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Code Nation explores the rise of software 
development as a social, cultural, and technical 
phenomenon in American history. The movement 
germinated in government and university labs 
during the 1950s, gained momentum through 
corporate and counterculture experiments in the 
1960s and 1970s, and became a broad-based 
computer literacy movement in the 1980s. As 
personal computing came to the fore, learning 
to program was transformed by a groundswell 
of popular enthusiasm, exciting new platforms, 
and an array of commercial practices that 
have been further amplified by distributed 
computing and the Internet. The resulting 
society can be depicted as a “Code Nation”—a 
globally-connected world that is saturated 
with computer technology and enchanted by 
software and its creation.

Code Nation is a new history of personal computing that 
emphasizes the technical and business challenges that 
software developers faced when building applications 
for CP/M, MS-DOS, UNIX, Microsoft Windows, the Apple 
Macintosh, and other emerging platforms. It is a popular 
history of computing that explores the experiences of novice 
computer users, tinkerers, hackers, and power users, as well 
as the ideals and aspirations of leading computer scientists, 
engineers, educators, and entrepreneurs. Computer book and 
magazine publishers also played important, if overlooked, 
roles in the diffusion of new technical skills, and this book 
highlights their creative work and influence.

Code Nation offers a “behind-the-scenes” look at application 
and operating-system programming practices, the diversity 
of historic computer languages, the rise of user communities, 
early attempts to market PC software, and the origins of 
“enterprise” computing systems. Code samples and over 80 
historic photographs support the text. The book concludes 
with an assessment of contemporary efforts to teach 
computational thinking to young people.

http://books.acm.org
http://store.morganclaypool.com/acm
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vardi’s insights

A Computational Lens on Economics

T
H E  C OV I D - 1 9  PA N D E M I C  is a 
dual crisis. On one hand, it 
is a global health crisis with 
millions of cases and hun-
dreds of thousands of 

deaths. At the same time, decisions by 
individuals and governments in re-
sponse to the pandemic have led to a 
severe economic slowdown, the likes 
of which has not seen since the Great 
Depression in the 20th century. But, as 
I wrote in a May 2020 column, econom-
ics can be argued to be one of the roots 
of this dual crisis. I quoted William 
Galston, who wrote: “What if the re-
lentless pursuit of efficiency, which 
has dominated American business 
thinking for decades, has made the 
global economic system more vulnera-
ble to shocks?” This relentless pursuit 
of efficiency prevented us from in-
vesting in getting ready for a pandem-
ic, in spite of many warnings over the 
past several years, and pushed us to 
develop a global supply chain that is 
quite far from being resilient. Does 
computer science have anything to say 
about the relentless pursuit of economic 
efficiency? Quite a lot, actually.

Economic efficiency means goods 
and factors of production are distrib-
uted or allocated to their most valu-
able uses and waste is eliminated or 
minimized. Free-market advocates ar-
gue that through individual self-inter-
est and freedom of production as well 
as consumption, economic efficiency 
is achieved and the best interest of so-
ciety, as a whole, are fulfilled. But effi-
ciency and optimality should not be 
conflated. A fundamental theorem in 
economics states that under certain 
assumptions a market will tend to-
ward a competitive, Pareto-optimal 
equilibrium; that is, economic effi-
ciency is achieved. But how well does 
such an equilibrium serve the best in-
terest of society? 

In 1999, Elias Koutsoupias and 
Christos Papadimitriou undertook to 
study the optimality of equilibria 
from a computational perspective. In 
the analysis of algorithms, we often 
compare the performance of two al-
gorithms (for example, optimal vs. 
approximate or offline vs. online) by 
studying the ratio of their outcomes. 
Koutsoupias and Papadimitriou ap-
plied this perspective to the study of 
equilibria. They studied systems in 
which non-cooperative agents share 
a common resource, and proposed 
the ratio between the worst possible 
Nash equilibrium and the social opti-
mum as a measure of the effective-
ness of the system. This ratio has be-
come known as the “Price of 
Anarchy,” as it measures how far 
from optimal such non-cooperative 
systems can be. They showed that the 
price of anarchy can be arbitrarily 
high, depending on the complexity of 
the system. In other words, economic 
efficiency does not guarantee the best 
interests of society, as a whole, are 
fulfilled.

A few years later, Constantinos 
Daskalakis, Paul Goldberg, and Pa-
padimitriou asked how long it takes 
until economic agents converge to an 
equilibrium. By studying the com-
plexity of computing mixed Nash 
equilibria, they provide evidence that 
there are systems in which conver-
gence to such equilibria can take an 
exceedingly long time.  The implica-
tion of this result is that economic 
systems are very unlikely ever to be in 
an equilibrium, because the underly-
ing variables, such as prices, supply, 
and demand are very likely to change 
while the systems are making their 
slow way toward convergence. In oth-
er words, economic equilibria, a cen-
tral concept in economic theory, are 
mythical rather than real phenome-

na. This is not an argument against 
free markets, but it does oblige us to 
view them through a pragmatic, rath-
er than ideological, lens.

But one does not need too sophis-
ticated analysis to conclude that indi-
vidual self-interest—expressed in an 
extreme form by the “Greed is good” 
speech in the 1987 movie Wall 
Street—does not necessarily lead to 
an optimal outcome. After all, every 
computer-science graduate has 
learned about “greedy algorithms,” 
which make the locally optimal 
choice at each stage with the intent of 
finding a global optimum. While 
such algorithms sometime do yield a 
global optimum, they most typically 
do not. In fact, designing algorithms 
that do find global optima is a major 
topic of algorithmic research.

Our digital infrastructure, which 
has become a key component of the 
economic system in developed coun-
tries, is one of the few components 
that did not buckle under the stress 
of COVID-19. Indeed, last March 
many sectors of our economy 
switched in haste to the WFH mode, 
“working from home.” This work 
from home, teach from home, and 
learn from home was enabled (to an 
imperfect degree, in many cases) by 
the Internet. From its very roots of 
the Arpanet in the 1960s, resilience, 
enabled by seemingly inefficient re-
dundancy, was a prime design goal 
for the Internet. Resilience via redun-
dancy is one of the great principles of 
computer science. Pay attention, eco-
nomics!

Follow me on Facebook and Twitter. 

Moshe Y. Vardi (vardi@cs.rice.edu) is the Karen Ostrum 
George Distinguished Service Professor in Computational 
Engineering and Director of the Ken Kennedy Institute for 
Information Technology at Rice University, Houston, TX, USA. 
He is the former Editor-in-Chief of Communications.

Copyright held by author.
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The purpose of the award is to recognize the innovative parallel computing contributions 
towards the solution of the global crisis. Nominations will be selected based on performance 
and innovation in their computational methods, in addition to their contributions towards 
understanding the nature, spread and/or treatment of the disease. 

Teams may apply for the award.  Nominations will be evaluated on the basis of the following 
considerations:

• Evidence of important algorithmic and/or implementation innovations
• Clear improvement over the previous state of the art
• Performance is not dependent on an architecture that is specialized or cannot be replicated
• Detailed performance measurements demonstrate the submission’s claims in terms

of scalability (strong as well as weak scaling), time to solution, and efficiency in using
bottleneck resources (such as memory size or bandwidth, communications bandwidth,
I/O), as well as peak performance.

• Achievement is generalizable, in the sense that other scientists can learn and benefit from
the innovations

• Although solving an important scientific or engineering challenge is important to
demonstrate/justify the work, scientific outcomes alone are not sufficient for this prize.

Financial support of this $10,000 award is provided by Gordon Bell, a pioneer in high performance 
and parallel computing.

Call for Nominations

ACM Gordon Bell Special Prize 
for HPC-Based COVID-19 Research

For more information and to 
submit nominations, please visit:

https://awards.acm.org/bell/covid-19-nominations

Nominations for the 2020 award are due on October 8, 2020.

gordon-bell-prize-covide-cacm-ad-fp.indd   1 5/26/20   5:01 PM
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a small startup, ecrebo,a which provides 
a coupon-issuing system for retailers 
who seek to attract customers based on 
their individual purchasing habits.

I was responsible for developing a 
backend server for the coupon system. It 
had to be able to analyze the contents of 
the receipt, determine whether it met the 
conditions for issuing the coupon, and 
return it within three seconds, including 
communication time with the POS sys-
tem. A fun challenge, right? Well, there 
was a catch: Marks & Spencer signed up 
for a trial to start in two months. With 
very limited time, I buckled down and 
developed a simple, fast system in a 
month by devising a new data structure 
for the coupons. That gave me another 
month for testing and refinement. To 
my relief, the system worked without 
any bugs, processing millions of trans-
actions from the very first day.

I am proud to say ecrebo grew rap-
idly. In 2015, the Financial Times’ list 
of fastest-growing companies ranked 
it 17th in U.K. and 83rd in Europe.b The 
system I built is still in use today.

Ready for a new challenge, I turned 
my attention to starting my own com-
pany. I knew I wanted to help find solu-
tions to critical problems facing soci-
ety and to put my background in 
computational biology to use. I re-
turned to Japan and found Epistra.c My 
goal was to reduce the time and cost of 
research and development products in-
volving life sciences. Typically, R&D for 
life-critical drugs can take more than 15 
years and cost around $480 million.

a https://www.ecrebo.com/
b https://ig.ft.com/ft-1000/
c A combination of epistemic, epic, and stra; 

https://www.epistra.jp/

For example, vaccines for many trop-
ical diseases have been neglected in de-
veloping countries, where most citizens 
cannot afford them. Large pharmaceu-
tical companies are reluctant to invest 
in the development of drugs when the 
financial return is dubious. For new, in-
fectious diseases such as COVID-19, 
however, quick development of drugs 
for treatment and prevention is acute.

Epistra created a software to acceler-
ate R&D processes in the life sciences us-
ing AI and robotics. Specifically, we spe-
cialize in the development of automatic 
optimization software and services for 
sample preparation, pre-treatment, and 
setting of measurement equipment. 
Our technical approach combines evalu-
ating results using image recognition 
and experimental design using mathe-
matical optimization, allowing us to re-
duce the number of trials and errors. 
Our team succeeded in improving the 
differentiation efficiency of induced plu-
ripotent stem (iPS) cells into retinal pig-
ment epithelium in a joint study with Dr. 
Masayo Takahashi, one of the pioneers 
in the field of human study of iPS cell-
based therapy. Potential applications 
include therapies for heart disease and 
Parkinson’s disease.

In this year’s Extreme Tech 
Challenge,d Epistra was selected one of 
the top 10 companies in Japan using 
technology to develop solutions to global 
challenges with sustainable develop-
ment goals. I know this is only the begin-
ning of my work, and I will continue to 
tackle difficult problems in the life sci-
ences using cutting-edge technologies 
in biological and computer sciences.  

d https://re-how.net/product/398753/

C
H A L L E N G E  Y O U R S E L F  A N D 

reach for the highest bar. If you 
succeed, keep pushing the 
boundaries.” This is what my 
friend Hassan Hajji advised 

when I started my career at IBM Research 
Tokyo in 2002, and these words have been 
a guiding force in my career ever since.

At IBM, I was challenged to learn 
as much as possible about the re-
search process in an industrial lab 
(prototyping ideas, patenting, pub-
lishing results), and it dovetailed 
nicely with my desire to work toward 
a Ph.D. in systems biology.

After receiving my doctorate, which 
allowed me to enhance my skills in 
computational and mathematical anal-
ysis to understand complex biological 
systems, I was ready for a new chal-
lenge. I left Japan to work in the U.K. at 

“

NAME 
Yosuke Ozawa
BACKGROUND 
Born and raised in Miyagi, Japan 
CURRENT JOB TITLE/EMPLOYER 
CEO, Epistra Inc.
EDUCATION 
Ph.D. Systems Biology, 
University of Keio

Computing enabled me to . . .

Challenge Yourself by Reaching  
for the Highest Bar
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letters to the editor

travel and saving it, or downloading 
maps, such as those provided for per-
sonal GIS/GPS systems, or loading a ba-
sic GIS and its maps for local navigation 
on site with no outside communication.

For those who do care deeply about 
such issues, these two capabilities 
would greatly mitigate the perceived 
risks in being tracked on personal er-
rands or sensitive professional activi-
ties and would not depend on the am-
biguities—or outright lacunae—in the 
provisions of multiple corporate priva-
cy policies. Moreover, they could be 
implemented without extensive legal 
or legislative effort, which can be diffi-
cult and/or expensive to enforce, and 
often of questionable effectiveness.

N.L. Sizemore, Sierra Vista, AZ, USA

Editor-in-Chief’s Response
An interesting technical solution which 
begs the question, if the change is not 
compelled by government, who has the 
incentive to drive its creation and 
widespread adoption? Given the economics 
of scale, and the current situation that 
privacy seems only to be a compelling 
concern for a minority (for example, 
DuckDuckGo remains a minor player), what 
could tip the scales and drive creation of a 
vibrant growing alternative ecosystem?

Andrew A. Chien, Chicago, IL, USA

An Army Lesson
J. Paul Reed’s article “Beyond the ‘Fix-
It’ Treadmill” (May 2020, p. 58) was 
quite interesting and certainly a step 
in the right direction. Although it post-
dates my retirement from the U.S. Army 
by 16 years, you might find interest in 
the report: “Army Lessons Learned Pro-
gram.”1 In my day, we used to simply 
do AARs—After Action Reviews. Tech-
nical, communication, and people vec-
tors are involved when done correctly.

Reference
1. Department of the Army. Army Lessons Learned 

Program, 2017; https://armypubs.army.mil/epubs/
DR_pubs/DR_a/pdf/web/ARN2887_AR11-33_Web_
FINAL.pdf

Carl A. Singer, Passaic, NJ, USA

A
S  A  C O M P U T E R  scientist, I 
was embarrassed to read 
the Viewpoint “Confer-
ences in an Era of Expen-
sive Carbon” (Mar. 2020) 

from four fellow computer scientists. 
If these scholars truly believe what 
they write, that humans are causing 
the planet to warm, that they are not 
just eagerly joining the herd, then 
they need to show the way. The job of 
computer scientists is to make bits 
dance on the head of a circuit and that 
requires the field’s lifeblood—elec-
tricity. Since 63% of U.S. electricity is 
currently generated from fossil fuels, 
they need to reduce their electricity 
usage by that amount. They must take 
seriously their own stated beliefs and 
stop the planet from further warming. 
They need to immediately cut their 
time on the computer by 63%. In the 
classroom, they need to turn the pro-
jector off for most of their lectures. At 
home, they need to shut off lights and 
appliances for a majority of each day. 
If they drive an electric car, they need 
to reduce trip lengths by two-thirds. If 
they don’t take these CO2-mitigating 
steps, then they don’t really believe 
there is a problem. And the solu-
tion they propose becomes similar to 
many academic exercises that profes-
sors put their students through.

Daniel Ouellette, Detroit, MI, USA

Authors’ Response
We entirely agree that everyone concerned 
about climate change must urgently 
translate their concern into action. To be 
effective, such action should focus on the 
biggest opportunities for reduction. Air 
travel to conferences is the biggest 
contributor to our own individual carbon 
footprints, by a huge margin; we suspect the 
same is true for many scientific researchers 
and academics. However, since conferences 
also serve an extremely valuable social 
function, it would be rash to advocate simply 
taking them away. Instead, organizations 
like ACM should help create a future in 
which their scientific meetings are 
sustainable. Our proposals for publicizing 

carbon footprints and putting a price on 
carbon are steps in this direction.

 Benjamin C. Pierce, Philadelphia, PA, USA 
Jens Palsburg, Los Angeles, CA, USA 
Michael Hicks, College Park, MD, USA 
Crista Lopes, Irvine, CA, USA

Editor-in-Chief’s Response
I applaud the advocacy of real change to 
reduce the carbon impact of the computing 
community. We have many constructive 
dimensions to consider, including reducing 
travel for conferences (virtual!), but also 
directly in the carbon emissions tied to both 
the creation of computing hardware and its 
operation (see “What Do DDT and Computing 
Have in Comment?”( June 2020, p. 5) and 
“Owning Computings Environmental Impact,” 
(Mar. 2019, p. 5) for ideas on how to reduce 
carbon emissions while society continues to 
reap growing benefits from computing. 
Ouellette further suggests conservation 
techniques; these can be effective, but “bright 
green” approaches that seek to maintain and 
expand activity, while reducing environmental 
damage are certainly easier to adopt.

Andrew A. Chien, Chicago, IL, USA

Location, Location, Location
In the article “Can You Locate Your 
Locations Data?” (Sept. 2019, p. 19) 
Sarah Underwood discussed several 
approaches to mitigation, though indi-
cating there’s no one solution. An ap-
proach not discussed, but which would 
certainly provide added privacy for 
those more aware of and concerned, 
lies in the phone itself.

Two apps not at present available, as 
far as I know, could help. One would lim-
it access to GPS data to privileged apps 
that do not send that data outside the 
device. The second would disable the 
communications capabilities altogeth-
er, so there would be no tracking through 
network transactions, thus reducing the 
phone (or tablet) to a pocket computer.

As an aside, there should be corre-
sponding capabilities to disable the 
camera(s) and microphone.

Navigation could be achieved either 
by accessing a map application prior to 

Computing’s Role in Climate Warming
DOI:10.1145/3402933  
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able to look a little deeper, there may 
be even more good news. For beyond 
reducing the toll taken in lives by COV-
ID, some mitigating measures put in 
place may have profoundly beneficial 
effects if they are continued, or per-
haps even expanded upon. Three areas 
of activity come quickly to mind.

The most obvious improvement, lit-
erally visible already, has been to air 
quality in metropolitan areas. Vast num-
bers of people can work from home—in 
many places around the world—sharply 
reducing pollution caused by commut-
ing in automobiles. Clearly, many peo-
ple will still have to go to physical work-
places outside the home, but all who 
don’t have to should keep doing their 
jobs remotely. This will have tremen-
dous benefit for those living in the urban 
areas blighted by pollution, and also will 
contribute usefully to the larger fight 
against global warming.

The response of the educational sec-
tor is less well developed at this point, 
but the use of networking systems has 
proved there is a way to continue to edu-
cate via distance learning. This is surely 
less effective at the elementary level, but 

the possibilities abound for high school, 
college-level and postgraduate educa-
tion. During this quarter, I am remote-
teaching master’s students at the mili-
tary school where I work, and find that 
there is in some ways a deeper, more tu-
torial quality that has emerged in the ab-
sence of the formal classroom setting.

This experience has caused me to 
muse about teaching my regular semi-
nars “from a distance” as well, but with 
more than the usual flat-screen TV-style 
connection. Instead, we should pursue 
the kind of immediacy that virtual reality 
provides. This is certainly an area of ad-
vancing technology that could have pro-
found effects on education, at many lev-
els. VR might even prove an interesting 
way to bring actors and audiences to-
gether in “theaters” made of bits and 
bytes. Think of concerts, too, and a range 
of other kinds of group activities that can 
be conducted via well-designed VR.

The third area of opportunity that 
COVID may catalyze is the possibility of 
networking medical research. If Met-
calfe’s Law, about the power of net-
works being a strong multiple, perhaps 
the square, of the number of intercon-
nected nodes, then it is time to put in 
place a global medical network. To 
some extent, this is already being done, 
but it can be built upon. What we don’t 
want to see is what is happening right 
now: medical research activities are 
being subjected to a steady stream of 
hacks. Officials of the U.S. government 
—including the Secretary of State—
have gone so far as to accuse particu-
lar foreign powers of being behind 
these activities. Of course, perpetrator 

John Arquilla 
The COVID Catalyst
https://bit.ly/35eGSpq
April 27, 2020
The coronavirus pan-
demic has, like its pre-

decessors from the Black Plague to the 
Spanish Flu, once again demonstrated 
the great vulnerability of social and eco-
nomic systems to microbes. Yet, it may 
be that there is an important difference 
this time around.  

The bubonic plague of the 14th cen-
tury completely disrupted the huge 
Mongol Empire and killed off a third of 
the population of Europe. The flu that 
hit at the end of World War I killed tens 
of millions as well. But this time around, 
advances in medicine—and skillful use 
of information technology for hotspot 
detection and backtracking contacts, 
among other functions—will, in addi-
tion to sheltering in place, keep the cost 
of corona in lives lost relatively low. That 
the world has recourse to such boons 
to lifesaving ought to be seen as very 
good news, despite the huge economic 
costs and serious psychological dam-
age inflicted by the virus. And, if we’re 

Transitioning to 
Distance Learning and 
Virtual Conferencing 
John Arquilla considers responses to the coronavirus pandemic,  
while Mark Guzdial ponders the impacts of competitive enrollment.
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ambiguity remains a problem, and these 
actions might also be by criminals who 
intend to sell whatever they steal.

We have international policing enti-
ties that surely will need to be increas-
ingly attentive to this threat. But the 
larger point is about the need for na-
tions to begin to think less in terms of 
power as gained through the control of 
information, and more in terms of the 
value created, for all, by sharing it. And 
not only as relates to medical research. 
Imagine the power of the “global mind” 
that has the potential to emerge. There is 
scarcely a problem bedeviling the world 
that would not succumb to this kind of 
networked, collective intelligence.

Beyond the three areas of opportu-
nity discussed here, there are surely 
other ways in which COVID can catalyze 
progress—by reshaping governance 
and statecraft while improving global 
public discourse in more participatory 
ways, and with greater immediacy, for 
example. But that is a far reach. For 
now, the focus should be on how the re-
sponse to COVID has opened up the 
possibility of making quantum leaps in 
environmental protection, education, 
and global health research.

Progress in each of these areas, how-
ever, is wholly dependent upon robust 
cybersecurity. Without a solid virtual 
foundation, the ability to move forward 
in any of these areas will always be held 
at risk. And in a world still too wedded 
to the firewall-and-antiviral paradigm 
—rather than, say, to ubiquitous use of 
strong crypto and cloud computing—
what COVID catalyzes may end up pro-
ducing a fizzle instead of a fountain-
head for transformation.

Mark Guzdial  
Students Get the Idea 
They’re Unwanted 
When There  
Are Enrollment 
Barriers: Touring  

the Best of SIGCSE 2020
https://bit.ly/2KZcjdY
May 2, 2020
The ACM Special Interest Group on CS 
Education (SIGCSE) cancelled its techni-
cal symposium in Portland the morning 
the conference was scheduled to start. 
I was there. My wife (Barbara Ericson, 
https://bit.ly/3c5sjag) and I arrived on 
the evening of Wednesday, March 11, 
a half-hour before Oregon’s governor 

banned large meetings. The next morn-
ing, I got the announcement that the 
conference was closed. I visited with oth-
ers who had arrived for the first day (all 
of us observing social distancing), met 
with collaborators during the day, then 
flew back home on Friday, March 13.

While it was disappointing that the 
conference was cancelled, I’m happy to 
see that all the papers are posted in the 
ACM Digital Library (at https://bit.
ly/3dbNXd0). I’ve been spending time 
looking through the papers, wishing I’d 
have had the opportunity to hear the pre-
sentations and talk to the authors.

Let me tell you about the easiest pa-
per to recommend: one of the Best Paper 
awardees for CS Education Research: 
Competitive Enrollment Policies in 
Computing Departments Negatively 
Predict First-Year Students’ Sense of Be-
longing, Self-Efficacy, and Perception of 
Department, by An Nguyen and Colleen 
M. Lewis of Harvey Mudd College 
(https://bit.ly/2W5Yyk1). The punchline 
of the paper is in the title, and might be 
described as “if you send students the 
message that they’re unwanted, they’re 
going to feel unwanted.”

Nguyen and Lewis look at a dataset 
from the Computing Research Associa-
tion based on a survey of 1,245 first-
year students. They looked at four out-
come measures:

 ˲ Perception of department as wel-
coming indicated by agreement with 
phrases like “My department cares 
about its students.”

 ˲ Sense of Belonging indicated by 
agreement with phrases like “I feel like 
I belong in computing.”

 ˲ Self-efficacy (a sense you can achieve 
tasks in a domain) indicated by agree-
ment with phrases like “I am confident 
that I can pass my classes.”

 ˲ Growth mindset (a sense you can al-
ways get better at something through 
effort) indicated by agreement with 
phrases like “Anyone has the ability to 
learn computing and be good at it.”

They defined a department as hav-
ing competitive enrollment if students 
had to apply to become a computing 
major, or if a student needs to meet 
grade thresholds (beyond simply pass-
ing) to become a computing major. 
They found students in departments 
with competitive enrollment had a 
lower sense of being welcomed and a 
lower sense of self-efficacy. If students 

had prior experience, they still had a 
sense of belonging in computing, but 
that wasn’t true for students who 
didn’t have prior experience in belong-
ing. Overall, female, Black, and Latinx 
first-year CS students had a lower sense 
of belonging and lower self-efficacy.

Departments are using competitive 
enrollment as a way of managing rapidly 
rising enrollment, or just to make sure 
that the students who get to the upper-
level classes succeed. In any case, these 
moves are a barrier to students. The re-
sults from this paper suggest the moves 
are having an impact on students.

Some of the discussion about this 
paper on Twitter points out that the ef-
fect isn’t all that strong; statistically 
significant, but not a large effect size. 
That makes sense to me. These are 
subtle and likely indirect effects. If a 
CS professor said to a student, “You’ll 
never make it in CS. You don’t belong,” 
and then the student consequently 
showed a decrease in self-efficacy and 
sense of belonging, we would say the 
mechanism would be pretty clear and 
the effect would be direct. In this case, 
the competitive enrollment barriers 
may not take effect until the second or 
third years of undergraduate, and this 
study is looking at all first-year stu-
dents. The direct impact is maybe 
some form of social pressure on stu-
dents (such as talking to other stu-
dents facing these barriers), or the stu-
dent dreading a future date when they 
would have to be judged. Competitive 
enrollment tells students not everyone 
is welcome, and first-year students 
seem to be responding to that.

We can’t know the future of CS en-
rollment. Will CS still have huge enroll-
ment next year, when the world is still 
dealing with COVID? How will compet-
itive enrollment measures need to 
change in the future? This is an impor-
tant study to realize there are likely ef-
fects of barriers, even for students in 
their first year.

There is a lot more great stuff in 
SIGCSE 2020. I recommend taking a 
stroll around the proceedings.

John Arquilla is Distinguished Professor of Defense 
Analysis at the United States Naval Postgraduate School. 
The views expressed are his alone. Mark Guzdial is 
professor of electrical engineering and computer science 
in the College of Engineering, and professor of information 
in the School of Information, of the University of Michigan.
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While the threat is theoretical, it 
still has contemporary implications. 
A malicious actor could store a cache 
of email encrypted with today’s cryp-
tographic approaches, and then use 
quantum computing to unlock them 
some 10 or 15 years in the future.

Government, academia, and in-
dustry are working diligently to pre-
pare for this post-quantum-comput-
ing world. The German government, 

T
H E  S E C U R I T Y  O F  modern 
communications could soon 
expire. The precise day, 
month, or year is impossible 
to predict because the tech-

nology capable of cracking our codes—
practical, robust quantum comput-
ers—does not exist. Yet experts insist 
that the time to prepare is now.

“It’s beyond something you can just 
ignore, even though we still don’t know 
when it will happen,” says mathematician 
Michele Mosca of the Institute for Quan-
tum Computing at the University of Wa-
terloo in Canada. “The chance of it hap-
pening in five, 10, or 20 years is not a risk 
you can accept. It’s a systematic threat to 
the global economy, and it’s real enough 
that you definitely have to plan for it now.”

Today’s most successful crypto-
graphic systems, which we depend 
upon to secure online transactions and 
communications, rely on one of two 
mathematical problems: factoring large 
numbers or finding discrete algorithms. 
If you’re using online encryption, buying 
something, or even downloading a soft-
ware update for your PC, the security of 
that exchange probably relies on the dif-
ficulty of these mathematical challenges. 
For today’s computers, these problems  
are all but impossible to solve.

In 1994, mathematician Peter Shor 
described an algorithm that could un-
lock these codes, but it was not designed 

for machines that speak in the common 
digital language of 1s and 0s. Shor’s 
algorithm is designed to run on a quantum 
computer—one that uses quantum 
bits, or qubits. These qubits could exist 
in a superposition of an exponential 
number of states, and a quantum 
computer running Shor’s algorithm 
could solve both of the difficult 
mathematical problems that under-
pin most cryptography.

The Quantum Threat
Cryptographers are developing algorithms to ensure 
security in a world of quantum computing.

Science | DOI:10.1145/3398388 Gregory Mone

http://dx.doi.org/10.1145/3398388
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for example, is funding seven initia-
tives, including efforts to increase 
collaboration between academia and 
industry. However, most experts cur-
rently are focused on the Post-Quan-
tum Cryptography Standardization 
project being run by the U.S. Nation-
al Institute of Standards and Tech-
nology (NIST). The goal of the proj-
ect, which has many hallmarks of a 
competition but declines to be de-
fined as such, is to spark the develop-
ment, refinement, and testing of 
cryptographic algorithms that could 
maintain security in a world of quan-
tum computers.

Living on the Edge
In one sense, the threat of quantum 
computers is not entirely new, as 
there is always a risk cryptography 
can be broken. “We live on the edge 
because none of the cryptographic 
systems we use are proven secure in 
the sense that there’s no mathemat-
ical proof that these things cannot 
be broken,” says Massachusetts In-
stitute of Technology mathemati-
cian Vinod Vaikuntanathan. “A 
bunch of smart people try to attack 
them for 10 to 20 years, and if they 
can’t, then we say it’s probably good 
enough. But we’re always at risk of 
someone coming up with a clever al-
gorithm for factoring large numbers 
or, with quantum computers, we’re 
at the risk of the underlying com-
puting technology changing so dra-
matically that new attacks suddenly 
become possible.”

Since the problems on which most 
cryptography relies would be solvable 
in a post-quantum world, experts have 
to find a new, harder mathematical prob-
lem. Luckily, this effort has been under-
way for some time. “People have been 
trying to build post-quantum-secure 
cryptography for 20 years,” says crypto–
graphy researcher Vadim Lyubashevsky 
of IBM Research, Zurich. “This was 
already a mature field.”

Narrowing the Field
The aim of the NIST program is to 
transform this theoretical work into 
practical methods and results that can 
be widely attacked and tested. The ini-
tial call for proposals yielded 82 sub-
missions, of which 69 were accepted. 
NIST researchers and members of the 

cryptography community quickly set 
about testing the approaches. Some 
were broken within a few weeks; others 
survived longer. When a group or indi-
vidual breaks a technique, the result 
is announced in an NIST forum. The 
prize? Peer recognition. By 2019, the 
field narrowed to 26 candidates, and 
that number will be winnowed down 
again this year or early next.

NIST mathematician Dustin Moody, 
director of the program, expects 
approximately a dozen candidates will 
emerge as finalists. NIST has encour-
aged several teams to merge, as their 
approaches were similar, and some have 
followed these recommendations, while 
others remained independent. One of 
the more popular methods among the 
entries hinges on lattices, or grids, and 
the difficulty of finding a point close to 
the origin in a lattice defined by a basis 
of long vectors. In two dimensions, the 
lattice problem can be relatively sim-
ple, but “When you go to 1,000 dimen-
sions, this becomes insanely hard,” says 
Vaikuntanathan. “Nobody has been able 
to put a dent in this problem.”

The other advantage of the lattice-
based approach is that cryptography 
researchers have been testing it—
and attacking it without success—for 
years. “This gives you confidence in 
the security,” says Moody. “It gives you 
confidence that the hard problem 
we’re going to rely on really is going to 
be a hard problem.”

At the same time, Moody stresses, 
there are no favorites, and several other 
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ACM Fellow 
Bhavani 
Thuraisingham 
is a Founders 
Chair Professor 
and Executive 
Director of the 

Cyber Security Research and 
Education Institute at the 
University of Texas at Dallas. 

Thuraisingham received 
an undergraduate degree in 
mathematics and physics from 
the University of Ceylon (now 
Sri Lanka), a master’s degree 
in Mathematical Logic and 
Foundations of Computer 
Science at the University of 
Bristol in the U.K., and a Ph.D. 
in Theory of Computation from 
the University of Wales in the 
U.K. “I also earned a higher 
doctorate (D. Eng) from the 
University of Bristol, England, 
for my published work in secure 
data management,” she adds.

Over Thuraisingham’s nearly-
40-year career, she has worked in 
industry at the non-profit MITRE 
Corp., at a federal laboratory, 
and for the U.S. National Science 
Foundation. In 2004, she joined 
the faculty of The University of 
Texas at Dallas as a professor of 
computer science and director 
of the university’s Cyber Security 
Research Center.

Thuraisingham’s research 
focus is on the intersection of 
cybersecurity and data science. 
“One area my research has 
centered on is applying machine 
learning to detect malevolent 
threats, such as malicious code 
and malware,” she says. 

More recently, she has 
focused on adversarial machine 
learning, an ongoing process of 
introducing countermeasures 
against evolving threats.  
“Malicious threats keep updating 
and adapting, so cybersecurity 
measures have to as well.” 

Thuraisingham is a 
passionate advocate for women 
in computing. She supports, 
motivates, and encourages 
women to become involved 
in cybersecurity, data science, 
and artificial intelligence 
by organizing conferences 
and workshops and giving 
motivational addresses.

—John Delaney

“It’s not a paint job. 
It’s like replacing 
every brick in  
the foundation  
of your house.  
You can’t just  
throw on some 
quantum-safe  
fairy dust at  
the last minute.”
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approaches have their own strengths. 
Mosca notes that advocates of another 
popular option—a code-based ap-
proach—would argue their scheme has 
been around and tested even longer.

Practical Considerations
The program is not merely evaluating 
the strength or security of the algo-
rithms; the practical implications of re-
al-world implementation are essential, 
too. For example, if the schemes are go-
ing to run on embedded systems such 
as Internet of Things (IoT) devices, they 
will need to be sufficiently lightweight 
that they will not demand significant 
compute or storage resources. 

“In general, post-quantum cryptog-
raphy schemes will require more re-
sources,” says cryptographic engineer 
Ruben Niederhagen of the Fraunhofer 
Institute for Secure Information Tech-
nology (SIT) in Germany. “That’s fine if 
you have a large device like a smart-
phone or a server, but if you go down to 
embedded systems, which have limit-
ed computational resources and limit-
ed storage, this gets very tricky.”

Speed will be an essential quality, 
too. Online transactions need to be 
fast, so new quantum-safe algorithms 
should not slow down exchanges ex-
cessively, and Lyubashevsky says 
some post-quantum techniques may 
actually prove faster. 

Another factor to consider will be 
the size of the keys that need to be ex-
changed. The lattice-based encryption 
approach, for example, might result in 
keys that are 8,000 bits long, instead 
of the 2,048-bit keys exchanged with 
the popular RSA technique. “If you 

hardcoded that your packets are go-
ing to be less than 3,000 bits, you’re 
going to be in trouble,” says Lyuba-
shevsky. Systems that have placed a 
limit on key size will have to be ad-
justed, or they will not be able to run 
these new cryptographic standards. 
Also, the exchange of keys needs to 
be fast enough that the operation 
does not time out.

Regardless of which algorithms 
emerge from the competition, experts 
say it will still take years to implement 
a post-quantum approach. “If I say it is 
five years away, and tell a random en-
terprise they have to fix all their sys-
tems, there is no practical way they 
could do it,” says Mosca. “Even a sim-
ple fix takes a long time. It’s not a paint 
job. It’s like replacing every brick in 
the foundation of your house. You 
can’t just throw on some quantum-
safe fairy dust at the last minute. You 
have to really start planning and work-
ing on it now.”

This is especially true for large enter-
prises. Niederhagen and his Fraunhofer 
colleagues work closely with major 
companies, studying their products or 
product lines to determine which will 
need to be post-quantum secure. Auto-
mobiles, power plants, trains—each of 
these relies on embedded devices, and 
the products they are manufacturing 
today will likely still be operational in 
15 years, at which point quantum com-
puters could be operational.

No Silver Bullet
Niederhagen says researchers who 
focus more on implementation are 
in something of a holding pattern as 

they wait for the new NIST standards 
to be released. While no date has been 
set, and no clear winner has emerged, 
Moody does offer some sense of the 
end-results.

Moody and other experts expect sev-
eral algorithms to be selected, instead 
of a single victor. “There’s no perfect 
silver-bullet winner that will have all 
the properties everyone wants,” Moody 
says. But the work of the remaining 
teams, and the efforts of the larger 
cryptography community to attack 
their algorithms, should bring us clos-
er to a more secure post-quantum fu-
ture. “We’re all working for the same 
purpose,” Moody notes. “We want 
strong cryptography to protect against 
a future with quantum computers.” 
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As We Enter a New Quantum Era
https://www.youtube.com/
watch?v=vWP4LF2hz80

Gregory Mone is a Boston-based science writer and the 
author, with Bill Nye, of Jack and the Geniuses: At the 
Bottom of the World.
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Eight members of ACM were 
among the 120 members and 26 
international members recently 
elected to the National Academy 
of Sciences in recognition of 
their continuing achievements in 
original research.

The honored scientists were:
Vinton G. Cerf, vice president 

and chief Internet evangelist, 
Google Inc., Reston, VA.

Ronald Fagin, IBM Almaden 
Research Center, San Jose, CA. 

Thomas Henzinger, university 

president, Institute for Science 
and Technology Austria. 

Yonggang Huang, Walter P. 
Murphy Professor of Civil and 
Environmental Engineering 
and Mechanical Engineering in 
the department of mechanical 
engineering of the McCormick 
School of Engineering of 
Northwestern University, 
Evanston, IL. 

Elizabeth A. Kellogg, Robert E. 
King Distinguished Investigator 
at the Donald Danforth Plant 

Science Center, St. Louis, MO. 
Jennifer Rexford, Gordon Y.S. 

Wu Professor in Engineering, 
and chair of the department of 
computer science, at Princeton 
University, Princeton, NJ. 

Jeffrey D. Ullman, Stanford 
W. Ascherman Professor of 
Computer Science (Emeritus) at 
Stanford University, Stanford, CA. 

Bonnie Berger, associate 
member of The Broad Institute 
of the Massachusetts Institute 
of Technology (MIT) and 

Harvard University, and Simons 
Professor of Mathematics in 
the department of mathematics 
and professor of electrical 
engineering and computer 
science at MIT. 

The National Academy of 
Sciences is a private, non-
profit society established by an 
Act of Congress and charged 
with providing independent, 
objective advice to the nation 
on matters related to science 
and technology. 

Milestones

ACM Members Elected to National Academy of Sciences

https://www.youtube.com/watch?v=vWP4LF2hz80
https://www.youtube.com/watch?v=vWP4LF2hz80
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funded starting in 2014 with a four-year, 
$11-million grant from the U.S. Defense 
Advanced Projects Research Agency.

