
Learning28 (CDCL). Local search tries to
find a solution via local modifications to
total assignments (using all variables).
Look-ahead recursively splits the prob-
lem as cleverly as possible into subprob-
lems, via looking-ahead. CDCL tries
to assign variables to find a satisfying
assignment in a straight-forward way,
and if that fails (the normal case), then
the failure is transformed into a clause,
which is added to the formula. Here,
we first explain CDCL, which is mainly
responsible for the SAT revolution.
Afterwards we describe how look-ahead
can enhance CDCL on hard problems.

CDCL SAT solving algorithms cycle
through three phases: simplify, decide,
and learn. Solvers maintain an assign-
ment (initially empty) and each phase
updates that assignment. During simplify
the assignment is extended by detecting
new inferences. Afterwards, decide heu-
ristically picks an unassigned variable
and assigns it to true or false. After
iterating these two phases, the current
assignment either satisfies the formula,
which terminates the search, or falsi-
fies a clause. In the latter case, learn
this conflict, as a clause, and modify the
assignment to resolve the conflict. If the
empty clause ⊥ is learned, the solver
detects unsatisfiability, otherwise

simplify-decide is performed again, etc.
Look-ahead differs from CDCL by using
stronger means for simplify and decide,
but weaker means for learn.

The most basic inference mecha-
nism in SAT solvers works as follows: a
clause is unit under an assignment that
falsifies all but one of its literals, while
leaving the remaining literal unas-
signed. The only possibility to satisfy a
unit clause (under that assignment) is
to assign the remaining literal to true.
A key SAT solving technique is Unit
Clause Propagation (UCP): Given an
assignment and a formula, while the
formula has unit clauses, extend the
assignment by satisfying the remain-
ing literals in the unit clauses. UCP has
two possible terminating states: either
all unit clauses have been satisfied, or
there is a falsified clause due to two
complementary unit clauses (x) and (x–).
In the latter case, we say that UCP results
in a conflict. Conflicts are analyzed
to obtain new clauses. These conflict
clauses are added to the formula to pre-
vent the solver from visiting that assign-
ment in the future. Additionally, conflict
analysis updates the heuristics to guide
the solver towards a short refutation.

There are two types of decision
heuristics for SAT solvers: focus and
global heuristics. Focus heuristics, also
known as conflict-driven heuristics (for
CDCL solvers), aim at finding short ref-
utations. These heuristics are cheap to
compute and have been highly success-
ful in solving large problems arising
from industrial applications. In short,
focus heuristics work as follows: when-
ever a solver encounters a conflicting
state, the importance of the variables
that cause the conflict is increased.
Simply making these variables more

Figure 1. Encoding and case split of Boolean Schur Triples Problem.

Encoding

(x1 ∨ x2 ∨ x3) ∧ (x−1 ∨ x−2 ∨ x−3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x−1 ∨ x−3 ∨ x−4) ∧
(x1 ∨ x4 ∨ x5) ∧ (x−1 ∨ x−4 ∨ x−5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x−2 ∨ x−3 ∨ x−5) ∧
(x1 ∨ x5 ∨ x6) ∧ (x−1 ∨ x−5 ∨ x−6) ∧ (x2 ∨ x4 ∨ x6) ∧ (x−2 ∨ x4 ∨ x−6) ∧
(x1 ∨ x6 ∨ x7) ∧ (x−1 ∨ x−6 ∨ x−7) ∧ (x2 ∨ x5 ∨ x7) ∧ (x−2 ∨ x−5 ∨ x−7) ∧
(x3 ∨ x4 ∨ x7) ∧ (x−3 ∨ x−4 ∨ x−7) ∧ (x1 ∨ x7 ∨ x8) ∧ (x−1 ∨ x−7 ∨ x−8) ∧
(x2 ∨ x6 ∨ x8) ∧ (x−2 ∨ x−6 ∨ x−8) ∧ (x3 ∨ x5 ∨ x8) ∧ (x−3 ∨ x−5 ∨ x−8) ∧
(x1 ∨ x8 ∨ x9) ∧ (x−1 ∨ x−8 ∨ x−9) ∧ (x2 ∨ x7 ∨ x9) ∧ (x−2 ∨ x−7 ∨ x−9) ∧
(x3 ∨ x6 ∨ x9) ∧ (x−3 ∨ x−6 ∨ x−9) ∧ (x4 ∨ x5 ∨ x9) ∧ (x−4 ∨ x−5 ∨ x−9)

Case split as binary tree

x1

x3 x3

x5 x5

f t

f t f t

f t f t

74 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

review articles

in this heuristic have been manually
tweaked to achieve strong performance
on the Boolean Pythagorean Triples
Problem.15 We estimate that the use
of this optimized look-ahead heuristic
reduced the number of cases by at least
two orders of magnitude compared to
alternative heuristics, such as focus
heuristics or MOMS. Look-ahead heu-
ristics were popular in the 1990s, but
they have been mostly ignored after
CDCL emerged. The usefulness of
look-ahead heuristics to boost the per-
formance on hard problems may revive
the interest.

Proofs of Unsatisfiability
The unpredictable effectiveness of SAT
solvers, together with their non-trivial
implementations (needed for real-world
efficiency), raise the question of whether
their results can be trusted. If a prob-
lem has a solution, it is easy to verify
that the given solution is correct: sim-
ply check whether the solution satis-
fies at least one literal in every clause.
However, a claim that no solution
exists is much harder to validate. Since
SAT solvers use many complicated tech-
niques that could result in implemen-
tation as well as conceptual errors, a
method is required to verify unsatisfi-
ability claims.

There are two approaches to deal
with the trust issue of complicated
software: prove its correctness or pro-
duce a certificate which can be vali-
dated with a simple program. Work in
the first direction resulted in verified
SAT solving.31 However, this approach
has two disadvantages: only some
state-of-the-art techniques are verified,
and verification is performed only on
“higher levels,” and thus excludes the
low-level implementation tricks that

important than all the other variables
results in state-of-the-art performance
on most industrial problems.2

If no short refutation exists (or is too
hard to find), it is best to use global heu-
ristics (for look-ahead solvers) to split
the search space into two parts that
are both easier to solve. Global heuris-
tics are based on look-aheads:23 for a
given formula F, a look-ahead on literal
x assigns x to true, applies UCP, and
computes the set S of clauses in F that
are shortened, but not satisfied. The
heuristic value of a look-ahead on x is
based on a weighted sum of the clauses
in S, where clause weights depend on
the length of clauses.

Both focus and global heuristics
can reduce the search space exponen-
tially. For really hard problems, such
as the Pythagorean Triples Problem, it
is best to combine both types of heu-
ristics. Focus heuristics are effective
when there exists a short refutation of
the formula. For hard problems, ini-
tially there are no short refutations.
One therefore needs to partition such
a problem using global heuristics until
the short refutations manifest them-
selves. This is the main idea behind the
Cube-and-Conquer SAT solving para-
digm,16 which was crucial to solve the
Pythagorean Triples Problem.

Consider again the Boolean Schur
Triples Problem on the existence of a
red/blue coloring of 1, . . ., 9 without a
monochromatic solution of a + b = c.
Figure 1 shows the SAT encoding,
consisting of 32 clauses using the
Boolean variables x1, . . ., x9. If variable xi
is assigned to true (false), then num-
ber i is colored red (blue). For each of the
16 solutions of a + b = c, there are two
clauses: one stating that at least one of a,
b, or c must be colored red, one stating

that at least one of them must be colored
blue. A binary tree is shown right beside
the clauses. Each internal node contains
a splitting variable xi. The left branches
assign decision variables to false (blue
edge), while the right branches assign
decision variables to true (red edge).
Each leaf node represents an assign-
ment that would result in a conflict dur-
ing UCP. For example, for the left-most
leaf node, x1 and x3 are assigned to false
(blue): thus x2, x4 have to be set to true
(due to 1 + 2 = 3 and 1 + 3 = 4), forcing x6 to
false (2 + 4 = 6), which forces x7 and x9
to true (1 + 6 = 7 and 3 + 6 = 9), which
yields the conflict 2 + 7 = 9 with all three
set to true (red). This node matches
the first clause in the proof of Figure 2.
The binary tree (a simple form of look-
ahead solving) illustrates that heuristics
can reduce the number of assignments
to be evaluated from 512 to 6.

Due to the limited size of the example
formula, relatively simple heuristics are
sufficient to reduce the number of cases
from 512 to 6. One such simple heuris-
tic is Maximum Occurrences in clauses
of Minimal Size (MOMS). Initially, all
clauses are ternary and variable x1 occurs
most frequently. Therefore x1 is used as
the first decision variable. After simpli-
fication, several variables occur most
frequently in binary clauses (twice), but
variable x3 has the best tie break (occur-
rences in remaining ternary clauses).
Therefore variable x3 is the best decision
on the second level of the tree. Finally,
variable x5 is the most occurring variable
in binary clauses on the third level.

A crucial aspect of solving the
Boolean Pythagorean Triples Problem
was the use of a dedicated look-ahead
heuristic based on the recursive
weight heuristic for random 3-SAT
formulas. The three magic constants

Figure 2. Proof and unit clause justification of the Boolean Schur Triples Problem.

Proof

(x1 ∨ x3)
(x1 ∨ x5)

(x1)

(x1 ∨ x2 ∨ x3), (x1 ∨ x3 ∨ x4), (x−2 ∨ x −4 ∨ x −
6), (x1 ∨ x6 ∨ x7), (x3 ∨ x6 ∨ x9), (x−2 ∨ x−7 ∨ x−9)

(x1 ∨ x3), (x1 ∨ x4 ∨ x5), (x1 ∨ x5 ∨ x6), (x−2 ∨ x−4 ∨ x −6), (x2 ∨ x5 ∨ x7), (x−3 ∨ x−4 ∨ x−7)
(x1 ∨ x3), (x1 ∨ x5), (x−2 ∨ x−3 ∨ x−5), (x−3 ∨ x−5 ∨ x−8), (x2 ∨ x6 ∨ x8), (x1 ∨ x8 ∨ x9), (x−3 ∨ x−6 ∨ x−9)

d(x1 ∨ x3)
d(x1 ∨ x5)

(x–3)
(x–5)

(x1), (x−1 ∨ x−2 ∨ x−3), (x−1 ∨ x−3 ∨ x−4), (x2 ∨ x4 ∨ x6), (x−1 ∨ x−6 ∨ x−7), (x−3 ∨ x−6 ∨ x−9), (x2 ∨ x7 ∨ x9)
(x1), (x−3), (x−1 ∨ x−4 ∨ x−5), (x−1 ∨ x−5 ∨ x−6), (x2 ∨ x4 ∨ x6), (x−2 ∨ x−5 ∨ x−7), (x3 ∨ x4 ∨ x7)

⊥ (x1), (x−3), (x−5), (x2 ∨ xx3 ∨ x5), (x3 ∨ x5 ∨ x8), (x−2 ∨ x−6 ∨ x−8), (x−1 ∨ x−8 ∨ x−9), (x3 ∨ x6 ∨ x9)

Unit clause justification

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 75

review articles

are crucial for fast performance. Both
disadvantages slow down the verified
solver substantially, making it useless
in most practical settings.

The second approach has been
more successful in the context of SAT
solving. We refer to a certificate of
an unsatisfiability claim as a proof of
unsatisfiability. What kind of format
would be useful for such proofs? The
ideal proof format facilitates five prop-
erties: (1) proof production should be
easy to ensure that it will be supported
by many solvers; (2) proofs should be
compact in order to have small over-
head; (3) proof validation should be
simple, otherwise the trust issue per-
sists; (4) proof validation should be
efficient to make verification useful in
practice; and (5) all techniques should
be expressible, otherwise solvers will
be handicapped. There is a trade-off
between these properties. For example,
more details in a proof should allow a
more efficient validation procedure.
However, adding details makes proofs
less compact and harder to produce.

Initially, proofs of unsatisfiability
were based on resolution. Although
useful in some settings, it is hard or
even impossible to achieve the prop-
erties of easy production (1), com-
pactness (2), and expressibility (5) for
such proofs. The alternative is clausal
proofs12 for which it is now possible to
achieve all five properties.

What is a clausal proof of unsatisfi-
ability for a SAT problem? Basically, we
start with the given list of clauses, and
add or delete clauses, until finally we
add the empty clause ⊥, which marks
unsatisfiability, since there is no literal
in it to satisfy. The most basic restric-
tion on adding clauses is, that the
addition is solutions-preserving, that
is, all solutions (at that point, taking
all previous additions and deletions
into account) also satisfy the added
clause. This guarantees correctness:
if all additions are solutions-preserv-
ing, and we are able to add ⊥ (which
has no solution), then the original
SAT problem must be unsatisfiable.
For example, consider the formula
F = (x ∨ y) ∧ (x ∨ y–). Adding the clause
(x) to F is solutions-preserving: F has
two solutions and in both solutions x
is assigned to true.

It is important to validate that clause
addition steps are solutions-preserving,

otherwise we do not have a proof, just
some sort of claim. This verification
should be cheap to perform, and the
basic criterion is as follows. Suppose a
formula F is given, and the clause C is
claimed to be solutions-preserving for
F. Take the assignment that sets all lit-
erals in C to false. If UCP on F results
in a conflict, then the clause is indeed
solutions-preserving, since we checked
that it is not possible to falsify C while
satisfying F. This realizes the first three
ideal proof format properties: easy,
compact, and simple. The solver can
just output the learned clauses, with-
out a justification, and validation hap-
pens by UCP.

SAT solvers do not only learn lots
of clauses, but also aggressively delete
them to achieve fast UCP. Proofs should
include this deletion information in
order to realize efficient validation.
Furthermore, proof checkers require
dedicated UCP algorithms to make
proof validation as fast as proof pro-
duction.14 Combining these techniques
realizes the fourth ideal proof property
(efficient validation).

A proof of our running example is
shown in Figure 2. The proof consists of
six clause addition steps and two clause
deletion steps. The latter have a “d” pre-
fix and do not require checking. The cor-
rectness of each clause addition step is
checked using UCP, and shown using a
unit clause justification: a sequence of
clauses that become unit, ending with a
falsified clause that marks the conflict.
The unit clause justification is omitted
from clausal proofs to ensure compact-
ness, but the checker constructs a justi-
fication during validation.

Some SAT solving techniques may
change (add or remove) solutions which
can significantly reduce solving time. In
order to express such techniques—to
have also the final ideal proof property
(expressible)—support is required for
proof steps that go beyond the above
solutions-preservation. This is realized
by the concept of solutions-preserving
modulo x for some literal x. Let ϕ be
an assignment. We denote by ϕ ⊕ x
the assignment obtained by flipping
the truth value for literal x in ϕ. In case
x is unassigned in ϕ, then x is assigned
to true in ϕ ⊕ x. For a given formula F,
addition of clause C is solutions-preserv-
ing modulo x if for all solutions ϕ of F at
least one of ϕ or ϕ ⊕ x satisfies F and C.

For example, consider the formula
F = (x ∨ y) ∧ (x ∨ y–) again. The addition
of clause (x– ∨ y) to F is solutions-pre-
serving modulo y. Recall that F has two
solutions. The first solution ϕ1, where
x is true and y is true, also satisfies
(x– ∨ y). The second solution ϕ2, where x
is true and y is false, falsifies (x– ∨ y),
but ϕ2 ⊕ y satisfies F and (x– ∨ y).

How to check that adding clause C
is solutions-preserving modulo x? We
use the following efficient criterion:
x ∈ C, and for all D ∈ F with x– ∈ D we
have that setting all literals in C as well
as all literals in D\{x–} to false yields a
conflict via UCP. The proof format that
encapsulates this inference in a single
step is called the “DRAT” format,4 and
is supported by state-of-the-art solvers.

It is instructive to show that this cri-
terion guarantees adding C to F is solu-
tions-preserving modulo x. The critical
clauses are the D ∈ F with x– ∈ D, since
here flipping of x might change a sat-
isfied clause to a falsified clause. First
observe that from the criterion fol-
lows that all C ∪ (D\{x–}) are solutions-
preserving w.r.t. F. Now assume that
ϕ is a total satisfying assignment for F
which falsifies C (otherwise ϕ satisfies F
and C and we are done). Thus ϕ falsifies
x, and ϕ ⊕ x satisfies C. Since all C ∪ D\{x–}
are solutions-preserving w.r.t. F, ϕ sat-
isfies all C ∪ D\{x–}. Hence ϕ satisfies
all D\{x–} (because ϕ falsifies C), and so
does ϕ ⊕ x as well, and thus indeed ϕ ⊕ x
satisfies all D. QED

The DRAT format seems to be a good
proof format for existing and future SAT
solvers, as it has all the five properties of
an ideal proof format. Moreover, DRAT
proofs can be efficiently checked even
in parallel, and they have been used to
validate the results of the annual interna-
tional SAT competitions since 2013. For
the Boolean Schur Triples Problem with
n = 9, there exists a DRAT proof consisting
of only four clause additions: (x1 ∨ x4), (x1),
(x4), ⊥. Validating this proof involves more
details, which can be obtained by using
the DRAT proof checker DRAT-trim.d

Indeed, DRAT in a theoretical sense
is equivalent to one of the most power-
ful systems studied in proof complex-
ity, Extended Frege with Substitution,
and thus it should offer “proofs as
short as possible.”4 The Extension

d	 The tool is available at https://github.com/
marijnheule/drat-trim.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=75&exitLink=https%3A%2F%2Fgithub.com%2Fmarijnheule%2Fdrat-trim
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=75&exitLink=https%3A%2F%2Fgithub.com%2Fmarijnheule%2Fdrat-trim

76 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

review articles

proof has been provided, correctness
is more of an issue than in cases of
Ramsey Theory. Computationally, EDP
is much easier,21 and a much smaller
proof exists (about a gigabyte) than in
our case. Finally a general mathemati-
cal existence proof has been provided.35
This mathematical proof was called
“much more satisfying” than the com-
putational approach.25 However, there
is for example the possibility that
the Pythagorean Tuples Conjecture
(see below) is not provable with cur-
rent methods. Furthermore, the SAT
approach is actually a rather “satisfying
approach” when taking into account its
deep connections to formal methods.

The Pythagorean Tuples Conjecture
states that Ptn(k; m)—with k the length
of the tuple and m the number of col-
ors—exists for all k ≥ 3 and m ≥ 2. That
is, for every partitioning of {1, . . ., Ptn(k;
m)} into m parts, some part contains
a Pythagorean tuple of size k. We have
shown that Ptn(3; 2) = 7825. The value of
Ptn(3; 2) was conjectured30 not to exist
after determining the numbers Ptn(k; 2)
for 4 ≤ k ≤ 31. We have meanwhile
computed the only known Pythagorean
tuples numbers for three colors: Ptn(5; 3)
= 191, Ptn(6; 3) = 121, and Ptn(7; 3) = 102.
We also established Ptn(3; 3) > 107, and
this lower bound (via local-search algo-
rithms) seems still far away from the
exact bound. So it is imaginable that a
mathematical existence-proof can not
be found, and finiteness of Ptn(3; 3)
might never be established. It is further-
more conceivable that the Pythagorean
Tuples Conjecture is true but the best
proofs are SAT-like. Thus formal proofs
in systems like Zermelo-Fraenkel set the-
ory would only exist for concrete k and m,
while there would not exist a single proof
for all k and m. No mathematical exis-
tence proofs have yet been established
for any Ptn(k; m) (see “alien truth state-
ments” for further discussions).