While something like PlinyCom-
pute can identify a localized pattern 
such as the section of a program re-
sponsible for reading a file, nothing is 
yet capable of looking at the overall 
structure of more elaborate programs 
and discovering the patterns of how 
such smaller tasks fit together. Pli-
nyCompute is not able to write codes 
longer than 50 or 60 lines. “Using ma-
chine learning to look at these kind of 
meta-level patterns is one thing that 
people just really haven’t looked at,” 
Jermaine says. “No one is really looking 
at it because it just seems so hard.”

Program synthesis is successful 
when it is limited to small problems in 
tightly defined domains, says Marc 
Brockschmidt, a researcher in Micro-
soft Research’s Programming Princi-
ples and Tools group in Cambridge, 
U.K. The difficulty lies in going to a 
more ambitious scale, because of the 
challenge of specifying what the pro-
grammer wants. The most common 
ways to tell the computer the desired 
outcome are either to use natural lan-
guage or to show it a set of examples 
and ask it to learn from them. “The 
problem really is that both natural lan-
guage and examples are a very weak way 
of specifying what behavior you want,” 
Brockschmidt says. “You wouldn’t ex-
pect that any system, no matter how far 
we get in research, would be able to go 
from ‘write an operating system’ to pro-
duce something like Windows 10 or 
macOS, just because when I say ‘write 
an operating system,’ there’s a lot of as-
sumptions that I have and a lot of differ-
ent ways of implementing this task that 
are not captured by my description.”

In 2017, Brockschmidt and his col-
leagues at Microsoft Research devel-
oped a program called DeepCoder, 
which performed program synthesis by 
having a neural network learn from a 
series of examples of the output that 
would be expected for a given input. 

A
S ARTIFICIAL INTELLIGENCE 

(AI)  techniques advance, 
they are beginning to au-
tomate tasks that, until 
recently, only humans 

could perform—tasks such as translat-
ing text from one language to another 
or making medical diagnoses. It seems 
only logical to turn that computer pow-
er on computers themselves and use AI 
to automate programming.

In fact, computer scientists are 
working on just that idea, using vari-
ous AI techniques to develop new 
methods of automating the writing of 
code. “The ultimate goal of this is that 
you would have professional software 
engineers not actually write code any-
more,” says Chris Jermaine, a profes-
sor of computer science at Rice Uni-
versity in Houston, TX. Instead, the 
engineer would tell a computer what a 
piece of software should do, and the 
AI system would write the code, per-
haps stopping along the way to pose 
questions to the engineer. “A software 
engineer becomes much more of a de-
signer than somebody who deals with 
the low-level details,” Jermaine says.

Such a vision, Jermaine and other 
computer scientists say, lies decades 
in the future, and it is not entirely 
clear how to achieve it. Meanwhile, re-
searchers are applying AI techniques 
to narrower problems and coming up 
with some promising solutions.

A Vintage Idea
The concept of program synthesis, in 
which a user specifies an intention and 
a programming language and the ma-
chine creates the code, actually dates 
back to the early days of AI in the 1950s, 
says Swarat Chaudhuri, an associate 
professor of computer science at the 
University of Texas, Austin. These days, 
most people think of statistical meth-
ods such as neural networks when they 
talk of AI, but back then, the field was 
focused on symbolic descriptions, he 
says. Theorem provers, which use com-
puter programs to automatically come 

up with formal mathematical proofs, 
exemplify that type of AI.

Combining both the symbolic and 
statistical approaches to AI can help to 
solve the challenge of program synthe-
sis, Chaudhuri says. Say, for instance, 
that you want to write a program to 
read a file. You might start by providing 
a neural network with some keywords, 
such as “read” and “file.” The neural 
net could then go through a corpus of 
thousands of programs, perhaps as 
collected on GitHub, a Microsoft-
owned repository of code. The neural 
net could identify the type of program 
structure associated with the key-
words, providing a skeleton of what the 
desired program should look like.

Machine learning, though, cannot 
accomplish the whole task. “Neural 
nets are actually really bad at doing 
things precisely. They are definitely 
not able to do tasks like programming 
end to end,” Chaudhuri says. “Going 
from that high-level structural insight 
to a piece of code that’s going to pass 
a type checker, that you can paste into 
your code window and it’s not going 
to complain, that’s a leap.”

The next step is to use symbolic 
methods to fill in the low-level details, 
such as which variable to use in a par-
ticular place within the code, by search-
ing through all the possible variables 
that could be placed there. Chaudhuri, 
then at Rice, and Jermaine developed a 
system that uses these methods to fig-
ure out the specifications of a program. 
The system, called PlinyCompute, was 
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Your Wish Is My CMD
Artificial intelligence could automate software coding.
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DeepCoder required the use of a do-
main-specific programming language, 
which contains more restrictions than 
a full-featured programming language. 
They applied their approach to chal-
lenges posed on programming compe-
tition websites and found they were 
able to solve some of them better than 
other approaches could. DeepCoder 
only worked on the simplest challeng-
es, however, and Brockschmidt decid-
ed to pursue other approaches to pro-
gram synthesis.

AI has begun to find its way into 
commercial tools for software develop-
ment. So far, the most widespread use 
of machine learning in the software in-
dustry is for code autocompletion, 
Brockschmidt says. For instance, Mi-
crosoft’s integrated development envi-
ronment for programmers, Visual Stu-
dio, now includes IntelliCode. 
IntelliCode scans GitHub to identify 
patterns in coding, and uses what it 
learns to provide suggestions as the 
programmer types in statements. It 
also suggests arguments—values that 
are passed between programs—and 
tries to infer the formatting style being 
used, to keep the code consistent.

Eclipse, the integrated develop-
ment environment for Java, also uses 
AI to make autocompletion sugges-
tions, and the startup Kite does the 
same for Python. Another startup, 
DeepCode, spun out of Swiss techni-
cal university ETH Zurich, applies ma-
chine learning to reviewing software 
once it has been written, in order to 
uncover security bugs. A beta version 
of the company’s software is available 
for code developed in Visual Studio.

A Sparsity of Data
One difficulty in teaching a machine to 
program is a lack of data. While there 
is plenty of existing code collected in 
GitHub, or in the in-house collections 
of companies such as Google, very little 
of it has labels describing the develop-
er’s intention. There may be a few key-
words or some textual notes, but that is 
uncommon and often of limited value. 
“Often what the user wanted when they 
wrote the particular piece of code is not 
very well documented,” says Armando 
Solar-Lezama, head of the computer-
assisted programming group at the 
Massachusetts Institute of Technology, 
Cambridge, MA. With no way to know 

the intention behind existing code, the 
computer cannot predict how to go from 
what a developer asks for to new code. If 
a programmer has to spend a lot of time 
and effort writing a formal specification 
of what the program should do, program 
synthesis loses a lot of its value.

Divining a user’s intention is one 
key aspect of automating program-
ming, says Justin Gottschlich, head of 
machine programming research at In-
tel Labs in Santa Clara, CA. Intel estab-
lished the research program last fall to 
encourage the automation of pro-
gramming. Gottschlich and Solar-
Lezama were two of the authors of a 
2018 paper describing what they call 
the three pillars of machine program-
ming. The first pillar, intention, is the 
ability of the machine to understand 
the programmer’s goals. Invention is 
the ability of the computer to write a 
program that accomplishes those 
goals. The third pillar, adaptation, is 
about revising the software to make it 
more efficient and to correct errors.

Gottschlich considers the complete 
automation of writing software one of 
the field’s grand challenges, one that 
could take decades to achieve. “You ba-
sically give the computer an intention 
specified in some manner—input/out-
put examples, natural language, what-
ever—and then it builds the entire 
piece of software for you. That is an 
outrageous goal,” he says.

Yet there are smaller aspects of the 
problem where machine programming 
already is outperforming humans, such 
as in generating tests to find perfor-
mance bugs in software. Bugs that de-
grade the efficiency of a program can be 
hard to spot because they are not black-
and-white errors. A program with per-
formance bugs may still run, but much 
slower than you want. Intel developed a 
program called AutoPerf, based on 
some of the techniques of machine pro-
gramming, and was able to detect a bug 
in the MySQL relational database man-
agement software that was degrading 
its performance by nearly 70%.

In fact, one of the benefits of ap-
plying AI to writing software should 
be the reduction of errors, thereby 
increasing efficiency and cutting de-
velopment costs. It can also help 
with a shortage of programmers. Ac-
cording to a 2017 survey by Code.org, 
a non-profit that promotes computer 

education, the U.S. had more than 
500,000 unfilled jobs for coders, but 
was producing only 50,000 computer 
science graduates a year.

Rather than take jobs away from 
people, automating software creation 
could free programmers to focus on 
the more creative parts of their jobs. A 
machine programming system could 
act as an assistant to a program de-
signer, taking care of the nitty gritty 
and querying the designer about ex-
actly what he wants. “What you could 
have is a magnification effect where 
people are able to produce more and 
better software,” says Jermaine. “And 
I think it would alleviate some of 
those terrible problems that we have 
right now with the lack of engineering 
capacity in the modern world.”

Gottschlich says AI could even open 
up the power of programming to peo-
ple who have no training in writing 
code. “We really want to enable the 
global population to be what I’m call-
ing ‘software creators’,” he says. “If we 
realize this dream that we’re setting 
out to conquer, the machines would do 
all the programing and the humans 
would focus mostly on intention.” 
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in a furnace, dressing, sintering, and 
melting at high temperatures are used 
to burn electronic scrap waste, resulting 
in plastic being separated from the oth-
er components, while the metal oxides 
form a slag from which non-ferrous 
and precious metals can be recovered. 
An less-common technique uses bio-
metallurgical processing, which lever-
ages the physical-chemical interaction 
that occurs when metals are exposed to 
microorganisms such as algae, bacteria, 
and yeasts; when added to a solution 
containing the e-waste, these reac-
tants can accumulate heavy and precious 
metals. Water separation technology 
can be used to separate the remaining 
waste stream, which is usually mostly 
plastic and glass.

While these processes certainly are 
effective, they can be expensive, in 
terms of the actual economic cost 
paid to separators, as well as the eco-
logical cost of expending additional 
energy to carry out each process. At 
the current device recycling rate of 

I
T IS  HA RD  to imagine a world 
without electronic devices. 
From servers, personal com-
puters, and storage devices 
to smartphones, tablets, and 

wearable devices, electronic devices 
drive businesses, entertain and enable 
consumers to interact with the world, 
and keep the world’s information and 
physical infrastructure networks run-
ning on a 24/7 basis. Not surprisingly, 
the number of electronic devices in 
use, particularly those that are con-
nected to a network, continues to grow.

A 2019 Cisco VNI report forecast that 
on a global basis, there will be 28.5 bil-
lion networked devices in use by 2022, 
up from 18.0 billion in 2017, and 3.6 
networked devices per capita by 2022, 
up from 2.4 per capita in 2017. Further, 
a December 2019 Deloitte study found 
that U.S. households own an average of 
11 connected devices, including seven 
devices featuring screens on which to 
watch content, with expectations that 
the number of devices will increase fur-
ther, overall and per person, thanks to 
the growth of new Internet of Things 
(IoT) products and applications.

While this is certainly good news 
for device manufacturers, content 
providers, and wireless service provid-
ers, there has also been enormous 
growth in electronic waste.

According to United Nations 2018 
estimates (the most recent available), 
the e-waste stream has reached 50 mil-
lion metric tons annually on a global 
basis. Managing this waste appropri-
ately is of considerable concern; throw-
ing electronic equipment, often con-
taining extremely harmful chemicals 
and elements, into landfills or ship-
ping them off to other countries, is 
simply no longer an option, due to 
both environmental concerns and geo-
political issues, given that some coun-
tries are now refusing to process the 

waste they have accepted in the past 
from foreign nations.

The management of e-waste can be 
accomplished in a variety of ways, but 
at the heart of the process is the separa-
tion of materials. E-waste materials are 
physically shredded to facilitate easier 
sorting and separation of plastics from 
metals and components. Magnets are 
then used to separate ferrous metals 
from other elements, and these iron 
and steel fragments can then be resold 
as recycled steel.

Hydrometallurgical processes are 
used to separate metals; e-waste items 
such as printed circuit boards are dis-
solved into leaching solutions consist-
ing of sulfuric acid, hydrochloric acid, 
nitric acid, aqua regia, and alkalis. The 
desired metals can then be recovered 
via a number of processes, including 
electrorefining, precipitation, cemen-
tation, absorption, ion exchange, and 
solvent extraction.

Meanwhile, pyrometallurgical pro-
cesses including incineration, smelting 

Reducing and 
Eliminating E-Waste 
We need to mitigate the environmental impact  
of disposing of electronics at their end of useful life. 

Society  |  DOI:10.1145/3398390 Keith Kirkpatrick

When electronic devices reach end of life, internal components must either be recaptured for 
reuse or disposed of in ways that do not harm the environment. 
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12%, according to the U.S. Environ-
mental Protection Agency, the eco-
nomic benefit of capturing and strip-
ping out materials as a primary 
recycling strategy may be limited.

That’s why there is a growing inter-
ested in reducing the amount of haz-
ardous or hard-to-recycle material at 
the point of design and manufacture, 
including hazardous chemicals, rare 
earth materials, or composite plastics 
that cannot be easily separated and re-
cycled. Significant progress has al-
ready been made via the “lightweight-
ing” of televisions, as manufacturers 
have shifted from the production of 
cathode ray tubes (CRTs) to flat-panel 
(plasma, LCD, and LED) displays, re-
sulting in a smaller amount of plastic 
per television set, plus a reduction in 
the use of other harmful chemicals 
(such as lead, cadmium, barium, and 
a number of fluorescent powders).

However, the shift to smaller and 
lighter electronics is not all good news.

“Over time, the waste stream in the 
United States has actually gotten light-
er [in terms of weight],” says Callie 
Babbitt, an associate professor in the 
Department of Sustainability at the 
Golisano Institute for Sustainability at 
Rochester Institute of Technology. 
“But that doesn’t mean it’s getting eas-
ier to manage, because the waste 
stream is more complex,” Babbitt says.

Indeed, in many devices, such as 
smartphones, tablets, and even wear-
able devices, more tightly integrated 
components are harder to separate, 
Babbit says, and the devices them-
selves are often sealed so even remov-
ing a battery can be a time-consuming 
challenge, making end-of-life recycling 
efforts both tedious and expensive. 
Further, as devices get smaller, the ma-
terial value of electronic devices is get-
ting smaller, requiring a greater num-
ber of devices to be recycled to capture 
the same amount of precious metals 
that can be resold.

Special attention also is being paid to 
reusing materials (such as plastics, met-
als, or composites) that can easily be sep-
arated and broken down by waste pro-
cessors. Some manufacturers even 
design components that can be saved 
and recycled directly, without needing to 
be broken down to their core materials.

“Some companies are thinking more 
about the product design as a whole, 

making the product more easily reused 
or upgraded,” Babbitt says, noting that 
manufacturers increasingly think 
about substituting rare materials with 
more commonly sourced ones, reduc-
ing the number of different types of 
plastics used in composites, and elim-
inating compound materials such as 
resins or films adhered to plastics.

Further, China’s enactment in Janu-
ary 2018 of its National Sword policy has 
had major implications in the e-waste 
world. The country, which once accept-
ed nearly 50% of the world’s recyclable 
waste, banned the import of most plas-
tics and other materials into China’s re-
cycling processors, forcing a shift from 
simply improving recycling rates to ad-
dressing the issue of e-waste before a 
product is even manufactured.

Designing products with consider-
ation of the ease of recycling is a key ele-
ment of the Electronic Product Environ-
mental Assessment Tool (EPEAT), a 
program of the non-profit Green Elec-
tronics Council (GEC) that provides la-
beling for electronic products that meet 
certain criteria across a range of 12 cat-
egories, covering material and chemical 
usage, energy efficiency, recyclability, 
product lifespan, and product design. 
The EPEAT program is voluntary, and 
incorporates input from manufactur-
ers; it can be thought of as a benchmark 
that can be utilized in a global market 
where environmental and recycling 
laws and regulations vary widely.

Explains Patty Dillon, director of 
criteria development for the EPEAT 
program, “When we have these re-
quired and optional criteria, it’s [de-

signed] to get the market to move in 
that direction where [a goal] might 
not be immediately achievable, but it 
is something that can be achieved in a 
one- to two-year time frame.” Dillon 
says EPEAT often sets the levels for 
percentage of recycled content, ener-
gy efficiency, and product longevity, 
at easily achievable benchmarks to 
entice a wide range of manufacturers 
to join the program, and plans to in-
crease these standards over time.

“For example, the initial computer 
standard had no requirement except 
that [manufacturers] declare how 
much recycled content was included,” 
Dillon says. “There was no minimum 
level, but manufacturers could receive 
an optional point for 10% recycled con-
tent, while 25% recycled content got 
you two points. After a few years, we 
were able to go in and say, ‘Oh, look at 
where the market is’; now we have a 2% 
required recycled content level, be-
cause we know you can do it.”

EPEAT offers three levels of compli-
ance to which manufacturers can de-
sign their products: Gold-rated prod-
ucts must meet all of the required 
criteria and at least 75% of the optional 
criteria; Silver-rated products must 
meet all of the required criteria and at 
least 50% of the optional criteria; and 
Bronze-rated products must meet all of 
the required criteria in their category.

Examples of required criteria vary 
by product category, but within the TV 
category, there are three required cri-
teria: compliance with provisions of 
European Union (EU) Restriction of 
Hazardous Substances (RoHS) Direc-
tive; reporting on the amount of mer-
cury in light sources; and compliance 
with the provisions of the EU Battery 
Directive. Meanwhile, there are 12 op-
tional criteria, which are designed to 
push the industry forward in terms of 
reducing the use of certain substanc-
es, or eliminating specific materials 
altogether, such as using only non-
mercury-containing light sources, or 
eliminating or reducing products’ 
flame-retardant material content.

The goal behind the labeling is to 
make both large and consumer pur-
chasers of electronics more cognizant 
of the financial and environmental ben-
efits of “greener” electronic design, as 
well as encouraging manufacturers to 
continually improve their product de-

“Over time, the waste 
stream in the United 
States has actually 
gotten lighter, but 
that doesn’t mean  
it’s getting easier  
to manage, because 
the waste stream  
is more complex.”
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signs with regard to the issue of e-waste.
One of the primary components 

likely to become a concern over the 
next several years is the battery, used 
in many electronic devices today, but 
which may become even more preva-
lent as electric vehicles become more 
commonplace over the next decade.

Launched last year, the ReCell Center 
is a national collaboration of Argonne 
National Laboratory, the National Re-
newable Energy Lab, Oak Ridge Na-
tional Laboratory, Michigan Techno-
logical University, the University of 
California at San Diego, Worcester 
Polytechnic Institute, and battery in-
dustry participants, that is funded by 
a three-year, $15-million U.S. Depart-
ment of Energy grant. ReCell’s prima-
ry goal is to bring industry partici-
pants and researchers together to 
advance battery recycling technologies 
that can actually be used in a real-world 
commercial environment.

ReCell is focused on a few key ar-
eas related to battery technology, in-
cluding identifying and developing 
materials that can be easily and cheap-
ly recycled; developing direct cathode 
recycling (a process involving the re-
trieval of cathode materials from spent 
lithium batteries, and then regenerat-
ing the cathode materials by adding 
additional lithium into the structure of 
cathode material to create new battery-
grade material) to eliminate the need 
for expensive hydrometallurgical and 
pyrometallurgical processes to recover 
specific battery metals; developing 
processes for recovering other battery 
materials; and using modeling and 
analysis to determine the best mate-
rials and chemistries for current and 
future batteries.

“The goal behind ReCell is to make 
battery recycling economically attrac-
tive,” says Jeff Spangenberger, the orga-
nization’s director. “At the national lab 
level, we create a lot of really cool tech-
nology, but we need industry [partners] 
to commercialize these technologies. 
We had as many industrial stakeholders 
as we could to come and meet with us to 
make sure that what we were doing 
made sense, and to help direct the work 
that we do. If nobody’s ever to commer-
cialize the technology because they 
know it will never work in the business 
world, there’s no sense in us doing it.”

Though ReCell is primarily focused 

on lithium batteries used in electric ve-
hicles, Spangenberger notes that bat-
teries used in consumer products may 
also benefit from ReCell’s efforts, not-
ing that many electronic devices, such 
as smartphones, are designed so that 
it’s extremely difficult to even remove 
the battery, driving up the labor cost to 
recycle the battery technology. Any 
gains that can be made by ReCell’s ef-
forts in the EV battery space likely will 
show benefits in the adjacent market 
of consumer devices, which also rely 
heavily on Li-ion battery technology.

“I think that it will be, and hopefully 
some of these technologies will transi-
tion into other areas of recycling,” 
Spangenberger says. “Hopefully they 
will gain some advantages from what 
we’re doing. Remember, our goal is to 
make environmentally sound, eco-
nomically attractive, recycling for lithi-
um-ion batteries. No matter how it 
happens, it’s a win.” 

Further Reading

World Economic Forum, A New Circular 
Vision for Electronics Time for a Global 
Reboot, http://bit.ly/2ToM0l9
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VNI Forecast Tool (Device Forecasts),  
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EPEAT Criteria, Green Electronics Council, 
https://greenelectronicscouncil.org/ 
epeat-criteria/

Status of electronic waste recycling 
techniques: a review, Environmental 
Science and Pollution Research 25(4),  
May 2018, http://bit.ly/2PzBpmm
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“Our goal is to make 
environmentally 
sound, economically 
attractive, recycling 
for lithium-ion 
batteries. No matter 
how is happens,  
it’s a win.” 
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ACM 
Members 
Named  
to AAAS
Eight members of ACM, seven 
of whom are ACM Fellows,  
were among the 276 artists, 
scholars, scientists, and leaders 
in the public, non-profit,  
and private sectors recently 
named 2020 members of the 
American Academy of Arts & 
Sciences (AAAS).

The newest AAAS members 
include:

 ˲ Sarita V. Adve, Richard T. 
Cheng Professor of Computer 
Science of the University of 
Illinois at Urbana-Champaign. 

 ˲ Thomas A. Henzinger, 
president of Austria’s Institute 
of Science and Technology (IST). 

 ˲ Margaret Martonosi, a 
professor in the computer 
science department of 
Princeton University whose 
research focuses on computer 
architecture and mobile 
computing, particularly as they 
relate to power efficiency. 

 ˲ Fernando C.N. Pereira, a 
vice president and Engineering 
Fellow at Google, where he leads 
research and development in 
natural language understanding 
and machine learning. 

 ˲ Ronitt Rubinfeld, Edwin 
Sibley Webster Professor of 
Electrical Engineering and 
Computer Science at the 
Massachusetts Institute of 
Technology. 

 ˲ Eugene H. Spafford, 
executive director emeritus of 
the Center for Education and 
Research in Information 
Assurance and Security 
(CERIAS) at Purdue University, 
and a professor in the  
university’s department  
of computer science. 

 ˲ Mihalis Yannakakis, Percy 
K. and Vida L.W. Hudson 
Professor of Computer Science 
at Columbia University. 

 ˲ Alexander A. Razborov, 
Andrew McLeish Distinguished 
Service Professor at the 
University of Chicago. 

The complete AAAS  
Class of 2020 is listed at  
https://www.amacad.org/ 
new-members-2020.

http://bit.ly/2ToM0l9
http://bit.ly/2Py5RgE
https://greenelectronicscouncil.org/epeat-criteria/
http://bit.ly/2PzBpmm
https://www.amacad.org/new-members-2020
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https://www.amacad.org/new-members-2020
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In February 2020, the U.S. Copyright 
Office and the World Intellectual Prop-
erty Law Organization (WIPO) held an 
all-day conference in Washington, 
D.C., to consider how copyright should 
be applied to AI outputs. The first liti-
gated cases about copyright in AI out-
puts have been decided in China.

This column reviews the reasons why 
copyright professionals find this such a 
bedeviling issue. AI software may be the 
author-in-fact of such outputs, but is it 
an author-in-law who can own a copy-
right? Which, if any, human is entitled 
to claim copyrights in such outputs?

CONTU and Copyright Office  
on AI Authorship
The CONTU’s 1979 report concluded 
that there was “no reasonable basis for 
considering that a computer in any way 
contributes authorship to a work pro-
duced through its use.”4 It regarded 
computers and computer programs as 
tools with which works could be creat-
ed much like cameras enable the cre-
ation of copyrightable photographs.

The U.S. Copyright Office has in the 
past rejected claims of copyright in 
some non-AI machine-generated works. 
The Office, for instance, refused to regis-
ter a claim of copyright in a software-

S
IN CE  THE  MID-1960S,  intel-
lectual property (IP) law 
specialists have debated 
whether computers or com-
puter programs can be “au-

thors” whose outputs can be copyright-
ed.6 The U.S. Congress was so befuddled 
about this issue in the mid-1970s that 
it created a special Commission on 
New Technological Uses of Copyright-
ed Works (CONTU) to address this and 
a few other computer-related issues.4

A second burst of interest in AI au-
thorship broke out in the mid-1980s. 
Congress once again commissioned a 
study, this time from its Office of Tech-
nology Assessment (OTA), to address 
this and other controversial computer-
related issues. OTA did not offer an an-
swer to the question, perhaps in part 
because at that time, it was a “toy prob-
lem” because no commercially signifi-
cant outputs of AI or other software 
programs had yet been generated.5

But deep learning and other AI 
breakthroughs have caused IP profes-
sionals to rethink the AI authorship is-
sue.1,2 For example, The Next Rembrandt 
video features a group of art experts 
and computer scientists discussing 
how they collaborated to digitize many 
Rembrandt paintings, develop models 

of particular features of the paintings, 
and then create a Rembrandt-like por-
trait of a man with facial hair wearing a 
hat and looking to the right.6 The re-
sulting AI-generated painting really 
does look like a Rembrandt. The video 
does not address how the team that 
brought this painting into being thinks 
about the copyright issues. But I 
couldn’t help myself. That painting 
shows the copyrightability of AI out-
puts is no longer a toy problem.

In the U.K. and New Zealand, that 
painting would be eligible for a short 
term of copyright protection because 
those nations passed laws permitting 
this approximately three decades ago. 
The question is open, however, in the 
U.S. and in most of the rest of the world. 

Legally Speaking 
AI Authorship? 
Considering the role of humans in copyright protection  
of outputs produced by artificial intelligence.

DOI:10.1145/3401718 Pamela Samuelson

AI software may be 
the author-in-fact of 
such outputs, but is it 
an author-in-law who 
can own a copyright?
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the U.S. in 2000. The Copyright Office 
initially refused to register the work at 
issue, A Course in Miracles, because 
the application identified Jesus as its 
author. A second attempt at registra-
tion was more successful because 
“Anonymous” was now identified as 
its author. When the New Christian 
Church made copies of the text, think-
ing it was in the public domain, Pen-
guin (to whom the copyright had been 
assigned) sued for infringement. The 
court held that there was sufficient 
creativity in the editorial selection and 
arrangement of these materials to 
support a copyright.

Software Output Cases
Two U.S. cases have ruled that certain 
outputs of computer programs were 
not infringing derivative works. The 
first was Design Data v. Unigate Enter-
prises in 2017. Unigate hired a Chinese 
company to use Design Data’s CAD 
software to generate drawings, data, 
and models for structural steel compo-
nents for buildings. Unigate sold these 
outputs to its clients.

Design Data claimed the Chinese 
company used an infringing copy of its 
software to generate these outputs, 
and the outputs were thus infringing 

generated colorized version of a black-
and-white public domain movie. A 
machine-generated splattering of colors 
on a canvas, which looked something 
like a Jackson Pollack painting, was like-
wise refused registration. The Office re-
cently reiterated its legal position on this 
issue: “only works created by a human 
can be copyrighted under United States 
law, which excludes photographs and 
artwork created by animals or by ma-
chines without human intervention.”

The need for human authorship 
also explains why the Office refused 
to register a claim of copyright in a 
monkey selfie. David Slater, a British 
nature photographer, went to a wild-
life park in Celebes and set up his 
camera in a way that enabled a crested 
macaque (known to the world as Na-
ruto) to take photos of himself smil-
ing. Slater claimed copyright in the Na-
ruto photos because of his creative 
staging of the camera and settings. 
When some copies of the photos ap-
peared on Internet sites, Slater 
claimed this was infringement. Tech-
dirt picked up on the dispute and 
questioned Slater’s ownership 
rights, claiming the photos were in 
the public domain or its posting of 
the monkey selfies was fair use.

An interesting twist in the monkey 
selfie case was a lawsuit that the People 
for the Ethical Treatment of Animals 
(PETA) brought against Slater, claiming 
it was Naruto’s guardian and therefore 
entitled to claim copyright in the pho-
tos on Naruto’s behalf. The trial judge 
ruled there was no human author of the 
photos, and so the photos were in the 
public domain. The appeals court af-
firmed dismissal of PETA’s lawsuit.

Automatic Writing Cases
One set of relatively close precedents 
to the AI authorship issue are those 
rendered in the U.S. and U.K. involving 
claims of copyright in texts ostensibly 
created by supernatural beings.1

One such case was Cummins v. Bond, 
which a U.K. court decided in 1927. In 
justifying his copying of some parts of 
the text at issue, Bond relied on Cum-
mins’ statements that he wrote the text 
in a trance and was channeling messag-
es from the spirit world. In Bond’s view, 
if the spirit was the author, then no hu-
man author could claim copyright. The 
court decided that Cummins was the 
author of the text because he had “trans-
lated” the spirit’s message into English.

Penguin Books v. New Christian 
Church was a similar case decided in 

An AI-generated painting, The Next Rembrandt (left) is the result of a collaborative effort using models of features from many  
Rembrandt paintings.
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training data, weights to be given to 
various criteria, models for generating 
outputs or certain parts, algorithms 
used to analyze the data, and software 
that executes instructions. Also impor-
tant is the know-how of AI program-
mers who fine-tune these component 
elements to yield the desired results.

Conclusion
The pragmatic answer to the AI au-
thorship puzzle, as I have argued else-
where,4 is the user who is responsible 
for generating the outputs. If anyone 
needs to be designated as owner of 
rights in the outputs, it should be the 
user. That person possesses the out-
puts, discovered that the potential 
commercial value of the outputs, and 
is generally best situated to assess and 
exploit that value.

Moreover, as in the automated writ-
ing and Feilin cases, the user will often 
have adapted, rearranged, edited, or 
otherwise tinkered with the outputs to 
make them suitable for commercial-
ization. If anyone needs copyright in-
centives to take the raw outputs and 
adapt them for commercial dissemi-
nation, it is that user. Besides, the user 
will also have already paid the owner 
of the AI software components for the 
right to use them to generate outputs.

It is, moreover, unlikely the Copy-
right Office or judges in litigation will 
generally be able to tell the difference 
between outputs that have been created 
by AI and those created by humans. Only 
time will tell what definitive answer that 
legislators and courts decide upon to re-
solve this long-standing puzzle. 
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derivative works of the infringed pro-
gram. An appellate court ruled that 
Unigate’s importation and sale of the 
CAD outputs were not infringements 
of Design Data’s derivative work right. 
To be a derivative work, some expres-
sion from the underlying program 
would have to have been appropriated.

Rearden v. Walt Disney Co. in 2018 in-
volved a similar claim. Rearden owned 
copyright in MOVA software, which cre-
ated wire-frame models of live-action 
filmed performances onto which other 
images, such as animation, could then 
be superimposed for the movie. 
Rearden claimed that Beauty and the 
Beast, among others, infringed the 
MOVA copyright because the company 
Disney hired to generate models for this 
movie had used an infringing copy of 
the MOVA program.

Although the court allowed 
Rearden to proceed with its claim that 
Disney might be vicariously liable for 
its contractor’s infringement, it re-
jected Rearden’s claim that movies 
whose CGI effects were generated in 
part by an infringing program was a 
derivative work of the program. The 
court reasoned the “lion’s share” of 
the creative expression in the movies 
was attributable to Disney, not the 
MOVA software.

Chinese Precedents
Chinese courts have recently decided 
two cases on AI authorship. The first 
was Feilin v. Baidu, which involved Bai-
du’s republication of parts of “Analytic 
Report on the Judicial Big Data in the 
Film and Entertainment Industry in 
Beijing,” which had been generated by 
AI software.

The court ruled that no copyright 
could exist in AI-generated outputs. 
They were not “works” protected by 
copyright, for there was no human au-
thor eligible to claim rights in them. 
The court directed that any text gener-
ated by an AI program must be identi-
fied as AI-generated.

Feilin’s claim of infringement, 
however, was upheld because he had 
modified the AI outputs and had man-
ually colored certain drawings. Under 
this ruling, human tinkering with AI-
generated documents might qualify 
for copyright.

The second such case was Shenzen 
Tencent v. Yinxin. Yinxin copied an ar-

ticle about stock market activity that 
was automatically generated by Dream-
writer, an intelligent writing assistance 
program developed by Shenzen. The 
court ruled that the article was copy-
rightable and Shenzen was its author. 
Yinxin’s copying of the article was held 
to be an infringement, a ruling that is 
seemingly inconsistent with Feilin.

Commentator Views
A few dozen articles have been writ-
ten over the years, speculating about 
the copyrightability of computer-gen-
erated works and the AI authorship 
issue.1–3,6 No consensus has emerged 
from this commentary.

Some say AI-generated works are in 
the public domain, like the monkey 
selfie. Some say the person or firm that 
wrote the AI program should get copy-
right in any copyrightable outputs. 
Others suggest the person who actually 
generates the output should be the 
rights-holder, if anyone is.

Some propose that both the pro-
grammer and the user should be co-
owners of any copyrights in AI-generated 
outputs. Some would adapt the U.S. 
work-made-for-hire rules, under which 
employers or entities that specially 
commission certain works are authors-
in-law, even if not authors-in-fact, to 
enable copyright ownership rights to 
be decided.

One problem with these proposed 
solutions is the AI outputs having some 
commercial value are products of high-
ly collaborative processes, as The Next 
Rembrandt video demonstrates. AI soft-
ware is not, as some commentators 
seem to believe, a black-box into which 
data is input at one end and the output 
spit out at the end. AI software has nu-
merous component parts, not all of 
which may come from the same entity: 

The pragmatic answer 
to the AI authorship 
puzzle is the user  
who is responsible  
for generating  
the outputs.
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fact checking. Unchallenged ads wouldn’t 
require fact checks. If an ad is chal-
lenged, the independent fact checker 
then judges the disputed ad’s accuracy. 

If the ad proves false, the injured 
party receives the advertiser’s pledge, 
which they can spend as they wish 
to undo the damage the false ad has 
caused. If the ad proves true, however, 
the pledge reverts to the ad buyer, and 
the challenger forfeits the cost of the 
fact check. Challengers would have no 
incentive to pay for fact checking that 

W
HEN IT COMES to po-
litical ads on Face-
book, anything goes. 
On Twitter, nothing 
does. In a speech at 

Georgetown University last October, 
Mark Zuckerberg, Facebook’s chief 
executive, defended the company’s de-
cision not to fact-check political ads 
on the site. Shortly after, Jack Dorsey, 
Twitter’s chief executive, tweeted that 
his company had decided to reject all 
political advertising. In January of this 
year, Facebook doubled down on its 
original decision to accept all political 
ads no matter how egregious the lies an 
ad buyer wishes us to believe. 

They are both wrong. Facebook pol-
lutes our political discourse. Twitter im-
poverishes it. Between promoting false 
ads and rejecting truthful ones, here’s a 
better way: create a “market for truth.” It 
requires neither machine algorithms to 
discern truth nor judgments by a poten-
tially self-interested company. Instead, 
it discourages liars from lying.

First, ask political advertisers to 
guarantee their truth. Each politician or 
PAC that places an ad would put a large 
sum of money in escrow as an “honest 
ad pledge” that their claims are true. 
Second, if anyone disputes the ad, an 
independent fact-checker would judge 
the ad’s truthfulness. This role could 

fall to any one of a number of organi-
zations that routinely make such judg-
ments: FactCheck.org, Politifact, Hoax-
Slayer, or Snopes. It could even be a 
panel sampled randomly from Fox and 
CNN viewers. The watchword is inde-
pendence. It cannot be Facebook’s self-
appointed Oversight Board and it most 
emphatically cannot be government. 

To dispute an ad, an aggrieved party 
must issue a challenge by paying a non-
refundable fee. This challenge price 
should cover the cost of independent 

Economic and 
Business Dimensions 
Proposal: A Market for 
Truth to Address False 
Ads on Social Media 
Guaranteeing truth in advertising.

DOI:10.1145/3401724 Marshall W. Van Alstyne
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A politician of greater integrity could 
make bigger promises and voluntarily 
escrow 2X or 3X the normal pledge. Or, 
a politician of little means could pre-
check a message with the fact checker, 
ensure an honest message and have 
bonds markets underwrite the pledge 
without risk. By contrast, a politician of 
low integrity could afford only smaller 
promises, namely the minimum lie 
price that the media platform requires 
as its honest ad pledge. And, low integ-
rity politicians would keep losing their 
pledges. For a dishonest politician, the 
costs mount with each additional lie.

How might this work? To operate a 
market for truth, we can rely on estab-
lished administrative practices that we 
already use for trust and legitimacy. 
Taking our own government as prec-
edent, we split oversight into legisla-
tive, judicial, and executive branches. 
A legislative body gets to define “fake 
ads.” Despite their differences, even 
Fox News, CNN, and the New York Times 
might be able to agree on a working def-
inition of fake ads independent of spe-
cific use cases and their own ads and 
news stories. A judicial body gets to de-
cide whether a specific case represents 
an instance of fake advertising accord-
ing to this definition. Again, Snopes, 
Hoax Slayer, Politifact, or a jury of peers 
might play this role only now they must 
judge according to the definition pro-
vided by the legislative body. Jurors do 
not get to use their own individual defi-
nitions. Finally, the executive branch 
enforces these definitions and deci-
sions. It collects the honest ad pledges 
and disburses them to ad buyers or ad 
challengers based on rulings by the ju-
dicial body. Social media platforms like 
Facebook and Twitter can play this role 
but they decide neither the definitions 
nor the outcomes of challenges. By di-
viding the branches of fake ads gover-
nance, we recreate an institution where 
no branch judges truth as applied to 
itself and no branch has an economic 
incentive to bias its behavior to get rich.

Why does this work? A truth market 
for trading honest ads works for exactly 
the same reason as a carbon market 
based on cap and trade. It solves the 
problem of pricing externalities and 
markets for trade in externalities already 
exist. Carbon dioxide is pollution. It is a 
negative externality that harms others. 
An entity that is causing damage needs 

proves their opponents are right. If 
an ad goes unchallenged after, say, 30 
days, the honest ad pledge reverts to 
the ad buyer. 