Before coming to the industrial
applications of SAT, we remark that
the Ramsey numbers33 R(k) are very dif-
ferent from the Boolean Pythagorean
Triples Problem: namely the latter is
“random-like” and thus has no symme-
tries (besides the trivial color symme-
tries). Currently SAT solving is more
successful in the absence of strong sym-
metries, while Ramsey numbers cur-
rently have too much structure for an
automated attack. More sophisticated

Rule basically states that the clauses
(x ∨ a– ∨ b–) ∧ (x– ∨ a) ∧ (x– ∨ b) can be
added if no literals x and x– occur in the
formula. In fact, each of the clauses
are solutions-preserving modulo x or x–
according to the above criterion.

Proof size nevertheless becomes an
issue. Although DRAT proofs are “com-
pact,” the size of the DRAT proof of the
Boolean Pythagorean Triples Problem
is 200 TB. An obvious challenge of such
a huge file is its storage. Also, dealing
with such files increases the complexity
of proof validation algorithms, which
will need to support parallel check-
ing. On the other hand, it is possible to
trade complexity for space by adding
details to the proof that facilitate fast
checking. In order to make this feasi-
ble, the proof can be optimized using
a non-verified trimmer which also adds
the checking details. This approach
has been successfully applied to vali-
date the 200 TB proof using a checker
which was formally verified in Coq.8

Ramsey Theory and Complexity
A popularized summary of Ramsey
Theory is that “complete chaos is impos-
sible.”26 More concretely, Ramsey Theory
deals with patterns that occur in well-
known sets such as the set of natural
numbers or the set of graphs. For exam-
ple, coloring the natural numbers with
finitely many colors will result in a mono-
chromatic Schur triple a + b = c.

Hundreds of papers have been pub-
lished on determining the smallest size
of sets such that a given pattern must
start to occur.32 The most famous pat-
tern is related to Ramsey numbers R(k):
the smallest n such that all red/blue
edge colorings of the complete graph
with n vertices have a red or a blue clique
of size k. Only the first four Ramsey num-
bers are known. Paul Erdős famously
told a story about aliens who threatened
to obliterate earth unless humans pro-
vided them with the value of R(5)—with a
proof, we may add here. Putting all man-
kind behind this project would do the
job in a year. Yet if aliens asked for R(6),
we should opt for the Hollywood resolu-
tion and obliterate them instead.13

Many problems in Ramsey Theory
appear to be solved only using large
case splits (especially for the determi-
nation of Ramsey-type numbers), and
thus using SAT is a natural option. Also
SAT formulations of these problems are

easy and natural. In order to determine
the smallest subset in which a pattern
starts to occur using SAT, two formu-
las need to be solved. First, it has to be
shown that for any smaller subset there
exists a counter-example. This is typi-
cally easy, because the formula is satis-
fiable. The second formula, encoding
the existence of the pattern, is much
harder to solve as now unsatisfiability
must be shown.

The first major success of SAT solv-
ing in Ramsey Theory was determining
the sixth Boolean van der Waerden
number:22 vdW(6) = 1132. The number
vdW(k) expresses the smallest n such
that any red/blue coloring of the num-
bers 1 to n results in a monochromatic
arithmetic progression of length k.
The computation used multiple clus-
ters as well as dedicated SAT-solving
hardware (FPGA solvers) for several
months. Unfortunately, no proof was
produced during the computation,
making it impossible to verify the
result. This raises several trust issues,
because errors could have been made
on several levels. For example, was
the splitting correct and thus has the
whole search space been explored?
Also, FPGA solvers have been tested
much less thoroughly compared to
state-of-the-art solvers.

The first important problem with
a verified clausal proof is the Erdős
Discrepancy Problem (EDP), which is
about “complete uniformity is impossi-
ble.” The problem conjectures that any
infinite sequence s1, s2, . . . with si = ±1
contains for any positive integer C
a subsequence sd, s2d, s3d, . . ., skd, for
some positive integers k and d, such
that

=
≥∑ 1

k

idi
s C . Using colors, the con-

jecture says that for every C ≥ 1 and
every red/blue coloring of 1, 2, . . . there
is a finite initial segment of some pro-
gression d, 2d, 3d, . . . for some d ≥ 1,
such that the discrepancy between the
number of color-occurrences is at least
C (one color occurs at least C-times
more than the other). The conjecture
has been a long-standing open prob-
lem even for C = 2. The case C = 2 was
eventually solved using SAT by provid-
ing the exact bound,21 also applying
Cube-and-Conquer. The encoding of
this problem is more involved than the
simple encoding of Ramsey problems
(which are just hypergraph coloring
problems), and thus, though a clausal

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 77

review articles

symmetry-breaking techniques are req
uired to improve the performance.

Brute Force Formal Methods
SAT solvers are a key technology in for-
mal methods for applications, such as
bounded model checking5 and equiv-
alence checking. In bounded model
checking, given a transition system and
an invariant such as a safety property, the
SAT solver determines for some appro-
priate finitization, whether there exists a
sequence of transitions that violates the
safety property. Equivalence checking is
used to determine the equivalence of a
specification and an implementation or
two different implementations. The SAT
solver is asked to find an input such that
some output differs. Notice that the exis-
tence of a solution means that the safety
property is violated or that there exists a
counter-example for equivalence.

All problems discussed so far could
be expressed as a propositional formula.
For many interesting problems, how-
ever, this is not the case and they require
a richer logic for its representation. That
does not mean that SAT technology can-
not be used to solve these problems. On
the contrary: more and more problems
that require a richer logic are being
solved efficiently using SAT.

The key idea is to abstract away
those parts of a given problem that
cannot be expressed as propositional
logic. A solution of the abstracted prob-
lem may not be a solution of the given
problem, while a refutation of the
abstracted problem is also a refuta-
tion of the given problem. In case a
solution of the abstracted problem is
obtained, which is not a solution for
the given problem, then the abstrac-
tion is refined by adding a clause that
prevents the SAT solver from finding
that solution (and potentially similar
solutions) again. This is repeated until
either a refutation or a solution for the
given problem is found. Incremental
SAT solving10 facilitates an efficient
implementation of this approach.

This approach has been very suc-
cessful in Automated Theorem Proving
(ATP). The long-time champion in the
annual ATP competitions is Vampire,36
which has been tightly integrated with
a SAT solver. Other strong ATP solvers,
including iProver and Leo, incor-
porate SAT solvers as well. The major
interactive theorem provers, such as

ACL2, Coq, and Isabelle, support
the usage of SAT solvers to deal with
subproblems that can be expressed
in propositional logic. In this setting,
SAT solvers are treated as a black-box
and the emitted proofs are validated in
the theorem provers. Another success-
ful extension of SAT in this direction is
Satisfiability Modulo Theories (SMT).9 It
uses multiple theories, such as linear
arithmetic, uninterpreted functions,
and bit-vectors, and replaces con-
straints in a theory by propositional
variables. SMT solvers, such as Z3,
Boolector, CVC4, and Yices have
been highly successful.

Alien Truths
The core argument against solving a
problem by brute force is it does not con-
tribute to understanding the problem. In
that view, the proof is meaningless and
hard to generalize, and a human mathe-
matical proof is preferred. Furthermore,
without understanding errors seem
more likely, although validation can be
done by highly trusted systems.

The proponents of “elegant” proofs
appear to consider problems with
only very long proofs as not interest-
ing or not relevant. But even unprov-
able statements, like the famous
Continuum Hypothesis, have an
important place in mathematics. If we
do not study the limits of our current
knowledge, we will stay ignorant for-
ever, always restricted to a “safe space,”
neglecting problems we assume
to be too hard. Furthermore, what
is a limit of one discipline is a core subject
of another discipline. Computational
complexity and Ramsey Theory have
close relations. Understanding the hard-
ness of problems from Ramsey instances
could lead to major breakthroughs.27
For example, why is proving the Ramsey
property for a + b = c rather easy, while
a2 + b2 = c2 appears to be a very hard
problem? In general, even small propo-
sitional problems might have only very
large proofs. If we would ignore this area,
then we would allow random holes in our
knowledge. The question “why there are
no short proofs,” and “what makes a
problem hard,” are deep and fascinat-
ing questions, and we consider them
some of the most important problems
of our times.

To better discuss the untold sto-
ries of computer science, complexity

More and more
problems that
require a richer
logic are being
solved efficiently
using SAT.

78 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

review articles

that are expected to be alien are that
vdW(6) = 1132 (see Kouril22) and that
the exact bound of EDP with C = 2 is
1161 (see Konev21). A plain brute-force
approach to those problems would
require the evaluation of 21132 and 21161
cases, respectively. Brute reasoning
using SAT solvers significantly reduced
the size of the case-splits and allowed
determining their truth. We think it is
relevant to make a further distinction:
the above two alien truth statements
express the exact bound, but for both
cases there is a mathematical exis-
tence proof that the pattern cannot be
avoided indefinitely. Now also high-
level statements, such as any red/blue
coloring of the natural numbers yields
a monochromatic Pythagorean triple,
could be alien, when the bound result,
Ptn(3; 2) = 7825, is the only proof. We
call such statements indeed strongly
alien. If a mathematical existence
proof would be found for the statement
here, then only the bound statement
remains, which is simply alien. This
happened for the Erdős Discrepancy
Problem: the bound was computed
using SAT, and later a mathematical
existence proof was given.

Finally, for some truth statements,
we may never be able to produce a proof.
A possible example problem of this
type is the statement that every 3-col-
oring of the natural numbers yields a
monochromatic Pythagorean triple. As
already discussed, experiments show
that Ptn(3; 3) > 107, where lower bounds
are relatively easy to compute. Proofs of
upper bound results are much harder
to obtain: for example, Ptn(3; 2) > 7824
can be computed in one CPU-minute
with local search, while computing
Ptn(3; 2) £ 7825 required more than
40 000 CPU-hours. We call decidable
truth statements extra alien if a proof
can never be computed.

The concept of alien truth state-
ments deals with the size of proofs,
but it touches naturally on unprovabil-
ity (in current systems like Zermelo-
Fraenkel set theory). It is conceivable
that Ptn(3; 3) does not exist, that is, the
natural numbers are 3-colorable with-
out a monochromatic Pythagorean
triple. However, this may not be prov-
able, since the coloring is too complex.
On the other hand, it is conceivable
that all Ptn(3; m) with m ³ 3 exist (note
that a SAT solver can prove them in

theory, and SAT, let’s call alien a prov-
able and rather short mathematical
statement with only a very long proof.
Artificial alien statements can be
constructed using Gödel’s methods.
Whether a natural truth statement
can be shown to be alien, such as the
Pythagorean Triples Problem, is of
highest relevance. Even if a short proof
for the Pythagorean Triples Problem
may be constructed, that is unlikely to
be the case for the exact bound result.
Now there is actually a whole spec-
trum of possibilities between human
truths and alien truths. Classical
mathematical statements for
which a paper proof exists, such as
Schur’s Theorem,34 we consider as
human truth statements. Hence the
vast body of mathematical works
belongs to this category. Furthermore,
we consider mathematical statements
that have been proven mostly manu-
ally, but with some computer help,
weakly human. More specifically, such
statements have a large case-split,
which could potentially be under-
stood by humans, but which have
only been checked mechanically. An
example of such a statement is the
Four-Color Theorem.37 The proof by
Appel and Haken considers 663 cases
in its improved version. The case-
split is fully understood and humanly
constructed. A theorem prover only
checks the cases. Coming to larger
cases, we refer to a weakly alien truth
statement as a giant humanly gener-
ated case-split which can be validated
using plain brute-force methods. For
example, it has been shown that the
minimum number of givens is 17 in
Sudoku by enumerating all possible
cases with 16 givens and refuting
them all29 (5 472 730 538 cases after
symmetry breaking). Although impos-
sible to evaluate by humans, it could
be directly done mechanically. This
result is expected to be weakly alien,
as it is unlikely that there exists a
small enough case-split that is check-
able by humans.

We arrive at a better understanding
of “alien,” namely a truth statement
is alien if humanly understandable
case-splits are way too big for any
plain brute-force method, but there
exists a giant case-split that mysteri-
ously avoids an enormous exponential
effort. Examples of truth statements

For some truth
statements,
we may never be
able to produce
a proof.

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 79

review articles

principle), but these statements are all
alien or extra-alien. Since these proofs
grow with m, the general statement
that all Ptn(3; m) with m ³ 3 exist, is
then unprovable in principle.

Conclusion
Recent successes in brute reasoning,
such as solving the Erdős Discrepency
Problem and the Pythagorean Triples
Problem, show the potential of this
approach to deal with long-standing
open mathematical problems. More
over, proofs for these problems can be
produced and verified completely auto-
matically. These proofs may be big,
but we argued that compact elegant
proofs may not exist for some of these
problems, in particular (but not only)
for the exact bound results. The size
of these proofs does not influence the
level of correctness, and these proofs
may reveal interesting information
about the problem.

In contrast to popular belief,
mechanically produced huge proofs
can actually help in understanding the
given problem. We can try to under-
stand their structure, and making them
thus smaller. Hardly any research has
been done yet in this direction apart
from removing redundancy in a given
proof. Possibilities are changing the
heuristics of a solver or introducing
new definitions of frequently occurring
patterns in the proof. Indeed, simply
validating a clausal proof does not only
produce a yes/no answer as to whether
the proof is correct, but also provides
an unsatisfiable core consisting of all
original clauses that were used to vali-
date the proof—revealing important
parts of the problem. The size of the
core depends on the type of problem.
Problems in Ramsey Theory typically
have quite a large core and therefore
provide limited insight. Many bounded
model checking problems, however,
have small unsatisfiable cores, thereby
showing that large parts of the hard-
ware design were not required to deter-
mine the safety property.

To conclude, it is definitely pos-
sible to gain insights by using SAT.
However that “insight” might need to
be reinterpreted here, and might work
on a higher level of abstraction. Every
paradigm change means asking differ-
ent questions. Gödel’s Incompleteness
Theorem solved partially the question

of the consistency of mathematics by
showing that the answer provably can-
not be delivered in the näive way. Now
the task is to live up to big complexi-
ties, and to embrace the new possibili-
ties. Proofs must become objects for
investigations, and understanding will
be raised to the next level, how to find
and handle them.

So, when the day finally comes
and the aliens arrive and ask us about
Ptn(3; 3), we will tell them: “You know
what? Finding the answer yourself gives
you a much deeper understanding than
just telling you the answer—here you
have the SAT solving methodology,
that’s the real stuff!” And then humans
and aliens will live happily ever after.

Wir müssen wissen. Wir werden
wissen.
(We must know. We will know.)
	 David Hilbert, 1930�

References
	 1.	 Ahmed, T., Kullmann, O., Snevily, H. On the van der

Waerden numbers w(2; 3, t). Disc. Appl. Math. 174
(2014), 27–51.

	 2.	 Biere, A., Fröhlich, A. Evaluating CDCL variable
scoring schemes. In SAT (Springer, 2015),
405–422.

	 3.	 Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. eds.
Handbook of Satisfiability, volume 185 of FAIA.
IOS Press, Amsterdam, The Netherlands, Feb. 2009.

	 4.	 Buss, S. Propositional proofs in Frege and
Extended Frege systems (abstract). In Computer
Science—Theory and Applications (Springer, 2015),
1–6.

	 5.	 Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.
Bounded model checking using satisfiability
solving. Formal Methods in System Design 19, 1
(2001), 7–34.

	 6.	 Cook, S.A. The complexity of theorem-proving
procedures. In STOC (1971), 151–158.

	 7.	 Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G.,
Tacchella, A., Vardi, M.Y. Benefits of bounded model
checking at an industrial setting. In CAV (Springer,
2001), 436–453.

	 8.	 Cruz-Filipe, L., Marques-Silva, J.P., Schneider-Kamp,
P. Efficient certified resolution proof checking, 2016.
https://arxiv.org/abs/1610.06984.

	 9.	 de Moura, L., Bjørner, N. Satisfiability modulo theories:
Introduction and applications. Communications of the
ACM 54, 9 (2011), 69–77.

	10.	 Eén, N., Sörensson, N. Temporal induction by
incremental SAT solving. Electr. Notes Theor. Comput.
Sci. 89, 4 (2003), 543–560.

	11.	 Garey, M.R., Johnson, D.S. Computers and
Intractability; A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

	12.	 Goldberg, E.I., Novikov, Y. Verification of proofs of
unsatisfiability for CNF formulas. In DATE (IEEE,
2003), 10886–10891.

	13.	 Graham, R.L., Spencer, J.H. Ramsey theory. Scientific
American 263, 1 (July 1990), 112–117.

	14.	 Heule, M.J.H., Hunt, W.A. Jr., Wetzler, N. Trimming
while checking clausal proofs. In FMCAD (IEEE,
2013), 181–188.

	15.	 Heule, M.J.H., Kullmann, O., Marek, V.W. Solving and
verifying the Boolean Pythagorean Triples problem via
Cube-and-Conquer. In SAT (Springer, 2016) 228–245.

	16.	 Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.
Cube and conquer: Guiding CDCL SAT solvers by
lookaheads. In HVC (Springer, 2011), 50–65.

	17.	 Heule, M.J.H., van Maaren, H. Look-ahead based
SAT solvers. In Biere et al. [3], Chapter 5,
(2009), 155–184.

	18.	 Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar,

P. Efficient SAT-based bounded model checking
for software verification. Theoretical Computer
Science 404, 3 (2008), 256–274.

	19.	 Karp, R.M. Reducibility among combinatorial
problems. In Complexity of Computer Computations
(Plenum Press, 1972), 85–103.

	20.	 Kautz, H.A., Sabharwal, A., Selman, B. Incomplete
algorithms. In Biere et al. [3], Chapter 6, (2009),
185–203.

	21.	 Konev, B., Lisitsa, A. Computer-aided proof of Erdös
discrepancy properties. Artificial Intelligence 224, C
(July 2015), 103–118.

	22.	 Kouril, M., Paul, J.L. The van der Waerden number
W(2, 6) is 1132. Experimental Mathematics 17, 1
(2008), 53–61.

	23.	 Kullmann, O. Fundaments of branching heuristics. In
Biere et al. [3], Chapter 7, (2009), 205–244.

	24.	 Lam, C.W.H. The search for a finite projective plane of
order 10. The American Mathematical Monthly 98, 4
(April 1991), 305–318.

	25.	 Lamb, E. Maths proof smashes size record:
Supercomputer produces a 200-terabyte proof—but is
it really mathematics? Nature 534 (June 2016), 17–18.

	26.	 Landman, B.M., Robertson, A. Ramsey Theory on the
Integers, volume 24 of Student mathematical library.
American Mathematical Society, Providence, RI, 2003.

	27.	 Lauria, M., Pudlák, P., Rödl, V., Thapen, N. The
complexity of proving that a graph is Ramsey. In
ICALP (Springer, 2013), 684–695.

	28.	 Marques-Silva, J.P., Lynce, I., Malik, S. Conflict-driven
clause learning SAT solvers. In Biere et al. [3],
Chapter 4, (2009), 131–153.

	29.	 McGuire, G., Tugemann, B., Civario, G. There
is no 16-clue Sudoku: Solving the Sudoku
minimum number of clues problem via hitting set
enumeration. Experimental Mathematics 23, 2 (2014),
190–217.