In all cases, the cost of guarantee-
ing the truth of an honest ad is zero. 
The false advertiser, however, has paid 
for the ad, paid the pledge penalty, and 
paid in reputation. Simply put, the for-
feited pledge is the price of a lie. It is 
paid only by liars. A politician who still 
wishes to lie may certainly do so. But ly-
ing becomes expensive. 

What about the slippery middle 
ground between truth and falsehood—
the innuendo and half-truths that infect 
so much political advertising? Imagine 
a photo of Joe Biden and his son look-
ing shifty, accompanied by the tagline: 
“Hunter Biden served on the board of 
Ukraine’s most corrupt company while 
his father, as Vice President, did all he 
could to fire a powerful Ukrainian pros-
ecutor.” None of that is exactly false. 
But it implies the senior Biden tried to 
prevent the prosecutor from going after 
the company, when in fact he sought 
the opposite: he wanted the prosecutor 
fired for failing to pursue corruption. 

How should an honest ads market 
handle an ad like this? It refunds half 
the pledge for an ad that’s half a truth. 
Based on the egregiousness of the 
lie, the amount of a refund can corre-
spond to one of the sliding scales fact 
checkers already use. Indeed, Politi-
fact did rate an ad like the one here as 
half-true on a scale that ranges from: 
true, mostly-true, half-true, mostly-
false, false, and pants-on-fire. Other 
fact checkers use similar scales. A mar-
ket for truth need not be perfect. It just 
needs to be credible and unbiased. By 
asking PACs and politicians to warrant 
their claims, it changes the balance of 
power, favoring truth over lies in our 
political discourse.

A market for truth 
need not be perfect.  
It just needs  
to be credible  
and unbiased.

Results of 
ACM’s 2020  
General 
Election
President:
Gabriele Kotsis 
(July 1, 2020–June 30, 2022)

Vice President:
Joan Feigenbaum 
(July 1, 2020–June 30, 2022)

Secretary/Treasurer:
Elisa Bertino 
(July 1, 2020–June 30, 2022)

Members at Large:         
Nancy M. Amato 
(July 1, 2020–June 30, 2024)

Tom Crick 
(July 1, 2020–June 30, 2024)

Susan Dumais 
(July 1, 2020–June 30, 2024)

Mehran Sahami 
(July 1, 2020–June 30, 2024)

Alejandro Saucedo  
(July 1, 2020–June 30, 2024)
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to pay for that damage by buying pollu-
tion credits that put a price on the harm 
done. Fake news is pollution. It is a neg-
ative externality that harms others. The 
size of the honest ads pledge, that is, the 
lie price, could be any escrow amount 
set by the social media platform but re-
ally should be the expected size of the 
harm done. This negative externality is 
the “social cost” of the damage done by 
lying. The crowdsource identification 
of harm is the market that “trades” the 
externality. The harmed parties claim 
the lie price and get paid for the damage 
they experience. Carbon trading mar-
kets work so we can expect markets for 
truth will also work. 

Importantly, a market for truth 
works even when the amount of dam-
age, the lie price, is not known in ad-
vance. Imagine Exxon Mobile today 
taking out an ad that human activity 
does not cause global warming. The lie 
price for political ads in the U.S. alone 
is too small for the lie price of global 
warming policy ads internationally. 
You can quickly see that, if a firm re-
peatedly pays the lie price, then their 
willingness to keep lying is too small 
relative to the true social cost. Then the 
lie price should rise until they stop the 
lies that harm people. In other words, 
we have an “efficient search” process 
that can force firms and super PACs to 
internalize the true social cost of their 
negative externalities even when that 
cost is initially unknown. 

And what about free speech? In the 
U.S., skeptics might object that an hon-
est ads pledge would not withstand 
First Amendment scrutiny if the pledge 
were mandatory. U.S. courts view im-
pediments to speech as violations of 
free speech. Although this is a uniquely 
U.S. problem, the system still works 
even when a pledge is voluntary. If the 
market for truth is fully functioning, 
then unwillingness to pledge an hon-
est ad is itself a signal that the author 
is likely lying because honest ads incur 
no added cost. The 2001 Nobel Prize in 
Economics acknowledged the tenets of 
information economics precisely due to 
the power of “signals” to separate truth 
from lies. Informative signals are poten-
tially expensive actions taken by knowl-
edgeable parties that back up their 
claims. A product sold with a guarantee, 
for example, is almost always more reli-
able than a product sold “as is” or “buyer 

beware.” Good sellers, knowing their 
claims are true, can offer guarantees 
that bad sellers, knowing their claims 
are false, cannot afford to offer. The vol-
untary signal separates good from bad, 
and fact from fiction. The proposed 
mechanism is very powerful.

An honest ad pledge discourages 
political advertisers from placing false 
ads. The pledge need not be manda-
tory—advertisers’ failure to pledge 
signals they do not believe their own 
claims. A fair challenge price discour-
ages political adversaries from launch-
ing false challenges. The mechanism 
also provides revenue to pay for inde-
pendent fact checking via issued chal-
lenges. Fact checkers have no financial 
incentive to bias their decisions and 
not every ad would need checking—
only those that are challenged. Gover-
nance can proceed using models we 
already use in other contexts.

As with so many other aspects of 
social media, platforms like Facebook 
and Twitter have made the spread 
of false content what the tech world 
proudly calls “frictionless.” It is time 
to judiciously put some friction back. 
A truth market would do just that. A 
society that values unfettered expres-
sion over truth can set the price of ly-
ing low. A society that values greater 
integrity can set the price of lying 
higher. Currently, the price of lying in 
political ads is zero.  

Marshall Van Alstyne (mva@bu.edu) is a Questrom 
Chair Professor at Boston University where he teaches 
information economics. He is also a Digital Fellow  
at the MIT Initiative on the Digital Economy and 
co-author of the international best-seller Platform 
Revolution (W.W. Norton).

Copyright held by author.

Good sellers, knowing 
their claims are true, 
can offer guarantees 
that bad sellers, 
knowing their claims 
are false, cannot 
afford to offer.

Calendar 
of Events
At press time, scheduled 
conferences were significantly 
impacted by COVID-19,  
often requiring cancellation  
or postponement.  
The following conferences  
are scheduled to be held 
virtually. Please check 
conference websites for 
updates on programs  
and event dates. 

July 6–10
DIS ’20: Designing Interactive 
Systems Conference 2020, 
Sponsored: ACM/SIG,
Contact: Kristina Anderson,
Email: h.k.g.andersen@tue.nl

July 6–10
WebSci ’20: 12th ACM 
Conference on Web Science, 
Sponsored: ACM/SIG,
Contact: Dame Wendy Hall,
Email: wh@ecs.soton.ac.uk

July 8–12
GECCO ’20: Genetic and 
Evolutionary Computation 
Conference, 
Sponsored: ACM/SIG,
Contact: Carlos A. Coello,
Email: ccoello@cs.cinvestav.mx

July 8–12
LICS ’20: 35th Annual ACM/
IEEE Symposium on Logic in 
Computer Science, 
Contact: Lijun Zhang,
Email: zhanglj@ios.ac.cn

July 13–17
ACM EC ’20: ACM Conference 
on Economics and 
Computation, 
Budapest, Hungary,
Sponsored: ACM/SIG,
Contact: Peter Biro,
Email: peter.biro@krtk.mta.hu

July 13–17 
DEBS ’20: The 14th ACM 
International Conference on 
Distributed and Event-based 
System, 
Sponsored: ACM/SIG,
Contact: Kaiwen Zhang,
Email: kaiwen.zhang@etsmtl.ca

July 13–17
PEARC ’20: Practice and 
Experience in Advanced 
Research Computing, 
Sponsored: ACM/SIG,
Contact: Gwen Jacobs,
Email: gwenj@hawaii.edu
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˲ Susan J. Winter, Column Editor 

practices aligned with local social 
norms, is responsive to local commu-
nities’ needs, or has adequately consid-
ered the potential unintended conse-
quences. Harm is often caused even 
when no willful violation of ethics ex-
ists. For this reason, a deeper aware-
ness of the responsibilities attendant 
to doing community-engaged research 
is urgently needed.

Universities and corporations have 
professed a focus on ethical practices 
of inclusion and advancement of re-
search with public value, but often 
struggle to realize them in practice. 

C 
HE CK S A RE  NEEDED to guide 
the development of guard-
rails for ethical and respon-
sible community-engaged 
computing research. The 

era of “move fast and break things” 
can produce false starts, injured com-
munities, and widespread techlash. 
The tech sector can be more socially 
conscious and focus on community 
engagement using research from uni-
versities, computing researchers, and 
professionals. For example, smart cit-
ies might increase efficiency and im-
prove quality of life, but for whom?10 
Research shows how smart city initia-
tives can harm certain groups through, 
for example, facial recognition tech-
nologies that misidentify, produce eth-
nic bias and discrimination, or create 
opportunities for abuse.5 Technology 
benefits do not always accrue evenly 
across community members.

Ethics rarely keeps pace with tech-
nological innovation. Computing re-
search in community-engaged proj-
ects all too often lacks tools for 
planning, engaging in, reflecting on, 
and evaluating whether the projects 
may bring unintended negative im-
pacts. Computing professionals and 
researchers must navigate this com-
plex ethical landscape as they bring 
value to communities. The key les-
son, learned repeatedly but often for-

gotten, is from the parable of the tor-
toise and the hare. Proceeding with 
care produces lasting results. We ex-
plore the value of continuous check-
ing for community-engaged research 
that provides guidance, so that inno-
vation makes a positive contribution 
to societal well-being.

Common Problems in 
Community-Engaged Research
Civic and community-engaged re-
search is often lauded, but conducting 
research in a community does not 
mean that a researcher follows ethical 

DOI:10.1145/3401720 Kathleen H. Pine, Margaret M. Hinrichs, Jieshu Wang, Dana Lewis, and Erik Johnston
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For Impactful  
Community Engagement: 
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Toward a more equitable distribution  
of the benefits of technological change. 
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V problems identified directly by the com-
munity and using the community’s 
knowledge and resources to produce 
solutions within existing practices 
and local knowledge. CBPR recogniz-
es that all members of a community 
have the right to be involved in deci-
sions that affect their lives.2 It pro-
duces direct research outcomes and 
community capacity by involving 
people who can take actions to im-
prove their own conditions3 while 
balancing research and action for the 
benefit of all.8 As part of CBPR, re-
searchers, designers, and communi-
ties undertake ongoing conversation 
and reflection about which methods 
to use, what kinds of knowledge and 
pathways to action are being created, 
and who is served. Adopting postcolo-
nial computing and CBPR approaches 
to community-engaged research re-
duces the likelihood of making the 
eight common mistakes described 
here; four concrete techniques that 
put these approaches into practice and 
can guide researcher activities.

An Updated Toolbox for Ethical 
Community-Engaged Research
The postcolonial computing lens and 
the CBPR methodology enable com-
puting researchers and professionals 
to support community efforts while en-
gaging in research with communities 
that provide real societal value. The au-
thors’ collective research experiences 
inform four additional key practices 
that are useful for computing research 
and design with communities.

First, project leads should conduct 
“readiness for partnership” checks to 
determine if computing professionals 
are ready to collaborate as equals with 
community members and vice versa. 
One of our co-authors (Lewis) had a 
wealth of experience on both sides of 
community engagement, both with re-
searchers who sought to work with her 
as an influential community member, as 
well as being the PI of a grant herself. 
Her experiences managing the tensions 
between these roles as an expert patient, 
activist, and inventor led to the develop-
ment of parallel patient and partner 
readiness quizzes.b  The partner readi-
ness quiz acts as a type of humility audit, 

b See https://partner.openingpathways.org/ and 
https://patient.openingpathways.org/

Some common mistakes that commu-
nity-engaged researchers make are:

 ˲ Conflating any community partici-
pation at any stage of the research as 
sufficient

 ˲ Not letting a group self-define as a 
“community”

 ˲ Not fully understanding the prob-
lem or its context

 ˲ Not grasping the existing commu-
nity power dynamics

 ˲ Not planning mindful strategies 
for entrance into and exit out of com-
munities

 ˲ Reinforcing existing biases and 
power imbalances

 ˲ Not being aware of the historical 
relationship between a community 
and academic institutions

 ˲ Placing essential stakeholders in 
roles of nonparticipation or tokenism

Whether initiated by municipal offi-
cials, private corporations, or university 
researchers, individual and community 
stakeholders are often largely missing 
from all stages of the design and deci-
sion-making processes in community-
engaged research projects, particularly 
in marginalized communities.10

To provide societal value through com-
munity-based efforts, we must develop 
ethical approaches, best practices, and 
institutional safeguards for communi-
ty-engaged research. There are no spe-
cific remedies that can be applied to 
avoid each of these common mistakes, 
but our recommendations reduce the 
likelihood of making any of them. 
Though far from comprehensive, the 
recommendations discussed next high-
light an existing research lens, a meth-
odology, and four best practices for in-
clusive community-engaged research.

Existing Approaches to Inclusive 
Community Engagement
Existing approaches can help com-
puting professionals develop best 
practices for civic and community-
engaged work. Researchers can adopt 
postcolonial computing as a way of 
thinking about community-engaged 
computing research and develop-
ment.6,7 Postcolonial computing was 
inspired by the ethical challenges of 
transferring technological knowl-
edge between disparate cultures and 
poses a new vision for computing re-
search and practice. Whereas colo-
nialism extends and dominates one 

entity’s authority, values, or ideas 
onto another, postcolonial computing 
encourages us to reflect on the ways in 
which we may become a colonizing 
force, pushing a technology or practice 
onto a local community. Such interac-
tions are fraught with potential for 
asymmetries of power between re-
searchers and communities and may 
lead to a destructive logic of “us” 
knowing better and helping “them.” A 
postcolonial computing lens requires 
computer science professionals to 
abandon the notion that their proj-
ects are about making things better 
for “other” cultures or communities. 
Rather, the focus becomes under-
standing the complex dynamics be-
tween researchers and community 
members, including local traditions 
and perceptions of power. Memorial 
University of Newfoundland’s CLEAR 
Laba is an excellent example of a post-
colonial approach to community-en-
gaged research.

Community Based Participatory Re-
search (CBPR) offers concrete princi-
ples and procedures aligned with the 
postcolonial computing lens. In 
CBPR, the goal of research is to exer-
cise “power with” individuals in a com-
munity, rather than exert “power over.” 
CBPR envisions communities as enti-
ties defined from within, who already 
possess power and resources9 while 
simultaneously attending to social in-
equities and structural repression of 
power for certain individuals and com-
munities.8 The focus is on communi-
ties engaging in research to address 

a See https://www.theatlantic.com/video/index/ 
591640/recycling-plastics/

The partner 
readiness quiz acts 
as a type of humility 
audit, encouraging 
reflection and 
empathy before 
engagement.

https://partner.openingpathways.org/
https://patient.openingpathways.org/
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reflection to improve our ability to have a 
positive impact with communities. This 
may be the best way to ensure the ben-
efits and harms of technological change 
are distributed equitably and forestall any 
coming “techlash.” 
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encouraging reflection and empathy 
before engagement. More tools like 
these should be developed, widely dis-
seminated, and used to assess aca-
demics’ readiness to collaborate with 
non-academic communities.

Second, we must work to remove dis-
tinctions of status between community 
participants, academics, and practitio-
ners while maintaining awareness of 
power dynamics between participants 
and their contexts. Through creating 
an atmosphere of mutual respect and 
establishing ‘psychological safety,’ 
groups can continually reduce distinc-
tions in status and promote co-produc-
tion of knowledge that draws on di-
verse forms of expertise.4 In framing a 
problem or designing solution(s), 
many individuals and groups may hold 
different viewpoints of the situation. At 
the beginning of a project, it is helpful 
to create a comprehensive understand-
ing of all stakeholders who are directly 
or indirectly affected and to strive to 
include them. As solutions are pro-
posed, it is important to revisit stake-
holder perspectives and include addi-
tionally affected individuals, groups, 
and communities.

Third, value expertise by creating paid 
community researcher positions, or en-
gage in exchanges of goods and/or ser-
vices for labor. Avoid community volun-
teer work. Providing fair and equitable 
compensation to community collabora-
tors acknowledges their expertise and 
legitimizes their contributions. Provid-
ing compensation often requires that we 
navigate and even agitate within our or-
ganizations and to external funding 
bodies to include compensation for 
community members as well as the time 
of researchers and designers to manage 
relationships with these community po-
sitions. However, this is important, and 
initiating this conversation will help 
shift our institutions to make this easier 
to do in the future.

Fourth, Institutional Review Boards 
(IRB) are designed to protect human 
participants in research but can be 
slow to adapt, and committee mem-
bers may not have expertise in com-
munity-engaged research. Universi-
ties should establish separate Social 
Embeddedness IRB review committees 
just like they have different IRB re-
view committees for biomedical and 
social/behavioral research. Socially 

embedded IRB committees would 
review research intended to create di-
rect impact on communities through 
the research process. They would ar-
ticulate a set of rights that communi-
ties could exercise to ensure the re-
search furthers the goals and honors 
the values of the community, that par-
ticipants in community-engaged re-
search are treated ethically, and that 
their rights, interests, and welfare are 
protected. A Social Embeddedness 
IRB would support the interests of 
both the researcher and communities, 
share best practices between projects, 
and make visible the distribution of 
benefits and accountability among 
various stakeholders.

Conclusion
As Avle, Li, and Lindtner proposed in their 
essay on “Responsible IoT after Techno-
solutionism,” changing the way we work 
when conducting computing research 
and design across cultures requires 
that we move toward mutual account-
ability.1 Responsible design requires 
mutual care, respect, and equality. 
Rather than ill intent, the eight com-
mon mistakes of community-en-
gaged research we noted often stem 
from a lack of awareness that can be 
remedied by having a framework (postco-
lonial), an approach (CBPR), and an ethos 
to continue to do better as demonstrated 
by the four key practices outlined here. 
Through collectively reflecting on our 
experiences in community-engaged re-
search and entrenched cultural assump-
tions and biases, we can undo incomplete 
models and practices that pervade com-
puting research and design. We propose 
drawing on the wealth of guideposts that 
exist within and outside of computing 
to create an ever-expanding toolbox for 
community-engaged research that leads 
with an ethos of humility and care, and 
includes practices of self-disclosure and 

Responsible design 
requires mutual 
care, respect,  
and equality.
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entific American, every Chinese citizen 
will receive a so-called ‘Citizen Score,” 
which will be used to determine who 
gets scarce resources such as jobs, 
loans, or travel visas.a China also uses 
facial recognition software to moni-
tor its Uighur Moslem minority for 
law enforcement purposes.b China’s 
Social Credit System, designed to re-
ward “pro-social” and punish “anti-
social” behavior, is becoming opera-
tional.c

Since capitalism and democracy 

a See https://bit.ly/3er2Fxh
b See https://nyti.ms/3dcEl1U
c See https://wapo.st/2zHrXIG; and https://bit.ly/ 

3esPZpC

F
R O M  F O R E I G N  I N T E R V E N T I O N 

in free elections to the rise 
of the American surveillance 
state, the Internet has trans-
formed the relationship be-

tween the public and private sectors, 
especially democracy’s public sphere. 
The global pandemic only further 
highlights the extent to which tech-
nological innovation is changing how 
we live, work, and play. What has too 
often gone unacknowledged is that 
the same revolution has produced 
a series of conflicts between our de-
sires as consumers and our duties as 
citizens. Left unaddressed, the con-
sequence is a moral vacuum that has 
become a threat to liberal democracy 
and human values.

Surveillance in the Internet Age, 
whether by governments or compa-
nies, often relies on algorithmic 
searches of big data. Statistical ma-
chine learning algorithms are group-
based. Liberal democracy, in con-
trast, is individual-based, in that it is 
individuals whose rights are the chief 
focus of constitutional protection. Al-
gorithmic opacity, which can be the 
product of trade secrets, expert spe-
cialization or probabilistic design,3 
poses additional challenges for self-
government because it by definition 
abstracts away the individual on 
which a rights-based regime depends. 
Even with attentiveness to constitu-
tional constraints, NSA surveillance, 
as Edward Snowden revealed, violated 
the right to privacy that all American 

citizens have, leading to revision of 
the Patriot Act. Europe’s privacy pro-
tection standards are even higher, re-
stricting second- and third-hand use 
of customer data.

In contrast, in illiberal regimes, 
the distinction between the public 
and private spheres is not drawn in 
the same way, and the individual is 
not the regime’s point of departure. 
Privacy is routinely sacrificed at the 
altar of national security and societal 
goals. For example, China’s Google, 
Baidu, has partnered with the military 
in the China Brain Project. It involves 
running deep-learning algorithms 
over the data Baidu collects about its 
users. According to an account in Sci-

Viewpoint 
Consumers vs. Citizens in 
Democracy’s Public Sphere 
Attempting to balance the challenging trade-offs between  
individual rights and our obligations to one another.
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tice Louis Brandeis foresaw this accel-
erated challenge to the health of 
democracy’s public sphere, when he 
described the Gilded Age consumer 
as “servile, self-indulgent, indolent, 
ignorant” and thereby easily manipu-
lated by advertising, the opposite of 
the engaged citizen.4

The March 2016 standoff between 
Apple and the FBI illustrates the new 
potential for conflict between busi-
ness and government interests that 
technological change has wrought. 
Apple refused to help the government 
unlock the iPhone of Syed Farook, 
who was charged with killing 14 in the 
December 2, 2015 San Bernardino ter-
rorist attack. Since Apple’s market is 
global, it had no interest in comply-
ing with the FBI’s request, as its for-
eign customers are unlikely to pay a 
premium for a smart phone that the 
U.S. government can access. Yet Ap-
ple is also a company headquartered 
in the U.S., and American citizens 
have an obvious interest in prevent-
ing future terrorist attacks. The same 
friction between the profit motive and 
public interest was present in the de-
cisions of Facebook’s senior leader-
ship to downplay Russian interfer-
ence in the 2016 elections until a free 
press forced them to own their self-
interested choices.

The Internet thus has had at least 
two major consequences for Ameri-
can constitutional democracy. First, 
as our public conversations move on-
line, disparate virtual spaces are re-
placing the public square, undermin-
ing democratic deliberation. As we 
saw with the 2016 elections, Facebook 
first looked the other way when its 
platform was manipulated by the Rus-
sians and others to increase polariza-
tion and help elect Donald Trump. To 
get a better sense of the magnitude of 
the problem, Facebook announced in 
May 2019 that it had deleted more 
than three billion fake accounts, a 
number approximately comparable 
to the combined 2018 populations of 
the U.S., China, and India.d

The global nature of the ad market 
for Google and Facebook represents 
the greatest challenge. Facebook 
profited when Russian troll farms 
bought ads in the run-up to the 2016 

d See https://bbc.in/2zts0Ih

developed contemporaneously and 
symbiotically, the divergence be-
tween technological advances and 
human values has been all too easy to 
overlook. In the Chinese context, de-
ploying citizen scores and racial pro-
filing in such utilitarian fashion may 
be legitimate, but in a rights-based 
democracy, such algorithmic dis-
crimination must be illegitimate. Bell 
curves do not matter for human 
rights. Individuals do.

In The Human Condition, Hannah 
Arendt lamented “the absurd idea of 
establishing morals as an exact sci-
ence” by focusing on things that are 
easily measurable or quantifiable.1 
From her perspective, what was most 
significant about modern theories of 
behaviorism is “not that they are 
wrong but that they could become 
true … It is quite conceivable that the 
modern age—which began with such 
an unprecedented and promising 
outburst of human activity—may end 
in the deadliest, most sterile passivity 
history has ever known.”1 The ques-
tion is not “whether we are the mas-
ters or the slaves of our machines, but 
whether machines still serve the 
world and its things, or if, on the con-
trary, they and the automatic motion 
of their processes have begun to rule 
and even destroy world and things.”1

The widening digital age conflict 
between producers/consumers and 
citizens reflects a heightened tension 
between market and liberal demo-
cratic/republican values. To see this 
more clearly, it is helpful to think 
about two models of man: bourgeois 
man and citizen man. For Marx and 

his heirs, the class struggle between 
bourgeois man and working man, be-
tween the oppressor and the op-
pressed, is the central dynamic. Mon-
tesquieu, Machiavelli, Montaigne, 
and the American Founders, however, 
“ransacked the archives of antiquity,” 
as Arendt puts it, to imagine a differ-
ent model of man for the new repub-
lic. The model man of this new sys-
tem, which built on the Roman 
conception of the public sphere, was 
the citizen of the Athenian polis.2 The 
American Constitution’s architects 
thus drew on both Greece and Rome 
in imagining the new republic of the 
United States. Inclusive citizen en-
gagement in American political life is 
thus essential for both self-govern-
ment and human flourishing. While it 
is a fact that the original vision ex-
cluded blacks and women from citi-
zenship, it is equally true the same 
values evolved over time to include all 
humans of voting age.

It is easy to see how contemporary 
free market fundamentalism—the 
idea that free markets are the solu-
tion to all challenges of public life—is 
a logical consequence of trends Ar-
endt astutely identified over a half-
century ago. Whenever the people al-
low companies to pursue profit 
maximization relentlessly in a global 
market without attention to conse-
quences, producers are unwittingly 
elevated over citizens. Along parallel 
lines, whenever citizens allow their 
personal data to be harvested in ex-
change for a better deal, consumers 
are inadvertently elevated over citi-
zens. Progressive Supreme Court Jus-

https://bbc.in/2zts0Ih
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from the platformf), but it is impor-
tant to remember what government is 
for and that there are some things 
that only government can do well. 
Simply put, nobody elected or ap-
pointed Silicon Valley.

In navigating these challenges, we 
can start with things we know to be 
true. Since both algorithmic design 
and data categorization can be ampli-
fiers of prejudice, the perfect algo-
rithm will be no silver bullet for pro-
tecting individual  r ights.  An 
algorithm cannot fathom the human 
experience. An algorithm cannot un-
derstand the requirements of the 
democratic system itself.

Put another way, to be fully human 
in a liberal democracy is to be a citi-
zen first and consumer second. Poli-
tics has no place in scientific research. 
At the same time, scientists are also 
citizens who are ideally positioned to 
evaluate both the perils of AI systems 
and their potential to better the hu-
man condition. Scientists who under-
stand the inherent trade-offs between 
what we want as consumers or pro-
ducers and what we need as citizens 
can be critical allies rather than ene-
mies of pluralism and the freedom of 
the individual.5

To sustain democracy in the Corona-
virus era, Americans need to be citizens 
first. That is a choice we all must make. 
Human beings in a free society cannot 
be reduced to data or algorithms unless 
we allow ourselves to be. 

f See https://wapo.st/2ZRNDwm; and https://
https://n.pr/3dbUVPE
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election, but the American public 
sphere was simultaneously dimin-
ished. Looking to the future, the pros-
pect of an alliance between authori-
tarian states and large IT monopolies 
that would effectively merge corpo-
rate and state surveillance, as George 
Soros has warned, could facilitate to-
talitarian control unlike anything the 
world has previously seen.e

The move to cloud computing has 
also had important implications for 
privacy rights. The Fourth Amend-
ment requires the government to jus-
tify to a court why it has a compelling 
interest in your personal information, 
protecting the contents of your laptop 
and desk from illegal search and sei-
zure. What most Americans do not 
understand is that once you upload 
material to the Cloud, you trade that 
Constitutional protection for a corpo-
rate guarantee, yet the Fourth Amend-
ment is mute on corporate violations 
of privacy.

When they sell themselves to the 
public as promoters of ideals rather 
than as profit-seeking companies, Sil-
icon Valley firms have a vested inter-
est in obscuring this simple fact. Un-
til very recently, Google’s mantra was 
“Don’t Be Evil,” and Facebook still 
defines its mission as “to make the 
world more open and connected.” Ap-
ple recently rebranded its retail out-
lets as “town squares.” This sincere 
Newspeak made it easier for consum-
ers unthinkingly to trade their per-
sonal data for continued free use of 
the relevant platform.

Engineers and senior corporate 
leadership alike must be mindful of 
this decoupling of profit margins 
from the common good. All Western 
computer scientists should care 
about the consumers vs. citizens ten-
sion, not only because as citizens they 
value liberal democracy, but also be-
cause the long-term sustainability of 
the companies for which they work 
depends on it. When platforms or 
products appear to undermine hu-
man values, brands are tarnished in 
the free world, sometimes irrepara-
bly. The Google/Apple collaborative 
effort using Bluetooth to support con-
tact tracing apps appears to have 
learned this lesson.

e See https://bit.ly/2XBO7UR

The challenge will be to reclaim 
the public sphere for the people and 
democratic deliberation rather than 
as a locus for self-promotion and ma-
nipulation. A necessary condition for 
meeting that challenge will be to rein-
troduce practical ethics to scientific 
knowledge. When technological in-
novation outstrips the capacity of ex-
isting norms and laws, it will take 
more than science to re-harness sci-
ence to the public interest.

Yet while Arendt and Brandeis dis-
cerned the general trajectory, in some 
ways, we are in uncharted territory. 
Scientists at the dawn of the nuclear 
age made possible weapons of mass 
destruction that still today could 
wreak total destruction. Scientists in 
the internet age are developing intel-
ligent machines to do what was previ-
ously the work of humans. In the in-
formation age,  scientists  are 
seemingly on the brink of rendering 
large segments of society utterly su-
perfluous.

One thing is certain: Silicon Valley 
will not be capable of safeguarding 
human values without public pres-
sure and thoughtful regulation. The 
conflict of interest is too stark, since 
the core dilemma often embodies a 
clash between higher short-term prof-
it margins and doing the right thing 
for equality before the law. There is 
strong sentiment, a lingering effect of 
decades of considering government 
as the problem rather than a solution, 
that tech companies can simply engi-
neer processes that used to be the 
preserve of courts (such as Facebook’s 
recent move to create its own over-
sight board to judge what content or 
accounts are approved or removed 

To be fully human  
in a liberal  
democracy is to be  
a citizen first and  
a consumer second.

https://wapo.st/2ZRNDwm
https://n.pr/3dbUVPE
https://www.informatik.tuwien.ac.at/dighum/manifesto/
mailto:stanger@middlebury.edu
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introducing incoherent smart speak-
ers spanning many markets and lan-
guages. Each has its own “wake con-
struct,” which we define as the 
utterance that activates a skill. Typi-
cally, it consists of a “Wake Word” fol-
lowed by some skill name and associ-
ated parameters. It may also include 
input from face recognition or other 
sensors, such as what happens when 
you activate Siri on your Apple watch by 
waving your wrist. Incompatibility 
among devices from different suppli-
ers is pervasive and may come from any 
of the wake construct’s components.

A
PPLE PIONEERED THE voice 
revolution in 2011 with 
the introduction of Siri 
in its iPhone 4s. Today, 
you tell your iPhone 11, 

“Hey Siri, Play Bruce Springsteen by 
Spotify,” and it responds, “I can’t 
talk to Spotify, but you can use Apple 
music instead,” politely displaying 
options on the screena as shown in 
the figure here. Or, you tell one of 
your five Amazon Echo devices at 
home, “Alexa, add pumpkin pie to 
my Target shopping list,”b then “order 
AA Duracell batteries,” and it adds 
pumpkin pie and Amazon Basics 
batteries to your Amazon shopping 
cart, ignoring your request to shop at 
Target and be loyal to Duracell. You 
are the consumer, but your choices 
have been ignored.

Or, consider you are a brand man-
ager. You want to customize the voice 
of Echo to match your brand persona, 
but it is not an option offered. Amazon 
only lets users change the default fe-
male voice to “male” and to a few other 
lonely options. Instead you decide to 
create a personalized assistant. How-
ever, unlike the leading technology 
companies (the so-called FAANGs—
Facebook, Apple, Amazon, Netflix, and 

a Apple changed this response right after the 
EU filed an investigation into the matter. The 
Financial Times, May 5, 2019

b We developed a skill in our lab and in July 2017 
Alexa’s parsing surprisingly changed. The 
phrase “Alexa, Target shopping list add soap” 
went from adding it to the skill’s list to directly 
adding it into Amazon’s shopping list.

Google), your company does not have 
the thousands of engineers and vast ad-
vertising budgets needed to develop it.

These examples suggest artificial 
intelligence (AI) environments are 
evolving toward more limited choice. 
However, we believe an open and stan-
dardized approach would be benefi-
cial to most, including the FAANGs 
themselves. In fact, this approach may 
be urgent, given the rapid growth of 
adoption and increasing level of com-
plexity for users and skill suppliers.

Large companies are rushing to the 
rapidly growing voice opportunity, 

Viewpoint 
Call For A Wake Standard 
for Artificial Intelligence 
Suggesting a Voice Name System (VNS) to talk to any object in the world.
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instead of the letter “O”— from being 
registered to prevent phishing.

Disambiguating voice is more com-
plex than disambiguating text and it 
may lead to errors because computer 
speech recognition is ambiguous and 
not 100% accurate. The VNS could ad-
dress error correction by using other 
sensors, requiring a user to spell out a 
word, or verification on a different de-
vice. To decide whether two speech ut-
terances resemble each other too close-
ly, phoneme matches could determine 
whether the probability of a phishing 
attack is above a threshold, before a 
voice domain is granted. To automati-
cally establish this probability using 
deep learning algorithms one can use 
one of the public speech sample reposi-
tories using an open source speech-to-
text solution such as Baidu’s, which cal-
culates probabilities in its last layer.

A CWC as proposed here is feasible 
using today’s technology. So is a stan-
dard that also includes as CWC basic 
command phrases such as “<raise vol-
ume>” or “<play> Bruce Springsteen 
<in> Spotify.” Together with one of my 

For example, if you say “Alexa, Bed-
time” to your Echo, it starts a skill op-
erated by Johnson and Johnson, while 
if you tell Google Home, “OK, Google, 
Bedtime,” the device initiates a differ-
ent routine that is owned by Google it-
self. Sometimes the behavior is simi-
lar in both devices but the service 
operator is different—for example, 
saying the words “sleep sounds” to 
your Echo or Google Home will initi-
ate two different skills related to sleep 
and relaxation sounds. There is no 
central and standard repository of 
words to avoid this sort of inconsis-
tency, such as one where a shop owner 
could reserve an action name across 
devices and languages.

For skill developers, devices are also 
incompatibile and may have language-
specific skill programming options. 
This means that porting P&G’s Tide Al-
exa Skill to all combinations of devices 
and languages would require maintain-
ing hundreds and eventually thousands 
of different versions. Even then, the 
front-facing experience will not be con-
sistent across devices and languages, 
which could confuse customers. Creat-
ing a somewhat consistent user experi-
ence across this myriad of options would 
require the sort of budget that is unjusti-
fiable for small businesses. Even P&G’s 
Tide skill, introduced several years ago, 
is still available only in English.

Wake Neutrality
Amazon and Apple’s business aggres-
siveness—their choice to rout product 
requests to their services, while devel-
oping incompatible closed-garden so-
lutions—makes perfect sense for large 
companies trying to establish domi-
nance in this competitive space. How-
ever, any advantages from this aggres-
sive incompatible offerings may be 
offset by raised entry costs for skill sup-
pliers such as P&G, antitrust violations 
affecting retailers large and small,5 or 
unattended consumer preferences.c

Incompatibility in the voice space 
contrasts with the situation in Wake 
Neutrality markets. In these markets, 
such as the Web, the phone network, 
barcodes, or even WiFi networking, 
there are standard ways of activating 

c For example, some consumers reject the cour-
tesy behavior exhibited by dominant devices: 
https://bit.ly/36yYEEi

services.9 This gives consumers a con-
sistent experience across more choices 
and at lower entry costs. On the Web, 
one can type “www.kohls.com,” and 
trust reaching the same retailer, no mat-
ter the browser type, WiFi network,  or 
device OS. Toscanini’s Ice Cream phone 
number is the same, no matter the 
phone maker, calling app, or network 
provider. The Internet has the Domain 
Name System (DNS),d which ensures a 
unique name in the DNS, and phone 
networks have the North American 
Numbering Plan (NANP), which en-
sures a unique number in NANP.

Similarly, we believe the voice space, 
and AI in general, would greatly benefit 
from a standard “Voice Name System” 
(VNS) enabling unique skill names 
across devices. We suggest the VNS in-
corporates three architectural compo-
nents: “Common Wake Constructs” 
(CWC), “Secure Voice Channels” (SVC), 
and “Conversational Privacy Firewalls” 
(CPF); each are now reviewed in turn.

Common Wake Constructs (CWC)
Our first architectural suggestion is to 
implement Common Wake Constructs 
to standardize voice request routing. For 
example, the analogue of typing “http://
www.lidl.com/shopping-list” could be to 
say “OK Google, Lidl Open Shopping 
list.”e The DNS may be a starting point, 
so one cannot reserve a word on the VNS 
without having the corresponding DNS 
word, but it needs one extra step be-
cause voice is ambiguous. The identical 
pronunciation of store brands “Coles” 
and “Kohls” requires disambiguation. 
This could be done geographically, by 
adding a prompt, such as “OK, Coles” 
versus “Coles”, or by a wrist movement 
like in the Siri example here. Deciding 
whether two names are similar may be 
tricky requiring arbitrage. Domain name 
registrars have performed such arbitrage 
functions within the DNS. For example, 
they prevent C0LES.org—with a zero “0” 

d https://tools.ietf.org/html/rfc882
e “OK Google” would be like the first part of the 

url, that is, http://, “Lidl” like “www.lidl.com” and 
“Open Shopping list” like that of “shopping-
list.” Just like there is “http”, “ftp”, one could 
imagine different voice services. These could 
include a “local skill mode” and a “single-
shot” transfer mode that sends a command, 
but does not transfer subsequent speech 
commands to “Lidl.” It could also include a 
“multiple-shot” transfer mode that keeps you 
in the skill for multiple interactions.

The iPhone indicated various options to 
listen to Bruce Springsteen, but not the 
one requested. 

https://bit.ly/36yYEEi
https://tools.ietf.org/html/rfc882
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speech detection rate of 93.8%, the 
highest reported so far.7 Similarly, we 
used forced cough recordings to iden-
tify COVID-19 subjects12 and demon-
strated that a single cough can reveal 
cultural and biological information.4

Our third suggestion, Conversational 
Privacy Firewalls (CPF), is an architec-
tural block that filters input-output voice 
signals limiting the amount of PII avail-
able to intervening players. Depending 
on what type of PII one wants to protect, 
a different CPF filter mode may be ap-
propriate. Here are some examples:

 ˲ “Speech Incognito Mode”: This con-
verts speech to text, so that skill suppli-
ers don’t receive any information con-
tained in the soundwave other than text.

 ˲ “Vision Incognito Mode”: For de-
vices such as the Echo Look, the filter 
could transform images to prevent 
proper face recognition, while block-
ing PII about gender or race.

 ˲ “Alexander Mode”: This mode takes 
speech and converts it into commands 
using a synthesized robot voice, spacing 
requests when possible. This ensures 
that neither the voice, the location, nor 
the sequence of commands is shared.

 ˲ “Strong Incognito Mode”: Evidence 
shows our choice of words conveys a lot 
of PII.3 This mode would convert “I des-
perately need two tickets for Sunday’s 
Baseball Match and would pay any 
amount”, to neutral text, ensuring all a 
service provider receives is a request in 
“neutral English” with limited location 
and user sentiment information, such 
as, “Are there any tickets available for 
Sunday’s match?” This type of incog-
nito mode could result eventually in a 
new form of “Esperanto” for AI devices.

students we have created Huey, a CWC 
programing language based on human 
natural language.11,13

Secure Voice Channels (SVC)
Devices currently avoid security issues 
by only allowing simple use cases, such 
as ordering a cab or pizza, in private en-
vironments like the car, home or office, 
because voice can be very insecure. In 
fact, researchers have shown existing 
wake algorithms can be fooled by sound 
sequences inaudible to the human ear, 
even to the point of forcing transcrip-
tion to potentially any desired phrase.2

To expand security options, we pro-
pose designing Secure Voice Channels 
by adding a security layer to smart 
speakers, analogous to “secure http” 
(https), so that selected CWC require a 
more secure process to be activated. In 
public spaces, it could be based on re-
sponding to a “trick question” or in 
pressing a specific “secure” button as-
sociated to the device, much as we do 
today when using a “car key.” The VNS 
could also blacklist spaces where harm-
ful voice intrusions are known to occur.

Conversational Privacy 
Firewalls (CPF)
A Burger King TV ad woke nearby 
Google devices when it stated, “OK, 
Google, What’s a Whopper?”. The 
Cannes Lions International Festival 
of Creativity singled out this Burger 
King ad as the most intrusive adver-
tisement ever because it triggered a 
follow-on ad skill in each home and it 
informed Google which homes were 
watching. Hackers changed the skill 
to be harmful, and Google had to pull 
it out immediately.f The potential for 
privacy violations is unprecedented 
because short audio segments record-
ed by smart speakers can have Private 
Identifiable Information (PII) includ-
ing genre, race, mood, alcohol intake, 
and even personality disorders.6 

Automated analysis of speech has 
been shown to detect onset of psycho-
sis, in young adults, even before human 
experts. In my lab, we recently used AI 
to diagnose Alzheimer’s with only 20 
seconds of speech and identified lon-
gitudinal biomarkers to track disease 
progression, achieving a spontaneous-

f With key-activated SVC none of this would 
have occurred.

Disambiguating voice 
is more complex 
than disambiguating 
text and it may lead 
to errors because 
computer speech 
recognition is 
ambiguous and  
not 100% accurate.Digital Creativity Support 
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Call to Action Toward  
A Voice Name System (VNS)
Two suggestions for short-term ac-
tions to begin establishing the VNS 
standard include:g

1. Defining Roles: Implement the 
first version of the VNS, which would 
include CWC, SVC, and CPF, by using 
existing open source software and host-
ing it with an existing non-profit organi-
zation. Non-open source development 
choices are also possible and may co-
exist. For example, large players could 
continue to grow closed-garden solu-
tions, while sharing key ingredients of 
CWC, SVC, and CPF. The competitive 
landscape, including the role of each 
constituent, must be clarified, and ex-
isting standard bodies, such as W3C, 
IEEE or GS1, may need to get involved.

2. Setting Community Objectives: 
For a first version of the VNS to be used 
widely, agreement is needed on which 
application area is first. This will help 
set technical choices such as file for-
mats, routing protocols and command 
syntax. We suggest working toward a 
first version of the VNS that allows you 
to talk to any Web page, phone app, or 
smart speaker. Subsequent work would 
pursue a new version that allows you to 
converse with any object in the world so 
that you can ask the tomato sauce you 
are holding in your hand “Am I allergic 
to you?”. This would require combin-
ing Natural Language Processing with 
other AI modalities such as high-level 
computer vision, gaze detection, SSVEP 
brain sensing or gesture recognition, 
and could imply interfacing with the 
Internet of Things (IoT).6 In addition to 
the VNS, we may need an Artificial Intel-
ligence Name System (AINS).

g There are a number of innitiatives already un-
der way but none yet with the scope we suggest. 
Amazon, for example, enabled Echo to wake 
Microsoft Cortana (The Washington Post, August 
16th, 2018) and later announced a voice effort 
with a few more partners (The Verge, September 
16th, 2019). A few retailers are behind the Open 
Voice Network (www.openvoicenetwork.org) a 
Linux initiative to standardize voice based on 
the MIT research of my lab, which has long-term 
objectives similar to the ones here suggested. 
W3C has a few groups interested on the topic too. 
Apple introduced last September “voice over”, a 
way for users to control via speech any applica-
tion in IOS screens. Inspired in the MIT Cen-
ter for Brain Man and Machine’s four module 
model of the human brain, MIT is introducing 
reference architectures for the VNS through the 
MIT Auto-ID Lab Open Voice initiative.

Eventually, more difficult choices will 
have to be made, such as determining 
how to manage the capturing, storing 
and sharing of sensor samples to im-
prove AI device communication abilities 
using legal programming.8 For instance, 
when should devices be allowed to listen 
and talk “intelligently” to each other? 
When should we selectively process 
video footage from the home and from 
public spaces? Can the intelligence gath-
ered then be used to customize AI per-
sonalities that induce you to consume 
more? If what we say stored at scale is 
gold, then, who owns our voice samples? 
And what about safety? Should AI agents, 
for example, be allowed to prevent you 
from driving if they hear you sound intoxi-
cated, and should they warn you if they 
detect an increased risk of depression? 
May devices disclose your whereabouts if 
there is an active search warrant for you? 
An open discussion of these questions 
could enlarge the VNS standardization 
effort for the benefit of all. 
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MANY ENGINEERING PROJECTS are big and complex. 
They require integrating into the existing environment 
to tie into stuff that precedes the new, big, complex 
thing. It is common to bemoan the challenges of dealing 
with the preexisting stuff. Many times, engineers don’t 
realize their projects (and their paychecks) exist only 
because of the preexisting and complex systems that 
impose constraints on the new work.

This column looks at some sophisticated urban 
redevelopment projects that are very much part of 
daily life in San Francisco and compares them with 
the challenges inherent in building software.

The best place to build a subway is in the open 
cornfields of Nebraska.

It’s pretty darned flat. You can space 
the subway stations at regular inter-
vals in a consistent fashion. There are 
no pesky historic monuments that get 
in the way. No cathedrals and no civic 
center.

Unfortunately, there are no passen-
gers in the corn fields and no econom-
ic reason to have a subway there. This 
leads to a chicken-and-egg problem. 
You cannot easily build infrastructure 
where it’s crowded, and you cannot af-
ford to build infrastructure where it’s 
not crowded.

I’m fond of saying there are two kinds 
of software companies: those that start 
out building scalable infrastructure and 
those that are in business.

This means successful companies 
will invest in evolving their infrastruc-
ture for enhanced scalability. That’s 
difficult.

Infrastructure and  
Users Growing Together
Urban planning is fascinating. There 
are questions of financing the chang-
es to the city and the churn of land use 
and infrastructure. In general, a deci-
sion is made that the old occupants 
must leave, and they are bought out 
at what is supposed to be fair market 
value. Significant amenities such as 
parks, transit centers, and more are 
planned for the area. With the now-
vacant land and promised fancy ame-
nities, developers can purchase par-
cels to develop skyscrapers for offices, 
hotels, and housing. The price of the 
property under the skyscrapers pays 
for the original land purchase and the 
amenities.

I recently spent five years living in 
Golden Gateway, right by the Ferry 
Building in the Financial District in 
San Francisco. The area was redevel-
oped in the 1970s. It involved tearing 
down an old, dilapidated produce 
market, which was moved about five 
miles south. Five skyscrapers of of-
fice building, a retail mall, hundreds 
of apartments, multiple parks, and a 
Hyatt Regency now occupy the space.

My job is smack in the middle of 
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/ the Transbay redevelopment, also in 
the Financial District. The one- to two-
story rundown light manufacturing in 
this area south of Market Street was 
condemned, and the land was trans-
ferred to city ownership. Transbay has 
been an ongoing project since around 
2000 and seems to be more than half 
done. As I go in and out of work, I see 
brand-new towers, an amazing transit 
center and park, as well as cranes and 
construction.

Other redevelopments include the 

Yerba Buena district (now including the 
Moscone Convention Center) and the 
Mission Bay area (now including the 
new basketball arena, Chase Center).

Many of these massive projects 
have incurred various costs and chal-
lenges. In the 1950s and 1960s, the 
Fillmore redevelopment targeted a 
part of town whose residents were 
largely African Americans. A 36-block 
area was torn down including hous-
ing, a distinct lifestyle, and a world-
famous jazz community. Most of the 

previous occupants could not afford 
to return.

In many cases, these huge, multi-
decade redevelopment projects bring 
new life to part of a city, but some-
times we can’t foresee what we’re go-
ing to lose.

Jasper O’Farrell’s Risky Plan
In 1847, San Francisco was a tiny town 
of about 600 people, formerly known 
as Yerba Buena, that just the previous 
year had joined up with the United 

The Transbay Tube during its construction in the 1960s. 

http://WWW.BART.GOV/
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The locals of the town were furi-
ous. That land was valuable and was 
being taken from them for no value 
at all. Quickly, a mob formed and de-
cided Jasper O’Farrell should hang for 
wasting their land. The townsfolk set 
out to get him. Fortunately, a friend 
tipped O’Farrell off and he rode a 
horse to North Beach, caught a boat to 
the North Bay, and settled in Sonoma 
County, where he died in 1875.1

Serendipity Where  
You Least Expect It
In the 1950s, plans were laid for the Bay 
Area Rapid Transit (BART). This com-
muter train would run at high speed, 
connecting San Francisco, through 
tubes under San Francisco Bay, to the 
East Bay including Oakland, Berkeley, 
and more. To everyone’s surprise, the 
vote for increased taxes squeaked by 
in 1962, and BART was funded.

The Transbay Tube connected to 
San Francisco at Market Street, and 
plans included a tunnel under Market 
Street for about two miles. The Market 
Street Subway is shared with the light-
rail Muni Metro lines that run trains 
throughout San Francisco. Muni runs 
only within the city of San Francisco.

Construction on Market Street 
started in 1967 and continued for 
almost 10 years. Using the cut-and-
cover approach dramatically reduced 
the construction cost. Cut-and-cover 
involves digging a huge trench and 
building the stations and the tracks in 
the open air. When done, the under-
ground project is covered with dirt. 
It’s unlikely that the Market Street 
Subway could have been funded with 
a less intrusive approach. Unfortu-
nately, for 10 years Market Street was 
a mess, and lots of businesses went 
bankrupt.

Still, the 120-foot width of Market 
Street opened up the possibility that 
construction with cut-and-cover could 
be attempted. Without that generous 
width, we likely wouldn’t have BART 
today.

Why Does That Overpass 
Have a Bend in It?
When I have the occasion to sit in a 
window seat on a plane, during take-
off and landing I always look at the 
overpasses on the freeways. Frequent-
ly, I see a gentle bend in the road as it 

States. Gold was not discovered in 
California until the next year, which 
would transform San Francisco into a 
major city.

A few years earlier, in 1835, Wil-
liam Richardson had settled in Yerba 
Buena, and laid out the streets for an 
expanded settlement on a north-south 
grid. This area, called Portsmouth 
Square, is now part of Chinatown. 
By 1847, numerous buildings were 
aligned on this north-south grid.

In the southern part of the town 
was Mission Dolores. Mission Street 
ran 4 1/2 miles from the mission to 
San Francisco Bay in a northeasterly 
direction. I work in a building on Mis-
sion Street.

In 1847, the new American military 
mayor of San Francisco commissioned 
Jasper O’Farrell to perform a land sur-
vey of San Francisco. He corrected a 
number of the property boundaries 
and street alignments in the northern 

part of the city. He decided to cut the 
city into two grids: the northern grid 
running north-south and east-west, 
and the southern grid running north-
east-southwest and southeast-north-
west. The existing northern part of the 
city had a few hundred wooden struc-
tures. The street widths varied from 45 
feet to 69 feet, some a bit larger. In the 
southern part of the city, where there 
was little or no settlement, O’Farrell 
decided to make the streets wider. 
Mission Street was laid out to be 82 ½ 
feet wide.

To separate these two parts of 
the grid, O’Farrell created a massive 
120-foot-wide Market Street paral-
leling Mission Street in the southern 
part. This was a ridiculously large 
waste of land for a street, especially in 
a town of 600 people. Remember, the 
transportation at the time consisted 
of horses and wagons. What would be 
the reason for such a wide street?

An overpass schematic courtesy of CALTRANS.
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crosses the freeway. This causes me to 
smile as I recognize the remnant of a 
freeway’s widening.

Many times, I’ve lived near or com-
muted through a freeway-widening 
construction project. Each time, the 
process seems nonsensical. Buildings 
on one side of the crossover road are 
torn down. Then, new foundations 
and a bridge are built side by side with 
the old bridge. In general, there’s no 
interruption of the traffic on the over-
pass and, even more important, no in-
terruption on the freeway. Sometimes, 
with excruciating pain, a freeway will 
have to be shut down over a long holi-
day weekend.

When the construction is done, 
the beautiful new overpass will have 
been constructed right next to the old 
one. The new overpass connects to the 
side street just where the old one did. 
It just swerves to the side as it crosses 
the freeway to allow for two overpasses 
before tearing down the old one.

One especially challenging part of 
evolving a complex system is keep-
ing it going while it’s being changed. 
Years back, any new version of soft-
ware had to be sent in a box, and after 
installing, it would run better on the 
data stored on disk. By the early 1980s, 
I was worried about wide area network 
distributed transactions and how I 
could compatibly evolve the proto-
col. It was not unusual for this to take 
three releases of planned messaging 
changes, with each release being six 
months apart.

Now, everyone supports cloud-
based solutions. Everything runs 24/7. 
That is a huge value for customers 
and puts additional constraints on 
the engineers supporting the system 
and the application. Just like the folks 
widening the freeway need to keep it 
running 24/7, we need to plan for the 
evolution of the system and the de-
tailed steps required to get from here 
to there.

Conclusion
I’ve spent almost 35 years of my 
40-plus-year career working at com-
panies with thousands of engineers. 
Having so many engineers means it is 
both easier and harder to get projects 
completed. With lots of resources, you 
have the ability to assemble a substan-
tial team. While you have the benefit 

of lots of resources, however, there’s a 
lot of interdependency and engineer-
ing nuance to consider. Even more, 
there’s the legacy of a large code base. 
Legacy typically offers much more 
good than bad.

Cities are usually designed around 
the prevailing transportation. I have 
been privileged to visit Old Jerusalem, 
which was built with donkeys in mind 
for transportation. Most streets in the 
old part of the city are perhaps 20–25 
feet wide. Cars cannot drive on these 
streets. Of course, widening them 
would be impossible without destroy-
ing the buildings next to them.

Applications start with communi-
cation and data or database expec-
tations, as well as application struc-
ture expectations. Just like cities and 
transportation evolve, the compute 
infrastructure evolves.

Starting with a clean slate may 
seem to be more desirable. There are 
fewer constraints. There’s also an in-
creased chance that your software 
project will not take root and will not 
matter to anyone. The best hope is to 
build something that has an appro-
priate investment in infrastructure 
based on the economics. While doing 
that, try to have the insight to leave es-
pecially wide roads, perhaps 120 feet 
wide, even if they don’t matter much 
now. Just make sure the townsfolk 
don’t become a mob looking for ven-
geance! 
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THE FIRST WAVE of cryptocurrencies, starting in the 
1980s, attempted to digitize government-issued 
currency (or fiat currency, as cryptocurrency enthusiasts 
say).8 The second wave, represented prominently by 
Bitcoin,7 provide their own separate currency—issued 
and operated independently of any existing currencies, 
governments, or financial institutions. Bitcoin’s 
currency (BTC) is issued in fixed quantities according to 
a hard-coded schedule in the protocol.

In the words of Bitcoin’s pseudonymous inventor: 
“There is nobody to act as a central bank... to adjust the 

money supply... that would have required a trusted party 
to determine the value because I don’t know a way for 
software to know the real world value of things. If there 
was some clever way, or if we wanted to trust someone to 
actively manage the money supply to peg it to something, 
the rules could have been programmed for that. In this 
sense, it’s more typical of a precious metal. Instead of 
the supply changing to keep the value the same, the 
supply is predetermined and the value changes.”2 

Without active management, the 
exchange rate of BTC with govern-
mental currencies has been marked 
by extreme volatility. Figure 1 shows a 
comparison of fiat currencies and bit-
coin. The values were retrieved daily 
between Jan. 1, 2016 and Jan. 1, 2019. 
(Note that 1,000 mBTC = 1 BTC). Squint 
at the chart to notice how the GBP (Brit-
ish pound) drops around June 2016: 
This mild-looking pinch is actually the 
so-called “sharp decline” and “severe 
swing” that followed the Brexit ref-
erendum in the U.K. It is completely 
overshadowed, however, when placed 
beside BTC’s large fluctuations. 

A Third Wave?
Extreme volatility is not specific to 
BTC. It can also be seen in its contem-
poraries: ETH (ether) and XRP (Ripple). 
This instability is an issue of practical 
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importance: Volatility encourages us-
ers to hoard (if the value is going up) or 
avoid (if it is going down) the currency 
rather than use it. It makes lending 
risky, as currency movements can ex-
ceed interest payments. A lack of lend-
ing and credit inhibits the formation of 
mature financial markets. In response, 
a flood of proposals have been made 
for new cryptocurrency designs that 
purport to provide a stable exchange 
rate similar to (or exactly mirroring) a 
government-issued currency like the 
U.S. dollar. These designs are called 
stablecoins. 

Stablecoins have garnered a lot of at-
tention recently, both positive and neg-
ative. According to CoinMarketCap, a 
service that provides financial metrics 
for cryptocurrencies, more value in 
tether (a cryptocurrency issued by Teth-
er Limited) changes hands across a giv-

en day than bitcoin—despite questions 
about tether’s reserves and regulatory 
investigations into its affiliates. The an-
nouncement of Facebook’s Libra sta-
blecoin project made international 
headlines and has been remarked on by 
the Federal Reserve Board, U.S. legisla-
tors, and even the sitting U.S. president. 
Another project, Basis (née Basecoin) 
raised $133 million in venture capital 
but folded when it could not find a ten-
able path through U.S. financial regula-
tions. Central banks, including those of 
Sweden and Denmark, have explored 
the idea of government-issued stable 
cryptocurrencies.

Stablecoins promise the functional-
ity of Bitcoin without the roller-coaster 
ride of its exchange rate. But can this 
new breed of cryptocurrency really out-
smart decades of central bank policy 
with algorithms and smart contracts?

Knowledge Gap
Understanding how stablecoins work 
should be easy. Most projects have 
white papers outlining the design, the 
coins are marketed to the general pub-
lic, and there is no shortage of online 
articles surveying various designs. 

Unfortunately, there are a num-
ber of pitfalls in systemizing this 
knowledge. Many white papers are 
obfuscated with jargon—terms left 
undefined and used inconsistently 
across other projects and the financial 
literature. In other cases, system com-
ponents appear to be mislabeled. For 
example, a component that clearly 
meets the definition of a security or a 
derivative might instead be labeled a 
bond or a loan. Maybe this is a lack of 
precision. Maybe it is a play to make an 
unconventional protocol appear more 
conventional. Or maybe these are un-
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conscious attempts at keeping any reg-
ulatory red flags at half-mast. In any 
case, here we make an effort to offer 
direct and simple explanations. In par-
allel to our work, other academics have 
produced their own taxonomies.6,9

How Do Stablecoins Work?
We started by finding stablecoin proj-
ects on CoinDesk, an online news source 

for cryptocurrencies, using search que-
ries such as “stablecoins,” “stability,” 
and “price-stable.” This resulted in 185 
articles up to Jan. 11, 2019. (Given its 
high profile, Facebook’s Libra coin, 
which was released after this date, is 
included.) The 25 projects for which 
there was sufficient documentation 
were classified as shown in Figure 2. 
Projects are classified according to 

what they assert (for example, there is 
no warranty that projects classified as 
“redeemable” provide actual redemp-
tion of the assets that back their coins). 
Projects are sorted according to their 
rank on CoinMarketCap, which evalu-
ates cryptocurrencies that are actively 
traded on an exchange service. Unlist-
ed projects are ranked ⊥.

Next, each project was distilled into 
a core stability mechanism. Instead of 
enumerating the intricate details of 
how each “brand” of stablecoin 
works—details that could change to-
morrow—we concentrated on the fun-
damentals. Broadly, the projects can 
be split into two categories: those that 
try to directly match the stability of a 
second asset such as the U.S. dollar and 
could not exist without this underlying 
asset; and those that propose indepen-
dent currencies with algorithmic and/
or human intervention mechanisms 
for providing stability.

Type 1: Backed Stablecoins
The first general type of stablecoin tries 
to match the stability of a second target 
asset, such as the U.S. dollar, either by 
making use of it (directly backed) or by 
making use of a third reserve asset like 
ETH (indirectly backed). These stable-
coins could not exist without their un-
derlying assets.

Directly backed and redeemable. For 
stablecoins in this category, the compa-
ny operating the cryptocurrency obtains 
a reserve of some valuable asset—it 
might be the U.S. dollar or another sov-
ereign currency, gold or another com-
modity, or a basket of multiple assets. It 
then issues digital tokens that represent 
a unit of the underlying asset, which can 
be exchanged online (to illustrate, as-
sume a token is redeemable for $1).

Working Example: Alice is a trusted 
third party and uses Ethereum to in-
stantiate a DApp (decentralized ap-
plication), which issues 1,000 Alice-
Coins as standard tokens (for example, 
ERC20). She asks $1 USD for one Ali-
ceCoin and promises to redeem any 
AliceCoin for $1 USD. If Bob buys 10 
AliceCoins for $10 USD, Alice depos-
its the $10 USD in a bank account. 
Whenever Alice receives a buy order for 
AliceCoins and does not have any left 
to sell, she creates new ones. If Carol 
wants to redeem five AliceCoins, Alice 

Figure 1. Comparison among fiat currencies and Bitcoin.
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Figure 2. Stablecoin proposals as of Jan. 11, 2019.

Class Mechanism Resembles  Rank 

Backed
 

Directly Backed and 
Redeemable

USDC 20 

TrueUSD 26 

Paxos 38 

Gemini Dollar 52 

StableUSD (USDS) 685 

Stronghold USD 891 

Petro 1210 

Libra Coin, Ekon, WBTC, emparta ⊥ 

Directly Backed Tether 6 

EURSToken 95 

BitCNY 304 

Terracoin 1280 

Saga 1495 

GJY, Novatti AUD, UPUSD ⊥ 

Indirectly Backed Dai 57 

BitUSD 398 

Nomin ⊥ 

Intervention Money Supply 
Adjustments

Ampleforth ⊥ 

RSCoin ⊥

Asset Transfer NuBits 892

CarbonUSD 1262

Basecoin ⊥
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withdraws $5 USD and exchanges it 
with Carol, taking those AliceCoins out 
of circulation. Alice frequently pub-
lishes bank statements showing that 
her account holds enough U.S. dollars 
to redeem all coins in circulation (the 
number of AliceCoins can be checked 
any time on Ethereum. For more infor-
mation, see the sidebar “Ethereum and 
DApp Primer.”).

The idea of directly backed and re-
deemable currency predates Bitcoin: 
Liberty Reserve provided a similar digital 
currency, with some caveats about its re-
deemability (not to mention its legality). 
Liberty Reserve, e-gold, and similar pre-
blockchain services, however, would 
maintain transaction details and ac-
count balances on a private server. Block-
chain enables decentralized trust for the 
transactions, while the coin creation and 
redemption processes rely on a trustwor-
thy firm (see sidebar “Bitcoin and Block-
chain Primer.”). In short, this type of sta-
blecoin is more centralized than Bitcoin 
but less than Liberty Reserve. Also con-
sider that while decreasing centraliza-
tion can be good for trust and transpar-
ency, additional measures are needed to 
ensure it is not harmful for privacy.

For finer-grained analysis, Figure 3 
provides a comparative evaluation where 
a filled circle (�) indicates the properties 
(columns) are fulfilled by the corre-
sponding mechanism (rows) within rea-
son. A half circle (½) means the property 
is fulfilled but the fulfillment is bound-
ed. An open circle (�) means it is unful-
filled. A question mark (?) indicates a 
heuristic has been proposed for stabili-
ty and the conditions under which it 
will work are not well enough estab-
lished to evaluate. Finally, (×) indicates 

the property is not applicable. 
Recall the mechanism for issuing Ali-

ceCoins. If buyers are willing to pay more 
than $1 USD for 1 AliceCoin, new coins 
can be generated for $1 USD and sold to 
these buyers for a profit, ensuring bids 
return to $1 USD (it corrects overvalu-
ation). If sellers are willing to take less 
than $1 USD for 1 AliceCoin, those coins 
can be bought and redeemed for a profit, 
ensuring offers return to $1 USD (it cor-
rects undervaluation). 

In reality, transactions are not free, 
efficient, or entirely frictionless and 
some price deviation is expected. If re-
demption is ever in doubt, then the 
price can fall freely from $1 USD (al-
though this will not necessarily hap-
pen; as we will discuss). The trustwor-
thiness of the operating firm and the 
custodian of the reserves is essential, 
and financial audits are an important 
step to establishing confidence (al-
though many pitfalls exist when audit-

Figure 3. Comparitive evaluation of mechanisms to design stablecoins.

Corrects 
undervaluation

Corrects 
overvaluation

Decentralizes 
issuance

Decentralizes 
redemption

Decentralizes 
transfer

No trusted oracle

Mechanism Price Trust

Traditional Digital Cash
� � � � � �

Traditional Cryptocurrency
� � � × � �

Directly Backed and Redeemable
� � � � � �

Directly Backed
� � � � � �

Indirectly Backed ½ � � � � �

Money Supply Adjustments ? ½ � × � ½

Asset Transfer ? ½ � × � ½

Ethereum is a blockchain protocol with a BTC-esque cryptocurrency called ether (ETH). 
To a degree much greater than Bitcoin, Ethereum allows users to code verbose smart 
contracts or decentralized applications (DApps), which can be stored on the blockchain 
for a fee. Once a DApp is deployed, users can run its functions (again, for a fee). The 
functions are executed by the miners, and the output is written to the blockchain. 
Among other things, a DApp can receive and store ETH and define functions for how 
ETH can be transferred from the DApp. DApps can also create their own currencies and 
circulate them as tokens. ERC20 tokens are compliant with a widely used Ethereum 
standard and can interoperate with existing wallet software, Web-based exchanges, and 
token-tracking websites.

Ethereum and  
DApp Primer 

A public blockchain is a type of distributed database (or ledger) that is open to anyone 
who wants to maintain it, is robust against faulty and malicious participants, and runs 
without anyone in charge. When participants look at a local copy of the ledger, they are 
assured that everyone has the exact same records and that each record was validated by 
the majority of participants before it was written into the ledger. 

Bitcoin is a digital currency that introduced the idea of a blockchain to track how 
much of its currency (BTC) is held by each account, and to write “smart” transactions 
for payments. Transactions are added to the blockchain in a batch (called a block) by a 
network participant (called a miner), and miners include a special transaction that pays 
them newly minted BTC (called a coinbase transaction). The amount of new BTC released 
to miners follows a schedule built into the protocol and will decrement over time, 
eventually reaching zero once a determined amount of BTC has been made available.

Bitcoin and  
Blockchain Primer
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ing blockchain-based assets10). 
Directly backed. What if a stable-

coin operates exactly as in the previous 
section but does not offer a redemp-
tion process for the coin’s underlying 
assets? If there is no clear assertion of 
redemption, the project is listed as di-
rectly backed in Figure 2.

Working Example: Alice is a trusted 
third party that issues 1,000 AliceCoins 
as ERC20 tokens. She asks $1 USD for 1 
AliceCoin and promises to deposit and 
hold the payment in a bank account. 
As before, Alice creates new AliceCoins 
when she runs out and publishes fre-
quent bank statements. She offers no 
direct redemption of AliceCoins for 
U.S. dollars.

Here, bids will not exceed $1 for the 
same reason as mentioned previously. 
There is no longer a way to profit, how-
ever, if offers vary between $0 USD and 
$1 USD (that is, the mechanism does 
not prevent undervaluation). General-
ly, coins in this category are, in fact, 
redeemable by one user: the company 
operating the coin. It could purchase 
undervalued coins to release $1 USD 
from its reserves. For this reason, sta-
blecoins in this category are scruti-
nized (to the extent made possible by 
the operating firm) to ensure reserves 
are intact. If every AliceCoin is not 
backed by $1 USD, Alice could overis-
sue AliceCoins to enrich herself.

The largest coin is this category is 
Tether. Tether claims to be redeem-
able, but the redemption process is re-
ported by users to have a lot of friction, 
the firm is accused of issuing coins to 
manipulate markets,5 and the firm has 
not always maintained full reserves of 
U.S. dollars to allow all Tether to be re-
deemed (for these reasons, we catego-
rize it here). To many, it is a mystery 

why Tether remains highly liquid with 
daily trading volumes exceeding all 
other cryptocurrencies in value (ac-
cording to CoinMarketCap at the time 
of writing) including Bitcoin. One ex-
planation is that it is too useful to fail.

A key use case, illustrated by Tether 
and the affiliated exchange Bitfinex, is 
as a temporary store of value for traders 
and speculators. Traders who want to 
divest their BTC for U.S. dollars have 
three options: (1) Hold the U.S. dollars 
in an exchange account, which can be 
used only on the same exchange and re-
quires the exchange to be a trustworthy 
custodian; (2) withdraw the U.S. dollars 
from the exchange, but this requires 
identity verification (in most jurisdic-
tions), a bank that will accept proceeds 
of cryptocurrency trading, and a sub-
stantial time delay; (3) exchange BTC 
into a stablecoin that can be withdrawn 
from the exchange (that is, moved from 
the exchange to Alice’s private key) with 
little friction, delay, or regulatory over-
sight. This third option is a balanced al-
ternative—the withdrawn stablecoin 
can be moved onto a different exchange, 
transferred to other users, or used for 
direct purchases without involving the 
original exchange. In short, it offers 
more flexibility than leaving U.S. dollars 
in an exchange account and less friction 
than withdrawing U.S. dollars.

Indirectly backed. Both of the previ-
ous mechanisms—directly backed and 
redeemable, and directly backed—place 
heavy trust assumptions on the compa-
ny operating the currency (recall Figure 
3). Could a currency be managed auton-
omously by a DApp? The key idea of this 
mechanism is to offer a redeemable to-
ken that can be converted into $1 USD 
worth of ETH at the going USD/ETH ex-
change rate. Therefore, the amount of 
ETH received will grow or shrink de-
pending on the exchange rate. Because a 

blockchain has no inherent knowledge 
of exchange rates, this mechanism still 
requires one trustworthy entity called an 
oracle to write the exchange rate into the 
blockchain (or consensus can be taken 
across a set of oracles).

Working Example: Alice is no longer as-
sumed to be trustworthy. She sets up a 
DApp that can hold ETH and issue to-
kens. The DApp determines how much 
ETH is equivalent to $1.50 USD using 
the current exchange rate, provided to 
the DApp by a trusted third-party ora-
cle, and Alice deposits this amount of 
ETH into the DApp. The DApp issues to 
Alice two places in a line—each place is 
a transferrable token. At some future 
time, the holder of the first place in line 
can redeem up to $1 USD worth of the 
deposited ETH at the going exchange 
rate, and the holder of the second 
place in line gets any remaining ETH. 
Alice will transfer the first place in line 
(as a stablecoin called AliceCoin) to 
Bob for $1 USD and will hold or sell 
the second place in line. When Bob re-
deems the AliceCoin, it will be worth 
$1 USD in ETH when the entire deposit 
of ETH is worth more than $1 USD. If 
the exchange rate drops enough, the 
entire deposit will be worth less than 
$1 USD—Bob will get all of the deposit, 
and the holder of the second place in 
line will get nothing.

Bids for an AliceCoin in excess of $1 
USD will be fulfilled as long as there are 
individuals like Alice willing to lock up 
a deposit of ETH that is 1.5 times the 
face value of what they receive (this is 
called over-collateralization). An Alice-
Coin offered for less than $1 USD can 
be purchased and redeemed for a prof-
it, assuming the DApp holds enough 
ETH. Otherwise, an AliceCoin will sell 
between $0 and $1 USD according to 
the value of the ETH held by the DApp.

Is it risky for Alice to offer such an 
AliceCoin? Holding the second place in 
line is more volatile than holding the 
ETH itself. This stability mechanism 
does not (and cannot) eliminate volatil-
ity; it simply pushes it from first place to 
second place in line. The second place 
in line, however, is never more than $1 
USD short of the full amount of ETH 
held in the DApp. By keeping the $1 
USD she received for the AliceCoin, Al-
ice offsets any losses from the second 

A cryptocurrency (like any asset) has two prices: the most someone is willing to pay; 
and the least someone is willing to sell for. These are referred to as the best bid price 
and best offer (or ask) price, respectively. Note the best bid price should logically be 
less than the best offer price; otherwise, an exchange would happen (such prices 
might occasionally “cross,” but this should be temporal and quickly resolved with an 
exchange). Say a stablecoin is designed to ensure one unit is always priced at $1 USD. 
To argue stability, one must show both that the bid price should never exceed $1  
and that the offer price should never dip below $1. Note, conversely, that bids can dip 
below $1 (everyone prefers to pay less than something is worth) and asks can exceed  
$1 (everyone prefers to receive more than something is worth). 

Prices



JULY 2020  |   VOL.  63  |   NO.  7   |   COMMUNICATIONS OF THE ACM     45

practice

place in line. She has no more risk than 
holding ETH. The second place in line 
can also be sold to someone who is 
seeking risk: The token is a leveraged 
bet that ETH rises in value. Is it risky for 
Bob? In most conditions, holding an 
AliceCoin is purposefully the same as 
holding U.S. dollars. If the USD/ETH 
rate deteriorates quickly, however, the 
AliceCoin will use up its buffer and start 
to lose value (at the same rate as ETH).

Here are a few of the design decisions 
to consider when deploying an indirect-
ly backed stablecoin: What should the 
overcollateralization ratio be (for exam-
ple, 1.5x)? When can an AliceCoin be re-
deemed (for example, on demand, after 
an elapsed time, after movements in 
USD/ETH and so on)? How do you issue 
multiple AliceCoins (for example, collat-
eral for each coin is held separately, or 
collateral for all coins are pooled togeth-
er and coins are interchangeable)?

Type 2: Intervention-based  
Stablecoins
The second broad category of stable-
coins encompasses those that propose 
independent currencies with algorith-
mic and/or human intervention mech-
anisms for providing stability.

Money supply adjustments. A trusted 
oracle provides the going exchange rate 
between the cryptocurrency and a sta-
ble-valued asset, such as the U.S. dollar. 
When the cryptocurrency gains value, 
the supply of the cryptocurrency is in-
creased; when it loses value, the supply 
is decreased. This mechanism is based 
on how central banks have historically 
controlled their economies; however, 
the specifics of exchange-rate targeting 
have been abandoned by modern cen-
tral banks after past failures. 

That said, exchange rates are an ex-
ample, and other financial indicators 
could be used: oracle-provided interest 
rates (should lending markets emerge) 
or purchasing power; on-blockchain 
metrics such as transaction volumes 
(should these prove robust against ma-
nipulation); or human discretion (such 
as central banks themselves4).

Allowing a cryptocurrency to expand 
is not difficult. Who receives the new 
currency is a design decision with op-
tions including: existing holders of the 
currency in proportion to their 
holdings;existing holders through a 
random lottery; miners; or a specific 

entity such as a central bank. Deter-
mining who loses when the currency 
contracts is the primary challenge.

Working Example: Alice forks Bitcoin to 
create a new altcoin called AliceCoin. 
She tweaks the schedule for releas-
ing new AliceCoins (called the coin-
base amount) according to the rules 
outlined here. She sets up a trusted 
oracle for the latest exchange rate of 
AliceCoins to U.S. dollars. AliceCoin is 
programmed to apply an intervention 
when the price of an AliceCoin exceeds 
$1.02 USD or dips below $0.98 USD. If 
the price exceeds $1.02 USD, the min-
er is allowed to increase the coinbase 
amount (determined by some math-
ematical relationship with how much 
the price exceeds $1.02 USD). If the 
price dips under $0.98 USD, the miner 
must decrease the coinbase amount 
based on the same relationship. The 
correctness of the claimed coinbase is 
verified by other miners in deciding to 
accept or reject a mined block, as per 
all other checked conditions in Bitcoin.

If many bids for AliceCoin exceed 
$1.02 USD, some of the newly injected 
currency could be spent on obtaining 
U.S. dollars until all buyers willing to 
pay more than $1.02 USD have pur-
chased AliceCoins. This is merely a 
heuristical argument because there is 
no guarantee the recipients will spend 
the new currency on U.S. dollars, espe-
cially if demand for the dollar is falling. 
The justification for offers below $0.98 
is symmetric: The currency contrac-
tions could make holders less willing 
to spend it on U.S. dollars. If the price 
drop is caused by a lack of demand for 
AliceCoins rather than an oversupply, 
however, then removing supply will 
only thin out the market but not actu-
ally give traders incentive to trade and 
correct the undervaluation.

When the coinbase is increased or 
decreased dynamically (this is called 
an elastic coinbase), increases can be by 
any amount, but decreases cannot ap-
pear to go past zero. When the coin-
base is exactly zero, miners still have 
incentive to mine because of the fees 
provided in the transactions. In fact, 
this is how Bitcoin will eventually (pro-
jected to happen in 2140) function 
once all BTC is created (how well it will 
work is debatable1). 

Could the coinbase go negative? 
Since miners are rewarded the sum of 
the coinbase and the transaction fees, a 
coinbase can indeed be moderately 
negative if the transaction fees are 
greater than the negative coinbase. Un-
der this deployment, users are effec-
tively burning their transaction fees to 
contract the money supply.

Asset transfer. The second subtype 
of intervention-based stability mecha-
nism expands and contracts the sup-
ply of currency to influence its value; 
however, it uses a less direct contrac-
tion method, as shown in the follow-
ing example. 