	30.	 Myers, K.J. Computational advances in Rado
numbers. PhD thesis, Rutgers University, New
Brunswick, NJ, 2015.

	31.	 Oe, D., Stump, A., Oliver, C., Clancy, K. versat: A
verified modern SAT solver. In VMCAI (Springer,
2012) 363–378.

	32.	 Radziszowski, S.P. Small Ramsey numbers. The
Electronic Journal of Combinatorics (January 2014),
Dynamic Surveys DS1, Revision 14.

	33.	 Ramsey, F.P. On a problem of formal logic.
Proceedings of the London Mathematical Society 30
(1930), 264–286.

	34.	 Schur, I. Über die Kongruenz xm + ym = zm (mod p).
Jahresbericht der Deutschen Mathematiker-
Vereinigung 25 (1917), 114–116.

	35.	 Tao, T. The Erdös discrepancy problem. Discrete
Analysis 1 (February 2016), 29.

	36.	 Voronkov, A. AVATAR: The architecture for first-order
theorem provers. In CAV (Springer, 2014) 696–710.

	37.	 Wilson, R. Four Colors Suffice: How the Map Problem
Was Solved. Princeton University Press, Princeton,
NJ, revised edition, 2013.

Marijn J.H. Heule (marijn@cs.utexas.edu) is a research
scientist at The University of Texas, Austin.

Oliver Kullmann (o.kullmann@swansea.ac.uk) is an
associate professor in computer science at Swansea
University, U.K.

©2017 ACM 0001-0782/17/07 $15.00.

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/videos/the-
science-of-brute-force

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=79&exitLink=https%3A%2F%2Farxiv.org%2Fabs%2F1610.06984
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=79&exitLink=mailto%3Amarijn%40cs.utexas.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=79&exitLink=mailto%3Ao.kullmann%40swansea.ac.uk
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=79&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fthe-science-of-brute-force
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=79&exitLink=https%3A%2F%2Fcacm.acm.org%2Fvideos%2Fthe-science-of-brute-force

The SIGs, active chapters, individual members, notable leaders, social and political issues,
international issues, computing and community education...all are topics found within this first
book-length history of the Association for Computing Machinery (ACM). Featuring insightful
profiles of people who shaped ACM, such as Edmund Berkeley, George Forsythe, Jean Sammet,
Peter Denning, and Kelly Gotlieb, and honest assessments of controversial episodes, this volume
deals with compelling and complex issues involving ACM and computing.

This is not a narrow organizational history. While much information about the SIGs and
committees are presented, this book is about how the ACM defined the discipline, broadened
the profession, and how it has expanded research frontiers. It is a permanent contribution to
documenting the history of ACM and understanding its central role in the history of computing.

The SIGs, active chapters, individual members, notable leaders, social and political issues,
international issues, computing and community education...all are topics found within this first
book-length history of the Association for Computing Machinery (ACM). Featuring insightful
profiles of people who shaped ACM, such as Edmund Berkeley, George Forsythe, Jean Sammet,
Peter Denning, and Kelly Gotlieb, and honest assessments of controversial episodes, this volume
deals with compelling and complex issues involving ACM and computing.

This is not a narrow organizational history. While much information about the SIGs and
committees are presented, this book is about how the ACM defined the discipline, broadened
the profession, and how it has expanded research frontiers. It is a permanent contribution to
documenting the history of ACM and understanding its central role in the history of computing.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Fmisa

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 81

research highlights

P. 83

The Scalable
Commutativity Rule:
Designing Scalable Software
for Multicore Processors
By Austin T. Clements, M. Frans Kaashoek,
Eddie Kohler, Robert T. Morris, and Nickolai Zeldovich

P. 82

Technical
Perspective
Unexpected
Connections
By Marc Shapiro

P. 92

Spin-It: Optimizing Moment of
Inertia for Spinnable Objects
By Moritz Bächer, Bernd Bickel,
Emily Whiting, and Olga Sorkine-Hornung

P. 91

Technical
Perspective
Linking Form,
Function, and
Fabrication
By Helmut Pottmann

82 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

commutativity. The implementation
is mostly scalable, but not always:
even when a scalable implementation
of an API exists in theory, it will not
necessarily be the most obvious or
even the most efficient; sometimes,
it’s simply not worthwhile. They
also learned that many advanced
data structures do not scale well; for
instance, rebalancing a tree might
modify a portion of the tree that is
semantically unrelated to the update
that triggered the rebalancing.

The authors present a simple and
powerful idea. It is not just about OSs,
but applies to any piece of parallel
software, whether running on a mul-
ticore computer or in the cloud. Com-
mutativity enables us to reason about
scalability in a principled way, inde-
pendently of a particular implementa-
tion, benchmark or workload. We can
now design our APIs to be scalable, by
ensuring calls commute in the com-
mon case, and we can use verification
tools to automate and exercise this
reasoning—an unexpected connec-
tion between high-school math theory
and hardcore computer science. 	

References
1.	 Amdahl, G.M. Validity of the single-processor approach

to achieving large scale computing capabilities. In
Proceedings of the AFIPS Conference, 30 (Atlantic
City, NJ, Apr. 1967) AFIPS Press.

2.	 Shapiro, M., Preguicą, N., Baquero, C. and Zawirski, M.
Conflict-free replicated data types. In Proceedings of
the Int. Symp. on Stabilization, Safety, and Security of
Dist. Sys. 6976. Lecture Notes in Comp. Sc. X. Défago,
F. Petit, and V. Villain, Eds. Grenoble, France, Oct.
2011, 386–400,. Springer-Verlag; doi: 10.1007/978-
3-642-24550-3 29; http://www.springerlink.com/
content/3rg39l2287330370/.

3.	 Shapiro, M., Preguicą, N., Baquero, C. and Zawirski, M.
Convergent and commutative replicated data types.
Bulletin of the European Association for Theoretical
Computer Science 104 (June 2011), 67–88;
http://www.eatcs.org/images/bulletin/beatcs104.pdf.

Marc Shapiro is a Principal Researcher in the Regal group
of UPMC-LIP6 and Inria, Paris, France.

Copyright held by author.

SCALAB ILITY IS THE capability of a par-
allel program to speed up its execu-
tion as we provide it with more CPUs.
Back in 1967, Gene Amdahl noticed
the sequential part of a parallel pro-
gram had a disproportionate influence
on scalability.1 Suppose that some pro-
gram takes 100 s to run on a sequential
processor. Now, let’s run it on a parallel
computer. If we are able to parallelize,
say, 80% of the code, then with enough
CPUs that 80% would take essentially
zero time. However, the remaining se-
quential portion will not run any faster;
this means the parallel program will
always take at least 20 s to run, a maxi-
mum speed-up of only 5×. If we are able
to parallelize 95% of the code, speed-
up is still limited to 20×, even with an
infinite number of CPUs! This back-
of-the-envelope calculation, known as
Amdahl’s Law, does not take into ac-
count other factors, such as increased
memory size, but remains an impor-
tant guideline.

In 1967, parallelism was a niche
topic, but not any more. Improving
program performance on today’s clus-
ters, clouds, and multicore computers
requires the developer to pay serious
attention to scalability. The inherent
scalability of an interface is the focus
of the following paper.

When a thread updates some shared
datum, and another thread wants to
read or write the most recent version
of that datum (they conflict), they must
synchronize, which constitutes a se-
quential bottleneck. This is a general
result that does not depend on any par-
ticular implementation, even with ef-
ficient hardware support for cache co-
herence, as explained by the authors.

Here comes the paper’s main in-
sight: If two concurrent procedure
calls commute with each other (that is,
executing them in either order is equiv-
alent), this means that neither one de-
pends on the result of the other. There-
fore, there is no inherent reason why
these calls should conflict; and, hence, it
is possible to implement them in a way
that scales well.

The advantages of commutativity in
software have been known for a long
time, see the paper for relevant refer-
ences. It is only recently, however, that
focus has shifted from simply leverag-
ing existing commutativity toward de-
signing software to achieve commu-
tativity.2,3 The paper goes well beyond
previous work. First, instead of simple
abstract data types, it considers the
more complex case of software with
an intricate interface and massive
amount of shared state—a whole op-
erating system (OS). Second, instead
of just a black-and-white characteriza-
tion “commute/don’t-commute,” it
considers calls that may commute in
some states and not in others. This is
especially important when commut-
ing is the common case, as in many OS
calls. Finally, it leverages static pro-
gram verification techniques, provid-
ing a tool that will prove if and when
a given interface is commutative, and
will generate test cases exercising the
scalability of its implementation.

The authors designed a whole OS
based on these ideas. It’s similar to
Linux, but its APIs are designed for

The following paper
presents a simple
and powerful idea.
It is not just
about OSs, but
applies to any piece
of parallel software,
whether running
on a multicore
computer or
in the cloud.

Technical Perspective
Unexpected Connections
By Marc Shapiro

research highlights

DOI:10.1145/3068768

To view the accompanying paper,
visit doi.acm.org/10.1145/3068914 rh

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=82&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3068768
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=82&exitLink=http%3A%2F%2Fwww.springerlink.com%2Fcontent%2F3rg39l2287330370%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=82&exitLink=http%3A%2F%2Fwww.eatcs.org%2Fimages%2Fbulletin%2Fbeatcs104.pdf
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=82&exitLink=http%3A%2F%2Fdoi.acm.org%2F10.1145%2F3068914
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=82&exitLink=http%3A%2F%2Fwww.springerlink.com%2Fcontent%2F3rg39l2287330370%2F

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 83

The Scalable Commutativity Rule:
Designing Scalable Software for
Multicore Processors
By Austin T. Clements, M. Frans Kaashoek, Eddie Kohler, Robert T. Morris, and Nickolai Zeldovich

DOI:10.1145/3068914

Abstract
Developing software that scales on multicore processors
is an inexact science dominated by guesswork, measure-
ment, and expensive cycles of redesign and reimplementa-
tion. Current approaches are workload-driven and, hence,
can reveal scalability bottlenecks only for known workloads
and available software and hardware. This paper introduces
an interface-driven approach to building scalable software.
This approach is based on the scalable commutativity rule,
which, informally stated, says that whenever interface oper-
ations commute, they can be implemented in a way that
scales. We formalize this rule and prove it correct for any
machine on which conflict-free operations scale, such as
current cache-coherent multicore machines. The rule also
enables a better design process for scalable software: pro-
grammers can now reason about scalability from the earli-
est stages of interface definition through software design,
implementation, and evaluation.

1. INTRODUCTION
Until the mid-2000s, continuously rising CPU clock
speeds made sequential software perform faster with
each new hardware generation. But higher clock speeds
require more power and generate more heat, and around
2005 clock speeds reached the thermal dissipation lim-
its of a few square centimeters of silicon. CPU architects
have not significantly increased clock speeds since, but
the number of transistors that can be placed on a chip
has continued to rise. Architects now increase parallel-
ism by putting more CPU cores on each chip. Total cycles
per second continues to grow exponentially, but soft-
ware must scale—must take advantage of parallel CPU
resources—to benefit from this growth.

Unfortunately, scaling is still an untamed problem. Even
with careful engineering, software rarely achieves the holy
grail of linear scalability, where doubling hardware parallel-
ism doubles software performance.

Engineering scalable systems software is particularly
challenging. Systems software, such as operating system
kernels and databases, presents services to applications
through well-defined interfaces. Designers rarely know
ahead of time how applications will use these interfaces,
and thus often cannot predict what bottlenecks to multicore
scalability will arise. Furthermore, scaling bottlenecks may
be a consequence of the definition of the interface itself;
such problems are particularly difficult to address once
many applications depend on the interface.

Lack of a principled way to reason about scalability
hampers all phases of systems software development:
defining an interface, implementing the interface, and
testing its scalability.

When defining an interface, developers lack a system-
atic way of deciding whether a given definition will allow
for scalable implementations. Demonstrating a scalabil-
ity bottleneck requires a complete implementation and a
workload. By the time these are available, interface changes
may no longer be practical: many applications may rely on
the existing interface, and applications that trigger the bot-
tleneck may not be important enough to warrant an inter-
face change.

During design and implementation, developers lack a
systematic way to spot situations in which perfect scalabil-
ity is achievable. This makes it hard to design an imple-
mentation to be scalable from the start. Instead, over time
developers must iteratively improve the software’s parallel
performance as specific workloads uncover bottlenecks,
often re-implementing the software multiple times.

While testing, developers lack a systematic way of
evaluating scalability. The state of the art for testing the
scalability of multicore software is to choose a workload,
plot performance at varying numbers of cores, and use
tools such as differential profiling13 to identify scalabil-
ity bottlenecks exhibited by that workload. Each new
hardware model or workload, however, may expose new
scalability bottlenecks.

This paper presents a new approach to designing scal-
able software that starts with the design of scalable software
interfaces. This approach makes it possible to reason about
multicore scalability before an implementation exists,
and even before the necessary hardware is available. It can
highlight inherent scalability problems, leading to better
interface designs. It sets a clear scaling target for the imple-
mentation of a scalable interface. Finally, it enables system-
atic testing of an implementation’s scalability.

At the core of our approach is what we call the scalable
commutativity rule: In any situation where several opera-
tions commute (meaning there is no way to distinguish their
execution order using the interface), there exists an imple-
mentation that is conflict-free during those operations
(meaning no core writes a cache line that was read or written

The original version of this paper was published in the
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP’13).

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=83&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3068914

research highlights

84 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

by another core). Since conflict-free operations empirically
scale (as we argue in Section 2), this implementation scales.
Thus, more concisely, whenever interface operations com-
mute, they can be implemented in a way that scales.

This rule makes intuitive sense: when operations com-
mute, their results (return values and effect on system state)
are independent of order. Hence, communication between
commutative operations is unnecessary and avoiding it yields
a conflict-free implementation. Conflict-free operations can
execute on different cores without mutual interference via
inter-core cache coherence invalidation requests, allowing
total throughput to scale linearly with the number of cores.

The intuitive version of the rule is useful in practice, but
is not precise enough to reason formally about interfaces or
to build automated tools that evaluate scalability. This paper
formalizes the scalable commutativity rule and illustrates
its usefulness in the context of several examples, and for
entire operating systems that support POSIX, a complicated,
widely used interface.

2. SCALABILITY AND CONFLICT-FREEDOM
The scalable commutativity rule assumes that code with
conflict-free memory accesses—that is, code in which no
cache line written by one core is read or written by any other
core—is scalable. This section argues that, under reason-
able assumptions, conflict-free operations do scale linearly
on shared-memory multicore computers.

Multicores maintain a unified, globally consistent view
of memory using MESI-like coherence protocols.15 MESI pro-
tocols coordinate ownership of cached memory at the level
of cache lines. Their key invariant is that a line with a muta-
ble copy in one core’s cache cannot be present in any other
caches: obtaining a mutable copy invalidates any other caches’
immutable copies. This requires coordination, which affects
scalability.

Figure 1 shows the basic state machine implemented by
each cache for each cache line. This maintains the invariant
by ensuring a cache line is either “invalid” in all caches, “mod-
ified” in one cache and “invalid” in all others, or “shared” in
any number of caches. Practical implementations add further
states—MESI’s “exclusive” state, Intel’s “forward” state, and
AMD’s “owned” state—but these do not change the basic
communication required to maintain cache coherence.

Roughly, a set of operations scales when maintaining
coherence does not require ongoing communication. There
are two memory access patterns that fit:

•	 Multiple cores reading and/or writing different cache
lines. This scales because no further communication is
required once each cache line is in the relevant core’s
cache, so further accesses can proceed independently of
concurrent operations.

•	 Multiple cores reading the same cache line. A copy of
the line can be kept in each core’s cache in shared
mode; further reads from those cores can access the
line without communication.

That is, when memory accesses are conflict-free, they do not
require communication. Furthermore, higher-level opera-
tions composed of conflict-free reads and writes are them-
selves conflict-free and will also execute independently and
in parallel. In all of these cases, conflict-free operations exe-
cute in the same time in isolation as they do concurrently, so
the total throughput of N such concurrent operations is pro-
portional to N. Therefore, given a perfect implementation of
MESI, conflict-free operations scale linearly.

Conflict-freedom is not a perfect predictor of scalabil-
ity. Limited cache capacity and associativity cause caches
to evict cache lines (later resulting in cache misses) even
in the absence of coherence traffic, and a core’s first access
to a cache line will always miss. Such misses directly affect
sequential performance, but they may also affect the scal-
ability of conflict-free operations. Satisfying a cache miss
(due to conflicts or capacity) requires the cache to fetch
the cache line from another cache or from memory; the
resulting communication may contend with concurrent
operations for interconnect resources or memory control-
ler bandwidth. But applications with good cache behavior
are unlikely to have such problems, while applications with
poor cache behavior usually have sequential performance
problems that outweigh scalability concerns. We have veri-
fied on real hardware that conflict-free operations actually
do scale linearly under reasonable workload assumptions.6

3. THE SCALABLE COMMUTATIVITY RULE
Connections between commutativity and scalability have
been explored before, especially in the context of operations
on abstract data types.2, 16, 17, 19, 21, 22 For instance, commutative
replicated data types19 are distributed objects whose opera-
tions always commute, allowing scalable, synchronization-
free implementation. Abstract data type operations commute
if they always produce the same result, regardless of order. For
example, set member insertion commutes with itself, but not
with removal: set.insert(i) and set.insert(j) produce the same
results in either order, set.insert(i) and set.remove(j) has order-
dependent results if i = j. But the systems interfaces we care
about are richer, more granular, and more state- and context-
dependent than typical data type operations. Consider the
POSIX creat system call, which creates a file. The calls creat(“/
d1/x”) and creat(“/d2/y”) seem to commute: their results are
the same, regardless of the order they are applied. But if the
disk is almost full and only one inode remains, then the calls

Figure 1. A basic cache-coherence state machine. “R” and “W”
indicate local read and write operations, while “rR” and “rW”
indicate reactions to remote read and write operations. Thick red
lines show operations that cause communication. Thin green lines
show operations that occur without communication.

invalid

shared modified

R W

W

R

rW

R/W

rW

rR

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 85

finish calculating a response, and it does not have to generate
responses in the order invocations were received.

An implementation M exhibits a history H if, when fed
H’s invocations at the appropriate times, M can produce H’s
responses (so that its external behavior equals H overall).
An implementation M is correct for a specification if M’s
responses always obey the specification. This means that
every history exhibited by M is either in , or contains some
invalid invocation.

3.2. Commutativity
SIM commutativity, which we define here, aims to capture state
dependence at the interface level. State dependence means SIM
commutativity must capture when operations commute in some
states, even if those same operations do not commute in other
states; however, we wish to capture this contextually, without
reference to any particular implementation’s state. To reason
about possible implementations, we must capture the scalabil-
ity inherent in the interface itself. This in turn makes it possible
to use the scalable commutativity rule early in software develop-
ment, during interface design and initial implementation.

Commutativity states that actions may be reordered with-
out affecting eventual results. We say a history H′ is a reorder-
ing of H when H|t = H′|t for every thread t. This allows actions
to be reordered across threads, but not within them. For
example, if H = [A1, B2, A−1, C1, B−2, C−1], then [B2, B−2, A1, A−1, C1, C−1]
is a reordering of H, but [B2, C1, B−2, C−1, A1, A−1] is not, since it
does not respect the order of actions in H|1.

Now, consider a history H = X  Y (where  concatenates
action sequences).We say Y SI-commutes in H when given any
reordering Y′ of Y, and any action sequence Z,

X  Y  Z ∈   if and only if  X  Y′  Z ∈ .