Working Example: Alice instantiates a 
DApp with an ERC20 token called an 
AliceCoin. The DApp is programmed 
to apply an intervention when the price 
of an AliceCoin exceeds $1.02 USD or 
dips below $0.98 USD according to 
a trusted oracle. If the price exceeds 
$1.02 USD, the DApp creates a new set 
of AliceCoins (as before, according to 
some mathematical relationship) and 
transfers them to users waiting in line 
for them. How do users wait in line? 
When the price dips under $0.98 USD, 
the DApp creates new positions at the 
end of the line and auctions them off 
to the highest bidder. The payment for 
a place in line is made in AliceCoins 
from the bidder to the DApp, and the 
DApp destroys the payment. The place 
in line is a transferrable token. If the 
line is empty, AliceCoins are distribut-
ed according to a fallback policy.

If many bids in excess of $1.02 USD 
remain unexecuted, the logic follows 
the previous section: The currency is 
handed out in hopes that more U.S. 
dollars will be purchased. Offers be-
low $0.98 are justified on the premise 
that individuals will buy places in line, 
and if this premise is true, the result-
ing contraction of the currency fol-
lows the same logic as the previous 
section. The purchase of a spot in line 
is highly speculative—the currency 
might not return to stability and the 
spot might never be reached. As the 
line gets longer, the price of a place in 
line falls, and the speculative market 
thins out to traders wanting a higher 
and higher risk/reward ratio. These 
trends do not guarantee, or even point 
toward, a recovery in price.  
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Discussion and Conclusion
In summary, some stablecoins tokenize 
a low-volatility coin and bring it onto 
the blockchain. Others generally play 
one of two tricks: The first is to expand 
and contract the amount of currency to 
stabilize the value; the second is to turn 
two high-volatility coins (for example, of 
the underlying cryptocurrency) into one 
stablecoin and one extremely volatile 
coin. This last trick is similar to other 
financial assets that do not reduce over-
all risk but instead push it from one 
tranche of the asset to another.

A more detailed version of this article 
is available as a white paper.3 It includes 
more details and discussion about the 
categories, some empirical studies of 
how stable these coins are, reasons 
stablecoins are never perfectly stable, 
and an evaluation of whether Ethere-
um’s mechanism for paying for com-
putation (gas) is stable or not (the an-
swer: it does not seem to be, for now). 

Figure 4 is taken from the white pa-
per and shows volatility in prices for 
two fiat currencies (Canadian dollar 
[CAD] and Euro [EUR]) and two stable-
coins (Tether and BitUSD) against USD 
and BTC (prices from January 2017 to 
November 2018; 1000 mBTC = 1 BTC). 
A vertical line segment indicates the 
currency correlates with USD, while 
horizontal correlates with BTC. While 
CAD and EUR are free-floating curren-
cies, they demonstrate a degree of sta-
bility not that different from the stable-
coins, which demonstrates the stability 

of similar central banking operations 
in these economic zones. (See the side-
bar entitled “Prices.”)

Why are there so many stablecoin 
projects? The differentiation among 
coins is along a few parameters: the 
type of asset that can be redeemed for 
the coin: USD, EUR, gold, and so on; 
the underlying blockchain (for exam-
ple, Bitcoin, Ethereum, among others) 
and the low-level technical design (up-
datable contracts, governance, among 
others); and the country it operates 
from, which determines the degree of 
regulatory compliance that is required.

What’s next? Self-sovereign stable-
coins are interesting and probably here 
to stay; however, they face numerous 
regulatory hurdles from banking, fi-
nancial tracking, and (likely) securities 
laws. For stablecoins backed by a gov-
ernmental currency, the ultimate ex-
pression would be a centrally banked 
digital currency (CBDC). Since paper 
currency has been in steady decline 
(and disproportionately for legitimate 
transactions11), a CBDC could reintro-
duce cash with technological advan-
tages and efficient settlement while 
minimizing user fees.
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FROM THE SIMPLE  embedded processor in your washing 
machine to powerful processors in data center servers, 
most computing today takes place on general-purpose 
programmable processors or CPUs. CPUs are attractive 
because they are easy to program and because large 
code bases exist for them. The programmability of CPUs 
stems from their execution of sequences of simple 
instruc tions, such as ADD or BRANCH; however, the 
energy required to fetch and interpret an instruction is 
10× to 4000× more than that required to perform a simple 
operation such as ADD. This high overhead was accept-
able when processor performance and efficiency were 
scaling according to Moore’s Law.32 One could simply 
wait and an existing application would run faster and 
more efficiently. Our economy has become dependent on 
these increases in computing performance and ef-
ficiency to enable new features and new applications. 
Today, Moore’s Law has largely ended,12 and we must 

look to alternative architectures with 
lower overhead, such as domain-spe-
cific accelerators, to continue scaling 
of performance and efficiency. There 
are several ways to realize domain-spe-
cific accelerators as discussed in the 
sidebar on accelerator options.

A domain-specific accelerator is a 
hardware comput ing engine that is 
specialized for a particular domain of 
applications. Accelerators have been 
designed for graphics,26 deep learn-
ing,16 simulation,2 bioinformatics,49 
image processing,38 and many other 
tasks. Accelerators can offer orders of 
magnitude improvements in perfor-
mance/cost and performance/W com-
pared to general-purpose computers. 
For ex  ample, our bioinformatics accel-
erator, Darwin,49 is up to 15,000× faster 
than a CPU at  reference-based, long-read 
assembly. The performance and effi-
ciency of accelerators is due to a com-
bination of specialized operations, 
parallelism, efficient memory systems, 
and reduction of overhead. Domain-
specific accelerators7 are becoming more 
pervasive and more visible, because they 
are one of the few remaining ways to con-
tinue to improve performance and effi-
ciency now that Moore’s Law has ended.22

Most applications require modifi-
cations to achieve high speed up on 

Domain-
Specific 
Hardware 
Accelerators

DOI:10.1145/3361682

DSAs gain efficiency from specialization  
and performance from parallelism.

BY WILLIAM J. DALLY, YATISH TURAKHIA, AND SONG HAN

 key insights
 ˽ Most speedup comes from parallelism 

enabled by specialization—the main 
source of efficiency. 

 ˽ The underlying algorithms often have to 
change—trading increased hardware-
friendly computation for reduced memory 
bandwidth demands. 

 ˽ Accelerator design is really parallel 
programming guided by a cost model—
arithmetic is free and global memory  
is expensive. 

 ˽ Memory typically dominates both area and 
power of domain-specific accelerators. 

 ˽ Specialized instructions give much of the 
advantage of a DSA at a fraction of the 
development cost and while retaining 
programmability.

 ˽ Domain-specific accelerators are one  
of the few ways to continue scaling  
the performance and efficiency of 
computing hardware. I
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dominated. The challenge of balancing 
 specialization with generality is exam-
ined, and later we describe how accel-
erator design can be viewed as design-
ing parallel programs with a set of costs 
reflecting modern hardware.

Sources of Acceleration
Domain-specific accelerators exploit 
four main techniques for performance 
and efficiency gains:

Data specialization: Specialized 
operations on domain-specific data 
types can do in one cycle what may 
take tens of cycles on a conventional 
computer. Specialized logic to per-
form an inner-loop function gains in 
both performance and efficiency.
Parallelism: High degrees of paral-
lelism, often exploited at several 
levels, provide gains in perfor-
mance. To be effective, the parallel 
units must exploit locality and 
make very few global memory ref-
erences or their performance will 
be memory bound.
Local and optimized memory: By 
storing key data structures in many 
small, local memories, very high 
memory bandwidth can be 
achieved with low cost and energy. 
Access patterns to global memory 
are optimized to achieve the 
greatest possible memory 
bandwidth. Key data structures 
may be compressed to multiply 
bandwidth. Memory accesses are 
load-balanced across memory 
channels and carefully scheduled to 
maximize memory utilization.
Reduced overhead: Specializing 
hardware eliminates or reduces the 
overhead of program interpretation.

The speedup gains from specialization 
and parallelism are multiplicative. 
The dynamic programming engine de-
scribed here, for example, gets a 37× 
speedup from specialization and an 
additional 4034× speedup from par-
allelism for a net 150,000× speedup 
compared to a conventional proces-
sor. Some of these factors are also de-
pendent. Achieving high degrees of 
parallelism, for example, depends on 
locality. The 4096 processing elements 
in the dynamic programming engine 
only reference small local traceback 
memories. This degree of parallelism 

would not be possible if global memory 
references were required. Optimizing 
memory may also rely on specializa-
tion. Compressing data structures may 
only make sense if specialized logic is 
available to do the compression.

Data specialization. The defining 
feature of many domain-specific accel-
erators is a set of hardware operations 
specialized to the application domain. 
The inner loops of many demanding ap-
plications perform tens to hundreds of 
arithmetic and logical operations with 
only very local memory references. In 
many cases, specialized logic can per-
form the entire inner loop in a single 
cycle with a small amount of area and 
power. This logic is fed by specialized 
registers and communication links that 
provide and consume data with very 
low energy. As an example, consider the 
Smith-Waterman algorithm44 with af-
fine gap penalties.14 This algorithm is 
widely used in genome analysis to align 
two gene sequences. Each iteration of 
the inner loop computes the following 
recurrence equations:

I(i, j) = max {H (i, j – 1) – o, I (i, j – 1) – e} (1)

D(i, j) = max {H (i–1, j)–o, D (i–1, j)–e} 
(2)

 

(3)

Here H(i, j) is the maximum score for 
an alignment ending at (i, j), o and e are 
the penalties for opening and extend-
ing an insertion or deletion, and W(r, q)  
is the cost of substituting base r for 
base q. The computation is performed 
in 16-bit integer arithmetic.

Performing this computation on 
a conventional x86 processor without 
SIMD vectorization takes around 35 
arithmetic and logical operations and 
15 load/store operations. On an Intel 
Xeon E5-2620 4-issue, out-of-order 14nm 
CPU, each iteration takes about 37 cycles 
and consumes 81nJ. On our 40 nm Dar-
win accelerator, each iteration takes a 
single  cycle, a 37× speedup, and con-
sumes 3.1pJ, a 26,000× reduction in en-
ergy. Of the 3.1pJ, only 0.3pJ is consumed 
computing the recurrence equations. 
The balance of 2.8pJ is used for a single 

domain- specific accelerators. These ap-
plications are highly tuned to balance 
the performance of conventional pro-
cessors with their memory systems. 
When specialization reduces the cost 
of pro cessing to near zero, they be-
come memory limited. The applica-
tion must be re  worked, codesigning 
the application with the accelerator, to 
reduce memory bandwidth and mem-
ory footprint. Even after rework, many 
domain-specific accelerators remain 
memory dominated.

A well-designed accelerator covers 
the broadest possible space of appli-
cations—accelerating a domain rather 
than a sing le application. Add ing 
domain- specific instructions to a pro-
grammable processor provides the ef-
ficiency of the specialized instruction 
while retaining flexibility. Complex 
instructions give better efficiency be-
cause they amortize the high overhead 
of programmability. Building a parallel 
computer from domain- specific pro-
cessing elements can also accelerate a 
large domain of applications with only 
a small loss of efficiency.

The design of a domain-specific ac-
celerator is really a form of parallel pro-
gramming, but with a cost model very 
different from what most program-
mers use. Arithmetic and logical oper-
ations are nearly free, and memory ac-
cesses have a cost that is a function of 
the size of the memory being accessed. 
Most of the effort in designing an ac-
celerator is refactoring the application 
to optimize efficiency under this mod-
el. We envision future programming 
systems where the programmer speci-
fies the algorithm and a mapping to 
hardware in space and time. From this 
description, the detailed design of the 
accelerator would be largely automat-
ed. Such tools will facilitate the rapid 
exploration of the accelerator design 
space and eliminate many of today’s 
obstacles to accelerator design.

The remainder of this article de -
scribes the current state of the art in do-
main-specific accelerators. We start by 
discussing the four techniques accel-
erators employ to achieve performance 
and efficiency: specialization, parallel-
ism, local and optimized memory, and 
reduced overhead. We then explore 
the process of codesigning applica-
tions and accelerators and we discuss 
how most accelerators are memory 
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cessing elements can be made very 
simple and very small. As an example, 
the alignment portion of our Darwin 
accelerator exploits parallelism at two 
levels. At the outer-loop level, A = 64 
systolic arrays of processing elements 
process 64 separate alignment prob-
lems in parallel. There is no communi-

memory access to store a 4-bit “traceback 
pointer” that identifies which preced-
ing cell was used to compute the value.

A large fraction of the area and en-
ergy savings of specialization are due to 
elimination of overhead. Much of the 
81nJ consumed by the x86 processor 
and much of its area are spent fetching, 
decoding, and reordering instructions. 
This overhead is largely eliminated by 
specialization. The processing element 
that computes the recurrence equations 
takes only 0.004mm2 of die area in a 
40nm process. Despite being three tech-
nology nodes behind the 14nm CPU, the 
specialized operations of the accelera-
tor offer orders of magnitude improve-
ment in performance, power, and area.

Specialization also enhances locality 
by reducing the cost of memory com-
pression. In our EIE accelerator for 
sparse neural networks,16 we store 10%–
30% dense networks in compressed-
sparse-column (CSC) format. We further 
compress the row pointers to 4-bits each 
using run-length coding and compress 
the network weights using a 16-entry 
codebook. The compressed-sparse rep-
resentation of network weights results 
in a 30× reduction in size allowing the 
weights of most networks to fit into ef-
ficient, local, on-chip memories, which 
takes two orders of magnitude less en-
ergy to access than off-chip memories.

On a conventional processor, the ex-
tra operations required to walk the point-
ers of the sparse-matrix data  structure 
make such representations inefficient 
for densities above 1%. Similarly, the 
overhead of the run-length and code-
book compression would be prohibi-
tive on a general-purpose processor. 
With specialized logic, the pointer 
walking is done in a dedicated pipe-
line stage, with the pointers fetched 
from a dedicated, local memory. The 
decompression, both for the run-length 
pointer encoding and the codebook 
lookup, is also done in a dedicated pipe-
line stage. The area needed to support 
sparsity and compression with special-
ized logic is relatively small: the 16-en-
try weight decoder takes less than 1% 
of the die area; the pointer RAM takes 
about 20% of the area and power. On 
a general-purpose processor, the over-
head is prohibitive.

Parallelism. Most domain-specific 
accelerators exploit parallelism at one 
or more levels. By specializing the par-

allelism to the application domain, 
the synchronization and communi-
cation between processing elements 
are greatly simplified. Only the com-
munication and synchronization 
patterns in the application being 
accelerated need to be supported. By 
eliminating overhead, the parallel pro-

Domains of applications can be accelerated with ASICs, FPGAs, or GPUs each offering 
different trade-offs between development cost, programmability, and efficiency. 
ASICs (application- specific integrated circuits) provide the highest efficiency but 
have a high nonrecurring engineering (NRE) cost and poor programmability. Their 
logic is hardwired at design time for a single application domain. Soft logic in FPGAs 
lowers the efficiency for specific tasks by 10–100×29 but enables the same chip to be 
dynamically configured for different applications, for example, for deep learning 
or genomics. Soft logic also allows for deeper specialization (for example, constant 
folding specific values of weights in a neural network5) and allows for an accelerator to 
be instantiated near the data it operates on, reducing communication costs.47 GPUs are 
platforms that accelerate multiple domains by incorporating specialized operations 
(such as HMMA4) and memory optimizations (such as compressed surface storage3). 
For the applications they accelerate, they provide near-ASIC efficiency. For other 
applications, their SIMT execution model33 offers order of magnitude better efficiency 
than CPUs at the expense of single-thread performance.

Figure 2 compares the efficiency of FPGAs, GPUs, and ASICs for two domains: deep 
learning and genomics. For domains where GPUs have specialized logic, such as deep 
learning, they provide near-ASIC efficiency.a In other domains, such as genomics, GPUs 
provide lower efficiency than FPGAs but offer faster development time. For genomics, 
we coded the banded Smith-Waterman algorithm50 in CUDA for the GPU in one day—
giving 25× improvement in efficiency over the CPU. Bringing this algorithm up on an 
FPGA took two months of RTL design and performance tuning—to achieve four times 
the efficiency of the GPU. Hardening this RTL into an ASIC gives 16× the efficiency 
of the FPGA but with significant nonrecurring costs and lack of flexibility. Adding a 
dynamic-programming step (DPS) instruction to the GPU matches the efficiency of the 
ASIC and with no loss of efficiency.

There are architectures that provide intermediate trade-off points for 
programmability and efficiency between FPGAs and ASICs. CHARM6 uses a number 
of programmable domain-specific accelerator building blocks (ABBs), organized into 
ABB islands, to compose domain-specific acceleration. CGRAs20 provide coarse grain 
reconfigurability, at word level or operator level instead of bit level, and incur lower 
overhead compared to FPGAs. 

a The NVIDIA T4 and Habana Goya have nearly identical arithmetic performance per Watt. 
The difference in the figure is due to the difference in memory interface, GDDR on the T4 
and LPDDR on the Goya.

Acceleration Options

Figure 2. Comparison of computation efficiency (in Tasks/s-Watt) for CPU, FPGA, GPU, 
and ASIC for deep learning and genomics domains.a

CPU
1000 1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

100

Im
ag

es
/s

-W
at

t

M
ce

ll
s/

s-
W

at
t

9.9

Deep Learning Genomics

10.8

70.6

150

10.7

976.6

256.0

16,279.1

10

1

FPGA GPU ASIC

a  Deep learning efficiency is measured in terms of inference images/s-Watt for Resnet-5021 
(sources: CPU,43 FPGA,53 GPU,36 ASIC15). Genomics efficiency is measured in Mcells/s-Watt 
for Banded Smith-Waterman algorithm (sources: CPU,9 FPGA,50 GPU (our implementation on 
NVIDIA V100), ASIC50). 



52    COMMUNICATIONS OF THE ACM   |   JULY 2020  |   VOL.  63  |   NO.  7

contributed articles

accumulating row sums locally. Other 
than the activation broadcast, there is 
no communication between the PEs. A 
FIFO queue of pending input activa-
tions at each PE load balances work 
across the PEs, improving PE utiliza-
tion from 50% without the FIFO to 90% 
with the FIFO.

Local and Optimized Memory. The 
gains from specialization and paral-
lelism are dependent on keeping the 
computation supplied from small, lo-
cal memories. Each cycle, each of the 
4096 PEs in the Darwin alignment en-
gine stores a traceback pointer to mem-
ory, achieving a net write bandwidth of 
nearly 2TBps. These pointers are used to 
construct the optimal alignment when 
the dynamic programming completes. 
If traceback pointers were stored to 
global memory, the computation would 
be bottlenecked by memory bandwidth. 
Instead, the traceback pointers are 
stored in 4096 small SRAMs, one asso-
ciated with each PE. A conventional 
memory subsystem, even one with 
many levels of caches, is largely serial 
and would limit the achievable paral-
lelism to a very small number.

In a similar manner, the filtering stage 
of the Darwin accelerator uses 16 dedi-
cated SRAMs to store the bin counts, the 
number of seeds that match within a 
range of a candidate alignment. Al-
though at most four bins are incremented 
each cycle, the speedup here is more 
than four times because the bin-count 
updates are random and cause interfer-
ence with the sequential accesses to the 
seed position tables. With the bin-count 
updates removed from the memory 
stream, the sequential reads of the seed 
tables achieve nearly ideal memory 
throughput. Overall, the speedup from 
memory access optimization is 9×–
24×—3× speedup from fewer accesses to 
DRAM (moving bin-count updates to 
SRAM) and 3×–8× speedup from the in-
creased bandwidth by changing a ran-
dom access pattern to mostly sequen-
tial. Four DRAM memory channels were 
added to the accelerator providing an-
other four times the speed up from 
memory parallelism.

Data compression can be employed 
to both increase the effective size of a 
local memory and to increase the effec-
tive bandwidth of a memory interface. 
The NVDLA,35 EIE,16 and SCNN,37 for 
example, all store the weights of a 

neural network as sparse data struc-
tures giving an average 3×−10× increase 
in the effective capacity of on-chip 
memories. The EIE and SCNN also run-
length encode the pointers of the sparse 
data structure as 4-bit increments. This 
gives a density advantage of 4×–8× com-
pared to storing these pointers in full 
16- or 32-bit form. The weights in EIE 
are further compressed using a 16-entry 
codebook. Each weight is represented 
by a 4-bit codeword, giving an 8× sav-
ings compared to a 32-bit float. The sav-
ings in the number of weights and the 
number of bits per weight is multiplica-
tive giving an overall compression rate of 
32×–64×. Whenever weights are loaded 
from off-chip DRAM memory, the effec-
tive off-chip bandwidth is increased by 
this rate—compared to loading uncom-
pressed data. GPUs have long stored sur-
faces in lossless compressed form3 to 
increase effective memory bandwidth.

Overhead reduction. Overhead reduc-
tion is an important aspect of specializa-
tion. Even a simple in-order processor 
spends over 90% of its energy on over-
head: instruction fetch, instruction de-
code, data supply, and control.10 A mod-
ern out-of-order processor spends over 
99.9% of its energy on overhead51 adding 
costs for branch prediction, specula-
tion, register renaming, and instruction 
scheduling. Performing a 32-b integer 
add takes only 63 fJ in 28nm CMOS.24 
Performing an integer add instruction 
on a 28nm ARM A-15 takes over 250pJ,51 
about 4000× the energy of the add itself. 
Special purpose engines such as Darwin 
and EIE completely eliminate this over-
head. Moreover, most adds do not need 
full 32-bit precision and just the number 
of bits needed are added, further saving 
energy. There are no instructions to be 
fetched and hence no instructions fetch 
and decode energy. There is no specu-
lation, and hence  no work lost due to 
mis-speculation. Most data is supplied 
directly from dedicated registers and 
thus no energy is required to read from 
a cache or from a large, multiported reg-
ister file.

The high energy and area costs of in-
struction and data supply overhead 
motivate complex instructions. The energy 
of a single add operation is swamped by 
the instruction overhead energy. A com-
plex instruction, such as the matrix- 
multiply-accumulate instruction (HMMA) 
of the NVIDIA Volta V100,4 on the other 

cation between the subproblems, and 
the only synchronization required is 
upon completion of each subproblem. 
A typical reference-based assembly per-
forms billions of alignments, so there 
is ample outer-loop parallelism.

At the inner-loop level, each array 
consists of P = 64 processing elements 
that compute 64 elements of the H, I, 
and D matrices in parallel. The com-
putation is performed along an an-
tidiagonal of the matrices as originally 
suggested in Lipton and Lopresti.30 
On cycle t, processing element p com-
putes the matrix elements at (p, t − p). 
Matrices with more than P rows are 
processed in swaths P rows at a time. 
Because matrix element (i, j) depends 
only on the elements directly above 
(i − 1, j), directly to the left (i, j − 1), and 
above and to the left (i − 1, j − 1), only 
systolic nearest neighbor communica-
tion between the processing elements 
is required. As with all systolic arrays, 
synchronization is implicit.

The parallelism exploited by special-
purpose accelerators typically has very 
high utilization. Utilization at the outer-
loop level is close to 100%. Until the very 
end of the computation, there is always 
another subproblem to process as soon 
as one finishes. With double buffering 
of the inputs and outputs, the arrays are 
working continuously. At the inner-loop 
level, utilization is 98.5%. Computation 
is performed in 512 × 512 tiles. At the 
start of each tile, only a single PE, at the 
upper left corner, is active. Each cycle 
another PE becomes active until all 64 
are operating. Similarly, at the bottom 
right corner, the number of active PEs 
ramps linearly down from 64 to 0. 
Although it is possible to have the idle 
PEs start on the next alignment immedi-
ately, this is not done in Darwin. Idling of 
PEs at the start and end makes the aver-
age PE utilization 98.5% and the overall 
speedup due to parallelism 4034×. This 
speedup due to parallelism is multipli-
cative with the 37× speedup due to spe-
cialization giving an overall speedup on 
alignment of 150,000×.

In EIE, we parallelize a sparse matrix 
× sparse vector multiplication by parti-
tioning the rows of the matrix across 
256 PEs. Each nonzero input activation 
and its column are broadcast to all PEs. 
Upon receipt of each activation, each 
PE walks the nonzero row entries for 
that column in its subset of rows, 
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conventional hardware. With special-
ized hardware, gapped extension be-
comes feasible50 giving much better 
sensitivity when comparing the genomes 
of distantly-related species—where the 
alignments have frequent gaps.

Memory Dominates Accelerators
The area and power of most accelerators 
are dominated by memory, and their per-
formance is often memory limited. As a 
result, much of the codesign described 
earlier is developing algorithms that 
have a small memory footprint. Most of 
their memory bandwidth requirements 
can be satisfied by small, local memo-
ries. They require only modest band-
width from large, global memories.

Table 1 shows the relative area and 
power for memory and logic in the Dar-
win GACT accelerator, the Darwin D-
SOFT accelerator, and the EIE sparse 
neural network accelerator. The EIE 
numbers are shown for 64 processing 
elements (PEs). D-SOFT and EIE, 
which accelerate a memory-limited ap-
plication (seed filtering and matrix-
vector multiplication, respectively) using 
large local memories, use over 90% of 
their die area for memory. In D-SOFT, 
the power component is over 90% as 
well, because the bin update logic is 
relatively simple, consisting of on-chip 
routing and simple arithmetic opera-
tions (add and compare). Even in the 
EIE, where the 16-bit multiply opera-
tions are more expensive, memory still 
consumes more than half of the chip 
power. For the GACT accelerator, 
which performs a compute-intensive 
dynamic programming operation, the 
memory that stores the traceback 
pointers consumes about 80% of the 
die area and over 75% of the power. 
The simple 16-bit additions and com-
parisons at the core of the dynamic pro-
gramming recurrence equations take 
very little area and power. The low area 
and power of simple logic and arithmetic 

hand, performs 128 floating-point opera-
tions in a single instruction and thus has 
an operation energy that is many times 
the instruction overhead. Using complex, 
specialized instructions, one can build 
efficient, specialized, programmable 
computer systems. We revisit the concept 
of complex, specialized instructions later.

Codesign is Needed
Achieving high speedups and gains in 
efficiency from specialized hardware  
usually requires modifying the underly-
ing algorithm. Because existing algori-
thms are highly tuned for conventional 
general-purpose processors, they are 
rarely the optimal approach for a spe-
cialized solution. Instead, the algo-
rithm and hardware must be codesigned 
to jointly optimize performance and 
efficiency while preserving or enhanc-
ing accuracy.

Many existing algorithms are tuned 
to balance the performance of conven-
tional processors with their memory 
systems. When the cost of the process-
ing is made nearly zero via specializa-
tion, they become completely memory 
dominated. To get significant speedup, 
such algorithms must be refactored to 
reduce the bandwidth demands on 
global memory. Although methods 
such as tiling52 and compression can be 
used to reduce global bandwidth to 
some degree, often more fundamental 
restructuring is required.

One approach to codesign is to trade 
more of an operation that is inexpen-
sive in hardware (that is, logic limited) 
for less of an operation that is expensive 
(that is, memory limited). For example, 
conventional applications for long-read 
genomic sequence alignment such as 
GraphMap45 spend most of their com-
pute time on filtering and relatively lit-
tle time on alignment. This approach 
makes sense for a general-purpose pro-
cessor where filtering is relatively cheap 
and alignment is expensive. It is exactly 
the wrong optimization for specialized 
hardware where alignment can be 
made extremely efficient (26,000× more 
efficient and 150,000× faster than on a 
general-purpose processor) but filter-
ing is fundamentally limited by global 
memory bandwidth. If we were to apply 
hardware specialization to the existing 
algorithm, we would be limited to a 
speedup of 4–5× due to the memory 
bandwidth required.

To exploit this difference in costs, 
Darwin spends 200× less time on filter-
ing than GraphMap. This results in a 
560× increase in candidate positions 
to be aligned and hence 560× more 
work for the alignment stage. However, 
because alignment is accelerated by 
150,000×, the net result is a speedup of 
more than 200×. Darwin’s parameters for 
filtering and alignment are adjusted so 
that the new alignment-heavy algorithm 
has equal or higher sensitivity than the 
filtering-heavy algorithm it replaces.

Codesign may also be used to reduce 
memory footprint—to make the use 
of small local memories feasible. The 
conventional Smith-Waterman algo-
rithm for long, 104 base-pair, reads, for 
example, would require a prohibitively 
large, 108 entry, store for traceback 
pointers. To reduce the memory foot-
print to more feasible 2 × 105 entries, 
we developed the GACT algorithm that 
performs the dynamic programming 
in overlapping tiles.49 Tiling reduces 
the memory footprint to that of a single 
512 × 512-entry tile. Overlapping the 
tiles by an amount O = 128 that is larger 
than the largest expected deviation of 
the optimal path from the diagonal in 
practice gives optimal alignments.

In other cases, codesign enables algo-
rithms that would otherwise be ineffi-
cient on conventional hardware. For ex-
ample, in Han et al.,17,18 we showed how 
neural networks could be pruned to 
10%–30% density and compressed by 
30×. The overhead of sparse methods on 
conventional hardware made these algo-
rithms uninteresting except for memory 
compression. Codesigning special-pur-
pose hardware for sparse operations en-
ables these algorithms to be used to re-
duce computation as well.

As another example, software for 
whole genome alignment, such as 
LASTZ,19 uses ungapped extension to 
filter seed hits because gapped exten-
sion is prohibitively expensive on 

Table 1. Breakdown of chip area and power into logic and memory units for the GACT and  
D-SOFT accelerators in Darwin49 and for the EIE accelerator16 using TSMC 40 nm.

 Unit Area (mm2) (%) Power (W) (%)

GACT Logic
Memory

17.6
68.0

20.5
79.5

1.04
3.36

23.6
76.4

D-SOFT Logic
Memory

6.2
320.3

1.8
98.2

0.41
8.80

4.4
95.6

EIE Logic
Memory

2.8
38.0

6.9
93.1

0.23
0.34

40.3
59.7
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the other hand, would result in poor ef-
ficiency. A happy medium lies in build-
ing an engine that accelerates a domain 
of applications where the breadth of 
applications is increased while retain-
ing most of the efficiency of the com-
pletely specialized accelerator.

Special instructions vs. special en-
gines. One approach to building ac -
celerators for broad domains is to 
add specialized instructions to a gen-
eral-purpose processor. A hardware 
block is built to accelerate the core op-
erations for a domain of algorithms—
matrix multiply for deep learning or 
dynamic programming for genomics—
and the operations are made available as 
instructions on a general-purpose pro-
cessor. This approach makes the core 
operation as efficient as a completely 
specialized accelerator but allows the 
use of the programmable general-
purpose processor to adapt its use to 
different algorithms and applications.

The HMMA (half-precision matrix 
multiply-accumulate) instruction in 
the NVIDIA Volta V100 GPU4 is an ex-
ample of adding a specialized instruc-
tion to a general-purpose processor. 
The instruction multiplies two 4 × 4 
half-precision (16-bit) floating-point 
matrices accumulating the results in a 
4 × 4 single-precision (32-bit) floating-
point matrix. The Turing IMMA (inte-
ger matrix multiply accumulate) in-
struction performs this same 
operation on 8 × 8 8-bit integer matri-
ces accumulating an 8 × 8 32-bit integer 
result matrix.26 These operations accel-
erate the inner loops of both training 
and inference for convolutional, fully-
connected, and recurrent layers of deep 
neural networks. A single HMMA in-
struction performs 128 floating-point 

operations: 64 half-precision multi-
plies and 64 single-precision adds. An 
IMMA instruction performs 1024 inte-
ger operations. This large amount of 
math amortizes the overhead. Using 
data from Horowitz,24 we estimate that 
when executing an HMMA (IMMA) in-
struction, 77% (87%) of the energy is 
consumed by arithmetic. The balance 
of the energy is consumed by instruc-
tion overhead and fetching the data op-
erands from the large GPU register files 
and shared memory. A dedicated accel-
erator, such as the Google TPU,27 could 
be at most 23% (13%) more efficient on 
half- precision (8-bit integer) matrix 
multiply. This bound is just for the 
core matrix multiply operation. The 
accelerator may be more efficient at 
staging data in on-chip memories and 
in optimizing data movement. Also, 
the GPU die will be larger and hence 
more expensive, because it includes 
area for the general-purpose functions, 
and for other accelerators, which are 
unused when doing matrix multiply. 
This die cost factors into the recurring 
portion of total cost of ownership.

The advantage of implementing the 
accelerator as an instruction is that the 
full power of the general-purpose pro-
cessor is available to implement other 
layers of the network. Pooling, normal-
ization, batch-normalization, sparsity-
mask, and nonlinear function layers are 
easily implemented. As new algorithms 
and methods are developed, they are 
easily incorporated as custom layers 
while retaining the efficiency of the ac-
celerator for the bulk of the operations.

In a similar manner, one could im-
plement a special-purpose dynamic 
programming instruction to acceler-
ate genomics calculations. A dynamic-
programming step (DPS) instruction 
would take as input the values of H, 
I, and D (Eqs. (1)–(3) ) for a portion of 
the current diagonal and generate cor-
responding values for a portion of the 
next diagonal along with their trace-
back pointers. Adding such an instruc-
tion to a general-purpose GPU or CPU 
would provide most of the efficiency 
gains of a hardwired accelerator such 
as Darwin.

One advantage of building a special-
ized instruction rather than an entire 
engine is that only the instruction must 
be developed, not the entire system. 
Most of the complexity of a computing 

make domain-specific accelerators ef-
ficient. However, it also makes them 
memory limited. When logic is “free,” 
memory dominates.

Because the area and power of most 
accelerators are memory dominated, a 
reasonable first estimate of these costs 
can be made by considering only the 
memory. This allows rapid design 
space exploration.

Because global memory bandwidth 
is extremely expensive, many accelera-
tors are designed to be global memory 
limited—to keep this expensive re-
source busy. In Darwin, for example, 
the four DRAM memory channels pro-
vide at most four seeds per cycle. We 
sized the D-SOFT filtering hardware 
with 16 bin-count banks so it can al-
ways keep up with the four seeds per 
cycle from external DRAM. Similarly, 
the 4K GACT PEs are provisioned so 
that alignment can keep ahead of the 
filtering stage.

Because external memory band-
width is so critical, it should be opti-
mized. Memory schedulers should be 
employed that maximize memory 
throughput41 and memory contents 
should be compressed where possible.

Balancing Specialization 
and Generality
In the design of domain-specific accel-
erators, there is a tension between gen-
erality and efficiency. Building an en-
gine specialized for just one application 
can give the highest possible efficiency. 
However, its range of use may be too 
limited to generate enough volume to 
recover design costs, or a new algo-
rithm may be developed rendering the 
accelerator obsolete. Building a com-
pletely general-purpose computer, on 

Figure 1. TCO for a genomics accelerator as a function of volume. At low volumes, older  
technology nodes give a lower TCO because of their lower nonrecurring costs (NRE).
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cated accelerator to the cost of add-
ing specialized instructions to a CPU 
or GPU, or to the cost of combining 
several accelerators—perhaps sharing 
memory and I/O systems—on a single 
chip. Adding specialized instructions 
or combining accelerators gives a 
higher recurring cost but gives a larg-
er volume over which to amortize the 
nonrecurring costs.

Accelerator Design
The design of a domain-specific acceler-
ator is really the design of a fine-grained, 
memory-constrained, parallel program 
for a limited set of tasks. Most of the 
effort is in crafting an algorithm that 
achieves high parallelism with a small 
local memory footprint and low global 
memory bandwidth. Once a highly-par-
allel, highly local algorithm is developed, 
the design of the hardware is straight-
forward—and is largely dominated by 
memory as described previously.

The major difference between design-
ing a DSA and writing a parallel program 
for a conventional parallel machine such 
as Summit23 is the cost model. The cost 
model in turn drives differences in 
granularity and memory footprint. 
Most programmers use a cost model 
based loosely on the PRAM model.40 
Arithmetic functions and accesses to 
anywhere in a large global memory are 
all counted as unit-cost operations.

Even on a conventional x86 proces-
sor, the PRAM model is highly unreal-
istic, and on a modern GPU, even more so. 
Global memory operations are hun-
dreds of times more expensive than arith-
metic operations and local memory  
operations—those that hit in the cache. 
On multinode machines such as Sum-
mit, communication between nodes 
takes microseconds, the equivalent of 
thousands of operations. This leads to 
very coarse-grained parallelism and 
communication.a Adjusting the PRAM 
model for the realities of conventional 
parallel machines has led to models 
such as log P8 that weight global ac-
cesses and communication with ap-
proximations of their actual cost.

a Many parallel machines have been built with 
very efficient hardware communication and 
synchronization.13,34,42 Unfortunately the need 
to use commodity processors for the nodes of 
mainstream machines has prevented most 
programmers from benefiting from such ef-
ficient mechanisms.

engine, specialized or general purpose, 
is in the memory system, on-chip inter-
connect, I/O system, and global control. 
When a DSA is implemented by adding 
an instruction to a general-purpose 
GPU or CPU, it can leverage the existing 
system components. The complexity of 
the domain-specific block is 100s–1000s 
of times smaller than the complexity of 
the system (as measured by lines of 
code). With a dedicated engine, the 
entire system must be developed.

Today, architects pressed to 
increase efficiency are turning to com-
plex instructions, such as HMMA, 
IMMA, and DPS to amortize fixed 
instruction overhead. Complex, 
domain-specific instructions enable 
the efficiency of domain-specific 
accelerators to be combined with the 
generality of a programmable proces-
sor and with development costs a frac-
tion of that required to develop a 
dedicated accelerator.

Domain-specific parallel computers. 
The ability to increase generality with 
little loss of efficiency is illustrated by 
comparing two simulation accelera-
tors: the MSE11 and MARS.2 The MSE 
was a parallel computer where process-
ing elements were highly specialized to 
different stages of the simulation pipe-
line. The MSE was 300× faster than a 
contemporary general-purpose com-
puter (a VAX 11-780), but it could only 
accelerate switch-level simulation.

MARS used a single domain-specif-
ic programmable processing element 
that could serve as any of the pipeline 
stages. In a single cycle, each MARS 
PE could read a word from the input 
queue, perform an address calcula-
tion, read or write a word from external 
SRAM, extract a bit field from a word, 
perform an arithmetic or logical opera-
tion on the bit field, insert the resulting 
bit field into another word, and write a 
word to the output queue. The net re-
sult was a speedup of about 200× com-
pared to a contemporary general-pur-
pose computer (a Sun 3/260),2 and this 
performance doubled over a period of 
years as the pipeline was refactored to 
eliminate bottlenecks and individual 
pipeline stages were tuned. MARS was 
nearly as fast as a hardwired engine, 
and because the area was dominated 
by memory, smaller, hardwired PEs 
would have made little difference to 
the overall area.

A key factor in the success of MARS 
was the low-overhead associated with 
horizontal microcode control. The 
energy overhead of programmability 
was largely the cost of fetching a 64-bit 
microinstruction from a 64-bit ×  
64-word microinstruction store. This 
energy was small compared to the 
access to a much larger SRAM made 
almost every cycle by most pipeline 
stages. The instruction fetch and con-
trol overhead of a conventional pro-
cessor would have been prohibitive.

By defining the right domain-spe-
cific architecture, MARS was able to 
implement many simulation pipelines 
(and other tasks, such as speech recog-
nition) with performance and effi-
ciency approaching that of full-custom 
hardware. MARS proved so useful that 
it was reimplemented in five different 
generations of CMOS technology from 
1.25 µm to 0.35 µm.

Total Cost of Ownership (TCO)
The technology node used to imple-
ment an accelerator should be chosen 
to give minimum total cost of owner-
ship (TCO). As shown in Figure 1 for a 
genomics accelerator, at low volumes, 
the minimum TCO occurs at older 
(larger geometry) technology nodes. 
For each volume (number of de-novo, 
long-read genome assemblies), the 
bar shows the technology node that 
gives the minimum TCO. Nonrecur-
ring costs are from Khazraee et al.28 
The lines show the nonrecurring en-
gineering (NRE) cost per genome and 
TCO per genome for the minimum 
TCO technology. Darwin’s 40nm tech-
nology gives minimum TCO at 105 
genomes assembled. Paying the high 
nonrecurring costs for a 16nm tech-
nology is not justified until a volume 
of 106 genomes is reached. De-novo, 
long-read assembly of noisy reads on a 
CPU would cost around $1,500 per ge-
nome,25 so a custom accelerator gives 
lower TCO even for a volume as low as 
104 genomes—in a 65nm technology. 
At this point, the cost per genome is 
almost entirely NRE. Backend devel-
opment costs are roughly the same for 
130 nm and 65 nm ($4.3M) and domi-
nate mask costs, so nodes older than 
65 nm do not offer a material savings 
in NRE.

A similar TCO calculation can be 
used to compare the cost of a dedi-
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while supply voltage is held constant.b 
Communication energy remains 
roughly constant. This nonuniform 
scaling makes communication—such 
as nonlocal memory access—even 
more critical in future systems.

Programming accelerators. Each DSA 
requires firmware and a software devel-
opment kit (SDK) to facilitate program-
ming. Darwin-WGA,50 for example, uses 
the OpenCL programming frame-
work,46 which provides a software API 
(in C/C++) for the two kernels it acceler-
ates in hardware, Banded Smith-Wa-
terman and GACT-X, along with a 
memory model API for exchanging 
data between the host and accelerator 
global memory. The application is then 
written in C++ with calls to this API. The 
API allows Darwin-WGA to be repur-
posed for different genomic applica-
tions, such as reference-guided assem-
bly, de novo assembly, and cross-species 
whole genome alignments. Accelerators 
that support a more flexible domain- 
specific language (DSL), such as Halide,39 
or a broad software library, such as Ten-
sorflow,1 require adding a back-end to 
the domain- specific compiler to map the 
compiler IR to the accelerator. Back-end 
optimizations, particularly those that 
minimize off-chip data transfers, signifi-
cantly impact accelerator performance.

Creating accelerators with pro-
grams. Although the accelerators we 
have built to date have been designed 
by directly writing Verilog RTL,48 we 
envision a future in which an accel-
erator is designed by writing a parallel 
program describing the function of the 
accelerator along with mapping direc-
tives that specify how the computation 
and state of the program is mapped to 
hardware in space and time.

For example, for our dynamic pro-
gramming accelerator, the program is 
largely Eqs. (1) through (3), along with a 
write to a traceback memory. We 
describe all possible parallelism and 
rely on dependence analysis to serialize 
the computation as required:

Algorithm 1: GACT

 tb ← GACT(r, q)

b For recent technology nodes, scaling linear 
dimensions by 0.7× has given only a 0.8–0.9× 
reduction in logic energy due to the complex-
ity and overhead of current multi-patterned 
design rules.

 input    : r[TS], q[TS]
 output : tb[TS,TS]
 for i = 0..TS-1 do
  for j = 0..TS-1 do
     in (i,j) ← Max (h (i,j-1) - O, in  

 (i, j-1) - E)
     del (i,j) ← Max (h(i-1,j) - O, del  

 (i-i,j) -E)
     h (i,j) ← Max (0, in(i,j), del (i,j),  

 h (i-1, j-1) + W (r[i],q[j]) )
     tb [i,j] ← ComputeTb (h (i,j),  

 in (i,j), del (i,j) )
  end
 end

In this pseudocode, the curved brackets  
(for example ,   in(i,j) ) specify ab-
stract indices. The square brackets indi-
cate memory (for example, tb[i,j]). 
The recurrence matrices, in, del, and 
h are never fully materialized. Only the 
diagonal of indices needed for the cur-
rent computation is held in storage at 
any given time. The input strings r and 
q are vectors of size TS (tile size) and the 
resulting traceback array tb is an array 
of size TS × TS.

To map this computation to a proces-
sor array, we first declare the array and 
then specify the mapping. A straightfor-
ward mapping is described here. We de-
clare an array of AS (array size) process-
ing elements and an array of AS memory 
arrays each of the size STRIPES×TS. 
We then map h(i,j) to processing el-
ements by row i and specify the time t 
each element is computed according to 
the diagonal wavefront. The in and del 
matrices (not shown) are mapped iden-
tically. The traceback matrix is mapped 
across the traceback memories by row.

Algorithm 2: Mapping

 STRIPES ← TS / AS
 processor_array p (AS)
 memory_array tbm (AS)[STRIPES, TS ]
 Map h (i,j) → p (i % AS)
   at t = (i % AS) ⋅ TS + j - i / AS
 Map tb [i,j] → tbm (i % AS) [i / AS, j]

We expect that having a program-
ming system for accelerators of this type 
will facilitate the rapid exploration of al-
ternative algorithms and mappings. A 
compilation tool can quickly determine 
the execution time and energy associ-
ated with a particular mapping. Once 
an efficient algorithm and mapping 
are settled on, the tool can generate the 

Accelerator costs. A DSA has a very 
different cost model than a machine 
such as Summit. If we use energy 
and area as a proxy for cost, a simple 
model is that arithmetic is free and 
accessing memory has a cost depen-
dent on the size of memory being ac-
cessed. A more accurate cost model is 
as follows:

Arithmetic: In 14 nm technology, 
arithmetic costs range from 10fJ 
and 4 µm2 for an 8-bit add opera-
tion to 5pJ and 3600 µm2 for a dou-
ble-precision floating-point mul-
tiply.24 As described earlier, these 
costs are usually small compared 
to those of memory.
Local memory: Accessing a small 
(8KByte) local memory in 14nm 
costs 50fJ/bit and SRAM memory 
has an area of 0.013 µm2 per bit. 
The additional cost of accessing 
larger on-chip memories is the 
communication cost of getting to 
and from a small 8KByte subarray. 
This communication costs 100fJ/
bit-mm, so the cost of accessing a 
memory of size S (in bits) is 

. On-chip memo-
ries of up to several hundred mega-
bytes can be realized in today’s 
technology. A 100MB (800Mbit) 
memory has an access cost of about 
0.7pJ/bit.

Global memory: Off-chip global 
memory is even more expensive. 
Accessing a relatively energy-effi-
cient LPDDR4 memory costs about 
4pJ/bit and higher-speed SDDR4 
memory costs about 20pJ/bit.31 
Global memory is also bandwidth 
limited. Memory band width off of 
an accelerator chip is limited to 
about 400GB/s. Placing memories 
on interposers can give bandwidths 
up to 1TB/s, but at the expense of 
limited capacity.
Local Communication: Communi-
cation between blocks on chip has an 
energy cost that increases linearly 
with distance at a rate of 100fJ/
bit-mm.
Global communication: High-speed 
off-chip channels use SerDes that 
have an energy of about 10pJ/bit.

Logic and local memory energies 
scale linearly with technology—as the 
capacitance of the devices scales down 



JULY 2020  |   VOL.  63  |   NO.  7   |   COMMUNICATIONS OF THE ACM     57

contributed articles

31. MICRON. System power calculators, 2019.  
https://tinyurl.com/y5cvl857

32. Moore, G.E., et al. Cramming more components onto 
integrated circuits. 1965

33. Nickolls, J., Dally, W.J. The GPU computing era. IEEE 
Micro 30, 2 (2010), 56–69.

34. Noakes, M.D., Wallach, D.A., Dally, W.J. The J-machine 
multicomputer: An architectural evaluation. Comput. 
Arch. News 21, 2 (1993), 224–235.

35. NVIDIA. NVIDIA deep learning accelerator (NVDLA), 
2017. http://nvdla.org

36. NVIDIA. NVIDIA Tesla deep learning product 
performance, 2019. https://tinyurl.com/yyu9amxh

37. Parashar, A., et al. SCNN: An accelerator for 
compressed-sparse convolutional neural networks. In 
ISCA (2017), IEEE, 27–40.

38. Qadeer, W., et al. Convolution engine: Balancing 
efficiency & flexibility in specialized computing. In 
Computer Architecture News, Vol. 41 (2013). ACM, 24–35.

39. Ragan-Kelley, J., et al. Halide: A language and 
compiler for optimizing parallelism, locality, and 
recomputation in image processing pipelines. In ACM 
Sigplan Notices, Vol. 48 (2013). ACM, 519–530.

40. Karpand, R.M., Ramachandran, V., Karpand, V., Karp, 
R.M. A survey of parallel algorithms for shared-
memory machines. In Handbook of Theoretical 
Computer Science. North-Holland, 1988

41. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., 
Owens, J.D. Memory access scheduling. In Computer 
Architecture News, Vol. 28 (2000). ACMe, 128–138.

42. Scott, S.L. Synchronization and communication in 
the T3E multiprocessor. In ACM SIGPLAN Notices, 
Vol. 31 (1996). ACM, 26–36.

43. Shen, H., et al. Intel CPU outperforms NVIDIA GPU 
on ResNet-50 deep learning inference, 2019.  
https://tinyurl.com/y6xewz8r

44. Smith, T.F., Waterman, M.S. Identification of common 
molecular subsequences. J. Mol. Biol. 147, 1 (1981), 
195–197.
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RTL. More advanced tools could auto-
mate the generation of the mapping 
given constraints on time and space.

Conclusion
With the end of Moore’s Law, domain-
specific accelerators (DSAs) remain one 
of the few paths to continuing to increase 
the performance and efficiency of com-
puting hardware. This paper has ex-
plored how DSAs achieve performance 
and efficiency drawing on the authors’ 
designs of DSAs for genomics, deep 
learning, simulation, and graphics span-
ning four decades. DSAs gain much of 
their efficiency from specialization and 
elimination of overhead. This efficiency, 
in turn, enables parallelism, which ac-
counts for much of the performance of 
DSAs. Most accelerators are memory 
dominated with much of their die area 
and power dissipation dominated by lo-
cal memories. To benefit from special-
ization, many existing applications must 
be refactored to reduce their bandwidth 
demands on global memory.

A successful DSA accelerates a broad 
domain of applications. It may achieve 
such flexibility by adding specialized 
instructions to a programmable pro-
cessor such as a GPU or CPU. Breadth 
can also be achieved by building a do-
main-specific parallel computer where 
domain-specific programmable pro-
cessing elements carry out the process-
ing of each pipeline stage in place of 
specialized logic. Such processing ele-
ments must be very lean to avoid losing 
much of the advantage of specializa-
tion to overhead.

Although DSAs today are designed 
at the RTL level, we envision a future 
where DSAs are designed by writing a 
parallel program and specifying the 
mapping of this program to hardware 
resources in time and space. Most of 
the intellectual effort in designing a 
DSA is a programming task: develop-
ing algorithms that give good perfor-
mance and efficiency with the DSA 
cost model. Lowering this program to 
detailed hardware can be largely auto-
mated.

In the future, we expect many pro-
grammers will become designers of 
DSAs. An ecosystem will emerge to sup-
port these programmers with better tools 
to describe and evaluate their programs. 
Ultimately, we expect that computer sci-
ence curricula will evolve to teach algo-

rithms and complexity with a cost model 
that more accurately reflects the reality of 
modern computing hardware. 
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the next generation of researchers and 
scientists in the deeply computational 
and data-driven research methods and 
processes they will need and use? and 
How to support the use of these methods 
and processes to advance research and dis-
covery across disparate disciplines and, in 
turn, define data science as a scientific 
discipline in its own right? An identifi-
able discipline of data science would 
encourage and reward research that fos-
ters the continued development of com-
putational and data-enabled methods 
and their successful integration into 
research and dissemination pipelines, 
as well as accelerating the generation of 
reliable knowledge from data science.

This article offers an intellectual 
framing to address these two key ques-
tions—called the Data Science Life Cy-
cle—intended to aide decision makers in 
institutions, policy makers and funding 
agency leadership, as well as data science 
researchers and curriculum developers. 
The Data Science Life Cycle introduced 
here can be used as a framing principle 
to guide decision making in a variety of 
educational settings, pointing the way 
on topics such as: whether to develop 
new data science courses (and which 
ones) or rely on existing course offer-
ings or a mix of both; whether to design 
data science curricula across existing 
degree granting units or work within 
them; how to relate new degrees and 
programmatic initiatives to ongoing re-
search in data science and encourage 
the development of a recognized re-
search area in data science itself; and THE EDUCATION AND research enterprise is leveraging 

opportunities to accelerate science and discovery 
offered by computational and data-enabled 
technologies, often broadly referred to as data 
science. Ten years ago, we wrote that an “accurate 
image [of a scientific researcher] depicts a computer 
jockey working at all hours to launch experiments on 
computer servers.”8 Since then, the use of data and 
computation has exploded in academic and industry 
research, and interest in data science is widespread 
in universities and institutions. Two key questions 
emerge for the research enterprise: How to train 

The Data 
Science  
Life Cycle: 
A Disciplined 
Approach to 
Advancing Data 
Science as a Science 
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A cycle that traces ways to define the 
landscape of data science.
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 key insights
 ˽ For Data Science to emerge as a 

fully fledged science, it is essential 
to establish intellectual content, 
ensure knowledge organization, and 
incorporate external tests of validity  
for findings.

 ˽ The Data Science Life Cycle provides 
a flexible framework that knits 
stakeholder efforts together to advance 
Data Science as a science; providing 
a principled way to include topics 
such as ethics, reproducibility, and 
cyberinfrastructure for Data Science, as 
well as methodological, computational, 
and domain-specific subjects.
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Current Approaches 
to Data Science
There are currently four main ap-
proaches taken toward data science at 
post-secondary institutions and uni-
versities in the U.S., with some institu-
tions opting to take more than one ap-
proach. The first model involves 
issuing data science degrees from an 
existing department or school, such as 
the computer science department (for 
example, University of Southern Cali-
fornia, Carnegie Mellon University, 
University of Illinois at Urbana-Cham-
paign), the statistics department (for 
example, Stanford University), a pro-

how to prioritize support for data science 
research across a variety of disciplinary 
domains. These can be difficult ques-
tions from an implementation point of 
view since university governance struc-
tures typically separate disciplines into 
effective siloes, with self-contained eval-
uation, degree-granting, and decision-
making authority. Data science presents 
as a cross cutting methodological effort 
with the needs of a full-fledged science in-
cluding: communities for idea sharing, 
review, and assessment; standards for re-
producibility and replicability; journals 
and/or conferences; vehicles for disciplin-
ary leadership and advancement; an un-

derstanding of its scope; and, broadly 
agreed-upon core curricula and subjects 
for training the next generation of re-
searchers and educators.

After motivating the key data sci-
ence challenges of interdisciplinarity 
and scope, this article presents the 
Data Science Life Cycle as a tool to en-
able the development of data science 
as a rigorous scientific discipline flexi-
ble enough to capitalize on unique 
institutional strengths and adapt to 
the needs of different research do-
mains. Examples are given in curricu-
lum development and steps to defining 
data science as a science.
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data science disciplinary units (for ex-
ample, statistics, computer science 
and engineering, information sci-
ence) together under one organiza-
tional umbrella to determine degree 
programs, grant degrees, and house 
faculty lines and data science re-
search. This is the most recent ap-
proach, currently undertaken for ex-
ample at UC Berkeley (to my knowledge 
Berkeley is also the only institution to 
explicitly articulate a Data Science 
Life Cycle when describing one of its 
data science degrees).

In some institutions, the trappings 
of data science have emerged organi-
cally within departments themselves 
without the data science label. For ex-
ample, offering more classes in statis-
tics and computational methods, or-
creating data facilities to manage the 
increasing volumes of data used in 
departmental research such as the 
Brain Imaging Data Structure (BIDS) 
in the Department of Psychology at 
Stanford University or the Data Analyt-
ics and Biostatistics Core in the Emory 
University School of Medicine. Estab-
lished domain specific data reposito-
ries such as the Protein Data Bank can 
be central to established research and 
have long histories of knowledge and 
expertise development. As data sci-
ence progresses, we would be remiss 
not to take the broad advances made 
by these efforts into account.

It is clear the potential of data sci-
ence has captured the imagination of 
students and the broader society.18 In 
my experience, however, students can 
perceive a gap in our pedagogical of-
ferings when it comes to supporting 
their interest in data science. For a stu-
dent seeking to do advanced course-
work in data science it can appear that 
statistics is not computational 
enough, computer science isn’t data 
inference focused enough, informa-
tion science is too broad, and the do-
main sciences do not provide a suffi-
ciently deep pedagogical agenda in 
data science. The research context to-
day is markedly different to even a de-
cade ago in the use of computational 
and data-enabled methods in a wide 
range of long-established disciplines 
from biology (bioinformatics23) to 
physics (computational physics22) to 
mathematics (computer-enabled 
mathematical proofs12) to English 

fessional studies or extension school 
(Northwestern University, Harvard 
University), engineering (Johns Hop-
kins University), or the School of Infor-
mation (UC Berkeley). This approach 
can include innovative steps such as 
online course offerings or collabora-
tive degrees that approximate data sci-
ence. An example of the latter is the 
undergraduate CS+X degree pioneered 
by the computer science department 
at the University of Illinois at Urbana-
Champaign, where CS refers to com-
puter science and X refers to a domain 
specific discipline such as economics, 
anthropology, or linguistics. For a 
CS+X degree students receive a degree 
in discipline X with half their courses 
comprising a common core of com-
puter science classes and half their 
courses from their disciplinary area X. 
Stanford University has a CS+X pro-
gram for undergraduates designed as a 
joint major between computer science 
and the humanities. Data science itself 
has not been established as a sub-dis-
cipline in computer science or any oth-
er discipline to the best of my knowl-
edge, nor is there an ACM Special 
Interest Group on Data Science.

The second approach to data sci-
ence extends or transforms an exist-
ing department to explicitly include a 
home for all of data science, not just 
the data science degree programs. For 
example, the statistics department may 
be renamed Statistics and Data Science 
(for example, Yale University) or a 
School of Information Science or Infor-
matics renamed to include the Data Sci-
ence moniker (Drexel University). The 
third approach is to create a coordinat-
ing mechanism such as a Data Science 
institute or center at the university (Co-
lumbia University, University of Virgin-
ia, University of Delaware, University of 
Chicago, UC Berkeley). Such an insti-
tute tends not to have faculty lines, but 
affiliates faculty who have an appoint-
ment elsewhere on campus. It may 
grant certificates and/or degrees in co-
ordination with affiliated faculty and 
units, and often began with a focus on 
professionals and executive educa-
tion. The University of Washington, 
for example, extended an existing in-
stitute on campus, the eScience Insti-
tute, to house its cross-disciplinary 
Data Science initiative. The final ap-
proach is to bring the institute’s major 

The Data Science 
Life Cycle explicitly 
recognizes  
the need for data, 
software, and  
other artifacts, 
along with  
the research 
findings, to be  
made available  
to the community 
and enables 
recognition  
of the need for 
dedicated research 
on how this sharing 
is accomplished.
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Life Cycle describes the various stages 
a dataset traverses as it undergoes sci-
entific collection and investigation and 
is typically used to guide data manage-
ment decisions and practices. I extend 
this idea beyond its focus on data to de-
scribe the complete process of data sci-
ence with the Data Science Life Cycle. 
This work extends research in the Data 
Life Cycle by focusing on the genera-
tion of scientific findings, and thereby 
including computational components, 
inferential methodology, and articu-
lating a clear role for ethics and meta 
research within the scope of data sci-
ence. It can also provide a foundational 
grounding for data science pedagogical 
program design.

Extending the concept of the data 
life cycle. Figure 1 shows a depiction of 
a Data Life Cycle, following a dataset 
from acquisition, through cleaning, 
use, publication of the resulting dataset, 
and then through to an eventual pre-
serve/destroy decision for the dataset. 
It is important to note that there is no 
single fixed definition of a Data Life 
Cycle, rather it’s a thematic abstraction 
whose manifestation may change de-
pending on the specific dataset or col-
lection of datasets to which it is applied 
and the purpose of the data collection. 
A Data Science Life Cycle expands the 
area of focus beyond the dataset, to the 
complete bundle of artifacts (for ex-
ample, data, code, workflow and com-
putational environment information) 

(quantitative analyses of literary 
texts13) to sociology (digital social sci-
ence17), and students are asking the 
right questions about where data sci-
ence fits in their education. Not only 
has it increased the types, scales, and 
sources of data-accelerated discov-
ery,25 data has opened new vistas of 
scientific investigation, methodologi-
cal advances, and innovation through 
the creation of novel comprehensive 
datasets available to communities.5,16 
Data science is inherently interdisci-
plinary, yet must have a coherent 
scope in order to develop as a disci-
pline.

Defining Data Science  
as a Discipline: The Challenges 
of Interdisciplinarity and Scope
In what institutional unit or entity 
should a data science program reside, 
and what subject matter is consid-
ered within the scope of data science? 
These questions belie the two princi-
pal challenges to the advancement of 
data science as a discipline: its inher-
ently interdisciplinary nature, and the 
lack of a well-defined scope.

Challenge 1. Data science is inher-
ently interdisciplinary. Data science is 
emergent from a plurality of disci-
plines, a fact that has been widely not-
ed.28 These disciplines often exist in 
different parts of the institution, po-
tentially posing coordination and im-
plementation challenges both within 
the institution and for data science as 
an emerging field of research. Few 
would dispute the central role of data 
inference methods or software devel-
opment in data science, yet even those 
two examples have different loci with-
in the institutional structure: the for-
mer typically in a Department of Statis-
tics (often situated in the Faculty of 
Arts and Sciences) and the latter in 
computer science departments (often 
located in the School of Engineering). 
In addition, schools of information 
science contribute expertise in data 
discovery, storage and retrieval, stew-
ardship, archiving, and artifact reuse; 
engineering and the physical sciences 
disciplines perform deeply computa-
tional simulation-based research; and 
business schools advance business in-
telligence and carry out data analytics. 
The list of examples goes on. These 
disciplines contribute different but 

necessary aspects of a data science dis-
cipline and many of the skills used in 
data science already exist in estab-
lished departments.

Challenge 2: Data science must have 
a well-defined scope. Many definitions 
of data science have been put forward, 
indeed this publication presented its 
own in 2013: “Data science [involves] 
data and, by extension, statistics, or the 
systematic study of the organization, 
properties, and analysis of data and its 
role in inference, including our confi-
dence in the inference” or, “Data sci-
ence is the study of the generalizable 
extraction of knowledge from data.”6 
Through conversations in 2013, the fol-
lowing definition was developed by Iain 
Johnstone, Peter Bickel, Bin Yu, and 
myself: “Data Science is the science of 
(collaboratively) generating, acquiring, 
managing, analyzing, carrying out in-
ference, and reporting on data.” This 
broad scope means that data science 
covers a large proportion of the re-
search carried out in institutions today, 
and implementations of data science 
programs can be markedly different at 
different institutions.20

A Framing for Data Science: 
The Data Science Life Cycle
Although the Data Science Life Cycle 
is a new concept, it is an extension of 
“the Data Life Cycle,” which has a long 
history in the information sciences 
and many domain sciences.1 The Data 

Figure 1. Example of a data life cycle and surrounding data ecosystem (reprinted with  
permission).1
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the research community at the point of 
publication when created. This is what 
is meant by the term “life cycle”—an 
explicit recognition that artifacts pass 
to the community at the point of publi-
cation, readied to begin the life cycle 
again in a new research effort, as in-
puts. The Data Science Life Cycle ex-
plicitly recognizes the need for data, 
software, and other artifacts, along 
with the research findings, to be made 
available to the community and en-
ables recognition of the need for dedi-
cated research on how this sharing is 
accomplished.

“Reproducibility of Results and Ar-
tifact Reuse” is listed as a topic in the 
overarching grey arrow in Figure 2. 
The life cycle approach allows a prin-
cipled incorporation of the notion of 
computational reproducibility—the 
practice of ensuring artifacts and 

computational information needed to 
regenerate computational results is 
openly available post-publication.4,15,28 
Figure 2 emphasizes that artifact 
preservation activities occur both be-
fore and during computation, for the 
duration of the discovery process. An 
attempt to recreate computational 
and data manipulation steps for pres-
ervation purposes after publication 
can be difficult and time consuming, if 
not impossible. The Data Management 
Plan, required by the National Sci-
ence Foundation and other science 
funders, is therefore included at the 
beginning of the Data Science Life 
Cycle, to emphasize the importance 
of early planning for the artifact pres-
ervation that will occur at the point of 
eventual publication (of the results as 
well as the supporting artifacts). The 
need for improved tools for documen-

and knowledge (scientific results) pro-
duced in the course of data science 
research results.

Figure 2 shows a depiction of a Data 
Science Life Cycle describing stages of 
data science research, extending the 
Data Life Cycle reprinted in Figure 1. As 
in Figure 1, Figure 2 depicts an abstrac-
tion, intended to be customized to par-
ticular data science projects.

The act of scientific discovery in 
data science produces findings just 
like any area of research, and typically 
creates or leverages other artifacts as 
well, for example, the data used to sup-
port the findings and the code that pro-
duces the findings from the data (it 
may even produce other artifacts as 
well, for example, curriculum materi-
als, software tools, and hardware pro-
totypes). Research findings and arti-
facts are viewed with dissemination to 

Figure 2. An example of a Data Science Life Cycle. 

The light-yellow layer is the Application/Domain Science level. This level portrays the steps of 
a research project described at the domain level. The green layer beneath is the Infrastructure 
level, describing the computational infrastructure that enables the Application level. The blue 
arrow underlying both the application and infrastructure levels is the System level, describing 
system elements upon which the data science discovery process depends. Similarly, the 
overarching grey arrow is the meta-scientific level “The Science of Data Science.” The arrows 
are intended to depict the life cycle: that the output of data science discovery (the findings and 
the artifacts that enable reproducibility such as code, data, and workflow and computational 
environment information for example) are published for verification and reuse by others. The 
figure provides a way to consider tool use explicitly for each discovery step. Some tools may 
support more than one discovery step, for example, notebooks, and some application level steps 
may use more than one tool. Different steps in the discovery pipeline, whether at the domain, 
infrastructure, system, or science of data science level, may be carried out by different people.
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notebooks and workflow software; vi-
sualization tools; statistical inference 
languages; data management tools; 
and archiving and artifact linking 
tools. Running across the entire Data 
Science Life Cycle, and depicted in 
the blue arrow at the bottom of Figure 
2, are the hardware and other techno-
logical structures on which the data 
science experiment is carried out, in-
cluding compute infrastructure, 
cloud computing systems, data struc-
tures, storage capabilities, and quan-
titative programming environments 
(QPEs).9 This is called the System Lev-
el. Computational reproducibility is 
an important factor when deciding 
which artifacts and details in the dis-
covery process to preserve and share. 
For example, information on how and 
why parameters were selected in mod-
el selection could be included in the 
documentation and workflow infor-
mation. The Data Science Life Cycle 
highlights the various contributions 
made to the research by different peo-
ple and could help indicate ways to 
give appropriate credit by including 
information on who has contributed 
what to the discovery process.

Two simpflied examples of the Data 
Science Life Cycle in research settings. 
Here, I present two applications of the 
Data Science Life Cycle to simplified 
but representative descriptions of re-
search that illustrate how this ap-
proach can surface nuanced and im-
portant aspects of data science in 
different settings. In the first example 
researchers wish to classify two types 
of cancer using gene expression data.10-

11 The steps the authors describe for an 
experiment are as follows:

1. Obtain gene expression data (the 
data are already split into train/test sub-
sets based on clinical conditions).

2. Normalize the data (including 
both train/test subsets).

3. Apply Recursive Feature Elimination:
a. Train classifier using Support 

Vector Machines (SVMs).
b. Compute a ranking criterion 

for each feature.
c. Remove features with the 

smallest ranking criteria.
d. Iterate until a tolerance thresh-

old is reached.
4. Perform cross-tests with the base-

line method from Golub et al.10 to com-
pare gene sets and classifiers.

tation and recording of the steps in 
the data science discovery process be-
comes evident with this approach as 
does greater recognition that the pro-
duction of reusable research artifacts 
(for example, data, software that sup-
port a published scientific finding) is 
a valuable researcher activity.

Computational and meta-scientific 
aspects of data science must be ex-
plicitly considered. Crucially, the Data 
Science Life Cycle adds an additional 
dimension to the Data Life Cycle: the 
computational layer that enables data 
science research. A data scientist may 
proceed through the steps depicted in 
the Data Science Life Cycle in Figure 2: 
experimental design; obtaining/gen-
erating/collecting data; data explora-
tion and hypothesis generation; data 
cleaning, merging, and organization; 
feature selection and data prepara-
tion; model estimation and statistical 
inference; simulation and cross-vali-
dation, visualization; publication and 
artifact preservation/archiving. This 
series of steps is called the “Applica-
tion Level” (depicted in pale yellow in 
Figure 2), referring to the scientific ap-
plication or domain of research. As 
noted, the Data Science Life Cycle is an 
abstraction and any particular re-
search project may include a subset of 
these steps.

There are additional components 
beyond the Application Level in every 
data science project, depicted by the 
grey arrow across the top of Figure 2 
mentioned earlier, including data sci-
ence ethics; documentation of the re-
search and meta data creation; repro-
ducibility; and policy and legal aspects 
including governance, privacy, and 
intellectual property considerations.26 

This is the “Science of Data Science Lev-
el.” In addition, data science projects 
encompass computational skills and 
technologies (for example, interpret-
ed languages such as R and Python, 
data querying languages, distributed 
computing resources) represented in 
the green, lower layer, called the “In-
frastructure Level” of the Data Science 
Life Cycle. None of the technologies 
listed in Figure 2 are prescriptive but 
they support the steps in the Data Sci-
ence Life Cycle, in particular the Ap-
plication Level. Importantly, each are 
research areas of research and devel-
opment in their own right, including 

A life cycle 
approach 
encourages  
and enables  
a unification  
of views regarding 
data science  
and gives us  
a footing from 
which to adapt  
and evolve  
the practice and 
teaching of data 
science to research 
projects and 
to institutional 
strengths.
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more easily detected and recognized as 
part of a comprehensive Data Science 
research agenda, including for exam-
ple algorithms; containerization tech-
nologies; abstractions of data manipu-
lations; data structures; distributed 
computing; parallel, cloud or edge 
computing; hardware design (for ex-
ample, application specific integrated 
circuits and their development such as 
TPUs, or networking capabilities for 
data distribution).

Considering the Data Science Life 
Cycle as a life cycle enables a natural 
consideration of crucial overarching 
factors such as reproducibility, docu-
mentation and meta data, ethics, and 
archiving of research artifacts such as 
data and code. The Data Science Life 
Cycle provides guidance on the multi-
faceted set of skills and personnel 
needed for data science, for example 
“skills for dealing with organizational 
artifacts of large-scale cluster comput-
ing. The new skills cope with severe 
new constraints on algorithms posed by 
the multiprocessor/networked world.”7 
Workforce development is therefore 
incorporated into the life cycle ap-
proach, which is especially germane to 
data science as “enthusiasm feeds on 
the notable successes scored in the 
last decade by brand-name global in-
formation technology (IT) enterprises, 
such as Google and Amazon.”7

The Data Science Life Cycle engages 
relevant stakeholders in the larger re-
search community in a systematic way, 
including not only data science re-
searchers but others such as archi-
vists, libraries and librarians, legal ex-
perts, publishers, funding agencies, 
and scientific societies. It gives a 
framework to clarify how different 
contributions knit together to support 
each other to advance data science.

Leveraging the Data 
Science Life Cycle
A life cycle approach encourages and 
enables a unification of views regard-
ing data science and gives us a footing 
from which to adapt and evolve the 
practice and teaching of data science 
to research projects and to institution-
al strengths. There are commonalities 
to nearly all data science efforts, for ex-
ample, data wrangling, data inference, 
code writing, artifact creation and shar-
ing. A common intellectual framework 

Mapping this experimental de-
scription to the Application Layer of 
the Data Science Life Cycle could pro-
ceed as follows: Obtain Data → Data 
Preparation → Feature Selection/Model 
Estimation → Cross-tests and Valida-
tion → Publication and Archiving. In-
formation regarding the tools and soft-
ware used for each step is then mapped 
to the Infrastructure Layer and over-
arching issues, such as data governance 
and sharing policies, detailed in the Sci-
ence of Data Science Level. Notice this 
data science pipeline incorporates a cy-
clical loop in the pipeline when Recur-
sive Feature Elimination is employed.

The second example gives a stylized 
description of hypothesis-driven re-
search experiment to test whether a 
journal’s impact factor is related to the 
existence of a data or code sharing au-
thor policy.27 The steps are as follows:

1. Determine the hypothesis to test.
2. Design an appropriate experi-

ment to test the hypothesis.
3. Collected data on journal impact 

factors and artifact policies as well as 
other descriptive information.

4. Test the hypothesis.
5. Report the results.
We map the steps to the Data Sci-

ence Life Cycle as follows: Determine 
Hypothesis → Experimental Design → 
Collect Data → Statistical Inference → 
Publication. Computational tools 
used in each step can be detailed in 
the Infrastructure Level description, 
and issues that apply to the entire life 
cycle considered in the Science of 
Data Science Level, such as data and 
code availability, preregistration of 
hypothesis tests, Institutional Re-
view Board (IRB) information, if rel-
evant. Although simplified, these 
two examples represent different re-
search questions and two differ-
ent instantiations of the Data Sci-
ence Life Cycle, but both show how 
the Data Science Life Cycle frame-
work allows important aspects of the 
research, such as computational im-
plementations and data ethics, to be 
cogently and deliberately incorporat-
ed as part of the research and publica-
tion process.

These examples also illustrate how 
the Data Science Life Cycle tests whether 
a particular research effort fits under 
the rubric of data science. Gaps at the 
Infrastructure or System Levels can be 

Data science is 
benefitting from 
close association 
with industry as 
computer science 
did at its inception.
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Elevating the practice of data science 
to a science. The Data Science Life Cycle 
framework is an essential conceptual-
ization in the development of data sci-
ence as a science. A recent National 
Academies of Sciences, Engineering, 
and Medicine consensus report on “Re-
producibility and Replication in Sci-
ence” spotlights the need to better de-
velop scientific underpinnings for 
computationally and data-enabled re-
search investigations21 and a March 

can facilitate knowledge sharing about 
data science as a discipline across dif-
ferent the fields and domains using 
data science methods in their research.

A data science curriculum. Concep-
tualizing data science as a life cycle also 
gives a way to position classes and se-
quences to teach core and elective data 
science skills, indicating where exist-
ing courses may fit and where new 
courses may need to be developed. It 
helps define a curriculum by using the 
steps of the Data Science Life Cycle as a 
pedagogical sequence and provides for 
the inclusion of overarching topics 
such as data science ethics, and intel-
lectual property, reproducibility, or 
data governance considerations.24 Per-
haps most importantly the Data Sci-
ence Life Cycle can indicate courses 
that may be out of scope and new course 
topics essential to data science.

The accompanying table shows how 
several commonly offered courses 
could be matched to the steps described 
by the Data Science Life Cycle described 
in Figure 2. Although not included in 
the table, each step can be augmented 
by the creation of new targeted classes 
if needed, such as Data Policy, Repro-
ducibility in Data Science, Data Science 
Ethics, Circuit Design for Deep Learn-
ing, Software Engineering Principles 
for Data Science, Mathematics for Data 
Science, Interoperability and Integra-
tion of Different Data Sources, Data Sci-
ence with Streaming Data, Software 
Preservation and Archiving, Workflow 
Tools for Data Science, Intellectual 
Property for Scientific Code and Data. 
The list goes on. The addition of do-
main specific optional courses could 
define tracks or specializations within 
a data science curriculum (for example, 
Earth sciences, bioinformatics, sociol-
ogy; cyberinfrastructure for data sci-
ence) to create a potential DS+X degree 
in the spirit of the CS+X degrees dis-
cussed previously.

The emergence of a discipline of 
data science is necessary to advance 
data science as well as encourage reli-
able and reproducible discoveries, ele-
vating the endeavor to a branch of the 
scientific method. Data science may 
eventually develop as a set of discipline-
adapted discovery techniques and prac-
tices, perhaps including a cross-disci-
plinary core. Data science is benefitting 
from close association with industry as 

computer science did at its inception, 
for example, IBM’s creation of the Wat-
son Scientific Computing Laboratory at 
Columbia University in 1945.14 Analysis 
of consumer data by Google, Facebook, 
and Amazon is generating prominent 
successes in image identification and 
voice transcription among other areas. 
Opportunities for industry employ-
ment and workforce development cre-
ate an attractive feature of data science 
at the institutional level.

An example mapping from some routinely offered courses to the steps of the Data Science 
Life Cycle. 