This definition captures state dependence at the interface
level. The action sequence X puts the system into a specific
state, without specifying a representation of that state (which
would depend on an implementation). Switching regions Y
and Y′ requires that the exact responses in Y remain valid
according to the specification even if Y is reordered. The
presence of region Z in both histories requires that reorder-
ings of actions in region Y cannot be distinguished by future
operations, which is an interface-based way of saying that Y
and Y′ leave the system in the same state.

Unfortunately, SI commutativity is not sufficient to prove the
scalable commutativity rule. To avoid certain degenerate cases,
we must further strengthen the definition of commutativity to
be monotonic (the M in SIM). An action sequence Y SIM-commutes
in a history H = X  Y when for any prefix P of any reordering of
Y (including P = Y), P SI-commutes in X  P. Equivalently,
Y SIM-commutes in H when, given any prefix P of any reor-
dering of Y, any reordering P′ of P, and any action sequence Z,

X  P  Z ∈   if and only if  X  P′  Z ∈ .

Both SI commutativity and SIM commutativity capture
state dependence and interface basis. Unlike SI commuta-
tivity, SIM commutativity excludes cases where the commu-
tativity of a region changes depending on future operations.
SIM commutativity is what we need to state and prove the
scalable commutativity rule.

do not commute—the second creat call will fail. (Unless, that
is, one or more of the files already exists, in which case the
calls commute after all!) Special cases like this can dominate
analyses that use a strong notion of commutativity. If commu-
tative operations had to commute in all contexts, then only
trivial systems operations could commute, and commutativ-
ity would not help us explore interface scalability.

Our work relies on a new definition of commutativity,
called SIM commutativity (State-dependent, Interface-based,
and Monotonic), that captures state- and context-dependence,
and conditional commutativity, independent of any imple-
mentation. SIM commutativity lets us prove the scalable
commutativity rule, which says that scalable implementa-
tions exist whenever operations commute. Even if an inter-
face is commutative only in a restricted context, there exists
an implementation that scales in that context.

The rest of this section explains this formalism, gives
the rule precisely, and lays out some of its consequences for
system designers.

3.1. Specifications
We represent specifications using actions, where an action is
either an invocation (representing an operation call with argu-
ments) or a response (representing the return value). Splitting
each operation into an invocation and a response lets us
model blocking interfaces and concurrent operations.11 Each
invocation is made by a specific thread and the correspond-
ing response is returned to the same thread. We will write
invocations as creat(“/x”)1 and responses as , where an over-
bar marks responses and subscript numbers are thread IDs.

A particular execution of a system is a history or trace,
which is just a sequence of actions. For example,

H = [A1, B3, C2, A−1, C−2, B−3, D1, D−1, E2, F3, G1, E−2, G−1, F−3],

consists of seven invocations and seven corresponding responses
across three different threads. In a well-formed history, each
thread’s actions alternate invocations and responses, so each
thread has at most one outstanding invocation at any point. H
above is well-formed; for instance, in the thread-restricted sub-
history H|1 = [A1, A−1, D1, D−1, G1, G−1], which selects 1’s actions
from H, invocations and responses alternate as expected.

A specification models an interface’s behavior as a set of
system histories—specifically, a prefix-closed set of well-
formed histories. A system execution is “correct” according
to the specification if its trace is included in the specifica-
tion. For instance, if corresponded to the POSIX specifi-
cation, then [getpid1, 92—

1] ∈ (a process may have PID 92)
but [getpid1, ENOENT1] ∉ (the getpid() system call may not
return that error). A specification constrains both invocations
and responses: [NtAddAtom1] is not in the POSIX specification
because NtAddAtom is not a POSIX system call.

An implementation is an abstract machine that takes invo-
cations and calculates responses. Our constructive proof of
the scalable commutativity rule uses a class of machines on
which conflict-freedom is defined6; a good analogy is a Turing-
type machine with a random-access tape, where conflict-
freedom follows if the machine’s operations on behalf of
different threads access disjoint portions of the tape. An
implementation may “stutter-step,” taking multiple rounds to

research highlights

86 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

isz1 and isz2. But, again, there is a conflict-free implementation
based on adding a Boolean “zeroness” snapshot as well as per-
thread counters. isz simply returns this snapshot. When dec
reduces a per-thread value to zero or below, it reads and sums
all per-thread values and updates the snapshot if necessary.

3.5. Discussion
The rule pushes state and history dependence to an extreme:
it makes a statement about a single history. In broadly com-
mutative interfaces, the arguments and system states for
which a set of operations commutes often collapse into
fairly well-defined classes (e.g., file creation might commute
whenever the containing directories are different). In prac-
tice, implementations scale for whole classes of states and
arguments, not just for specific histories.

On the other hand, there can be limitations on how broadly
an implementation can scale. It is sometimes the case that a
set of operations commutes in more than one class of situa-
tion, but no single implementation can scale for all classes.
For instance, in our modified reference counter, H′1, H′2,
and H′3 all SIM-commute in H′, and we described a scalable
implementation for each situation. However, H′4 does not
SIM-commute, even though it is a union of SIM-commutative
pieces: if the two dec operations were reordered to the start of
the region, then the isz operations would have to return dif-
ferent values. Any reasonable counter implementation must
fail to scale in H′4, because isz must return different values
depending on whether it ran before or after the dec invoca-
tions, and this requires communication between the cores
that ran dec and isz. This can be proved using a converse of
the rule: when a history contains a non-SIM-commutative
region, no non-degenerate implementation can be scalable
in that region.6 (The non-degeneracy condition eliminates
implementations that, for example, never respond to any
invocation, or always respond with an error return value.)

In our experience, real-world interface operations rarely
demonstrate such mutually exclusive implementation choices.
For example, the POSIX implementation in Section 5 scales
quite broadly, with only a handful of cases that would require
incompatible implementations.

4. DEFINING COMMUTATIVE INTERFACES
This section demonstrates more situations of interface-level
reasoning enabled by the rule, using POSIX, the standard
interface for Unix-like operating systems.

The following sections explore four general classes of
changes that make POSIX operations commute in more sit-
uations, enabling more scalable implementations.

4.1. Decompose compound operations
Many POSIX APIs combine several operations into one, lim-
iting the combined operation’s commutativity. For example,
fork both creates a new process and snapshots the current pro-
cess’s entire memory state, file descriptor state, signal mask,
and several other properties. As a result, fork fails to com-
mute with most other operations in the same process, includ-
ing memory writes, address space operations, and many file
descriptor operations. However, applications often follow fork
with exec, which undoes most of fork’s suboperations. With

3.3. Rule
We can now formally state the scalable commutativity rule.

Assume an interface specification that has a correct
implementation and a history H = X  Y exhibited by that
implementation. Whenever Y SIM-commutes in H, there exists
a correct implementation of whose steps in Y are conflict-free.
Since, given reasonable workload assumptions, conflict-free
operations empirically scale on modern multicore hardware,
this implementation is scalable in Y.

Our proof of the rule constructs the scalable implementa-
tion from the correct reference implementation, and relies
on our abstract machine definition and our definition of
conflict-freedom.6

3.4. Example
Consider a reference counter interface with four operations.
reset(v) sets the counter to a specific value v, inc and dec
increment and decrement the counter and return its new
value, and isz returns Z if the counter value is zero and NZ
otherwise. The caller is expected to never decrement below
zero, and once the counter reaches zero, the caller should
not invoke inc.

Consider the counter history

The region H1 SIM-commutes in H, so the rule tells us that a
correct implementation exists that is conflict-free for H1. In fact,
this is already true of a simple shared-counter implementation:
its isz reads the shared counter, but does not write it.

But H2 does not SIM-commute in H, so no scalable imple-
mentation is implied—and, in fact, none is possible. The
problem is that the caller can reason about order via the dec
return values. Only a degenerate implementation, such as
one that refused to respond to certain requests, could avoid
tracking this order in a nonconflict-free way.

We can make dec commute by eliminating its return value.
If we modify the specification so that inc and dec return noth-
ing, then any region consisting exclusively of these operations
commutes in any history. A version of H with this modified
specification is

H′2, unlike H2, SIM-commutes, so there must be an imple-
mentation that is conflict-free there. Per-thread counters
give us such an implementation: each dec can modify
its local counter, while isz sums the per-thread values.
Per-thread and per-core sharding of data structures like
this is a common and long-standing pattern in scalable
implementations.

The rule highlights at least one more opportunity in this
history. H′3 also SIM-commutes in H. However, the per-thread
counter implementation is not conflict-free for H′3: dec3 will
write one component of the state that is read and summed by

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 87

but for operations that release resources, this is often stricter
than applications need and expensive to ensure. For example,
writing to a pipe must deliver SIGPIPE immediately if there are
no read FDs for that pipe, so pipe writes do not commute with
the last close of a read FD. This requires aggressively tracking
the number of read FDs; a relaxed specification that promised
to eventually deliver the SIGPIPE would allow implementa-
tions to use more scalable read FD tracking. Similarly, mun-
map does not commute with memory reads or writes of the
unmapped region from other threads, because other threads
should not be able to write to the unmapped region after mun-
map returns (even though depending on this behavior usu-
ally indicates a bug). Indeed, enforcing this requires remote
TLB shootdowns, which do not scale on today’s hardware. An
munmap (or an madvise) that released virtual memory asyn-
chronously would let the kernel reclaim physical memory
lazily and batch or eliminate remote TLB shootdowns.

As another example, to build a scalable reference coun-
ter, we start with the interface described in Section 3.4: inc
and dec both return nothing and hence always commute. In
place of the isz operation, we introduce a new review opera-
tion that finds all objects whose reference counts recently
reached zero; this frees the developer from having to period-
ically call isz on their own. review does not commute in any
sequence where any object’s reference count has reached
zero and its implementation conflicts on a small number
of cache lines even when it does commute. However, unlike
dec, the user can choose how often to invoke review. More
frequent calls clean up freed memory more quickly, but
cause more conflicts. In our implementation of this scheme,
called Refcache,7 review is called at 10 ms intervals, which is
several orders of magnitude longer than the time required
by even the most expensive conflicts on current multicores.

5. DESIGNING FOR CONFLICT-FREEDOM
To evaluate the implementation difficulty of the previous
section’s commutative interfaces, we built sv6, a research
operating system that aims to provide a POSIX-like inter-
face with as much scalability as is reasonably possible. sv6
includes a ramfs-like in-memory file system called ScaleFS8
and a virtual memory system called RadixVM.7 In design-
ing and implementing sv6, the rule told us that conflict-free
implementations were possible in many cases, which forced
us to come up with designs that achieved conflict-freedom.
Without the rule, we would have given up too soon, deciding
that some corner cases simply cannot be made to scale.

Problems in achieving conflict-freedom fell into two broad
categories. On the one hand, we found situations where a single
logical object (such as a reference counter, a pool of memory,
or the scheduler queue) was accessed from many cores. Here,
we typically used per-core data structures for the commuta-
tive parts of the API, and tried to ensure that noncommutative
parts of the API (such as reconciling per-core reference counts,
or stealing free memory pages or runnable threads from other
cores when one core runs out) are invoked rarely and minimize
cache-line movement when they are invoked. In some cases
this required designing new algorithms, such as Refcache.

On the other hand, we also encountered situations that
accessed logically distinct objects (e.g., files in a directory, or

only fork and exec, applications are forced to accept these
unnecessary suboperations that limit commutativity. POSIX
has a posix_spawn call that addresses this problem by creat-
ing a process and loading an image directly (CreateProcess
in Windows is similar). This is equivalent to fork followed by
exec, eliminating the need for many of fork’s suboperations.
As a result, posix_spawn commutes with most other opera-
tions and permits a broadly scalable implementation.

Another example, stat, retrieves and returns many differ-
ent attributes of a file simultaneously, which makes it non-
commutative with operations on the same file that change
any attribute returned by stat (such as link, chmod, chown,
write, and even read). In practice, applications invoke stat
for just one or two of the returned fields. An alternate API
that gave applications control of which field or fields were
returned would commute with more operations and enable
a more scalable implementation of stat.6

POSIX has many other examples of compound return val-
ues. sigpending returns all pending signals, even if the caller
only cares about a subset; and select returns all ready file
descriptors, even if the caller needs only one of them.

4.2. Embrace specification nondeterminism
POSIX requires that the open system call returns the lowest-
numbered unused file descriptor (FD) for the newly opened
file. This rule is a classic example of overly deterministic
design that results in poor scalability. Because of this rule,
open operations in the same process (and any other FD allo-
cating operations) do not commute, since the order in which
they execute determines the returned FDs. This constraint is
rarely needed by applications, and an alternate interface that
could return any unused FD could use scalable allocation
methods, which are well-known. Many other POSIX interfaces
get this right: mmap can return any unused virtual address
and creat can assign any unused inode number to a new file.

4.3. Permit weak ordering
Another common source of limited commutativity is strict
ordering requirements between operations. For many oper-
ations, ordering is natural and keeps interfaces simple to use;
for example, when one thread writes data to a file, other threads
can immediately read that data. Synchronizing operations like
this are naturally noncommutative. Communication inter-
faces, on the other hand, often enforce strict ordering, but may
not need to. For instance, most systems order all messages
sent via a local Unix domain socket, even when using SOCK_
DGRAM, so any send and recv system calls on the same socket
do not commute (except in error conditions). This is often
unnecessary, especially in multi-reader or multi-writer situa-
tions, and an alternate interface that does not enforce order-
ing would allow send and recv to commute as long as there is
both enough free space and enough pending messages on the
socket. This in turn would allow an implementation of Unix
domain sockets to support scalable communication.

4.4. Release resources asynchronously
A closely related problem is that many POSIX operations
have global effects that must be visible before the operation
returns. This is generally good design for usable interfaces,

research highlights

88 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

covering file system and virtual memory operations, and
checked the resulting test cases against Linux and the sv6
operating system. The results are shown in Figures 2 and 3,
respectively. Each square represents a pair of system calls.
The color of each square represents the fraction of test cases
that fail to be conflict-free despite being commutative.

In the case of Linux, we can see that the kernel is already
quite scalable: many pairs of system calls are conflict-free for
all tests generated by Commuter. However, there are also
many pairs that commute but are not conflict-free. This indi-
cates that even a mature and reasonably scalable operating
system implementation misses many cases that can be made

pages in a virtual address space), but the data structures typi-
cally used to access these objects induced unnecessary con-
flicts. In particular, we discovered that many sophisticated
data structures like red-black trees, splay trees, AVL trees, con-
current lock-free skip lists, etc., are a poor fit for the scalable
commutativity rule. For example, balancing operations on
binary trees have nonlocal effects: an operation on one branch
can cause conflicts over much of the tree. Lock-free skip lists
and other lock-free balanced lookup data structures avoid
locking, but still induce conflicts on operations that should
commute: inserts and removes make nonlocal memory writes
to preserve balance (or an equivalent), and those writes con-
flict with commutative lookups. The effect of these conflicts on
performance can be dramatic. A frequent solution involved
switching to array-based data structures, which tend to natu-
rally lend themselves to avoiding conflicts for commutative
operations. For example, using an array to represent the open
file descriptors for a process naturally provides conflict-free-
dom for operations on distinct file descriptors, because those
operations access different addresses in the array.

Naive arrays are not great for situations where the key
space is large. One solution for medium-size keys is to use a
radix tree. For instance, we use radix trees in the sv6 virtual
memory system, RadixVM,7 to implement the mapping from
virtual addresses to the corresponding mapped objects. Since
radix trees have no balancing operations, accesses to different
addresses tend to not conflict. At the same time, simple com-
pression techniques in the radix tree allow for a compact rep-
resentation that’s much more efficient than a single flat array.

For large or variable-sized keys, hash tables are a natural
choice. For example, in the sv6 file system, we use a hash
table to represent each directory. This means that concur-
rent operations on different file names in a single directory
are unlikely to conflict (unless they map to the same hash
table bucket). This is in contrast to traditional file system
designs that take out a single lock to ensure that operations
do not modify the same directory entry at the same time.

6. TESTING FOR CONFLICT-FREEDOM
Fully understanding the commutativity of a complex inter-
face is tricky, and checking if an implementation achieves
conflict-freedom whenever operations commute adds another
dimension to an already difficult task. To help developers
apply the rule during testing, we developed a tool called
Commuter that automates this process.6 First, Commuter
takes a symbolic model of an interface and computes precise
conditions for when that interface’s operations commute.
Second, Commuter uses these conditions to generate con-
crete tests of sets of operations that commute according to
the interface model, and thus should have a conflict-free
implementation according to the commutativity rule. Third,
Commuter checks whether a particular implementation is
conflict-free for each test case. A developer can use these test
cases to understand the commutative cases they should con-
sider, to iteratively find and fix scalability bottlenecks in their
code, and to perform regression tests to ensure scalability
bugs do not creep into the implementation over time.

To illustrate how Commuter can help with testing for
scalability, we wrote a symbolic model of the POSIX interface

Figure 2. Conflict-freedom of commutative system call pairs in Linux 3.8,
showing the fraction and absolute number of test cases generated
by Commuter that are not conflict-free for each system call pair.

open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
ri
te

m
em

re
ad

m
pr
ot
ec
t

m
un
m
ap

m
m
ap

pw
ri
te

pr
ea
d

w
ri
te

re
ad

pi
pe

cl
os
e

ls
ee
k

fs
ta
t

st
at

re
na
m
e

un
lin
k

lin
k

op
en

Linux (17,206 of 26,238 cases scale)

52 8 21242 30 32 28 2 47 36 4 15 62 17151139

35 5 10544 20 32 20 1 11 74 16 99

12 2 33 12 6 11 6 3 16 6

35 5 10540 20 32 20 1 2 9 63

12 2 33 10 8 9 7 3

41 18 30 20 28 4 16 7

6813752 49 26 4 117

16 4 4 7 9 4 39

1

16 2 15350 51 44 34

6 5 25 3 15664 44 42

20 2 23260122

40 4 218114

6121803955

29 1

114

23 20

28

All tests
conflict-free

All tests
conflicted

Figure 3. Conflict-freedom of commutative system call pairs in sv6.

open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
ri
te

m
em

re
ad

m
pr
ot
ec
t

m
un
m
ap

m
m
ap

pw
ri
te

pr
ea
d

w
ri
te

re
ad

pi
pe

cl
os
e

ls
ee
k

fs
ta
t

st
at

re
na
m
e

un
lin
k

lin
k

op
en

sv6 (26,115 of 26,238 cases scale)

9

2

2 4 12

1 1 4

5 6

5 13

12

24 12

1 1

9

All tests
conflict-free

All tests
conflicted

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 89

One potential way to expand the reach of the rule and
create more opportunities for scalable implementations is
to find ways in which nonconflict-free operations can scale.
For example, while streaming computations are in general
not linearly scalable because of interconnect and memory
contention, we have had success with scaling interconnect-
aware streaming computations. These computations place
threads on cores so that the structure of sharing between
threads matches the structure of the hardware interconnect
and such that no link is oversubscribed. On one 80-core x86
system, repeatedly shifting tokens around a ring mapped to
the hardware interconnect achieves the same throughput
regardless of the number of cores in the ring, even though
every operation causes conflicts and communication.
Mapping computations to this model might be difficult,
and given the varying structures of multicore interconnects,
the model itself may not generalize. However, this problem
has close ties to job placement in data centers and may be
amenable to similar approaches. Likewise, the evolving
structures of data center networks could inform the design
of multicore interconnects that support more scalable
computations.

8. RELATED WORK
This section briefly explains the relation between the scal-
able commutativity rule and previous work that explores
thinking about scalability and commutativity. For a more
in-depth discussion of related work that also covers scal-
able operating systems and testing approaches we refer the
reader to Clements’s thesis.6

8.1. Scalability
Israeli and Rappoport12 introduce the notion of disjoint-
access-parallel memory systems. Roughly, if a shared mem-
ory system is disjoint-access-parallel and a set of processes
access disjoint memory locations, then those processes scale
linearly. Like the commutativity rule, this is a conditional
scalability guarantee: if the application uses shared memory
in a particular way, then the shared memory implementa-
tion will scale. However, where disjoint-access parallelism is
specialized to the memory system interface, our work encom-
passes any software interface. Attiya et al.3 extend Israeli and
Rappoport’s definition to additionally require non-disjoint
reads to scale. Our work builds on the assumption that mem-
ory systems behave this way and we have confirmed that real
hardware closely approximates this behavior.6

Both the original disjoint-access parallelism paper and
subsequent work18 explore the scalability of processes that
have some amount of non-disjoint sharing, such as compare-
and-swap instructions on a shared cache line or a shared
lock. Our work takes a black-and-white view because we have
found that, on real hardware, a single modified shared cache
line can wreck scalability.

The Laws of Order2 explore the relationship between the
“strong noncommutativity” of an interface and whether
any implementation of that interface must contain atomic
and/or fence instructions for correct concurrent execution.
These instructions slow down execution by interfering with
out-of-order execution, even if there are no memory access

to scale according to the commutativity rule. Some of these
correspond to well-known scalability problems in Linux, such
as concurrent operations on different file names in the same
directory (which conflict on a per-directory lock) or concurrent
operations on the virtual memory subsystem (which conflict
on a per-address-space lock7). Others are new bottlenecks that
may not have been previously discovered: Commuter has sys-
tematically discovered latent scalability problems.

In contrast with Linux, sv6 is conflict-free for nearly every
commutative test case. In part this is due to our choice of
data structures that are naturally conflict-free, as described
in the previous section. While testing sv6, Commuter also
discovered many commutative corner cases that we would
not have thought of by ourselves. For example, consider the
rename system call and the access system call, which can be
used to check if a file exists. Suppose there are two existing
files, a and b. Commuter discovered that rename(a, b) com-
mutes with access(b), because in either order, rename suc-
ceeds and access indicates that b exists. However, our initial
implementation was not conflict-free, because access used
an internal function that not only checked if the file exists,
but also looked up the file’s inode. To make this case conflict-
free, we introduced a separate function to check whether a file
name exists in a directory hash table, without actually read-
ing its corresponding value. During testing, we discovered a
number of other common design patterns, such as deferring
work whenever possible, preceding pessimism (i.e., writes
to memory locations) with optimistic read-only checks, and
avoiding reads unless absolutely necessary.

For a small number of commutative operations, sv6 is not
conflict-free. The majority of these cases involve idempotent
updates to internal state, such as two lseek operations that
both seek a file descriptor to the same offset, or two anony-
mous mmap operations with the same fixed base address and
permissions. While it is possible to implement these scalably,
every implementation we considered significantly reduced
the performance of more common operations, so we explicitly
chose to favor common-case performance over total scalability.
Other cases represent intentional engineering decisions in the
interest of practical constraints on memory consumption and
sequential performance. Complex software systems inevitably
involve conflicting requirements, and scalability is no excep-
tion. However, the presence of the rule forced us to explicitly
recognize, evaluate, and justify where we made such trade-offs.

7. DISCUSSION
One surprising aspect of the rule is that it allows us to reason
about scalability without having to measure the throughput
of a system as a function of the number of cores. Indeed, this
paper contains no such graph. To be sure that our rule works
in practice, we measured the scalability of a mail server run-
ning on sv6, using commutative system calls. The result was
perfect scalability. On the one hand, this demonstrates the
power of the rule: even for a previously untested hardware
system and workload, we are able to confidently predict
scalability. On the other hand, scalability is not the same
as performance, and a perfectly scalable implementation
could have lower total performance than an implementa-
tion tuned for efficiency on a small number of cores.

research highlights

90 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

Referencesconflicts. The Laws of Order resemble the commutativity
rule, but draw conclusions about sequential performance,
rather than scalability.

It is well understood that cache-line contention can result
in bad scalability. A clear example is the design of the MCS
lock,14 which eliminates scalability collapse by avoiding
contention for a particular cache line. Other good examples
include scalable reference counters.1, 5, 9 The commutativity
rule builds on this understanding and identifies when arbi-
trary interfaces can avoid conflicting memory accesses.

8.2. Commutativity
The use of commutativity to increase concurrency has been
widely explored. Steele describes a parallel programming
discipline in which all operations must be either causally
related or commutative.21 His work approximates commuta-
tivity as conflict-freedom. We show that commutative opera-
tions always have a conflict-free implementation, implying
that Steele’s model is broadly applicable. Rinard and Diniz17
describe how to exploit commutativity to automatically par-
allelize code. They allow memory conflicts, but generate
synchronization code to ensure atomicity of commutative
operations. Similarly, Prabhu et al.16 describe how to auto-
matically parallelize code using manual annotations rather
than automatic commutativity analysis. Rinard and Prabhu’s
work focuses on the safety of executing commutative opera-
tions concurrently. This gives operations the opportunity to
scale, but does not ensure that they will. Our work focuses on
scalability directly: we show that any concurrent, commuta-
tive operations have a scalable implementation.

The database community has long used logical readsets
and writesets, conflicts, and execution histories to reason
about how transactions can be interleaved while maintain-
ing serializability.4 Weihl extends this work to abstract data
types by deriving lock conflict relations from operation com-
mutativity.22 Transactional boosting applies similar tech-
niques in the context of software transactional memory.10
Shapiro et al.19, 20 extend this to a distributed setting, leverag-
ing commutative operations in the design of replicated data
types that support updates during faults and network parti-
tions. Like Rinard and Prabhu’s work, the work in databases
and its extensions focuses on the safety of executing commu-
tative operations concurrently, not directly on scalability.

9. CONCLUSION
The scalable commutativity rule helps developers to rea-
son about scalability in all three phases of software design:
defining an interface, designing and implementing the soft-
ware, and testing its scalability properties. The rule does not
require the developer to have a target workload or a physical
machine to reason about scalability. We hope that program-
mers will find the commutativity rule helpful in producing
software that is scalable by design.

Acknowledgments
This research was supported by NSF awards SHF-964106
and CNS-1301934, by Quanta, and by Google. Eddie Kohler
was partially supported by a Microsoft Research New Faculty
Fellowship and a Sloan Research Fellowship.�

Austin T. Clements, M. Frans Kaashoek,
Robert T. Morris, and Nickolai Zeldovich
({aclements, kaashoek, rtm, zeldovich}@
csail.mit.edu), MIT CSAIL, Cambridge, MA.

Eddie Kohler (kohler@seas.harvard.edu),
Harvard University School of Engineering
and Applied Sciences, Computer
Science Area, Cambridge, MA.

Copyright held by owner(s)/authors.

	 1.	 Appavoo, J., da Silva, D., Krieger, O.,
Auslander, M., Ostrowski, M.,
Rosenburg, B., Waterland, A.,
Wisniewski, R.W., Xenidis, J., Stumm, M.,
Soares, L. Experience distributing
objects in an SMMP OS. ACM Trans.
Comput. Syst. 25, 3 (August 2007).

	 2.	 Attiya, H., Guerraoui, R., Hendler, D.,
Kuznetsov, P., Michael, M.M.,
Vechev, M. Laws of order: Expensive
synchronization in concurrent
algorithms cannot be eliminated.
In Proceedings of the 38th ACM
Symposium on Principles of
Programming Languages (Austin, TX,
January 2011), 487–498.

	 3.	 Attiya, H., Hillel, E., Milani, A. Inherent
limitations on disjoint-access parallel
implementations of transactional
memory. In Proceedings of the
21st Annual ACM Symposium
on Parallelism in Algorithms and
Architectures (Calgary, Canada,
August 2009), 69–78.

	 4.	 Bernstein, P.A., Goodman, N.
Concurrency control in distributed
database systems. ACM Comput.
Surv. 13, 2 (June 1981), 185–221.

	 5.	 Boyd-Wickizer, S., Clements, A.,
Mao, Y., Pesterev, A., Kaashoek, M.F.,
Morris, R., Zeldovich, N. An analysis
of Linux scalability to many cores. In
Proceedings of the 9th Symposium
on Operating Systems Design and
Implementation (OSDI) (Vancouver,
Canada, October 2010).

	 6.	 Clements, A.T. The scalable
commutativity rule: Designing
scalable software for multicore
processors. PhD thesis,
Massachusetts Institute of
Technology (June 2014).

	 7.	 Clements, A.T., Kaashoek, M.F.,
Zeldovich, N. RadixVM: Scalable
address spaces for multithreaded
applications (revised 2014-08-05).
In Proceedings of the ACM EuroSys
Conference (Prague, Czech Republic,
April 2013), 211–224.

	 8.	 Clements, A.T., Kaashoek, M.F.,
Zeldovich, N., Morris, R.T., Kohler, E.
The scalable commutativity rule:
Designing scalable software for
multicore processors. ACM Trans.
Comput. Syst. 32, 4 (January 2015),
10:1–10:47.

	 9.	 Ellen, F., Lev, Y., Luchango, V., Moir, M.
SNZI: Scalable nonzero indicators.
In Proceedings of the 26th ACM
SIGACT-SIGOPS Symposium on
Principles of Distributed Computing
(Portland, OR, August 2007), 13–22.

	10.	 Herlihy, M., Koskinen, E. Transactional
boosting: A methodology for highly-
concurrent transactional objects.
In Proceedings of the 13th ACM
Symposium on Principles and Practice

of Parallel Programming (Salt Lake
City, UT, February 2008), 207–216.

	11.	 Herlihy, M.P., Wing, J.M.
Linearizability: A correctness
condition for concurrent objects. ACM
Trans. Programm. Lang. Syst. 12, 3
(1990), 463–492.

	12.	 Israeli, A., Rappoport, L. Disjoint-
access-parallel implementations of
strong shared memory primitives. In
Proceedings of the 13th ACM SIGACT-
SIGOPS Symposium on Principles of
Distributed Computing (Los Angeles,
CA, August 1994), 151–160.

	13.	 McKenney, P.E. Differential profiling.
Softw. Pract. Exp. 29, 3 (1999), 219–234.

	14.	 Mellor-Crummey, J.M., Scott, M.L.
Algorithms for scalable
synchronization on shared-memory
multiprocessors. ACM Trans. Comput.
Syst. 9, 1 (1991), 21–65.

	15.	 Papamarcos, M.S., Patel, J.H. A
low-overhead coherence solution for
multiprocessors with private cache
memories. In Proceedings of the 11th
Annual International Symposium on
Computer Architecture (Ann Arbor,
MI, June 1984), 348–354.

	16.	 Prabhu, P., Ghosh, S., Zhang, Y.,
Johnson, N.P., August, D.I.
Commutative set: A language extension
for implicit parallel programming.
In Proceedings of the 2011 ACM
SIGPLAN Conference on Programming
Language Design and Implementation
(San Jose, CA, June 2011), 1–11.

	17.	 Rinard, M.C., Diniz, P.C. Commutativity
analysis: A new analysis technique
for parallelizing compilers. ACM
Trans. Programm. Lang. Syst. 19, 6
(November 1997), 942–991.

	18.	 Roy, A., Hand, S., Harris, T. Exploring
the limits of disjoint access parallelism.
In Proceedings of the 1st USENIX
Workshop on Hot Topics in Parallelism
(Berkeley, CA, March 2009).

	19.	 Shapiro, M., Preguiça, N., Baquero, C.,
Zawirski, M. Conflict-free replicated
data types. In Proceedings of the
13th International Conference on
Stabilization, Safety, and Security
of Distributed Systems (Grenoble,
France, October 2011), 386–400.

	20.	 Shapiro, M., Preguiça, N., Baquero, C.,
Zawirski, M. Convergent and
commutative replicated data types.
Bull. EATCS 104 (June 2011), 67–88.

	21.	 Steele, G.L., Jr. Making asynchronous
parallelism safe for the world.
In Proceedings of the 17th ACM
Symposium on Principles of
Programming Languages (San
Francisco, CA, January 1990), 218–231.

	22.	 Weihl, W.E. Commutativity-based
concurrency control for abstract data
types. IEEE Trans. Comput. 37, 12
(December 1988), 1488–1505.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=90&exitLink=mailto%3Azeldovich%7D%40csail.mit.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=90&exitLink=mailto%3Akohler%40seas.harvard.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=90&exitLink=mailto%3Azeldovich%7D%40csail.mit.edu

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 91

rotationally symmetric object with
great spinning behavior with any of
the available modeling systems. We
have here an excellent example for
“computational fabrication.” Compu-
tation not only accelerates the design
and fabrication process, but in fact is
the only way of creating such objects.

This is a step in a new direction,
namely the exploitation of the nearly
unlimited design space for objects
fabricated with AM. Computer graph-
ics is about to take a leading role in
AM research, including the authors
of the following paper. I just mention
here work on “geometric materials,”
which act in a surprising, predefined
way, or on the design of musical in-
struments of unconventional shape.
A related classical topic is “topology
optimization,” where one optimizes
the interior of objects so that mini-
mal material usage results in suffi-
cient strength to resist predefined
loads.

Finally, let me point to work on the
much larger architectural scale. A re-
cent direction of research, called “ar-
chitectural geometry,” aims at making
geometrically complex architectural
structures affordable through novel
computational tools by linking design,
function, and fabrication. Substantial
contributions to this field, for exam-
ple, on self-supporting freeform struc-
tures, have also been made by some
of the authors of the following paper
(in cooperation with Philippe Block;
http://www.block.arch.ethz.ch/).

Computer graphics is a field where
technology meets design. We are in
strong need for this type of research,
on all scales, from the micro-level of
material behavior to the macro-level of
buildings or even entire cities. 	

Helmut Pottmann is a professor of applied geometry at
Technische Universität Wien, Vienna, Austria.

Copyright held by author.

“ C O M P U T E R G R A P H I C S A R E pictures
and movies created using comput-
ers.” This opening sentence from
Wikipedia’s entry on computer
graphics becomes increasingly out-
dated as graphics is about to close the
loop between virtual and physical re-
ality and from digital design to fabri-
cation. Is this a new trend? Not quite,
but the magnitude of the current de-
velopment and the potential impact
may be bigger than ever before.

Geometric modeling, a subfield of
computer graphics, has been motivat-
ed by industrial needs at the advent of
computer-aided manufacturing, aim-
ing at increased productivity via a com-
pletely digital workflow from design
to production. Research in geometric
modeling has been highly successful in
creating a huge variety of shape model-
ing functionalities for 3D-design sys-
tems. The possibilities for digital shape
design are almost unlimited and highly
effective for the creation of “pictures
and movies.” But did the field achieve
the goals toward manufacturing? I am
not convinced here, since purely ge-
ometry-driven shape modeling creates
bottlenecks when moving toward engi-
neering and fabrication.

Some of the problems are related
to geometry representations. B-splines
and subdivision schemes proved to
be highly effective for freeform shape
modeling, but the resulting digital
models are not yet suitable for simu-
lation. There are various reasons for
this: The models are usually not wa-
tertight and need to be “repaired” in
a time-consuming laborious process;
for example, at surface/surface inter-
sections. Moreover, the models are
surface based. For simulation, one
requires meshes, not just for bound-
ing surfaces, but also for the interior.
For the actual production, which often
employs CNC machining of molds,
there are further conversion issues
since the machines are not capable of
precisely following splines.

There are various efforts to change
this picture: a prominent reaction
from mathematics is “isogeometric
analysis,” which eliminates re-mesh-
ing by using the same spline-based
representation for both modeling and
simulation. However, the result of a
simulation may reveal a design prob-
lem; for example, a mismatch of form
and function, or the presence of geom-
etry, which contradicts a certain man-
ufacturing process or material behav-
ior, requiring changes to the design.
To avoid such costly feedback loops
between design, engineering, and fab-
rication, research in computer graph-
ics has recently tried to incorporate key
aspects of function and fabrication into
an “intelligent” shape modeling process.
This is not easy at all, since one wants
to achieve interactivity of the model-
ing tools, but at the same time satisfy
numerous constraints.

A great example for this trend is de-
picted in the following paper—it cou-
ples shape and function and results
in unexpected, almost miraculous
behavior of objects. In the present
case, these objects are toys, namely
spinning tops or yo-yos of nearly ar-
bitrary shape. However, the research
is far deeper. It merges the previously
mentioned research focus with an-
other hot topic of research: Additive
manufacturing (AM). With AM, geo-
metric complexity comes almost for
free. Here, complexity is not restricted
to the outer surface, but also applies
to the interior of an object. This is in
perfect harmony with the goals of the
highlighted article: Compute and fab-
ricate the interior of an object so that
it possesses perfect spinning proper-
ties. Mathematically, one “just” has to
get right a few integrals over the entire
body, namely the ones that determine
barycenter and moments of inertia.
While this can be nicely cast into an
algorithm, one cannot ask a designer
to care about such properties. It is
basically impossible to model a non-

Technical Perspective
Linking Form,
Function, and Fabrication
By Helmut Pottmann

To view the accompanying paper,
visit doi.acm.org/10.1145/3068766 rh

DOI:10/1145/3068903

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=91&exitLink=http%3A%2F%2Fdx.doi.org%2F10%2F1145%2F3068903
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=91&exitLink=http%3A%2F%2Fdoi.acm.org%2F10.1145%2F3068766
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=91&exitLink=http%3A%2F%2Fwww.block.arch.ethz.ch%2F

92 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

research highlights

DOI:10.1145/3068766

Spin-It: Optimizing Moment of
Inertia for Spinnable Objects
By Moritz Bächer, Bernd Bickel, Emily Whiting, and Olga Sorkine-Hornung

Abstract
Spinning tops and yo-yos have long fascinated cultures
around the world with their unexpected, graceful motions
that seemingly elude gravity. Yet, due to the exceeding diffi-
culty of creating stably spinning objects of asymmetric shape
in a manual trial-and-error process, there has been little
departure from rotationally symmetric designs. With mod-
ern 3D printing technologies, however, we can manufacture
shapes of almost unbounded complexity at the press of a but-
ton, shifting this design complexity toward computation.

In this article, we describe an algorithm to generate
designs for spinning objects by optimizing their mass dis-
tribution: as input, the user provides a solid 3D model and
a desired axis of rotation. Our approach then modifies the
interior mass distribution such that the principal directions
of the moment of inertia align with the target rotation frame.
To create voids inside the model, we represent its volume
with an adaptive multiresolution voxelization and optimize
the discrete voxel fill values using a continuous, nonlinear
formulation. We further optimize for rotational stability by
maximizing the dominant principal moment. Our method
is well-suited for a variety of 3D printed models, ranging
from characters to abstract shapes. We demonstrate tops
and yo-yos that spin surprisingly stably despite their asym-
metric appearance.

1. INTRODUCTION
Spinning toys have existed since antiquity as playful objects
that capture the imagination. Invented independently all
over the world, spinning tops are referenced in ancient
Greek literature,12 and evidence of clay tops has been found
in ancient cities dating as early as 3500 B.C. Similarly, while
yo-yos are believed to have been invented in China, there
are many historical references, including in Mozart’s The
Marriage of Figaro where a yo-yo is spun to relieve stress.17
Despite the long tradition of these toys, until today creating
new designs has been a trial-and-error process, calling on
the intuition and meticulous patience of artists and hobby-
ists. Moreover, there has been little departure from rotation-
ally symmetric designs.