Data Science Life Cycle 
Step Possible (Existing) Courses

Experimental design  ˲ Introduction to Probability
 ˲ Introduction to Statistics
 ˲ Design of Experiments (including Human Subjects and Informed Consent)

Obtaining data  ˲ Experimental Methodology
 ˲ Introduction to Databases
 ˲ Introduction to SQL, noSQL
 ˲ Sensor Integration and Control

Data exploration  ˲ Introduction to R
 ˲ Introduction to python
 ˲ Graphics and Data Visualization
 ˲ Introduction to Statistics

Databases and data 
structures including 
cleaning/organizing

 ˲ Introduction to Database Systems
 ˲ Introduction to SQL, noSQL
 ˲ Natural Language Processing (NLP)

Software engineering  ˲ Python, R, C, C++, Julia
 ˲ Distributed Systems, MapReduce
 ˲ Software Testing

Feature selection  ˲ Statistical Learning
 ˲ Domain-specific courses, for example, Bioinformatics for 

Transcriptomics; Brain Imaging in Cognitive Neuroscience Research

Model estimation  ˲ Mathematics (Probability, Linear Algebra, Calculus, Real Analysis)
 ˲ Applied Statistics
 ˲ Machine Learning
 ˲ Data Mining
 ˲ Deep Learning
 ˲ Scalable Algorithms
 ˲ Statistical Decision Theory

Simulation and cross-
validation

 ˲ Fundamentals of Numerical Methods
 ˲ Introduction to Computer Modeling and Simulation
 ˲ Statistical Learning

Visualization  ˲ Information Visualization
 ˲ Scientific Visualization and Graphics
 ˲ [Domain specific courses such as Learning ArcGIS;  

Spatial Data Visualization]

Publication/Archiving  ˲ Introduction to Information
 ˲ Data Archiving and FAIR Data
 ˲ Scientific Report Writing
 ˲ Research Data Management
 ˲ Open Access and Scholarly Communication
 ˲ Digital Libraries and Preservation

Overarching topics  ˲ Ethics for Scientists
 ˲ Data Privacy
 ˲ National and International Regulatory Trends in Data Protection

The table is not intended as a complete and comprehensive description of all skills 
required to be an effective data scientist, but an illustration of how current courses could 
be incorporated into a data science training curriculum, within which students may pursue 
pathways of interest. Possible new courses to be developed can be gleaned from such a 
presentation. Some courses are listed in more than one step to illustrate various ways they 
might be included in curriculum design.
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Conclusion
Without a flexible yet unified overarch-
ing framework we risk missing opportu-
nities for discovering and addressing 
research issues within data science and 
training students in effective scientific 
methodologies for reliable and trans-
parent data-enabled discovery. Data 
science brings new research topics, for 
example, computational reproducibil-
ity; ethics in data science; cyberinfra-
structure and tools for data science. 
Without the Data Science Life Cycle ap-
proach, we risk an implementation of 
data science that too closely hews to a 
view that reflects the perspective of a 
particular discipline and could miss 
opportunities to share knowledge on 
data science research and teaching 
broadly across disciplines. In addition, 
a Data Science Life Cycle approach can 
give university leadership a framework 
to leverage their existing resources on 
campus as they strategize support for a 
cross-disciplinary data science curricu-
lum and research agenda. The life cycle 
approach allows data science research 
and curriculum efforts to support the 
development of a scientific discipline, 
enabling progress toward fulfilling 
Tukey’s three criteria for a science. 
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2019 National Academy of Sciences Col-
loquium entitled “The Science of Deep 
Learning” aimed to bring scientific 
foundations to the fore of the deep 
learning research agenda.19 The discus-
sion regarding the scientific underpin-
nings of data analysis began in 1962, 
when John Tukey presented three crite-
ria a discipline ought to meet in order to 
be considered a science:30

1. Intellectual content.
2. Organization into an understand-

able form.
3. Reliance upon the test of experi-

ence as the ultimate standard of validity.
If one accepts these criteria, the Data 

Science Life Cycle can be leveraged to 
demonstrate intellectual content, pro-
mote its organization (see Figure 2), and 
incorporate external tests of the validity 
of findings. On this last point, the struc-
ture of the Data Science Life Cycle 
builds in reproducibility, reuse, and 
verification of results with its embed-
ded notion that artifacts supporting the 
claims (such as data, code, workflow 
information) be made available as part 
of the publication (life cycle) process. 
Research on platforms and infrastruc-
ture for data science facilitates Tukey’s 
second criterion by advancing organi-
zational topics such as artifact meta 
data; containerization, packaging and 
dissemination standards; and commu-
nity expectations regarding FAIR (find-
ability, accessibility, interoperability, 
and reusability), archiving, and persis-
tence of the artifacts produced by data 
science. These efforts also help enable 
comparisons of data science pipelines 
to increase understanding of any dif-
ferences in outcomes of “tests of expe-
rience.”29 The Data Science Life Cycle 
exposes these topics as areas for re-
search within the discipline of data sci-
ence.2 Several conferences and jour-
nals have begun to require artifact 
availability and infrastructure projects 
are emerging to support reproducibil-
ity across the data science discovery 
pipeline.3 Considering these issues 
through a Data Science Life Cycle gives 
a frame for their inclusion as research 
areas integral to the discipline of Data 
Science. Data science without a unify-
ing framework risks being a set of 
disparate computational activities in 
various scientific domains, rather than 
a coherent field of inquiry producing 
reliable reproducible knowledge.
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Google’s TPU supercomputers train  
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THE RECENT SUCCESS of deep neural networks (DNNs)  
has inspired a resurgence in domain specific 
architectures (DSAs) to run them, partially as a result 
of the deceleration of microprocessor performance 
improvement due to the slowing of Moore’s Law.17 
DNNs have two phases: training, which constructs 

accurate models, and inference, which 
serves those models. Google’s Tensor Pro-
cessing Unit (TPU) offered 50x improve-
ment in performance per watt over conven-
tional architectures for inference.19,20 
We naturally asked whether a successor 
could do the same for training. This ar-
ticle explores how Google built the first 
production DSA for the much harder 
training problem, first deployed in 2017.

Computer architects try to create de-
signs that maximize performance on a 
set of benchmarks while minimizing 

costs, such as fabrication or operating 
cost.16 In the case of DSAs like Google’s 
TPUs, many of the principles and ex-
periences from decades of building 
general-purpose CPUs change or do 
not apply. For example, here are fea-
tures of the inference TPU (TPUv1) and 
the training TPU (TPUv2) share but are 
uncommon in CPUs:

 ˲ 1–2 large cores versus 32–64 small 
cores in server CPUs.

 ˲ The computational heavy lifting 
is handled by two-dimensional (2D) 
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Networks

http://dx.doi.org/10.1145/3360307


68    COMMUNICATIONS OF THE ACM   |   JULY 2020  |   VOL.  63  |   NO.  7

contributed articles

and if we were building an inference ac-
celerator, we could stop there. For train-
ing, this is less than a third of the story. 
SGD next measures the difference or er-
ror between the model’s result and the 
known good result from the training set 
using a loss function. Then back-propa-
gation runs the model in reverse, layer-
by-layer, to produce a set of error/loss 
values for each layer’s output. These 
losses measure the deviation from the 
desired output. Last, weight update 
combines the input of each layer with 
the loss value to calculate a set of del-
tas—changes to weights—which, when 
added to the weights, would have result-
ed in nearly zero loss. Updates can have 
small magnitude. Shrinking further, 
updates are scaled down by the learning 
rate to keep SGD numerically stable. 
Moreover, a suite of algorithmic refine-
ments—including momentum,30 batch 
normalization,18 and optimizers such as 
Adaptive Gradient (AdaGrad)14—re-
quire their own state and alter the SGD 
algorithm to reduce the number of 
steps to achieve desired accuracy.

Each SGD step makes a tiny adjust-
ment to the weights that improves the 
model with respect to a single (input, 
result) pair. Each pass through the 
entire dataset is an epoch; DNNs typi-
cally take tens to hundreds of epochs to 
train. SGD gradually transforms the 
random initial weights into a trained 
model, sometimes capable of superhu-
man accuracy.

Given this background, we can com-
pare inference and training. Both share 
some computational elements includ-
ing matrix multiplications, convolu-
tions, and activation functions, so in-
ference and training DSAs might have 
similar functional units. Key architec-
tural aspects where the requirements 
differ include:

 ˲ Harder parallelization: Each infer-
ence is independent, so a simple clus-
ter of servers with DSA chips can scale 
up inference. A training run iterates 
over millions of examples, coordinat-
ing across parallel resources because it 
must produce a single consistent set of 
weights for the model. The number of 
examples processed in parallel, and 
the time to evaluate that multiple-ex-
ample minibatch—often shortened to 
batch—directly affect total end-to-end 
training time. A step is the computa-
tion to process one minibatch.

128x128- or 256x256-element systolic 
arrays of multipliers per core, versus 
either a few scalar multipliers or SIMD 
(one-dimensional, 16–32-element) 
multipliers per core in CPUs.

 ˲ Using narrower data (8–16 bits) to 
improve efficiency of computation and 
memory versus 32–64 bits in CPUs.

 ˲ Dropping general-purpose features 
irrelevant for DNNs but critical for CPUs 
such as caches and branch predictors.

The most effective DNN training is 
supervised learning, where we start 
with a huge (sometimes billion-exam-
ple) training dataset of known-correct 
(input, result) pairs. Pairs might 
be an image and what it depicts or an 
audio waveform and the phoneme it 
represents. We also start with a neural 
network model, which transforms the 
input into the result through an inten-
sive calculation of weights (also called 
parameters); the weights are random 
initially. Models are typically defined 
as a graph of layers, where a layer con-
tains a linear algebra part (often a ma-
trix multiplication or convolution us-
ing the weights) followed by a 
nonlinear activation function (often a 
scalar function, applied elementwise; 
we call the results activations). Train-
ing “learns” weights that raise the like-
lihood of correctly mapping from in-
put to result.

For some kinds of input data, an 
embedding at the start of the model 
transforms from sparse representa-
tions into a dense representation suit-
able for linear algebra; embeddings 
also contain weights.27,29 Embeddings 
might use vectors where features can 
be represented by notions of distance 
between vectors. Embeddings involve 
table lookups, link traversal, and vari-
able length data fields, so they are ir-
regular and memory intensive.

How do we get from random initial 
weights to trained weights? Current 
best practices use variants of stochastic 
gradient descent (SGD).31 SGD consists 
of many iterations of three steps: for-
ward propagation, backpropagation, 
and weight update. Forward propaga-
tion takes a randomly chosen training 
example, applies its inputs to the mod-
el, and runs the calculation through the 
layers to produce a result (which with 
the random initial weights, is garbage 
the first time). Forward propagation is 
functionally similar to DNN inference, 

DNN (Deep 
Neural Network) 
wisdom is that 
bigger machines 
lead to bigger 
breakthroughs.
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Figure 1. A 2D-torus topology. TPUv2 uses a 16x16 2D torus.
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Table 1. Days to train production programs on one TPUv2 chip.

MLP0 MLP1 CNN0 CNN1 RNN0 RNN1

475 117 63 115 77 147

ogy (see Figure 1). An on-device switch 
provides virtual-circuit, deadlock-free 
routing. To enable a 2D torus, the chip 
has four custom Inter-Core Intercon-
nect (ICI) links, each running at 
496Gbits/s per direction in TPUv2. ICI 
enables direct connections between 
chips to form a supercomputer using 
only 13% of each chip (see Figure 3). Di-
rect links simplify rack-level deploy-
ment, but in a multi-rack system the 
racks must be adjacent.

One measure of an interconnect is 
its bisection bandwidth—the bandwidth 

 ˲ More computation: Back-propaga-
tion requires derivatives for every com-
putation in a model. It includes acti-
vation functions (some of which are 
transcendental), and multiplication by 
transposed weight matrices.

 ˲ More memory: Weight update ac-
cesses intermediate values from for-
ward and back propagation, vastly up-
ping storage requirements; temporary 
storage can be 10x weight storage. For 
inference, a small activation working 
set can usually be kept on chip.

 ˲ More programmability: Training al-
gorithms and models are continually 
changing, so a machine restricted to 
current best-practice algorithms during 
design could rapidly become obsolete.

 ˲ Wider data: Quantized arithme-
tic—8-bit integer instead of 32-bit float-
ing point (FP)—can work for inference 
like in TPUv1 but reduced-precision 
training is an active research area.21,25 
The challenge is sufficiently capturing 
the SGD sum of many small weight up-
dates to preserve the accuracy of using 
32-bit FP arithmetic to train models.

After explaining the TPUv2 architec-
ture, we describe the domain specific 
language (TensorFlow) and compiler 
(XLA) for TPUv2 and compare the ar-
chitecture and technology choices for 
the TPUv2 versus a GPU, the most pop-
ular computer for DNN training. Later, 
we compare performance per chip and 
full supercomputers of TPUs and GPUs 
using production applications and the 
MLPerf benchmarks.

Designing a Domain-Specific  
Supercomputer
In 2014, when the TPUv2 project be-
gan, the landscape for high-perfor-
mance machine learning computa-
tion was very different from today. 
Training took place on clusters of 
CPUs. State-of-the-art parallel train-
ing used asynchronous SGD,12 in part 
to tolerate tail latencies in shared 
clusters. Parallel training also divided 
CPUs into a bipartite graph of workers 
(running the SGD loop) and param-
eter servers (hosting weights and add-
ing updates to them).

The DNN training computation ap-
petite appeared unlimited. (Indeed, the 
computation requirements for the larg-
est training runs grew 10x annually 
from 2012 to 2018.2) Thus, in 2014 we 
chose to build a DSA supercomputer in-

stead of clustering CPU hosts with DSA 
chips. The first reason is that training 
time is huge. Table 1 shows that one 
TPUv2 chip would take two to 16 months 
to train a single Google production ap-
plication, so a typical application might 
want to use hundreds of chips. Second, 
DNN wisdom is that bigger datasets 
plus bigger machines lead to bigger 
breakthroughs. Moreover, results like 
AutoML use 50x more computation to 
find DNN models that achieve higher 
accuracy scores than the best models of 
human DNN experts.42

Designing a DSA supercomputer in-
terconnect. The critical architecture fea-
ture of a modern supercomputer is how 
its chips communicate: what is the speed 
of a link; what is the interconnect topol-
ogy; does it have centralized versus dis-
tributed switches; and so on. This choice 
is much easier for a DSA supercomputer, 
as the communication patterns are lim-
ited and known. For training, most traf-
fic is an all-reduce over weight updates 
from all nodes of the machine.

If we distribute switch functionality 
into each chip rather than as a stand-
alone unit, the all-reduction can be 
built in a dimension-balanced, band-
width-optimal way for a 2D torus topol-

 key insights
 ˽ With the slowing of Moore’s Law,  

ML breakthroughs require innovation  
in computer architecture.

 ˽ The increasing importance and appetite 
for ML training justifies its own custom 
supercomputer.

 ˽ The co-design of an ML-specific 
programming system (TensorFlow), 
compiler (XLA), architecture (TPU), 
floating-point arithmetic (Brain float16), 
interconnect (ICI), and chip (TPUv2/v3)  
let production ML applications  
scale at 96%–99% of perfect linear 
speedup and 10x gains in performance/
Watt over the most efficient  
general-purpose supercomputers.
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Figure 2. Block diagram of a TensorCore (our internal development name for a TPU core, 
and not related to the Tensor Cores of NVIDIA GPUs).
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peer- to-peer among workers, using the 
all-reduce to ensure workers begin and 
end each parallel step with consistent 
copies of weights.

Synchronous training has two phases 
in the critical path—a compute phase 
and a communication phase that rec-
onciles the weights across learners. 
The slowest learners and slowest mes-
sages through the network limit per-
formance of such a synchronous sys-
tem. Since the communication phase 
is in the critical path, a fast intercon-
nect that quickly reconciles weights 
across learners with well-controlled 
tail latencies is critical for fast train-
ing. The ICI network is key to the excel-
lent TPU supercomputer scaling re-
sults; later we show 96%–99% of perfect 
linear scaleup.

Designing a DSA supercomputer 
node. The TPUv2 node of the super-
computer followed the main ideas of 
TPUv1: A large two-dimensional matrix 
multiply unit (MXU) using a systolic ar-
ray to reduce area and energy plus 
large, software-controlled on-chip 
memories instead of caches. The large 
MXUs of the TPUs rely on large batch 
sizes, which amortize memory access-
es for weights—performance often in-
creases when memory traffic reduces.

Shallue et al.32 examined the effect 
of increasing batch size on training 
time, and found three regions for all 

models (as seen in Table 2):
1. Perfect scaling region: Each dou-

bling of batch size halves the number 
of training steps.

2. Diminishing returns region: In-
creasing batch size still reduces the 
number of steps, but more slowly.

3. Maximum data parallelism region: 
Increasing batch size provides no ben-
efits whatsoever.

Such scaling while preserving accu-
racy required tuning the learning rate, 
batch size, and other hyperparameters.

Fortunately for TPUs, these recent 
results show that batch sizes of 256–
8,192 scale perfectly without losing ac-
curacy, which makes large MXUs an at-
tractive option for high performance.

Unlike TPUv1, TPUv2 uses two cores 
per chip. Global wires on a chip don’t 
scale with shrinking feature size, so 
their relative delay increases. Given that 
training can use many processors, two 
smaller TensorCores per chip prevent-
ed the excessive latencies of a single 
large full-chip core. We stopped at two 
because it is easier to efficiently gener-
ate programs for two brawny cores per 
chip than numerous wimpy cores.

Figure 2 shows the six major blocks 
of a TensorCore and Figure 3 shows 
their placement in the TPUv2 chip:

1. Inter-Core Interconnect (ICI). Ex-
plained earlier.

2. High Bandwidth Memory (HBM). 
TPUv1 was memory bound for most of 
its applications.20 We solved its memo-
ry bottleneck by using High Bandwidth 
Memory (HBM) DRAM in TPUv2. It of-
fers 20 times the bandwidth of TPUv1 
by using an interposer substrate that 
connects the TPUv2 chip via thirty-
two 128-bit buses to four short stacks 
of DRAM chips. Conventional servers 
support many more DRAM chips, but 
at a much lower bandwidth of at most 
eight 64-bit busses.

3. The Core Sequencer fetches VLIW 
(Very Long Instruction Word) instruc-
tions from the core’s on-chip, soft-
ware-managed Instruction Memory 
(Imem), executes scalar operations 
using a 4K 32-bit scalar data memory 
(Smem) and 32 32-bit scalar registers 
(Sregs), and forwards vector instruc-
tions to the VPU. The 322-bit VLIW 
instruction can launch eight opera-
tions: two scalar, two vector ALU, vec-
tor load and store, and a pair of slots 
that queue data to and from the matrix 

available between two halves of a net-
work of the worst-case split. The TPUv2 
supercomputer uses a 16x16 2D torus 
(256 chips), which is 32 links x 
496Gbits/s = 15.9Terabits/s of bisection 
bandwidth. As a comparison, a separate 
Infiniband switch (used in CPU clus-
ters) that connected 64 hosts (each with, 
say, four DSA chips) has 64 ports using 
“only” 100Gbit/s links and a bisection 
bandwidth of at most 6.4Terabits/s. Our 
TPUv2 supercomputer provides 2.5x the 
bisection bandwidth over conventional 
cluster switches while skipping the cost 
of the Infiniband network cards, Infini-
band switch, and the communication 
delays of going through the CPU hosts 
of clusters.

Fortuitously, building a fast inter-
connect inspired algorithmic advances. 
With dedicated hardware, and shard-
ing the examples of a minibatch over 
nodes of the machine, there is little tail 
latency, and synchronous parallel 
training becomes possible. Internal 
studies5 suggested that synchronous 
training could beat asynchronous SGD 
with equivalent resources. Asynchro-
nous training introduces heterogeneity 
plus parameter servers that eventually 
limit parallelization, as the weights get 
sharded and the bandwidth from pa-
rameter servers to workers becomes a 
bottleneck. Synchronous training elim-
inated the parameter servers allowing 

Table 2. Batch sizes for the three regions of Shallue.32 LM1B, Fashion MNIST, and Imagenet 
are standard DNN datasets.

Model Perfect Diminishing Maximum

Transformer on LM1B ≤256 256–4096 ≥4096

Simple CNN on Fashion MNIST ≤512 512–2048 ≥2048

ResNet-50 on Imagenet ≤8192 8192–65536 ≥65536
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ing an inverse square root operation to 
the transcendental unit.

5. The MXU produces 32-bit FP 
products from 16-bit FP inputs that ac-
cumulate in 32 bits. All other computa-
tions are in 32-bit FP except for results 
going directly to an MXU input, which 
are converted to 16-bit FP.

The MXUs are large, but we reduced 
their size from 256x256 in TPUv1 to 
128x128 and have multiple MXUs per 
chip. The bandwidth required to feed 
and obtain results from an MXU is 
proportional to its perimeter, while 
the computation it provides is propor-
tional to its area. Larger arrays provide 
more compute per byte of interface 
bandwidth, but larger arrays can be 
inefficient. Simulations show that 
convolutional model utilization of 

multiply and transpose units. The XLA 
compiler schedules loading Imem via 
independent overlays of code, as un-
like conventional CPUs, there is no in-
struction cache.

4. The Vector Processing Unit (VPU) 
performs vector operations using a 
large on-chip vector memory (Vmem) 
with 32K 128 x 32-bit elements (16MiB), 
and 32 2D vector registers (Vregs) that 
each contain 128 x 8 32-bit elements 
(4 KiB). The VPU streams data to and 
from the MXU through decoupling FI-
FOs. The VPU collects and distributes 
data to Vmem via data-level parallelism 
(2D matrix and vector functional units) 
and instruction-level parallelism (8 op-
erations per instruction).

Your beautiful DSA can fail if best-
practice algorithms change, rendering 

it prematurely obsolete. We handled 
such a crisis in 2015 during our design 
in supporting batch normalization.18 
Briefly, batch normalization subtracts 
out the mean and divides by the stan-
dard deviation of a batch, making the 
values look like samples from the nor-
mal distribution. In practice, it both 
improves prediction accuracy and re-
duces time-to-train up to 14x! Batch 
normalization emerged early in 2015, 
and the results made it a must-do for 
us. We divided it into vector additions 
and multiplications over the batch, 
plus one inverse-square-root calcula-
tion. However, the vector operation 
count was high. We thus added a sec-
ond SIMD dimension to our vector unit, 
making its registers and ALUs 128x8 
(rather than just 1D 128-wide) and add-

Figure 3. TPUv2 chip floor plan. 
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node designs. The TPUv1 article 
evaluated hypothetical alternatives 
that examined the changes in perfor-
mance while varying the MXU size, 
the clock rate, and the memory band-
width.20 We need not hypothesize 
here, as we implemented and de-
ployed two versions of the training ar-
chitecture: TPUv2 and TPUv3. TPUv3 
has ≈1.35x the clock rate, ICI band-
width, and memory bandwidth plus 
twice the number of MXUs, so peak 
performance rises 2.7x. Liquid cools 
the chip to allow 1.6x more power. We 
also expanded the TPUv3 supercom-
puter to 1024 chips (see Figure 4). Ta-
ble 3 lists key features of the three 
TPU generations along with a con-
temporary GPU (NVIDIA Volta) that 
we’ll compare to below.

The TPUv3 die size is only 6% larger 
than TPUv2 in the same technology de-
spite having twice as many MXUs per 
TensorCore simply because the engi-
neers had a better idea beforehand of 
the layout challenges of the major 
blocks in TPUv2, which led to a more 
efficient floor plan for TPUv3.

Designing DSA supercomputer arith-
metic. Peak performance is ≥8x higher 
when using 16-bit FP instead of 32-bit 
FP for matrix multiply (see Table 3), so 
it’s vital to use 16-bit to get highest per-
formance. While we could have built an 
MXU using standard IEEE fp16 and 
fp32 floating point formats (see Figure 
5), we first checked the accuracy of 16-
bit operations for DNNs. We found that:

 ˲ Matrix multiplication outputs and 
internal sums must remain in fp32.

 ˲ The 5-bit exponent of fp16 matrix 
multiplication inputs leads to failure 

wires on its perimeter for the inputs, 
outputs, and control. In our technology, 
for 128x128 and larger the MXU’s area is 
limited by the multipliers but area for 
64x64 and smaller MXUs is limited by 
the I/O and control wires.

6. The Transpose Reduction Permute 
Unit does 128x128 matrix transposes, 
reductions, and permutations of the 
VPU lanes.

Alternative DSA supercomputer 

four 128x128 MXUs is 37%–48%, 
which is 1.6x of a single 256x256 MXU 
(22%–30%) yet take about the same die 
area. The reason is that some convolu-
tions are naturally smaller than 
256x256, so sections of the MXU would 
be idle. Sixteen 64x64 MXUs would have 
a little higher utilization (38%–52%) but 
would need more area. The reason is 
the MXU area is determined either by 
the logic for the multipliers or by the 

Table 3. Key processor features. 

Feature TPUv1 TPUv2 TPUv3 Volta

Peak TeraFLOPS/ 
Chip

92 (8b int)
46 (16b)  
3 (32b)

123 (16b)  
4 (32b)

125 (16b) 
16 (32b)

Network links x Gbits/s/Chip -- 4 x 496 4 x 656 6 x 200

Max chips/supercomputer -- 256 1024 Varies

Peak PetaFLOPS/supercomputer -- 11.8 126 Varies

Bisection Terabits/supercomputer -- 15.9 42.0 Varies

Clock Rate (MHz) 700 700 940 1530

TDP (Watts)/Chip 75 280 450 450

TDP (Kwatts)/supercomputer -- 124 594 Varies

Die Size (mm2) <331 <611 <648 815

Chip Technology 28nm >12nm >12nm 12nm

Memory size (on-/off-chip) 28MiB/8GiB 32MiB/16GiB 32MiB/32GiB 36MiB/32GiB

Memory GB/s/Chip 34 700 900 900

MXUs/Core,  
MXU Size

1  
256x256

1  
128x128

2 
128x128

8 
4x4

Cores/Chip 1 2 2 80

Chips/CPU Host 4 4 8 8 or 16

We cannot reveal technology details of our chip partner. Although it is in a 
larger, older technology, the TPUv2 die size is less than 3/4s of the GPU. 
TPUv3 is 6% larger in that same technology. TDP stands for Thermal 
Design Power. The Volta has 80 symmetric multiprocessors.

Figure 4. A TPUv2 supercomputer has up to 256 chips and is 18-ft. long (top). 

A TPUv3 supercomputer consisting of up to 1,024 chips (below) 
is about 7-ft. tall and 36-ft. long. A TPUv2 board (center) holds 
four air-cooled chips and a TPUv3 board (right) also has four 
chips but uses liquid cooling. 
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Figure 5. IEEE FP and Brain float formats. 

inputs interact to produce a 2D out-
put. Each operand has a memory lay-
out, which gets transformed into a 
layout in 2D registers, which in turn 
must be fed at the exact moment to 
meet systolic array timing in the MXU. 
(A systolic array reduces register ac-
cesses by choreographing data flow-
ing from different directions to regu-
larly arrive at cross points that 
combine them.) Depending on layout 
choices, the 2D registers dimensions 
of 128 and 8 might not be filled, low-
ering ALU and memory utilization. 
Moreover, lacking caches, XLA man-
ages all memory transfers, including 
code overlays and DMA pushes to re-
mote nodes over ICI.

XLA exploits the huge parallelism 
that an input TF dataflow graph repre-
sents. Beyond the parallelism of oper-
ations (“ops”) in a graph, each op can 
comprise millions of multiplications 
and additions on data tensors of mil-
lions of elements. XLA maps this 
abundant parallelism across hun-
dreds of chips in a supercomputer, a 
few cores per chip, multiple units per 
core, and thousands of multipliers 
and adders inside each functional 
unit. The domain-specific TF lan-
guage and XLA representation allow 
precise reasoning about memory use 
at every point in the program. There 
are no “aliasing” issues where the 
compiler must determine whether 
two pointers might address the same 
memory—every piece of memory cor-

All formats have an implicit leading mantissa 
bit in normal operation. 

sign(1)

IEEE fp32

exponent (8) mantissa (23)

sign(1)

IEEE fp16

exponent (5) mantissa (10)

sign(1)

bf16

exponent (8) mantissa (7)

of computations that go outside its 
narrow range, which the 8-bit exponent 
of fp32 avoids.

 ˲ Reducing the matrix multiplica-
tion input mantissa size from fp32’s 23 
bits to 7 bits did not hurt accuracy.

The resulting brain floating format 
(bf16) in Figure 5 keeps the same 8-bit 
exponent as fp32. Given the same expo-
nent size, there is no danger in losing 
the small update values due to FP un-
derflow of a smaller exponent, so all 
programs in this article used bf16 on 
TPUs without much difficulty. Beyond 
our experience that it works for training 
production applications, a recent Intel 
study corroborated its benefits.21 How-
ever, fp16 requires adjustments to 
training software (loss scaling) to deliver 
convergence and efficiency. It preserves 
the effect from small gradients by scal-
ing losses to fit the smaller exponents 
of fp16.26

As the size of an FP multiplier scales 
with the square of the mantissa width, 
the bf16 multiplier is half the size and en-
ergy of a fp16 multiplier: 8² / 11² ≈ 0.5 (ac-
counting for the implicit leading man-
tissa bit). Bf16 delivers a rare 
combination: reducing hardware and 
energy while simplifying software by 
making loss scaling unnecessary. Thus, 
ARM and Intel have revealed future 
chips with bf16.

Designing a DSA 
Supercomputer Compiler
The next step was getting software for 
our hardware. To program CPUs and 
GPUs for machine learning, a frame-
work such as TensorFlow (TF)1 speci-
fies the model and data operations 
machine-independently. TF is a do-
main-specific library built on Python. 
NVIDIA GPU-dependent work is sup-
ported by a combination of the CUDA 
language, the CuBLAS and CuDNN 
libraries, and the TensorRT system. 
TPUv2/v3s also use TF, with the new 
system XLA (for accelerated linear al-
gebra) handling the TPU-dependent 
mapping. XLA also targets CPUs and 
GPUs. Like many systems that map 

from domain-specific languages to 
code, XLA integrates a high-level li-
brary and a compiler. A TF front end 
generates code in an intermediate 
representation for XLA.

It would seem it should be more dif-
ficult to get great performance in a pro-
gramming system based on Python 
like TF. However, ML frameworks offer 
both a higher level of expressiveness 
and the potential for much better opti-
mization information than lower-level 
languages like C++. TF programs are 
graphs of operations, where multi-di-
mensional array operations are first-
class citizens:

 ˲ They operate on multi-dimension-
al arrays explicitly, rather than implic-
itly via nested loops as in C++.

 ˲ They use explicit, analyzable, and 
bounded data access patterns versus 
arbitrary access patterns like C++.

 ˲ They have known memory aliasing 
behavior, unlike C++.

These three factors allow the XLA 
compiler to safely and correctly trans-
form programs in ways that traditional 
compilers rarely attain.

XLA does whole-program analysis 
and optimization. With 2D vector reg-
isters and compute units in TPUv2/v3, 
the layout of data in both compute 
units and memory is critical to perfor-
mance, perhaps more than for a vec-
tor or SIMD processor. Building effi-
cient code for vector machines, with 
1D memory and compute units, is 
well understood. For the MXU, two 2D 

Table 4. XLA speed up on TPUv2 with fusion versus without fusion. 

MLP CNN RNN

SSD NMT Mask R-CNN Transformer Res Net-500 1 0 1 0 1

1.8 2.0 2.2 4.8 2.4 1.8 2.4 3.0 2.0 2.0 6.3
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TPU and GPU choices before we com-
pare performance.

Multi-chip parallelization is built 
into TPUs through ICI and supported 
through all-reduce operations 
plumbed through XLA to TF. Similar-
sized multi-chip GPU systems use a 
tiered networking approach, with 
NVIDIA’s NVLink inside a chassis 
and host-controlled InfiniBand net-
works and switches to tie multiple 
chassis together.

TPUs offer bf16 FP arithmetic de-
signed for DNNs inside 128x128 systol-
ic arrays that halves the die area and 
energy versus IEEE fp16 FP multipliers. 
Volta GPUs have also embraced re-
duced-precision systolic arrays, with a 
finer granularity—4x4 or 16x16 de-
pending on hardware or software de-
scriptions—while using fp16 rather 
than bf16, so they may require software 
to perform loss scaling plus extra die 
area and energy.

TPUs are dual-core, in-order ma-
chines, where the XLA compiler overlaps 
computation, memory, and network ac-
tivities. GPUs are latency-tolerant many-
core machines, where each core has 
many threads and thus very large (20MiB) 
register files. Threading hardware plus 
CUDA coding conventions support over-
lapped operations.

TPUs use software controlled 32MiB 
scratchpad memories that the compil-
er schedules, while Volta hardware 
manages a 6MiB cache and software 
manages a 7.5MiB scratchpad memory. 
The XLA compiler directs sequential 
DRAM accesses typical of DNNs via di-
rect memory access (DMA) controllers 
on TPUs while GPUs use multithread-
ing plus coalescing hardware for them.

Thottethodi and Vijaykumar35 con-
cluded that when compared to TPUs:

“[GPUs] incur high overhead in perfor-
mance, area, and energy due to heavy 
multithreading which is unnecessary for 
DNNs which have prefetchable, sequen-
tial memory accesses. The systolic orga-
nization [of TPUs] ... capture[s] DNNs’ 
data reuse while being simple by avoiding 
multithreading.”

In addition to the contrasting archi-
tectural choices, TPU and GPU chips 
use different technologies, die areas, 
clock rates, and power. Table 6 gives 
three related cost measures of these 
systems: approximate die size adjust-
ed for technology; power for a 16-chip 

sands of ops from a smaller set of 
primitive ops.

The XLA team needed only 96 ops as 
the compiler’s target to reduce work for 
the library/compiler by enhancing com-
posability. For example, XLA has a single 
op for convolution (kConvolution) let-
ting the compiler handle all the mem-
ory layout variations. The TF interme-
diate form has nine; for example, 
Conv2D, Conv2dBackpropFil-
ter, DepthwiseConv2dNative, and 
DepthwiseConv2dNativeBackprop-
Filter. For the CNN1 program, the 
XLA compiler fused 63 different opera-
tions with at least one kConvolution.

Since ML platforms and DSAs of-
fered a new set of compiler challenges, 
it was unclear how fast they would im-
prove. Table 5 shows the median gain 
over only six months for MLPerf from 
version 0.5 to 0.6 was 1.3x for GPUs and 
2.1x for TPUs! (Perhaps the younger XLA 
compiler has more opportunity to im-
prove than the more mature CUDA 
stack.) One reason for the large gain is 
the focus on benchmarks, but produc-
tion applications also advanced. In-
creasing bf16 use, optimizing model ar-
chitecture, and XLA generating better 
code sped up CNN0 by 1.8x in 15 months 
and improving partitioning/placement 
for embeddings and XLA optimizations 
accelerated MLP0 by 1.65x.

Contrasting GPU  
and TPU Architectures
As details of TPU and GPU architec-
tures are now public, let us compare 

responds to a known program variable 
or temporary. The XLA compiler is 
free to slice, tile, and lay out memory 
and operations to best use the on-chip 
memory bandwidth and to reduce the 
memory footprint on chip or off chip.

TPUs use a VLIW architecture to 
express instruction-level parallelism 
to the many compute units of a Ten-
sorCore. XLA uses standard VLIW 
compilation techniques including 
loop unrolling, instruction schedul-
ing, and software pipelining to keep 
all compute units busy and to simul-
taneously move data through the 
memory hierarchy to feed them.

Given a memory layout of data, oper-
ator fusion can reduce memory use and 
boost performance. Fusion is a tradi-
tional compiler optimization—but ap-
plied now to 2D data—that combines 
ops to reduce memory traffic compared 
to executing operators sequentially. For 
example, fusing a matrix multiplication 
with a following activation function 
skips writing and reading the interme-
diate products from memory. Table 4 
shows the speedup from the fusion op-
timization on 2D data is from 1.8 to 6.3.

The TF intermediate form for XLA 
has thousands of ops. The number of 
ops increases when programmers 
cannot combine existing ops if com-
position is inefficient. Alas, expand-
ing the number of ops is an engineer-
ing challenge, since software libraries 
need to be developed for CPUs, GPUs, 
and TPUs. The hope was that the XLA 
compiler could synthesize these thou-

Table 5. Speedup of MLPerf 0.6 over 0.5 in six months.

ResNet50 SSD MaskRCNN NMT Transformer Median

Volta 1.3 1.2 1.8 1.0 2.0 1.3

TPUv3 1.4 1.4 3.5 2.1 3.0 2.1

Table 6. Adjusted comparison of GPU and TPU. 

Die size
Adjusted 
die size

TD
(kw)

Cloud
price

Relative to GPU

Die TDP Price

Volta 815 815 12.0 $3.24 1.00 1.00 1.00

TPUv2 <611 <391 7.7 $1.13 <0.5 0.64 0.35

TPUv3 <648 <415 9.3 $2.00 <0.5 0.78 0.62

Die sizes are adjusted by the square of the technology, as the semiconduc-
tor technology for TPUs is similar but larger and older than that of the GPU. 
We picked 15nm for TPUs based on the information in Table 3. Thermal 
Design Power (TDP) is for 16-chip systems. TPUs come with a host CPU. 
This GPU price adds price of a n1-standard-16 CPU.
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system; and cloud price per chip. The 
GPU adjusted die size is more than 
twice that of the TPUs, which suggests 
the capital costs of the chips is at least 
double, since there would be at least 
twice as many TPU dies per wafer. GPU 
power is 1.3x–1.6x higher, which sug-
gests higher operating expenses, as 
the total cost of ownership is correlat-
ed with power.19 Finally, the hourly 
rental prices on Google Cloud Engine 
are 1.6x–2.9x higher for the GPU. These 
three different measures consistently 
suggest TPUv2 and TPUv3 are roughly 
half to three fourths as expensive as 
the Volta GPU.

Performance Evaluation
In computer architecture, we “grade on 
a curve” versus “grade on an absolute 
scale,” so we need to measure perfor-
mance relative to the competition. Before 
showing performance of TPU supercom-
puters, we must establish the virtues of 
a single chip, for a 1024x speedup from 
1,024 wimpy chips is uninteresting.

We first compare training perfor-
mance for a standard set of ML bench-
marks and Google production applica-
tions for TPUv2/v3 chip and the Volta 
GPU chip; TPUv3 and Volta are about the 
same speed. We then check if four MXUs 
per chip in TPUv3 really helped, or if oth-
er bottlenecks in the TPUv3 chip made 
the extra MXUs superfluous; they 
helped! We conclude the chip compari-
son looking at inference for TPUv2/v3 
versus TPUv1; TPUv2/v3 are much faster.

Having established the merits of 
the TPU chips, we then evaluate the 
TPUv2/v3 supercomputer. The first 
step is to see how well it scales; we see 
96%–99% of perfect linear speedup at 
1024 chips. We then compare the 
fraction of peak performance and 
performance per Watt of TPU and tra-
ditional supercomputers; TPUs have 
5x-10x better performance per Watt.