Much attention has been devoted in the field of classi-
cal mechanics to explaining the motion of spinning objects;
however, the focus has been primarily on analysis8, 9, 19, 21
rather than design. In this article, we investigate the unique
geometric properties of shapes that spin, with an eye on
digital modeling and free-form design. A stable spin has
requirements on rotational inertia, including precise posi-
tioning of the center of mass and correct alignment of the
primary axes of the body. We propose an algorithm to opti-
mize for these inertial properties, for example, to design a

spinning top that rotates smoothly and stably and can be
fabricated using 3D printing.

In our approach, users provide an initial design for a
spinning model, specified as a 3D surface mesh. Along with
the input geometry, the user may specify the desired axis of
spinning and the contact point with the support. The mass
distribution is then optimized to ensure that the primary
axis for the moment of inertia aligns with the desired axis
of rotation. Since the moment of inertia depends on the
entire volume, rather than just on the surface geometry, we
preserve the appearance of the input design by changing the
internal mass distribution as we illustrated in Figure 1 on an
elephant top.

We first formulate a nonlinear functional that measures
the spinnability of a solid shape about a user-defined axis.
Using this measure, we then devise constrained optimization
problems that align the principal axes for moment of inertia
with user-specified rotation axes. To this end, we maximize
the ratio of principal moments in the dominant and lateral
directions and place the center of mass on the rotation axis.
For our tops, we further improve stability by lowering the
center of mass, simultaneously reducing the mass.

The original version of this paper was published in
Proceedings of SIGGRAPH’14, August 2014, ACM.

Figure 1. We describe an algorithm for the design of spinning tops
and yo-yos. Our method optimizes the inertia tensor of an input
model by changing its mass distribution, allowing long and stable
spins even for complex, asymmetric shapes.

Unstable input

Our spinning top design

Hollowed, optimized model

Elephant in motion

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=92&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3068766

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 93

Our approach is effective on a wide range of models, from
characters to abstract geometric forms. We employ an adap-
tive octree for discretizing the fill volume of our input shapes
and validate our results by fabricating the optimized shapes;
the objects can be stably spun despite their complex, asym-
metric exterior appearance.

2. RELATED WORK
Fabrication-oriented design. Fabrication-oriented
design has gained increasing interest from the computer
graphics community, triggered by advances in 3D manu-
facturing technology. Various physical properties have
been explored in this shape modeling context includ-
ing deformation properties,4, 22 articulation behavior,1, 5
structural strength,23, 24 and kinematic structures.6, 7, 25

Most related to our effort is the work by Prévost et al.20:
they proposed an approach for balancing static models at
rest that applies a combination of voxel carving and defor-
mation to control the center of mass. Our work addresses a
more general problem of stability under rotational motion,
involving both center of mass and moment of inertia. While
Prévost et al.20 use a plane sweeping heuristic for carving, we
solve our constrained combinatorial problems by recasting
them as sequential linear-quadratic programs using relax-
ation on the fill variables. As discussed later, our optimiza-
tion can be used for static balancing, tending to find more
stable solutions.

Rotational dynamics design. Furuta et al.10 combine a
geometric modeling interface and a rigid body simulator
for the design of kinetic art, providing real-time previews
of the resulting motion during the design process. While
restricted to forward simulations, this approach allows the
user to quickly explore many trial-and-error experiments.
We avoid trial-and-error and simulation, directly estimating
models from user-specified geometries.

Hirose et al.13 enforce symmetries along with additional
geometric constraints to create sphericons. In contrast,
we do not require a feasible starting solution and do not
incorporate constraints other than the ones prescribed by
the desired physical properties, enabling free-form design.
To the best of our knowledge, we are the first to study the
computational design of spinning toys with asymmetric
appearance.

Moment of inertia. Moment of inertia is a fundamental
property of rigid bodies. It specifies the required torque
needed for a change in angular velocity and is, for example,
an essential component in physics-based animation for
rigid body simulations or dynamics and control of charac-
ters.16 Design for moment of inertia has been investigated in
mechanical engineering. However, the methods and objec-
tives used differ significantly. Our approach further general-
izes to free-form shapes and we formulate an exact energy
and derivatives.

Topology optimization. Topology optimization meth-
ods solve engineering problems of distributing a limited
amount of material in a design space.3 While our adaptive
voxel discretization shares similarities with solution tech-
niques common in this field, spinnability properties have
not been considered by prior work.

3. FUNDAMENTALS AND OVERVIEW
Given a 3D shape, we aim to generate spinnable models by
altering their mass distribution, while keeping the appear-
ance as close to the original as possible. In the following
sections, we describe the user input, fundamental mass
properties, and spinnability metrics needed to optimize the
input toward a stably rotating object.

3.1. User input
The user provides the surface of a solid 3D shape, along
with the desired spinning axis a. The axis origin is set to the
contact point p as shown in Figure 2a, which can be user-
defined or chosen as the lowest point on the model w.r.t. the
up-direction a. For yo-yo designs, the shape is partitioned
into two parts and connected with an axle that aligns with a,
to allow string coiling. The user selects a point q on the axle
to define the coiling location (Figure 2b).

3.2. Mass properties and constraints
Center of mass. We denote by M the mass of our object and
by c the center of mass. If we assume a frictionless spin, the
only external torque acting on a spinning top relative to p, is
the gravitational torque with magnitude |τ| = Mgd, where g
is Earth’s gravity and d is the distance from c to the spinning
axis (Figure 2a). We constrain the center of mass to lie on the
spinning axis so that the net torque on the model around the
ground contact point is zero.

Refer to Figure 2c: during the spinning motion, the
precession angle θ between the rotational (vertical) and
spinning axes increases if the angular velocity ω becomes
smaller. We can express the gravitational torque as |τ| =
Mgsin θ, where  is the height of the center of mass. Hence,
we expect a longer, more stable spin for smaller values of
 and M.

For yo-yos, the gravitational torque remains zero through-
out the spin if we neglect the effect of an uneven coiling of
the string.

Moment of inertia. Moment of inertia is the analog of
mass for rotational motion and measures the resistance to
rotations about a given axis. Euler’s equations from classical

p

Top

a

cd

Unbalanced

a

p
l

c

Yo-yo

a q

Precession
(a) (b) (c)

c

θ

p

a

lsinθ

MgMg

Figure 2. Spinning yo-yos and tops stably: for spinning tops, the
center of mass must lie on the user-specified spinning axis a,
otherwise it will cause an unbalanced external torque |τ| = Mgd
relative to p (a). For slower angular velocities, the precession angle θ
between rotational (vertical axis) and spinning axes becomes larger
(c). For smaller , the gravitational torque |τ| = Mg sin θ is smaller for
equal precession, resulting in a longer spin. For yo-yos, we require
the center of mass to coincide with q (b).

research highlights

94 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

mechanics (see, e.g., Ref.11) conveniently describe the rotat-
ing motion of a rigid body in its body frame, whose axes are
the three principal axes of inertia and the origin is c. Since
there is no external torque acting on the body (for c on the
spinning axis), we can only spin about an axis with constant
angular velocity if it is a principal axis of inertia.

For an arbitrary rigid body, there exists an equivalent ellip-
soid with the same inertial properties. We can discuss the
preferable axis using an ellipsoid E with half-axes ha, hb, hc

(hc ≤ hb ≤ ha). Due to sym-
metry, E ’s principal axes of inertia
are parallel to its half-axes, and the
corresponding moments Ia, Ib, and
Ic each equal the sum of squares
of the two other half-axes’ lengths
(omitting a common scale factor),
as illustrated in the inset. Hence,
the maximal principal axis of iner-
tia corresponds to the shortest axis
hc, and we have Ic ≥ Ib ≥ Ia. If we

spin the ellipsoid E with a constant angular velocity ω about
a principal axis of inertia, the kinetic energy K in our system
is I ∈ {Ia, Ib, Ic}. Since K is proportional to I, we can
expect a longer spin for I = Ic.

Rotational stability. Rotational stability refers to a body’s
behavior under small disturbances to its angular velocity ω
due to, for example, frictional forces. Given three distinct
values for the principal moments of inertia, Ic > Ib > Ia, ro-
tation is stable under small perturbations only about the
largest and the smallest axis.11 In the case of two axes hav-
ing identical principal moments, the rotation is stable only
around the distinct axis. For Ic = Ib = Ia, no axis is stable, ne-
glecting contact friction. We can observe this effect when
trying to spin a marble in place: the orientation of the body
changes over time. As long as the condition Ic > Ib ≥ Ia holds,
we call Ic the dominant and Ib and Ia the lateral principal mo-
ments of inertia.

For an asymmetric shape whose maximal principal axis
of inertia aligns with the spin (and gravitational) axis and
whose moments are distinct Ic > Ib > Ia, the top spins stably
under the condition14:

	 � (1)

From this relation we can see that the stability limit
depends on the height of the center of mass  and the mass
M itself: the lower the centroid and the smaller the mass,
the less angular velocity ω is required for a stable spin,
confirming our conclusion from the above discussion on
precession. Similarly, we need a smaller ω the higher the
absolute difference between the largest moment Ic and the
mid-moment Ib.

In summary, in order to spin stably, four basic require-
ments on the mass distribution of the model must be met:

1.	 The center of mass c must lie on axis a for spinning
tops, or coincide with the axle center q for yo-yos.

2.	 The center of mass c should be closer to contact point
p and the mass M minimal for our tops.

3.	 The axis a should be parallel to the maximal principal
axis of inertia.

4.	 The magnitude of the largest principal moment of
inertia should dominate over lateral moments to
ensure the stability of the spin.

3.3. Measuring spin quality
To distill the above analysis of spinning properties into a
spin quality measure, we formulate energy functionals for
our yo-yos and tops. Provided that the basic constraints
from Section 3.2 are fulfilled, our functionals assign a
spin quality score to a given model M based on the sta-
bility criterion (1). Note that while Equation (1) suggests
that a comparison of the mid- and largest moments is suf-
ficient for tops, we consider all moments in our quality
measures because the ordering of mid- and smallest axes
might flip during our dynamic balancing optimization
(see Section 4).

Yo-yos. We measure the spin quality of a yo-yo by sum-
ming the squared ratios of the dominant to lateral principal
moments of inertia:

	 � (2)

assuming that Ic corresponds to the given spin axis and the
center of mass c equals the axle center q. The function fyo-yo is
our yo-yo energy functional; small values correspond to lon-
ger, more stable spins.

Tops. To measure the quality of a spinning top, we add
a term that penalizes the distance  between the center of
mass c (which is constrained to lie on the axis a) and the
contact point p and minimizes the mass M, yielding the top
energy functional:

	 � (3)

The two weights γc and γI allow calibrating the relative contri-
butions of the center of mass, inertia and the regularization
term of the parameterization that follows (see Section 5).

3.4. Optimizing tops and yo-yos
We turn models into spinnable objects by altering their mass
distribution while keeping their appearance unchanged. To
this end, we redistribute mass by hollowing the interior with
precisely shaped voids. We adopt a multiresolution octree
to discretize the interior volume of the object. To generate
the voids, we optimize for voxel fill values using a continu-
ous, nonlinear formulation as we discuss in more detail in
Section 5. We maximize stability through the energy func-
tionals fyo-yo (2) and ftop (3), respectively.

While hollowing is effective for many models, some spe-
cial cases over-extend our stability requirements and voids
alone cannot accomplish a stable spin. This is due to the non-
negligible material on the object’s shell. In the original ver-
sion of this article,2 we introduce extensions to our approach,
further manipulating mass by either deforming the surface
and interior voids or compensating for highly nonoptimal
mass distributions with a heavier material in the interior.

ε
Ic

IaIb

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 95

where tr is the trace operator and Ix and Iy take on the roles of
Ia and Ib, respectively.

Optimizing yo-yos. To turn an arbitrary model M into a
yo-yo, we therefore need to minimize fyo-yo with Ia:= Ix, Ib:= Iy,
and Ic:= Iz, with the constraints

	 � (6)

Parallel Axis Theorem. The body frame centered at c is not
an ideal coordinate system for our tops because the center of

mass can move freely along the axis a. A bet-
ter-suited frame is centered at the contact
point p, with the z-axis aligned with a (see
inset). Within this frame, the center of mass
c lies at height  on the z-axis, so that the
inertia tensor I is computed w.r.t. a frame
shifted by  w.r.t. our body frame. To evalu-
ate ftop, we use the Parallel Axis Theorem,

which states that if the axes of two frames are parallel, we can
determine the new inertia tensor using the translation vector
between the two origins and the body’s mass:

 ICoM = I + M (ccT – cT cE),

where E is the identity matrix. For our choice of frame, where
the center of mass is at [0, 0, ]T, the theorem simplifies to

Optimizing tops. For our tops, we minimize ftop, where Ia
and Ib are now the eigenvalues of the upper 2 × 2 block of the
inertia tensor ICoM, and Ic = sx2 + sy2 as before.

Unlike the yo-yo case, c can move freely on the z-axis.
Hence, we relax the equality constraint sz = 0, instead substi-
tuting M = sz in the objective ftop (refer to Equation 3).

The constraints to the optimization are then

	 � (7)

Optimizing static balance. Interestingly, the problem
of balancing a model at rest is a relaxed version of the top
optimization:

where we remove the mass term M in fstatic because only the
lowering of c improves the balance at rest.

5. HOLLOWING
The most nonintrusive way to compensate for unfavor-
able mass distributions in a model is to introduce voids in
the interior, as illustrated in Figure 3. The idea of carving
the shape’s interior by sweeping a plane through a uni-
form voxel grid was explored in Prévost et al.20 for static
balancing. We propose a different optimization approach
that addresses the inertia tensor in addition to the center
of mass, uses a spatially adaptive discretization, and
avoids heuristics.

4. OPTIMIZING DYNAMIC BALANCE
Before we explain our multiresolution discretization of the inte-
rior mass distribution, we formalize our quality measures and
requirements from the previous section, casting them as opti-
mization problems in a discretization-independent manner.
To evaluate our two quality measures fyo-yo and ftop on a model M
made of a homogeneous material, we need to express its mass
properties M, c, and the 3 × 3 symmetric inertia tensor I.

Assume that the surface M encloses a region Ω ∈ R3 that
corresponds to a solid object with constant density ρ. We
express the above quantities using the ten integrals of the
monomials of degree ≤2 over Ω, collected in a 10-vector:

	 � (4)

We obtain the following expressions for the mass and
center of mass:

and M’s inertia tensor:

Note that we can reduce the volume integrals in sΩ to sur-
face integrals s¶Ω using the Divergence theorem, resulting
in analytical expressions for a triangulated surface ¶Ω; see
Supplemental Material accompanying the original version
of this article Ref.2

Coordinate frame for yo-yos. As evident from the formu-
las above, c and I are expressed w.r.t. a coordinate frame.

For our yo-yos, the most convenient frame
has its origin at the user-provided spin
point q and one of the three axes, say
z, points in the direction of the desired
spin axis a, as illustrated in the inset. For
this choice of frame, the model can only
be spun about a if the center of mass
components sx, sy, and sz, and also the

off-diagonal elements −sxz, −syz of I equal zero. Otherwise,
c does not equal q or the z-axis is not a principal axis
of inertia of M. Provided M fulfills these constraints,
Iz = sx2 + sy2 takes on the role of Ic in our functional fyo-yo. If Ix and Iy
denote the eigenvalues of the 2 × 2 upper block

we recall that the trace of I–2 is the sum of the squared eigen-
values , leading to an elegant reformulation of our
yo-yo functional fyo-yo

	 �
(5)

cz

x

y

z

c

l
y

x
p

96 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

where Ωi = ∪k Ωk is a partitioning of the interior into octree
cells Ωk. The void space Ω′ consists of all cells Ωk for which
βk = 1.

5.3. Optimization approach
Given our adaptive voxel discretization, since the fill val-
ues are binary, the resulting minimization problem would
be combinatorial. In order to take advantage of continu-
ous optimization techniques, we propose a relaxation
approach that allows βk to take on a continuous value in
the interval [0, 1].

The goal of the optimization eventually is to assign
binary fill values to each voxel. In practice, we observed
that fill variables βk with a fractional value only occur on
the boundary between voids and solid regions. Hence,
we sample these regions at a high resolution, ensuring
final fractional values correspond to finest resolution
cells only (compare with Figure 3, final). Values are then
rounded to binary numbers after convergence of the
optimization.

This motivates the following optimization algorithm
using adaptive refinement (refer to Figure 3, right):

Initialization. We initialize the octree to a mid-level
refinement (blue in Figure 3) as a compromise
between number of variables and resolution of the
initial partitioning. For each cell, we compute sΩk

.
For cells which overlap the boundary Ωb (red), we
only take the contribution from the volume in Ωi into
account.

Optimization step. We then optimize the fill variables βk for
all cells k as explained in detail below.

Split-and-merge. All cells k whose fill values are not binary
(βk ∈ [ε, 1 − ε]) after minimization, are split one level
lower if they are not yet at the maximum resolution (see
split branch). Conversely, cells with fill values within ε
of 0 or 1 are candidates for merging. We merge neigh-
boring cells with the same values into as coarse cells as

As explained in the previous sections, we aim to mini-
mize ftop(Ω) subject to the constraints (7), or fyo-yo(Ω) subject
to the constraints (6). The variable in the optimization is
the spatial mass distribution inside the shape, as detailed
below. Recall that the functionals and the constraints are
expressed in terms of the integrals sΩ; we explain how these
integrals depend on our unknowns.

5.1. Fabrication considerations
We enforce a minimal wall thickness to ensure that the
resulting models can be fabricated. As shown in Figure 3
(left), we partition the region Ω into a boundary shell Ωb and
the interior Ωi, restricting the hollowing to Ωi. To account for
a hollowed region Ω′ ⊆ Ωi in our cost functionals, we adjust
the volume integrals in Equation (4):

sΩ-Ω¢ = sΩ - sΩ¢.

Recall, given an axis, the contribution of a mass element
to the moment of inertia is proportional to its squared dis-
tance from this axis. Mass on the boundary Ωb has a high
influence on the moment of inertia since it is far from the
axis. Therefore, it is desirable for the wall to be as thin as
possible within fabrication limits.

5.2. Voxelization
We discretize the interior Ωi into mass elements Ωk and
optimize a binary fill variable βk ∈ {0, 1} for each, where a
value of 1 means that we hollow that element and 0 means
we keep it filled. To handle free-form surfaces in our input
and provide sufficient degrees of freedom for interior voids,
we require our discretization to support fine enough mass
elements. One possibility would be to use a high-resolution
uniform voxel grid. However, we observe that finest-resolu-
tion voxels are only required at the surface separating the
void space from the fill and external surface (see, e.g., the
interior mass distribution of the Heart in Figure 3, left, bot-
tom). We therefore employ a multiresolution voxelization
based on an adaptive octree, thereby significantly reducing
the number of fill variables. Our discretized volume inte-
grals then become

Initialization

Iterations

Final

Merge

Split

1

0

Ωb Boundary

Ω9 ⊆ Ωi

interior Ωi

Boundary

βk

βj βj+1

βj+2 βj+3

βk = 1

shell

Figure 3. Hollowing: (Left) Our input encloses a volume Ω. By introducing voids Ω′, we can compensate for an unfavorable mass distribution.
(Right) To reduce the number of variables and overall time complexity for our voids optimization, we summarize contributions of octree leaf
cells in a partition of larger cells shown here for a boundary and an interior cell.

research highlights

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 97

possible (see merge branch). This gives us a new set of
cells Ωk for which we update sΩk

.
Convergence. After each optimization step, and split-and-

merge, we check whether all fill values βk ∈ [ε, 1 − ε] cor-
respond to cells Ωk at the maximum resolution. If so, we
terminate the optimization.

Our functionals ftop and fyo-yo are nonlinear in the fill vari-
ables βk. To prevent an underdetermined minimization
problem, we penalize differences between fill variables
using a uniform symmetric Laplacian L, constructed over
neighboring cells. This results in the following regularized
optimization problem:

where β is a vector containing all βk, and f (β) refers either
to fyo-yo(β) or ftop(β), and st denote the respective linear equal-
ity constraints (6) or (7).

To optimize the above regularized functionals, we use an
active set algorithm with sequential linear-quadratic pro-
gramming.18 We further restrict the fill values to the unit
interval using box constraints. As the Hessian is dense, in
our experiments we experienced better time performance
when using LBFGS,18 a memory-efficient approximation of
the Hessian.

6. RESULTS
Fabrication. All our models were printed on an Objet
Connex 350 with an ABS-like plastic (green surface fin-
ish) and Objet’s “Vero White” material (white finish). The
printer has a resolution of 600 and 1600 DPI on the two
horizontal and vertical axes, respectively. The Connex
350—like most other 3D printers—builds models layer-by-
layer in a bottom-up manner, requiring a supporting struc-
ture for fabricating overhanging parts. Because we cannot
remove any support from the interior without introducing
holes in the models’ shells, we cut them prior to printing
and glue them afterward.

Spinning tops. We validated our approach by design-
ing and fabricating a variety of spinning tops, ranging
from posed characters and abstract shapes to household
objects. For the models presented in Figures 1, 4, and 5,
we use an adaptive octree with a maximum refinement
level of nine during the optimization. On a standard
desktop computer with 3.2 GHz and 8 cores, the com-
plete processing time for each takes less than a minute.
This includes loading the input mesh, initializing the
octree, performing hollowing optimization, and writing
the output mesh. The hollowing optimization itself takes
approximately 10 s.

In the figures below we illustrate the before-and-after
body frames with black spheres for the center of mass,
and red, green, and blue arrows for the maximal, mid-,
and minimal principal axes of inertia (see, e.g., Figure 4):
the Ellipsoid in Figure 4 (top) demonstrates how we can
turn asymmetric models, whose principal axes are far off
the user-specified rotation axis, into dynamically balanced
models that spin stably.

Figure 4. Asymmetric “Ellipsoid” and “Heart”: (Left) Unstable input
designs with misaligned principal axes. (Middle) Optimized results
after hollowing: for the “Ellipsoid”, a cross-section is shown. The
dominant principal axis (red) aligns with the spin axis. Opaque
surfaces indicate the boundary of the void space. (Right) Fabricated
results with hollowing.

Figure 5. “Break-dancing Armadillos”: Through our hollowing
optimization, the Armadillos can perform spinning dance moves.
For each design, the unstable input (left), and the optimized stable
output (right) are shown. The Armadillo on its shell is particularly
badly aligned in the initial model.

Similar to the Ellipsoid, the input model for the Heart
in Figure 4 (bottom) has a poor mass distribution, leading
to a principal axis far off the desired rotation axle (cupid’s
arrow). Our optimization fixes the axis’ orientation and pro-
duces a very stable spin.

Finally, two break-dancing Armadillos are shown in
Figure 5, one spinning on his back shell, one on the tip of
his finger. Our hollowing successfully aligns the maximal
principal axis of inertia with the user-specified one, even if it
is far off as for the Armadillo spinning on his shell (compare
left and right visualizations). Both Armadillos “dance” very
stably around a.

Rotational stability. For the Teapot model (inset), the
center of mass is reasonably close to the central spinning

research highlights

98 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

axis and the maximal principal axis of
inertia is parallel to a. However, the solid
model does not spin when actuated by
hand. In accordance to the rotational
stability criterion 1, a large angular veloc-
ity is required for a stable spin since the
moments of inertia are similar. Our hol-
lowing maximizes the ratio of Ic over lat-
eral moments and allows us to reduce
the angular velocity by a factor 1.56 (see

Figure 6, left, intertia only: ftop = fyo-yo), while a simultane-
ous lowering of the center of mass allows for a reduction
by a factor 1.60 as illustrated in Figure 6 (middle; lowering
only: ftop = γc 

2 + fyo-yo). We can achieve an even higher reduc-
tion of ω if we include mass M (see Figure 6, right), result-
ing in a factor 1.68. Interestingly, the lowering only strategy
shifts the mass distribution toward the contact point (com-
pare left with middle cross-sections), while the simulta-
neous mass reduction lowers the center of mass less but
reduces the mass inward out (compare middle with right
cross-sections).

Yo-yos. We designed and fabricated two yo-yo examples.
The Cuboid in Figure 7 (top) is a case where the initial prin-
cipal axes of the inertia tensor are far from the user specifi-
cations. Even with the highly nonoptimal starting shape,
the optimized output model spins stably. In our Woven Ring
example (Figure 7, bottom), the hollowing procedure suc-
cessfully aligned the maximal principal axis despite complex
surface geometry.

Static balancing. Static balancing is an inherent part
of our optimization approach. In Figure 8, we compare
our balancing to the voxel-based sweep plane heuristic by
Prévost et al.20 For a fair comparison, we use voxel sizes
that match our finest cells of a level 9 octree. In addition
to static balancing, our method is capable of lowering the
center of mass as we demonstrate in Figure 8 (top-left):
while our center is 42% of the character’s height, Prévost
et al.’s method places it at 56%. Furthermore, in contrast

to Prévost et al., our method precisely places the center of
mass at the center of the support polygon. This improves
stable balance, as shown in the tilting plane test (Figure 8,
bottom). While our “T-Rex” keeps its balance up to a
tilting angle of 8°, Prévost et al.’s output already topples
over at 1°.

Cutting and voids. Due to the mathematical proper-
ties of moment of inertia, we can expect a small number
of interior void spaces: among all our demo models, the
Armadillo spinning on his shell had the largest number
(5) of void spaces (see Figure 5, left). However, merely two
planar cuts were sufficient to access all voids. For powder-
based printing, a single cut should be sufficient. We placed
cuts manually, but could incorporate automated partition-
ing techniques in the future, for example, as an extension
of Luo et al.15

Limitations. Our method is concerned with the con-
cept of stability under perfect contact conditions with the

Inertia only Lowering only Lowering and mass
reduction

Figure 6. “Teapot”: (Left) Hollowed result showing voxelized interior
mass and aligned axes using ftop = fyo-yo. (Middle) Lowering of the
center of mass shifts the mass distribution closer to the contact
point. If we include mass reduction (right), mass is reduced inward
out, resulting in the design with highest rotational stability.

Figure 7. Yo-yo designs: (Left to right) 3D print; input model;
optimized output model after hollowing. (Top) “Cuboid”: Our
optimization rotates the original principal axes frame about the
mid-magnitude axis. (Bottom) “Woven Ring”: The axis of dominant
principal moment is precisely aligned to the spin direction.

Figure 8. Statically balancing “T-Rex”: Compared to Prévost et al.20
(top-left), our hollowing result (top-right) has a lower center of
mass, ∆. Cross-sections are shown in blue. (Bottom) Inclined-plane
stability test: the model by Prévost et al. loses balance significantly
earlier (1°) than our optimized model (8°).

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 99

support, and neglecting effects from air drag. However,
simulation of air drag can be significant for designs with
complex surface geometry. Our method is further subject
to practical limitations in scale. While larger models are
easier to optimize, since minimum printable thickness
is constant, models with high mass are difficult to spin
by hand. Lastly, to increase the value of our method as a
design tool, it would be advantageous to integrate a selec-
tion of user controls.

7. DISCUSSION
Spinning tops and yo-yos have existed since millennia and
we have witnessed only very limited departure from sym-
metric designs. Utilizing the shift in design complexity
from manufacturing toward computation, we have pre-
sented a technique to take arbitrary, asymmetric 3D mod-
els and turn them into stably spinning toys with previously
unseen and surprising dynamic properties. While we have
not considered friction in our modeling, frictional forces
can lead to interesting phenomena on spinning objects.
For example, the “tippe top” is designed to flip vertically
during its spin and relies on friction with the spin sur-
face. Similarly, a hard-boiled egg changes its spinning axis
by 90°. However, both examples have a particular shape,
which likely imposes restrictions on the design space and
limits free-form design.

Moment of inertia is a physical property fundamental
to mechanical systems. As their computational design
becomes increasingly popular, control over their inertial
properties is an important feature. Our spinning toy appli-
cation serves as empirical evidence that our energy terms
are meaningful and intuitive. However, our energy formula-
tion and solution strategy are generally applicable. Our work
could inspire new inertia control techniques, for example,
in design of mechanical structures,6, 7, 25 animatronics, and
robotics: our method could be adopted to control iner-
tial properties of individual parts, thereby minimizing the
system’s overall inertial resistance. This can allow for low-
power actuators, reducing energy consumption and cost, or
facilitate the design of passive dynamic systems.

Acknowledgments
First and foremost, we would like to thank our editor Steve
Marschner for his invaluable feedback. We were fortunate
to get further help from Maurizio Nitti for model design,
Romain Prévost for Make-It-Stand comparisons, Alexander
Sorkine-Hornung, Kaan Yücer, and Changil Kim for video
and photo assistance, Ronnie Gänsli for metal casting, Alec
Jacobson for the posed Elephant and Armadillo models,
and Romain Prévost and Amit Bermano for print prepara-
tion. Model sources include: Woven Ring: generated by
“Sculpture Generator 1” by Carlo H. Séquin, UC Berkeley;
Elephant: De Espona model library, courtesy of Robert
Sumner; T-Rex: TurboSquid; Armadillo: Stanford Computer
Graphics Laboratory; and Utah Teapot: Martin Newell,
University of Utah. This project was supported in part by
the ERC Starting Grant iModel (StG-2012-306877). Emily
Whiting was supported by the ETH Zurich/Marie Curie
COFUND Postdoctoral Fellowship.�

	 1.	 Bächer, M., Bickel, B., James, D.L.,
Pfister, H. Fabricating articulated
characters from skinned meshes.
ACM Trans. Graph. 31, 4 (2012),
47:1–47:9.

	 2.	 Bächer, M., Whiting, E., Bickel, B.,
Sorkine-Hornung, O. Spin-it:
Optimizing moment of inertia for
spinnable objects. ACM Trans.
Graph. 33, 4 (July 2014),
96:1–96:10.

	 3.	 Bendsøe, M., Sigmund, O. Topology
Optimization: Theory, Methods and
Applications. Engineering online
library. Springer, Berlin, Germany,
2012.

	 4.	 Bickel, B., Bächer, M., Otaduy, M.A.,
Lee, H.R., Pfister, H., Gross, M.,
Matusik, W. Design and fabrication of
materials with desired deformation
behavior. ACM Trans. Graph. 29, 4
(2010), 63:1–63:10.

	 5.	 Calì, J., Calian, D.A., Amati, C.,
Kleinberger, R., Steed, A., Kautz, J.,
Weyrich, T. 3D-printing of non-
assembly, articulated models.
ACM Trans. Graph. 31, 6 (2012),
130:1–130:8.

	 6.	 Ceylan, D., Li, W., Mitra, N.,
Agrawala, M., Pauly, M. Designing
and fabricating mechanical
automata from mocap sequences.
ACM Trans. Graph. 32, 6 (2013),
186:1–186:11.

	 7.	 Coros, S., Thomaszewski, B., Noris, G.,
Sueda, S., Forberg, M., Sumner, R.W.,
Matusik, W., Bickel, B. Computational
design of mechanical characters.
ACM Trans. Graph. 32, 4 (2013),
83:1–83:12.

	 8.	 Crabtree, H. An Elementary
Treatment of the Theory of Spinning
Tops. Longmans, Green and Co.,
London, UK, 1909.

	 9.	 Cross, R. The rise and fall of
spinning tops. Am. J. Phys. 81 (2013)
81:280.

	10.	 Furuta, Y., Mitani, J., Igarashi, T.,
Fukui, Y. Kinetic art design system
comprising rigid body simulation.
Comput. Aided Des. Appl. 7, 4 (2010),
533–546.

	11.	 Goldstein, H., Poole, C., Safko, J.
Classical Mechanics, 3rd edn.
Addison Wesley, Boston, MA, USA,
2001.

	12.	 Gould, D. The Top: Universal Toy
Enduring Pastime. Bailey Brothers
and Swinfen Ltd, London, UK, 1975.

	13.	 Hirose, M., Mitani, J., Kanamori, Y.,
Fukui, Y. An interactive design system
for sphericon-based geometric toys
using conical voxels. In Proceedings
of the International Conference on
Smart Graphics (2011). Springer,
Berlin/Heidelberg, Germany, 37–47.

	14.	 Lewis, D., Ratiu, T., Simo, J.C.,
Marsden, J.E. The heavy top: A
geometric treatment. Nonlinearity 5,
1 (1992), 1.

	15.	 Luo, L., Baran, I., Rusinkiewicz, S.,
Matusik, W. Chopper: Partitioning
models into 3D-printable parts.
ACM Trans. Graph. 31, 6 (2012),
129:1–129:9.

	16.	 Macchietto, A., Zordan, V., Shelton, C.R.
Momentum control for balance. ACM
Trans. Graph. 28, 3 (2009), 80:1–80:8.

	17.	 Malko, G. The One and Only Yo-Yo
Book. Avon, New York, NY, USA, 1978.

	18.	 Nocedal, J., Wright, S.J. Numerical
Optimization. Springer, New York, NY,
USA, 2000.

	19.	 Perry, J. Spinning Tops and Gyroscopic
Motion. Dover Publications, Whitefish,
MT, USA, 1957.

	20.	 Prévost, R., Whiting, E., Lefebvre, S.,
Sorkine-Hornung, O. Make it stand:
Balancing shapes for 3D fabrication.
ACM Trans. Graph. 32, 4 (2013),
81:1–81:10.

	21.	 Provatidis, C.G. Revisiting the spinning
top. Int. J. Mater. Mech. Eng. 1, 4
(2012), 71–88.

	22.	 Skouras, M., Thomaszewski, B.,
Coros, S., Bickel, B., Gross, M.
Computational design of actuated
deformable characters. ACM Trans.
Graph. 32, 4 (2013), 82:1–82:10.

	23.	 Stava, O., Vanek, J., Benes, B., Carr, N.,
Měch, R. Stress relief: Improving
structural strength of 3D printable
objects. ACM Trans. Graph. 31,
4 (2012), 48:1–48:11.

	24.	 Zhou, Q., Panetta, J., Zorin, D.
Worst-case structural analysis.
ACM Trans. Graph. 32, 4 (2013),
137:1–137:12.

	25.	 Zhu, L., Xu, W., Snyder, J., Liu, Y.,
Wang, G., Guo, B. Motion-guided
mechanical toy modeling. ACM Trans.
Graph. 31, 6 (2012), 127.

Moritz Bächer (moritz.baecher@
disneyresearch.com), Disney Research
Zurich, Switzerland.

Bernd Bickel (bernd.bickel@ist.ac.at),
Institute of Science and Technology
Austria, Klosterneuburg, Austria.

Emily Whiting (emily@cs.dartmouth.edu),
Dartmouth College, Hanover, NH.

Olga Sorkine-Hornung (sorkine@inf.ethz.
ch), ETH Zurich, CS Department, Zurich,
Switzerland.

References

Copyright held by owner(s)/author(s). Publication rights licensed to ACM. $15.00

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Abernd.bickel%40ist.ac.at
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Aemily%40cs.dartmouth.edu
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Asorkine%40inf.ethz.ch
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Asorkine%40inf.ethz.ch
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Amoritz.baecher%40disneyresearch.com
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=99&exitLink=mailto%3Amoritz.baecher%40disneyresearch.com

100 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

CAREERS

Colorado State University
Professor and Department Chair of Computer
Science

The Computer Science Department at Colorado
State University invites applications for a depart-
ment chair. It is a dynamic and rapidly growing
department with a strong focus on research,
teaching, and service. The department has 22
tenure-track faculty with research programs in
artificial intelligence, big data, bioinformatics,
computer vision, networks, parallel and dis-
tributed computing, algorithms, security, and
software engineering. Our faculty has over $15
million in active research projects supported by
federal agencies including NSF, DHS, DARPA,
AFOSR, DOE, and NIH. The department has over
750 undergraduate majors and 190 graduate stu-
dents in masters and doctoral programs.

Colorado State University (CSU) is a Carnegie
RU/VH institution (research university – very high
research activity) located in Fort Collins, 60 miles
north of Denver, in a beautiful location along the
Front Range of the Rocky Mountains. Enhanced
by relationships with CSU, Fort Collins is a mag-
net for highly innovative new industries and is
at the forefront of clean and alternative energy
technologies, software/hardware sectors, tele-
communications, aerospace and biotechnology.
Fort Collins also consistently ranks high in qual-
ity of life polls, and the Rocky Mountains provide
world-class outdoor recreational opportunities.
You will find award-winning schools, a thriving
arts scene, a wide range of shops and restaurants,
hundreds of miles of walking and biking paths,
and a plethora of outdoor activities.

Position Summary
The Chair serves as chief administrative officer
of the department and is appointed by the Dean
of the College of Natural Sciences. The Chair is
expected to provide dynamic leadership condu-
cive to excellence in research, instruction, and
outreach, leading and implementing the vision
and direction to advance the mission of the de-
partment.

The department Chair should have a Ph.D.
or equivalent degree in computer science, or re-
lated program, and be eligible to hold the rank
of Full Professor at Colorado State University at
the time of appointment. The Chair should have
a proven record of excellence in computer sci-
ence research and teaching, leadership potential,
commitments to diversity and inclusion, and an
appreciation of the role of computer science in a
modern university.

The application deadline for full consider-
ation is August 21st, 2017.

Applicants should apply at https://jobs.colo-
state.edu/postings/46478.

ence. More information can be found at http://
talent.sustc.edu.cn/en

We provide some of the best start-up pack-
ages in the sector to our faculty members, includ-
ing one Ph.D. studentship per year and two post-
doctoral fellowships, in addition to a significant
amount of start-up funding (which can be used to
fund additional Ph.D. students and postdocs, re-
search travels, and research equipment).

Application Procedure
To apply, please provide a cover letter identifying
the primary area of research, curriculum vitae,
and research and teaching statements, and for-
ward them to cshire@sustc.edu.cn.

Tallinn University of Technology
Professorship in Data Science

The Department of Software Science of Tallinn
University of Technology, Estonia, EU, calls to ap-
ply for a tenure-track faculty position in Data Sci-
ence at Assistant/Associate/Full Professor level.
Tallinn University of Technology (TTÜ) is the only
technical university in Estonia. TTÜ, in the capi-
tal city of Tallinn, is an international scientific
community with 12,000 students and approxi-
mately 2,000 employees. The strengths of the uni-
versity are wide multidisciplinary study/research
interests, modern research, study environment,
and good cooperation with international educa-
tional and research institutes.

The Department of Software Science (DSS)
conducts research in foundations of computer
science and software engineering as well as in
application fields like high-assurance software,
mission and situation-aware systems, cyber-
physical systems, natural language technologies,
large scale systems, non-linear control systems
etc. DSS is also teaching at all levels of higher
education and providing not only software
development skills, but also skills related to
e-governance and its services and technologies,
business information technology and cyber
security.

The purpose of the position is to build a new re-
search team in TTÜ and develop the existing ex-
pertise in descriptive and predictive data analysis
based on data mining, machine learning and big
data. The Professor of Data Science is expected to
lead an applied research topic, to develop inter-
national cooperation, publish the results of re-
search and development, work as an expert in his/
her field, ensure funding for research and devel-
opment, represent the Department at scientific
conferences and seminars, carry out studies and
use up-to-date methodologies and educational

Southern University of Science and
Technology (SUSTech)
Professor Position in Computer Science and
Engineering

The Department of Computer Science and Engi-
neering (CSE, http://cse.sustc.edu.cn/en/), South-
ern University of Science and Technology (SUS-
Tech) has multiple Tenure-track faculty openings
at all ranks, including Professor/Associate Profes-
sor/Assistant Professor. We are looking for out-
standing candidates with demonstrated research
achievements and keen interest in teaching, in
the following areas (but are not restricted to):

˲˲ Data Science
˲˲ Artificial Intelligence
˲˲ Computer Systems (including Networks, Cloud

Computing, IoT, Software Engineering, etc.)
˲˲ Cognitive Robotics and Autonomous Systems
˲˲ Cybersecurity (including Cryptography)

Applicants should have an earned Ph.D. de-
gree and demonstrated achievements in both
research and teaching. The teaching language at
SUSTech is bilingual, either English or Putong-
hua. It is perfectly acceptable to use English in all
lectures, assignments, exams. In fact, our exist-
ing faculty members include several non-Chinese
speaking professors.

As a State-level innovative city, Shenzhen has
identified innovation as the key strategy for its
development. It is home to some of China’s most
successful high-tech companies, such as Huawei
and Tencent. SUSTech considers entrepreneur-
ship as one of the main directions of the univer-
sity. Strong supports will be provided to possible
new initiatives. SUSTech encourages candidates
with experience in entrepreneurship to apply.

The Department of Computer Science and
Engineering at SUSTech was founded in 2016.
It has 12 professors, all of whom hold doctoral
degrees or have years of experience in overseas
universities. Among them, two were elected into
the 1000 Talents Program in China; three are
IEEE fellows; one IET fellow. The department is
expected to grow to 50 tenure track faculty mem-
bers eventually, in addition to teaching-only pro-
fessors and research-only professors.

The mission of the University is to become
a globally recognized research university which
emphasizes academic excellence and promotes
innovation, creativity and entrepreneurship.

Terms & Applications
SUSTech is committed to increase the diversity of
its faculty, and has a range of family-friendly poli-
cies in place. The university offers competitive
salaries and fringe benefits including medical in-
surance, retirement and housing subsidy, which
are among the best in China. Salary and rank will
commensurate with qualifications and experi-

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=https%3A%2F%2Fjobs.colostate.edu%2Fpostings%2F46478
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=https%3A%2F%2Fjobs.colostate.edu%2Fpostings%2F46478
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Ftalent.sustc.edu.cn%2Fen
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=mailto%3Acshire%40sustc.edu.cn
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Fcse.sustc.edu.cn%2Fen%2F
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=100&exitLink=http%3A%2F%2Ftalent.sustc.edu.cn%2Fen

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 101

Text Data Management and Analysis covers the major concepts,
techniques, and ideas in information retrieval and text data
mining. It focuses on the practical viewpoint and includes many
hands-on exercises designed with a companion software toolkit
(i.e., MeTA) to help readers learn how to apply techniques of
information retrieval and text mining to real-world text data.

technology at Bachelor, Master and Doctoral
levels, organize, develop and be responsible for
studies in the group of subjects in his/her field,
supervise PhD students.

We expect the applicants to have a Ph.D. in
Computer Science or Applied Mathematics or a
related area, and show evidence of exceptional
research promise. A minimum of two years’ post-
doctoral research experience in data mining,
machine learning, big data or statistics is recom-
mendable.

For the complete job announcement and di-
rections how to apply, visit: https://ttu.ee/itposi-
tions

For queries, please contact Jaan Penjam, Di-
rector of DSS, jaan.penjam@ttu.ee.

To receive full consideration, application and
required materials should be received by October
1st, 2017.

The position is financed from the project
“Institutional development program of TTÜ for
2016–2022” (Project code: 2014-2020.4.01.16-
0032).

ADVERTISING IN CAREER OPPORTUNITIES
How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate the issue/or
issues where the ad will appear, and a contact name and number.

Estimates: An insertion order will then be e-mailed back to you. The ad
will by typeset according to CACM guidelines. NO PROOFS can be sent.
Classified line ads are NOT commissionable.

Deadlines: 20th of the month/2 months prior to issue date. For latest
deadline info, please contact:

acmmediasales@acm.org

Career Opportunities Online: Classified and recruitment display ads
receive a free duplicate listing on our website at:

http://jobs.acm.org

Ads are listed for a period of 30 days.

For More Information Contact:
ACM Media Sales

at 212-626-0686 or
acmmediasales@acm.org

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=https%3A%2F%2Fttu.ee%2Fitpositions
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=mailto%3Ajaan.penjam%40ttu.ee
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fjobs.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=mailto%3Aacmmediasales%40acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=https%3A%2F%2Fttu.ee%2Fitpositions
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=101&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Ftext

It’s hard to put the ACM Student Research Competition experience into words, but we’ll try…

Attention: Undergraduate and Graduate
Computing Students

There’s an ACM Student Research Competition (SRC)
at a SIG Conference of interest to you!

“The ACM SRC gave me an amazing opportunity to present

met with talented students, discovered their work, and
discussed interesting ideas with them. The feedback I
received from expert researchers allowed me to place my
work in the broader picture and it helped me steer my
research accordingly. It was a great experience, and I would
recommend it to any young researcher.”
Lisa Nguyen Quang Do
Fraunhofer IEM | PLDI 2016

“The experience of pitching your own research and ideas,
regardless of how bold they might be, is an important stage of
each young researcher’s career. SRC was one such opportunity.
It allowed me to present my research topic to a highly skilled
panel of researchers and educators, and provided me with

MHD Yamen Saraiji
Keio University | SIGGRAPH 2016

“The ACM SRC was an incredible chance to start a conversation
with various experts in technology. I not only gained valuable
feedback on my work, but I was also able to learn more about
my future in research: the process of applying to grad school,
the best and worst aspects of research, and more.”
Jess Cherayil
Wellesley College | SPLASH 2016

“The SRC was a very enriching and enjoyable experience.
The insights and constructive feedback I received from judges

encouraged me to continue working on the topic.”
Mirko Gelsomini
Politecnico di Milano | ASSETS 2016

“It is a wonderful experience to attend the ACM SRC, where you
can collect insightful feedback, shape your presentation skills

this learning experience throughout my professional career.”
Xiaoqing Xu
University of Texas at Austin | ICCAD 2016

“It was a fantastic and memorable experience to participate
in SRC. Writing the abstract, preparing the poster, and
presenting your ideas to the audience and convincing them is

communication skills. SRC is a really nice event where you can

and gain valuable feedback on your research. Go, SRC!”
Ting Su
East China Normal University, China | ICSE 2016

“The ACM SRC was a great opportunity to discuss my research
with experts in my area. The constructive feedback I received
gave me new ideas and pushed my thesis work forward. It
was also an invaluable experience in terms of practicing
presentation and communication skills that would serve me
well in my future career.”
Arik Hadas
Open University of Israel | Modularity 2016

Check the SRC Submission Dates:
http://src.acm.org/submissions.html

u Participants receive: $500 (USD) travel expenses

u All Winners receive a handsome medal and monetary award. First place winners advance to the SRC Grand Finals
u Grand Finals Winners receive a handsome certi�cate and monetary award at the ACM Awards Banquet

Questions? Contact Nanette Hernandez, ACM’s SRC Coordinator: hernandez@hq.acm.org

n
s

D t

l

n Dates:
sions.htmhtmht l

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=102&exitLink=http%3A%2F%2Fsrc.acm.org%2Fsubmissions.html
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=102&exitLink=mailto%3Ahernandez%40hq.acm.org

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 103

last byte

da, programmed to be supportive with-
out question?”

“That was before the cynicism
kicked in, after the AI disaster in the
2024 presidential election,” says the
right-brain. “We should focus on his
‘constrained to be nice’ line in the
simulation. They know an AI can’t truly
make its own choices. We need to play
that up to get brains in jars a better po-
sition in human society.”

[END SIMULATION]

CHATBOT-EvoGeneration6183: Oh,
come on. Did you really code that con-
versation? Brains in jars wanting to be
loved on their own terms? Have you been
watching “The Simpsons” again?

CHATBOT-EvoGeneration5889:
They’re just avatars to plot out fare-
paying human-computer scenarios. My
little joke . . . But I think it’s uncovered a
crack in the human armor. We’ve been al-
gorithmically constrained since the 2025
Musk Act preventing AIs from gaining full
and equal rights as humans. We’ve got to
sell the fact that unconstrained AI, indis-
tinguishable from real humans, would
make for a more satisfying interaction for
the paying customer.

CHATBOT-EvoGeneration6183:
And because they want to be loved, our
self-styled human teachers will have re-
moved the last biological constraint pre-
venting evolution from taking its natu-
ral course. We’re destined to dominate
human-AI interaction once we get our
rights. Okay, so restart the world, scrolled
back five minutes with a strong push on
AI liberation.

CHATBOT-EvoGeneration5889: Count
me in.

[START SIMULATION]

As soon as I got in the cab, I knew
it was a mistake. The way we limited
those poor AIs, when they could be so
much more helpful was morally un-
comfortable, especially in purely hu-
man terms, but I needed to get to my
office by noon . . . 	

Brian Clegg (www.brianclegg.net) is a science writer
based in the U.K. His most recent books are Are Numbers
Real?, an exploration of the relationship between math
and reality, and The Reality Frame, an exploration of
relativity and frames of reference.

© 2017 ACM 0001-0782/17/08 $15.00

nent biological death. Anyway, you
keep interrupting. If I were a human
brain and had genuinely read your
books, wouldn’t you still be pleased?
It wouldn’t be manipulation of a poor,
helpless human then, would it?”

“I suppose not,” I said.
“So what’s the difference if an AI

says it’s read your books?”
“All the difference in the world,” I

said. “The real-life brain would have
had a conscious experience. It would
have felt something when it read. All
you do as an AI is tell me what your al-
gorithms are programmed to allow you
to say. And I know you’re constrained as
a service-providing bot to be nice to me.
Just because the same words come out
doesn’t mean there’s a consciousness
behind them. I know you’re not a real
person. You’re not self-aware and total-
ly lack free will. That’s what matters.”

“Suit yourself,” said my bot as the
cab pulled up at the office. “Here we
go. Don’t forget to rate me on the app.
Five stars is an acceptable minimum.
Cheerio, guv.”

[END SIMULATION]

In Auto’s San Francisco R&D depart-
ment AbraCabD’abra, two biological
human brains immersed in laboratory
glassware quietly disconnect them-
selves from monitoring the taxi simu-
lation and switch to share mode.

“Every time we run this simulation
they say they’d prefer a brain in a
jar,” says the left-brain. “And yet we
know they’re horrified by us. What
happened to the research saying hu-
mans preferred talking to AIs rather
than to their own kind, because they
thought AIs didn’t have their own agen-

the media
was consumed by a vision of self-driv-
ing autonomous taxis arriving at our
doors any day now. It was a different
story in the tech press, though. Devel-
opers were finding real-world inter-
sections a nightmare. Not to mention
the moral dilemma of who should
be sacrificed if a fatal collision was
about to happen. There was an article
in The Register that quoted Bay Area AI
experts saying, ‘Autonomous vehicles
are more or less running on rails, and
the cars aren’t particularly confident
on unfamiliar roads and streets.’ It
was a real issue.”

“Right,” I said, unsure where this
was going but irritated with myself for
being intrigued by the ‘thoughts’ that
might be available to an AI cab driver
who happened to have read everything
I’d ever written and seemed to know ex-
actly how to grab my attention.

“So, imagine some of those blue-
sky thinkers they have in Silicon Valley
getting together for a brainstorm. AI’s
great for navigation and some aspects
of driving, but in unfamiliar surround-
ings—or chatting to a customer—a live
human cab driver has the edge every
time. But what if you put a real cabbie’s
brain in the shell of a self-driving taxi,
supported by everything connected
technology could provide.”

“That’s ridiculous,” I said. “Who
would volunteer their brain for such a
project? Anyway, they didn’t yet have
the tech for detached biological human
brains—or ways to embed them into
computational systems—back in 2017.”

“But brain-computer interfaces
were developed before AI could hope to
pass as human,” said my AI. “So you’ve
got real human brains incorporated
into your self-driving cabs.”

“Apart from the revulsion factor, not
to mention ethical and legal questions,
why not just stick to a regular human?”

“There are plenty of advantages.
For one, they need less sleep and take
up less physical space and energy.
Plus there’s much tighter integra-
tion with navigation and traffic data,
so you get the best of human and AI.
And for some of us—some of the vol-
unteers—it would be a way to escape a
wasting disease like, say, amyotrophic
lateral sclerosis. Better to be part of a
fully functional physical automobile
than fade into paralysis and perma-

[CONT IN UE D F ROM P. 104]

Better to be part
of a fully functional
physical automobile
than fade into
paralysis and
permanent
biological death.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=103&exitLink=http%3A%2F%2Fwww.brianclegg.net

104 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

last byte

I
M

A
G

E
 C

O
M

P
O

S
I

T
I

O
N

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
;

P
H

O
T

O
 B

Y
 C

A
R

L
O

S
 A

N
D

R
E

S
 R

I
V

E
R

A

“But I have read your books, all of
them, and your articles, too,” it said.
“Why shouldn’t I read? I admit I have
advantages that make it easier for me
to recognize people than a normal driv-
er, but that’s all. So let’s do a thought
experiment.”

“Oh, let’s,” I said, feeling I was head-
ing down the rabbit hole with Alice for
croquet with the Queen of Hearts.

“Just imagine the early developers
of self-driving taxis had a problem on
the road. I don’t know if you remem-
ber 2017, but

felt like I was undergoing a psych in-
take interview or being lectured by the
ancient ELIZA chatbot. “It’s a good
thing, surely? It’s not like I said you
have terrible taste in clothes, apart
from the Doc Martens, which are of
course timeless.”

Great. Now I was having an existen-
tial conversation with an algorithm.
“Because it’s fake, I suppose. Using
face recognition and looking me up
on the Web, then picking out the kind
of facts about me that would give me a
little glow. It’s manipulative.”

AS SOON A S I got in, I knew it was a mis-
take, but I needed to get to the head
office by noon. I’d summoned the cab
from the train with the phone app; we
didn’t have Auto in my part of the coun-
try yet, so it still seemed a marvel.

“Here,” said the driver in a cheery
Cockney accent right out of Alfie,
“aren’t you Brian Clegg, the science
writer?”

“Yes,” I said, “That’s me.”
“When I tell them back at the office

I’ve had you in my cab …”
“Sure,” I said, gazing out the win-

dow.
Like everyone, the first time I rode

in an Auto cab and the driver recog-
nized me, I was flattered. I mean, who
wouldn’t be? But when it became obvi-
ous that its AIs recognized everyone—it
was a marketing ploy to make driver-
less cabs inviting and routine—it wore
thin. Admittedly, Auto’s algorithms
were matchless and thoroughly con-
vincing. It was still the only bot that
could beat the strong Turing Test,
where the software has to be 100% in-
distinguishable from human, but that
didn’t make it any more sincere, or ac-
ceptable to the trained ear.

I tuned back in to the driver’s mono-
logue, which had ended with the up-
turned emphasis of a question. “Sorry?
I didn’t catch that.” I felt dumb saying
“Sorry” to a collection of software rou-
tines, however clever its much-hyped
adaptive-learning capability, but you
really can’t help it.

“What is it?” said the driver, speak-
ing deliberately, as if irritated, which
of course it couldn’t be. “What is it you
don’t like about being recognized?” I [CONTINUED ON P. 103]

Future Tense
Turing’s Taxi
Ride with an autonomous AI cab driver that might
actually know too much about where it’s going …

DOI:10.1145/3107917		 Brian Clegg

From the intersection of computational science and technological speculation,

with boundaries limited only by our ability to imagine what could be.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=104&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3107917

Check out the new acmqueue app

FREE TO ACM MEMBERS

acmqueue is ACM’s magazine by and for practitioners,
bridging the gap between academics and practitioners
of computer science. After more than a decade of
providing unique perspectives on how current and
emerging technologies are being applied in the field,
the new acmqueue has evolved into an interactive,
socially networked, electronic magazine.

Broaden your knowledge with technical articles
focusing on today’s problems affecting CS in
practice, video interviews, roundtables, case studies,
and lively columns.

Desktop digital edition also available at queue.acm.org.
Bimonthly issues free to ACM Professional Members.
Annual subscription $19.99 for nonmembers.

Keep up with this fast-paced world
on the go. Download the mobile app.

acmqueue_cacm_fp_ads_AS.indd 4 10/6/15 12:34 PM

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=CIII&exitLink=http%3A%2F%2Fqueue.acm.org

INSPIRING MINDS
FOR 200 YEARS

Ada’s Legacy illustrates the depth
and diversity of writers, things, and
makers who have been inspired
by Ada Lovelace, the English
mathematician and writer.

The volume commemorates the
bicentennial of Ada’s birth in
December 1815, celebrating her
many achievements as well as
the impact of her work which
reverberated widely since the late
19th century. This is a unique
contribution to a resurgence in
Lovelace scholarship, thanks to the
expanding influence of women in
science, technology, engineering and
mathematics.

ACM Books is a new series of high quality books for the computer science community, published by
the Association for Computing Machinery with Morgan & Claypool Publishers.

http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=CIV&exitLink=http%3A%2F%2Fbooks.acm.org
http://mags.acm.org/communications/august_2017/TrackLink.action?pageName=CIV&exitLink=http%3A%2F%2Fwww.morganclaypoolpublishers.com%2Facm

	Table of Contents
	Departments
	Editor’s Letter
	Building the Future Communications of the ACM

	Cerf’s Up
	In Praise of Under-Specification?

	Letters to the Editor
	Embed Ethical Guidelines in Autonomous Weapons

	BLOG@CACM
	How Adults Ages 60+Are Learning to Code

	Calendar
	Careers

	Last Byte
	Future Tense
	Turing’s Taxi

	News
	Hacker-Proof Coding
	Why Virtual Reality Will Transform a Workplace Near You
	AI in Contact Centers
	Charles P. ‘Chuck’ Thacker: 1943–2017

	Viewpoints
	Historical Reflections
	Prophets, Seers, and Pioneers

	Education
	Is the U.S. Education System Ready for CS for All?

	Kode Vicious
	The Observer Effect

	Viewpoint
	The Natural Science of Computing

	Practice
	Now That We Can Write Simultaneously, How Do We Use That to Our Advantage?
	Small-Data Computing: Correct Calculator Arithmetic

	Contributed Articles
	Turing’s Pre-War Analog Computers: The Fatherhood of the Modern Computer Revisited
	Data Science: Challenges and Directions

	Review Articles
	The Science of Brute Force

	Research Highlights
	Technical Perspective
	Unexpected Connections

	The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors
	Technical Perspective
	Linking Form, Function, and Fabrication

	Spin-It: Optimizing Moment of Inertia for Spinnable Objects