Chip performance: TPUv2/v3 versus 
the Volta GPU. Figure 6 shows the per-
formance of TPUv3 and the Volta GPU 
over TPUv2 for two sets of programs. 
The first set is five programs that 
Google and NVIDIA both submitted to 
MLPerf 0.6 in May 2019, and both use 
16-bit multiplication with NVIDIA soft-
ware performing loss scaling. The geo-
metric mean speedup of these pro-
grams over TPUv2 is 1.8 for TPUv3 and 
1.9 for Volta.

model for image recognition.
 ˲ In Recurrent Neural Networks 

(RNN), each subsequent model layer is 
a collection of nonlinear functions of 
weighted sums of outputs and the pre-
vious state. Sequence prediction prob-
lems, such as language translation, use 
RNNs. RNN0 is RNMT+6 and RNN1 is 
Improved LAS.8

We recently compared the represen-
tative datacenter workloads by model 
type for inference on TPUv120 versus 
TPUv2/v3 for training. Table 7 illus-
trates the fast-changing nature of 
DNNs. We originally used the name 
LSTM (Long Short-Term Memory) for 
TPUv1 applications, a type of RNN. Al-
though sampled three years apart—
July 2016 versus April 2019—we were 
still surprised that CNNs were a much 
larger part of datacenter training, and 
that a new model Transformer36—pub-
lished the year that TPUv2 was de-

We also wanted to measure perfor-
mance of production workloads. We 
chose six production applications 
similar to what we used for TPUv1 as 
representative of Google’s workload:

 ˲ In MultiLayer Perceptrons (MLP) 
each new layer of a model is a set of 
nonlinear functions of a weighted sum 
of all outputs (fully connected) from 
a prior one. This classic DNN usually 
has text as input. MLP0 is unpublished 
but MLP1 is RankBrain,9 which ranks 
search results for a Web page.

 ˲ In Convolutional Neural Networks 
(CNN), each ensuing layer is a set of 
nonlinear functions of weighted sums 
of spatially nearby subsets of outputs 
from the prior layer. CNNs usually 
have images as inputs. CNN0 is Alp-
haZero, a reinforcement learning al-
gorithm with extensive use of CNNs, 
which mastered the games chess, Go, 
and shogi.34 CNN1 is a Google-internal 

Figure 6. Performance per chip relative to TPUv2 for five MLPerf 0.6 benchmarks and six 
production applications.

Peak Compute

Clock Rate

Memory BW

Resnet50

SSD

MaskRCNN

GNMT

Transformer

MLPerf 0.6 GM

MLP0

RNN0

CNN1

MLP1

RNN1

CNN0

Production GM

0.0 1.0 2.0 3.0

TPUv3 Volta

Table 7. Google’s inference (July 2016) and training (April 2019) workloads by DNN  
model type. 

DNN Model TPUv1 July 2016 TPUv3 April 2019

MLP 61% 27%

RNN 29% 21%

CNN 5% 24%

Transformer -- 21%
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are continuously improved, and not 
simple benchmarks, so it’s a lot of work 
to get them to run at all, and more to 
run well. As noted earlier, application 
programmers focus on TPUs, since 
they are in everyday use, so there is little 
urge to include loss scaling needed for 
fp16. (TF kernels for embeddings have 
not been developed for GPUs, so we ex-
clude MLPs from the GPU geometric 
mean as they could not run.)

Is TPUv3 memory bound or com-
pute bound? While the peak compute 
improvement of TPUv3 over TPUv2 is 
2.7x, the improvements in memory 
bandwidth, ICI bandwidth, and clock 
rate are only ≈1.35x. We wondered 
whether the extra MXUs in TPUv3 
would be underutilized due to bottle-
necks elsewhere. Figure 6 shows that 
one production application runs a bit 
higher than the memory improvement 
at 1.4x, but the other five and all the 
MLPerf 0.6 benchmarks run much 
faster at 1.6x to 2.3x. The large applica-
tion batch sizes and sufficient on-chip 
storage enabled these good results. As 
the MXUs are not a large part of the 
chip (Figure 3), doubling the MXUs in 
TPUv3 clearly proved beneficial.

Inference on a training chip: TPUv2/
v3 vs. TPUv1. What about inference 
speed? Running it on a training chip—
which works since it is like the forward 
pass—could help applications that re-
quire frequent training on fresh data. 
TPUv2/v3 do not support 8-bit integer 
data types, so inference uses bf16. One 
upside of using the same arithmetic 
for training and inference is that ML 
experts don’t need to do extra work—
called quantization—to ensure the 
same accuracy of the DNN model.

One danger is the larger batch sizes 
needed to run efficiently on TPUv2/v3 
could hurt inference latency. Fortu-
nately, we have DNN models that can 
meet their latency targets with batch 
sizes of greater than 1,000. With bil-
lions of daily users, inferences per sec-
ond across the whole data center fleet 
can be very high.

The LSTM0 benchmark, for instance, 
ran at 48 inferences per second with a 
response time of 122ms on TPUv1.19 
TPUv2 runs it 5.6x as fast with a 2.8x low-
er response time (44ms) at the same 
batch size. The lower latency in turn al-
lows for larger batches compared to 
TPUv1 to be served in production yet still 
meet latency targets. With larger batches, 
the throughput rose to 11x with a latency 
improvement of 2x (58ms) vs TPUv1. 
TPUv3 reduces latency 1.3x (45ms) versus 
TPUv2 at the same batch size.

DSA supercomputer scaling perfor-
mance. Alas, only ResNet-50 from MLP-
erf 0.6 can scale beyond 1,000 TPUs and 
GPUs. Figure 7 shows three ResNet-50 
results. Ying et al. published a 
ResNet-50 results on TPUv3 that deliv-
ered 77% of perfect linear scaleup at 
1,024 chips,41 but the TPUv3 version for 
MLPerf 0.6 only runs at 52%. The dif-
ference is in MLPerf’s ground rules. 
MLPerf requires including evaluation 
in the training time. (Evaluation runs a 
holdout dataset after a model training 
finishes to determine its accuracy.) Like 
Ying et al., most researchers exclude it 
when reporting performance. More un-
usually, MLPerf requires running evalu-
ation at the end of every four epochs to 
deter benchmark cheating. ML devel-
opers would never evaluate that fre-
quently. For MLPerf 0.6, NVIDIA ran 
ResNet-50 on a cluster of 96 DGX-2H 
each with 16 Voltas connected via In-
finiband switches at 41% of linear scale-
up for 1,536 chips.

ployed—was as popular as RNNs. 
(Transformer is part of MLPerf 0.5.)

Transformer is intended for the 
same tasks as RNNs, such as transla-
tion, but is considerably faster since it 
lends itself to parallelization while 
RNNs have sequential dependencies. 
The layers of Transformer are a mix of 
MLPs and attention layers.4 Attention is 
the key new mechanism used in Trans-
former; it lets neural networks look up 
data associatively, in a memory-like 
structure whose indices themselves 
are learned. The components of atten-
tion resemble those of other layers, in-
cluding matrix multiplications and 
dot products, which map well to TPU 
hardware. One difference is that atten-
tion matrices grow with sequence 
length, adding dynamic shape and 
memory requirements that complicate 
some optimizations done by XLA. The 
success of this recent model (see Figure 
6) highlights TPU programmability.

The geometric mean speedup of the 
six production applications was 1.8 for 
TPUv3 but only 0.4 for Volta, primarily 
because they use 8x slower fp32 on 
GPUs instead of fp16 (Table 3). These 
are large production applications that 

Table 8. Days to train MLPerf 0.5 benchmarks on one TPUv2 chip. See Table 1 for time to 
train production applications.

ResNet50 SSD Mask R-CNN GNMT Transformer

0.8 0.3 1.9 0.2 0.3

Figure 7. Supercomputer scaling: TPUv3 and Volta.
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Table 9. Traditional versus TPU supercomputer Top500 and Green500 rank (June 2019) for Linpack and AlphaZero.

seven threads, each of which has a peak 
performance of 100GFLOPS/s or 
122TFLOPS/s per chip, almost identi-
cal to the peak performance of TPUv3 
and Volta. It relies on the 300MB on-
chip SRAM for memory, with two GC2 
chips per PCIe board. The Habana 
Gaudi38 has eight VLIW SIMD cores, 
four stacks of HBM2 memory, bf16 
arithmetic, and eight 100Gbit/sec Eth-
ernet links to connect many chips to-
gether to form larger systems. Wave 
Computing’s28 Dataflow Processing 
Unit chip has 16k processors, 8k arith-
metic units, 16MB of on-chip memory, 
and novelty relies on asynchronous 
logic instead of a clock. It has external 
DRAM, offering both Hybrid Memory 
Cube and DDR4 ports. As of February 
2020, none of the five training startups 
has reported training accuracy or time-
to-solution.

Academic training studies include 
the DianNao family of architectures (one 
of which trains)7 and ScaleDeep;37 to our 
knowledge, neither has been fabricated.

Several studies explored reduced-
precision training with accelerator 
construction in mind. Intel’s Flex-
point22 is a block FP format,39 although 
those developers switched to using 
bf16 for their DNN chips.40 De Sa et al.10 
reduced precision and relaxed cache 
coherence. HALP11 also made algorith-
mic changes to reduce quantization 
noise and uses 8-bit integers to train 
some models. None is yet available in a 
commercial system.

TPUv2/v3 are not the first domain-
specific supercomputers to show large 
efficiency, performance, and scaling 

Table 10. Time to train supercomputers from NVIDIA, Fujitsu, and Google on the ResNet-50 
benchmark from MLPerf 0.6.

NVIDIA cluster ABCI Supercomputer TPUv3 Supercomputer

MLP 1536 Voltas + 192 CPUs 2048 Voltas + 1024 CPUs 1024 TPUv3s + 128 CPUs

Transformer 80 seconds 70 seconds 77 seconds

MLPerf 0.6 benchmarks are much 
smaller than the production applica-
tions; Table 8 shows time to train them 
on one TPUv2 chip is orders of magni-
tude less than in Table 1. Thus, we in-
clude six production applications 
largely to show substantial programs 
that can scale to supercomputer size. 
The MLPs are limited by embeddings 
and run only at 14% and 40% of perfect 
linear scale up on 1,024 TPUv3 chips, 
but one runs at 96% and three at 99%!

Note that CNN1 is an image recog-
nition DNN much like ResNet101. It 
scales much better on TPUs because 
Google’s internal image datasets are 
much larger than what ResNet50 
uses (Imagenet).

Traditional vs. DSA supercomputer 
performance. Traditional supercom-
puters measure performance using the 
high-performance computing (HPC) 
benchmark Linpack and ranking the 
Top500 (top500.org). The related 
Green500 list re-ranks the Top500 
based on performance per Watt. For 
these large computers to get utiliza-
tion above 60%, HPC expands the size 
of the matrix being solved (weak scal-
ing). (For which Linpack has long been 
criticized within HPC.13) The TPU scale 
up, however, uses production pro-
grams on real-world datasets.

Table 9 shows where PetaFLOPs/
second and FLOPs/Watt of AlphaZero 
on TPUv2/v3 would rank in the Top500 
and Green500 lists. This comparison 
is imperfect: conventional supercom-
puters crunch 32- and 64-bit data rath-
er than the 16- and 32-bit data of TPUs. 
However, TPUs are running a real ap-
plication on real data versus a weakly 
scaled benchmark on synthetic data. 
TPUv3 has 44x the FLOPS/Watt of 
Tianhe and 10x of SaturnV and ABCI.

The Fujitsu ABCI supercomputer in 
Table 9 includes 2,176 Intel CPUs 
along with 4352 Volta GPUs. Besides 

running Linpack, Fujitsu submitted a 
ResNet-50 result for MLPerf 0.6 using 
2,048 GPUs. Table 10 shows time to 
train for ResNet-50 in MLPerf 0.6 and 
the number of chips for an NVIDIA 
GPU cluster, the Fujitsu ABCI super-
computer, and a Google TPUv3 super-
computer. Fujitsu varied from the 
strict benchmark MLPerf 0.6 closed 
guidelines of the other submissions—
they changed the LARS optimizer and 
the momentum hyperparameter—so 
it’s not an apples-to-apples compari-
son. These changes improve perfor-
mance by 10%–15%, which would also 
help NVIDIA and TPUv3.

Related Work
A survey documents over 25 years of 
custom neural network chips,3 but re-
cent DNN successes led to an explosion 
in their development. Most designs fo-
cus on inference; far fewer, including 
the TPUv2/v3, target training. We are 
not aware of any other results that show 
state-of-the-art accuracy on a working 
DSA hardware for training.

Of the five training startups, Sam-
baNova has not yet published. Cere-
bras uses a whole silicon wafer to build 
their system, essentially treating 84 
large “dies” as a single unit.24 Each 
“die” has 220MB of SRAM along with 
about 5k cores, yielding a total of 18GB 
of on-chip memory and 400k cores that 
collectively use 15 kilowatts. Like 
GraphCore, there is no DRAM in the 
system, so they target small batch sizes 
to reduce memory needs. The Graph-
Core15 GC2 chip holds 1,216 Intelli-
gence Processing Units that support 

Name Cores Benchmark Data Peta Flop/s % of Peak Mega-watts GFlop/Watt Top 500 Green 500

Tianhe 4865k Linpack 32/64 bit 61.4 61% 18.48 3.3 4 57

SaturnV 22k Linpack 32/64 bit 1.1 59% 0.97 5.1 469 1 

ABCI 392k Linpack 32/64 bit 19.9 61% 1.65 14.4 8 3

TPUv2 0.5k AlphaZero 16/32 bit 9.9 84% 0.12 79.9 22 2

TPUv3 2k AlphaZero 16/32 bit 86.9 70% 0.59 146.3 4 1

See article for caveats about comparing Linpack on 64-bit floating point to ML training on 16-bit floating point.

http://top500.org
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Googlers. Many thanks to the hardware 
and software teams and engineers for 
making TPU supercomputers possible, 
including Paul Barham, Eli Bender-
sky, Dehao Chen, Chiachen Chou, Jeff 
Dean, Peter Hawkins, Blake Hechtman, 
Mark Heffernan, Robert Hundt, Michael 
Isard, Fritz Kruger, Naveen Kumar, 
Sameer Kumar, Chris Leary, Hyouk-
Joong Lee, David Majnemer, Lifeng 
Nai, Thomas Norrie, Tayo Oguntebi, 
Andy Phelps, Bjarke Roune, Brennan 
Saeta, Julian Schrittwieser, Andy Swing, 
Shibo Wang, Tao Wang, Yujing Zhang, 
and many more. 
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gains. Anton systems33 showed two or-
der-of-magnitude speedups over tra-
ditional supercomputers on molecular 
dynamics workloads. They also result-
ed from hardware/software/algorithm 
codesign, with custom chips, intercon-
nect, and arithmetic.

Conclusion
Benchmarks suggests the TPUv3 chip 
performs similarly to the contempo-
rary Volta GPU chip, but parallel scal-
ing for production applications is 
stronger for the TPUv3 supercomputer:

 ˲ Three scale to 1,024 chips at 99% 
linear speedup;

 ˲ One scales to 1,024 chips at 96% 
linear speedup; and

 ˲ Two scale to 1,024 chips but are 
limited by embeddings.

Remarkably, a TPUv3 supercomputer 
runs a production application using real-
world data at 70% of peak performance, 
higher than general-purpose supercom-
puters run the Linpack benchmark us-
ing weak scaling of manufactured data. 
Moreover, TPU supercomputers with 
256–1,024 chips running a production 
application have 5x–10x performance/
Watt of the #1 traditional supercomput-
er on the Green500 list running Linpack 
and 24x–44x of the #4 supercomputer 
on the Top500 list. Reasons for this suc-
cess include the built-in ICI network, 
large systolic arrays, and bf16 arithmetic, 
which we expect will become a standard 
data type for DNN DSAs.

TPUv2/v3 have smaller dies in an old-
er semiconductor process and lower 
cloud prices despite being less mature at 
many levels of hardware/software sys-
tem stack than CPUs and GPUs. These 
good results despite technological dis-
advantages suggests the TPU approach 
is cost-effective and can deliver high ar-
chitectural efficiency into the future.

Going forward, our ravenous DNN 
colleagues want the fastest computer 
that we can build.2 Despite Moore’s 
Law ending, we expect the demand for 
faster DNN-specific supercomputers to 
grow even more quickly than Moore 
predicted. Trying to satisfy that de-
mand without the help of Moore’s Law 
offers exciting new challenges for com-
puter architects for at least a decade.17
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IN OCTOBER 2008,  a few weeks after the Emergency 
Economic Stabilization Act rescued the U.S. financial 
system from collapse, Satoshi Nakamoto34 introduced 
a cryptography mailing list to Bitcoin, a peer-to-peer 
electronic cash system “based on crypto graphic proof 
instead of trust, allowing any two willing parties to 
transact directly with each other without the need for 
a trusted third party.” With Bitcoin, for the first time, 
value could be reliably transferred between two distant, 
untrusting parties without the need of an intermediary. 
Through a clever combination of cryptography and 
game theory, the Bitcoin ‘blockchain’—a distributed, 
public transaction ledger—could be used by any 
participant in the network to cheaply verify and settle 
transactions in the cryptocurrency. Thanks to rules 
designed to incentivize the propagation of new 

legitimate transactions, to reconcile 
conflicting information, and to ulti-
mately agree at regular intervals about 
the true state of a shared ledger (a 
blockchain)a in an environment where 
not all participating agents can be 
trusted, Bitcoin was also the first plat-
form, at scale, to rely on decentralized, 
Internet-level ‘consensus’ for its opera-
tions. Without involving a central clear-
inghouse or market maker, the plat-
form was able to settle the transfer of 
property rights in the underlying digital 
token (bitcoin) by simply combining a 
shared ledger with an incentive system 
designed to securely maintain it.

From an economics perspective, 
this new market design solution pro-
vides some of the advantages of a 
centralized digital platform (for ex-
ample, the ability of participants to 
rely on a shared network and benefit 
from network effects) without some 
of the consequences the presence of 
an intermediary may introduce such 
as increased market power, ability to 
renege on commitments to ecosystem 
participants, control over participants’ 
data, and presence of a single point of 
failure. As a result, relative to existing 
financial networks, a cryptocurrency 
such as Bitcoin may be able to offer 
lower barriers to entry for new service 
providers and application developers, 
and an alternative monetary policy for 

a See online appendix for more details;  
https://dl.acm.org/doi/10.1145/3359552

Some Simple 
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Blockchain
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Blockchain technology can shape innovation 
and competition in digital platforms, but  
under what conditions?

BY CHRISTIAN CATALINI AND JOSHUA S. GANS 

 key insights
 ˽ We discuss how blockchain technology 

can shape innovation and competition by 
identifying two key costs affected by the 
technology: the cost of verification and 
the cost of networking.

 ˽ The cost of verification relates to the 
ability to cheaply verify state.

 ˽ The cost of networking relates to the 
ability to bootstrap and operate a 
marketplace without assigning control 
to a centralized intermediary. This is 
achieved by combining the ability to 
verify state with economic incentives 
targeted at rewarding state transitions 
that are particularly valuable from  
a network perspective.
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individuals that do not live in coun-
tries with trustworthy institutions. Key 
commitments encoded in the Bitcoin 
protocol are its fixed supply, predeter-
mined release schedule, and the fact 
that rules can only be changed with 
support from a majority of partici-
pants. While the resulting ecosystem 
may not offer an improvement for in-
dividuals living in countries with reli-
able and independent central banks, 
it may represent an option in countries 
that are unable to maintain their mon-
etary policy commitments. Of course, 

the open and “permissionless” nature 
of the Bitcoin network, and the inabil-
ity to adjust its supply also introduce 
new challenges, as the network can be 
used for illegal activity, and the value of 
the cryptocurrency can fluctuate wildly 
with changes in expectations about its 
future success, limiting its use as an ef-
fective medium of exchange.

In the article, we rely on economic 
theory to explain how two key costs af-
fected by blockchain technology—the 
cost of verification of state, and the 
cost of networking—change the types 

of transactions that can be supported 
in the economy. These costs have im-
plications for the design and efficiency 
of digital platforms, and open opportu-
nities for new approaches to data own-
ership, privacy, and licensing; moneti-
zation of digital content; auctions and 
reputation systems.

While the reduction in the cost of 
verification has economic consequences 
mostly on the intensive margin of pro-
duction (improving existing applica-
tions), on the extensive margin (new 
applications), the reduction in the cost 
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Literature
This article contributes to the nascent 
literature on blockchain by providing 
an economic framework for under-
standing how the technology changes 
the types of transactions and networks 
that can be sustained in the economy. 
By focusing on the two key economic 
costs the technology influences, we 
abstract away from some of the idio-
syncratic choices different protocols 
make (for example, in terms of privacy, 
consensus algorithms, and presence 
of mining versus not), and surfaces 
high-level dimensions that have im-
plications for market structure and 
competition with existing digital plat-
forms. This level of analysis allows us 
to highlight commonalities between 
protocols that may be different at a 
more fine-grained technical level, but 
ultimately share a similar trust and 
competition model, and will thus have 
a similar impact on how rents are al-
located between users, developers 
and nodes providing resources to a 
network. An online appendix (https://
dl.acm.org/doi/10.1145/3359552) pro-
vides additional technical details on 
how some of the most popular cryp-
tocurrencies work, and a taxonomy of 
transactions that the technology can 
support (for example, auctions, smart 
contracts, digital identity and property 
rights, and audit trails).

Previous research in this emerging 
area has focused on providing an over-
view of Bitcoin and its operations;7,35 
has combined theory and data to ex-
plain the velocity of Bitcoin and its 
use across countries as an investment 
vehicle, for gambling and illegal on-
line markets;2 and has studied the role 
early adopters play in the diffusion 
and use of Bitcoin within a large-scale, 
field experiment.15

Researchers have also examined 
competition between alternative cryp-
tocurrencies and their differences;17,19-21 
the changes they entail for trading 
behavior;29 their integration with flat-
based currencies and direct use for pro-
viding citizens with central bank mon-
ey;8,36,43 alternative payment systems;5,42 
implications for regulation and gover-
nance;16,26,49,50 and the privacy trade-offs 
cryptocurrencies and digital wallets in-
troduce for consumers.2

From a business perspective, schol-
ars have compared the transforma-

of networking is more consequential: 
Bitcoin was the first digital platform 
to be bootstrapped in a decentralized 
fashion without resorting to invest-
ments by an intermediary or planner. 
As early adopters and investors experi-
mented with the cryptocurrency in the 
hope that the network would increase 
in users, securityb and value, the un-
derlying token appreciated, generat-
ing the positive feedback loop needed 
to attract subsequent batches of users. 
This organic diffusion process uses 
high-powered incentives similar to the 
venture capital model to reward early 
adopters for taking risks and dedicat-
ing their time, effort, and capital to a 
new platform. The same incentive sys-
tem is now used by startups to raise 
capital and lower switching costs for 
the user base and developer commu-
nity of entrenched digital incumbents. 
This allows them to compete in a con-
text where network effects are strongly 
in favor of established players.

Whereas the reduction in the cost 
of verification is what allows Bitcoin to 
settle transactions without an interme-
diary, the reduction in the cost of net-
working is what allowed its ecosystem 
to scale in the first place: Within eight 
years, the digital, scarce token native to 
Bitcoin went from having no value to a 
total market capitalization of $180B,c 
and is considered by investors to be 
part of a new asset class and a novel 
type of store of value.

Beyond the idiosyncratic market 
design choices behind Bitcoin, the 
ability to track transaction attributes, 
settle trades, and enforce contracts 
across a wide variety of digital assets 
is what makes blockchain technology 
a general-purpose technology. Entries 
on a distributed ledger can represent 
ownership in currency, digital content, 
intellectual property, equity, informa-
tion, contracts, financial and physical 
assets. As a result, the scaling model 
pioneered by Bitcoin has been adopted 

b In a proof-of-work blockchain, the security of 
the public ledger depends on the amount of 
computing power that is dedicated to verifying 
and extending the log of transactions (that is, 
dedicated to “mining”).

c The market capitalization is calculated as the 
number of tokens (approximately 16.8M bitcoin) 
times the value of each token (the Bitcoin to 
USD exchange rate was $10,633 in January 2018;  
https://coinmarketcap.com/ - accessed 01-22-2018).

by open source projects and startups 
interested in creating platforms for the 
exchange of other types of scarce, digi-
tal goods. For example, Ethereum used 
its own token, Ether, to bootstrap a de-
centralized marketplace for computing 
power and applications, Filecoin for 
data storage, BAT for digital advertis-
ing, and Blockstack for digital identity.

The new types of networks that can 
be created using the technology chal-
lenge the business models of incum-
bent digital platforms and financial 
institutions, and open opportunities 
for novel approaches to the exchange 
of digital assets, data ownership and 
monetization, information licensing, 
and privacy. Whereas the utopian 
view has argued that blockchain has 
the potential to transform every digi-
tal service by removing the need for 
intermediaries, we argue it is more 
likely to change the nature of inter-
mediation by reducing the market 
power of intermediaries, and by pro-
gressively redefining how they add 
value to transactions.d This transfor-
mation will unfold slowly because 
even in sectors that are well-suited 
for a more decentralized exchange of 
digital assets such as finance, there 
are currently substantial legal and 
regulatory frictions to adoption. 
While blockchain allows for the cost-
less verification of state when all rele-
vant information is born digital, most 
markets also rely on external informa-
tion—including information about 
identity—to ensure safe and compli-
ant exchanges. As a result, ‘last mile’ 
frictions limit the conditions under 
which blockchain-based networks can 
replace existing infrastructure, as 
complementary innovations are need-
ed to ensure that the shared data man-
aged through a consensus protocol is 
kept in sync with critical offline infor-
mation and events.

After reviewing pertinent literature, 
we discuss the effects of the reduction 
in the cost of verification, later focus-
ing on the reduction in the cost of boot-
strapping and operating a network.

d While financial intermediaries are charging 
high fees for cross-border payments, this reve-
nue stream will disappear if blockchain-based 
payment networks commodify the transfer of 
value. This does not mean that intermediaries 
will not be able to provide added value services 
on top of basic payments.

https://dl.acm.org/doi/10.1145/3359552
https://coinmarketcap.com/
https://dl.acm.org/doi/10.1145/3359552
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tion brought about by blockchain to 
the introduction of communication 
protocols such as TCP/IP,24,25 and have 
explored applications to digital plat-
forms beyond finance and implica-
tions for the boundaries of the firm.10,11

Cost of Verification
Markets facilitate the voluntary ex-
change of goods and services between 
buyers and sellers. For an exchange 
to be executed, key attributes of a 
transaction need to be verified by the 
parties involved. When an exchange 
takes place in person the buyer can 
usually directly assess the quality of 
the goods, and the seller can verify the 
authenticity of the cash. The only in-
termediary involved in this scenario is 
the central bank issuing and backing 
the fiat currency used in the exchange. 
When a transaction is performed on-
line instead, one or more financial 
intermediaries broker it by verifying, 
for example, that the buyer has suffi-
cient funds. Intermediaries add value 
to marketplaces by reducing informa-
tion asymmetry and the risk of moral 
hazard through third-party verifica-
tion. This often involves imposing 
additional disclosures, monitoring 
participants, maintaining trustwor-
thy reputation systems, and enforc-
ing contractual clauses. As markets 
scale in size and geographic reach, 
verification services become more 
valuable, as most parties do not have 
preexisting relationships, but rely on 
intermediaries to ensure the safety of 
transactions and enforce contracts. 
In the extreme case where verification 
costs are prohibitively high, markets 
unravel, and beneficial trades do not 
take place.e

In exchange for their services, inter-
mediaries typically charge a fee. This is 
one of the costs buyers and sellers in-
cur when they cannot efficiently verify 
all the relevant transaction attributes 
by themselves. Additional costs may 
stem from the intermediary having ac-
cess to transaction data (a privacy risk) 
and being able to select which transac-
tions to execute (a censorship risk).

e Over distance, intermediaries are key for veri-
fying the quality of products or services, and 
reputation of buyers and sellers. High verifica-
tion costs reduce market thickness39 and pre-
vent beneficial exchanges from taking place.

These costs are exacerbated when 
intermediaries gain market power, 
often as a result of the informational 
advantage they develop over transact-
ing parties through their intermedia-
tion services.44 Transacting through 
an intermediary always involves some 
degree of disclosure to a third party, 
and increases the chance that the in-
formation will be later reused outside 
of the original contractual arrange-
ment. Moreover, as an increasingly 
large share of economic and social 
activity is digitized, keeping data se-
cure has become more problematic 
and information leakage more preva-
lent. Classic examples are the theft of 
social security numbers (for example, 
Equifax hack) and credit card data (for 
example, Target’s data breach), or the 
licensing of customer data to advertis-
ers. Blockchain technology can pre-
vent information leakage by allowing 
market participants to verify transac-
tion attributes and enforce contracts 
without exposing the underlying in-
formation to a third party.f This allows 
an agent to verify that some piece of 
information is true (for example, good 
credit standing), without full access 
to all background information (for ex-
ample, past transaction records): that 
is, the technology allows for the veri-
fication of transaction attributes in a 
privacy-preserving way.

Digitization has pushed verifica-
tion costs for many types of transac-
tions close to zero. When the relevant 
information is digital, blockchain 
technology contributes to this pro-
cess by allowing for costless verifica-
tion.g Of course, at the interface be-
tween an offline record and its digital 
representation blockchain applica-
tions still face substantial frictions 
and “last mile” costs.45 This explains 
why, despite claims by technology en-
thusiasts about the value of using the 
technology across a variety of appli-
cations including supply chain moni-
toring and digital identity, use cases 
outside of cryptocurrency and fintech 

f This is achieved by combining a distributed 
ledger with zero-knowledge cryptography. 
Examples include cryptocurrencies such as 
Zcash and Zcoin.

g In practice, verification costs will never be ex-
actly zero. What we mean by ‘costless’ is low 
enough to be irrelevant from an economic per-
spective relative to the value of the transaction.
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the underlying 
information to a 
third party. 
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market participant. Trust in the inter-
mediary is replaced with trust in the 
underlying code and consensus rules.h 
These rules define how a distributed 
network reaches agreement, at regular 
intervals, about the true state of the 
shared data it needs to maintain to op-
erate a well-functioning marketplace. 
At a minimum, such shared data can 
represent past transactions and out-
standing balances in an underling, 
cryptographic token (that is, it could 
be a snapshot of the ownership rights 
in the token). In more complex appli-
cations, the shared data can also cover 
the rules and data required to perform 
a specific operation (such as, to run 
an application, verify that a contract 
clause is enforced). These operations, 
often referred to as “smart contracts,”i 
can be automated in response to new 
events, adding flexibility to the veri-
fication process. For example, on a 
shared ledger used to exchange finan-
cial assets, transacting institutions 
can agree, ex-ante, on the rules for 
the settlement and reconciliation of 
trades, as well as on the process they 
will follow and third parties they will 
involve if an audit is necessary or a dis-
pute emerges. Trusted, independent 
oracles can also be incorporated to 
ensure that such financial contracts 
can respond to market conditions and 
new information (for example, to im-
plement a weather derivative, a smart 
contract can aggregate information 
across multiple weather sources to as-
sess if a payout has to be made).

As with past improvements in 
information and communication 
technology, reductions in the cost of 
verification enable the unbundling of 
services that were previously offered 
together, as part of the steps tradi-
tionally performed by an interme-
diary can now be delivered through 
a shared ledger. This allows these 
steps to be collectively owned and 

h If we think of the audit capability of a third 
party as surveillance or monitoring, blockchain 
technology can deliver “sousveillance,”30 that is, 
an audit embedded within the marketplace.

i N. Szabo (1996): “The basic idea of smart 
contracts is that many kinds of contractual 
clauses [...] can be embedded in the hard-
ware and software we deal with, in such a 
way as to make breach of contract expensive 
[...] for the breacher. A canonical real-life ex-
ample [...] is the humble vending machine;” 
https://bit.ly/2WZqMxM

(settings where key information and 
assets are digital) have been extreme-
ly limited. The link between online 
“on-chain” activities recorded on a 
blockchain and offline “off-chain” 
events introduces major challenges 
which cannot be overcome without 
complementary innovations. For ex-
ample, a blockchain such as the Bit-
coin one can be used to cheaply verify 
ownership and exchanges of its na-
tive digital asset. While this techni-
cally allows anyone to send and re-
ceive bitcoin globally without using 
an intermediary or being censored, 
actually being able to spend bitcoin 
to buy goods and services offline still 
runs into last mile issues. Hence, 
while Bitcoin has been used in coun-
tries with hyperinflation to escape 
devaluation, its use as a medium of 
exchange has been limited, and gov-
ernments can still shape how these 
digital assets are used at the interface 
between the digital and the physical 
world. Similarly, information about 
identity is often used to increase the 
safety of market interactions, reduce 
fraud and build robust digital reputa-
tion systems, but being able to link 
an online action and digital record 
on a blockchain to an offline individ-
ual or entity is as expensive with 
blockchain technology as it would be 
with more traditional solutions. This 
drastically limits the benefits block-
chain and smart contracts can bring 
in the absence of complementary 
technology (for example, a tamper-
proof GPS sensor), firms and institu-
tions that can help ensure the digital 
records are accurate to begin with.

The high-level process of verifica-
tion is described in the accompany-
ing figure: When a digital transac-
tion is born, it immediately inherits 
some basic attributes, such as the 
fact that it exists and when it was 
created, information about the sell-
er and buyer involved and their cre-
dentials, and so on. We typically rely 
on these attributes to perform sub-
sequent actions (for example, once 
funds are transferred, the seller may 
ship the goods). Some of these ac-
tions take place every time (for ex-
ample, settlement), whereas others 
are only triggered by specific events. 
A particularly interesting subset of 
future events are those that require 
additional verification. For example, 
a problem may emerge, and trans-
action attributes may need to be 
checked through an audit. The audit 
could range from actual auditors ac-
cessing the relevant logs or request-
ing additional information from 
market participants, to the execu-
tion of an internal process designed 
to handle the exception. Such pro-
cesses tend to be costly, may involve 
labor and capital, and may require a 
third party to mediate between buyer 
and seller. The ideal outcome of an 
audit is the resolution of the prob-
lem that emerged.

Blockchain technology affects this 
flow by allowing, when a problem 
emerges, for the costless verification 
of digital information. Any transac-
tion attribute or information on the 
agents and goods involved that is 
stored on a distributed ledger can be 
cheaply verified, in real time, by any 

Costly verification through an intermediary (audit) versus costless digital verification on a 
blockchain.
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managed by a broader group of eco-
system stakeholders, in a way that 
resembles collaboration among com-
petitors and complementors in stan-
dard setting organizations,6 or open 
source foundations. The effects of 
this change have been mostly felt on 
the intensive margin of production 
(that is, on improving the efficiency 
of pre-existing use cases), as firms are 
experimenting with moving different 
types of transactions to blockchain-
based systems to reduce settlement 
and reconciliation costs.

As a consequence, applications re-
sulting from the reduction in the cost 
of verification have been complemen-
tary to incumbents, as they improve 
existing value-chains by lowering the 
cost of tracking ownership and trad-
ing digital assets without reducing the 
market power of existing players. Fur-
thermore, even when verification can 
be automated, intermediaries can still 
add value and retain influence over a 
market by supporting regulatory com-
pliance, market safety, handling edge 
cases (for example, a chargeback), and 
certifying information that requires 
labor-intensive, offline forms of veri-
fication. This explains why implemen-
tations of the technology targeted at 
identity and provenance have been 
slower to diffuse: While the verifica-
tion of digital attributes can be cheap-
ly implemented on a blockchain, the 
initial mapping between offline events 
and their digital representations is 
still costly to bootstrap and maintain. 
Therefore, as digital verification costs 
fall, key complements to it that can 
improve the process of offline verifica-
tion become more valuable.

On one extreme, blockchain tech-
nology can be used to settle trades of 
digital assets that are completely self-
contained within a shared ledger (for 
example, bitcoin, ether). The consen-
sus rules established in the code define 
how tokens are created and earned, 
and how the network reaches agree-
ment about the true state of owner-
ship over time.j The cost of verifying 
transaction attributes and enforcing 

j Changes in the rules are implemented 
through a voting process similar to standard 
setting negotiations, and disagreements can 
lead to part of the network forking to launch a 
platform with different market design.

simple contracts for self-contained 
tokens can be extremely low. This is 
what allows for value to be transferred 
through Bitcoin across the globe at a 
relatively low cost. Of course, com-
pliance with Know-Your-Customer 
(KYC) and Anti-Money-Laundering 
(AML) rules may require individuals 
and firms to sustain additional costs 
to credibly link their offline identities 
with their Bitcoin ones, but as long 
as individuals agree that the underly-
ing token has value, using it as a store 
of value and medium of exchange is 
possible. Similarly, a native crypto to-
ken can be used to facilitate low-cost 
transactions of digital resources, such 
as computation (Ethereum), data stor-
age (Filecoin), bandwidth, or to track 
equity ownership, electricity, as in all 
these cases verifying the exchange of a 
resource is not too expensive.

On the other extreme, when entries 
on a shared ledger are digital representa-
tions of offline identities, products, ser-
vices and related transactions, costless 
verification is difficult to achieve. Under 
this scenario, the reduction in the cost 
of verification is contingent on main-
taining a credible link between offline 
events and their online record. This 
link is cheaper to establish when of-
fline attributes are easy to capture and 
expensive to alter or fake: for example, 
in the case of diamonds, Everledger 
uses the physical properties of the 
gems as a digital fingerprint that can 
be recorded and tracked on a block-
chain as the products move through the 
supply chain. In many cases, maintain-
ing a robust link between offline events 
and distributed ledgers is very expen-
sive, and may require not only one or 
more trusted intermediaries, but also 
multiple parties to agree on rules for se-
cure data entry and sharing. In the ab-
sence of a strong link between offline 
and online events, asymmetric informa-
tion and moral hazard will be an issue 
in these markets. In this context, Inter-
net of Things devices are instrumental 
in expanding the set of contracts that 
can be automated on a blockchain be-
cause they can be used to record real-
world information (for example, 
through sensors and GPS devices) and 
substitute labor-intensive verification 
with inexpensive hardware.

Overall, when last-mile problems 
are limited—such as in the case of 
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proposed evolution of a digital asset, 
but also to define rules for state tran-
sitions that are particularly valuable 
from a network perspective. These 
transitions can be used to reward par-
ticipants for performing actions that 
accelerate adoption and increase net-
work value and welfare. For example, 
the protocol can be used to incentiv-
ize behavior that builds network ef-
fects (both in terms of users and ap-
plications), ensures the network has 
sufficient resources available to meet 
demand, guarantees its security, en-
courages savings or spending behavior. 
Taken together, these incentives lower 
the cost of networking, that is, the cost 
of bootstrapping, operating and scal-
ing an economic network.

Whereas a reduction in the cost of 
verification is a necessary condition 
for a reduction in the cost of network-
ing—as it is the ability to verify state 
that allows economic agents to es-
tablish property rights on network re-
sources and define incentives without 
relying on an intermediary—it is not a 
sufficient condition, as implementa-
tions can take advantage of the former 
without the latter. In particular, when 
a blockchain protocol is permissioned 
and the entities developing it retain 
control over which participants can 
update and verify state, transitions are 
not fully defined by code and self-con-
tained within the system, but rather 
can be influenced by external parties 
through fiat. As a result, from an eco-
nomics perspective, the network will 
operate under constraints similar to 
those of traditional digital platforms, 
and participants will have to trust the 
platform architect and core constitu-
ents through formal and relational 
contracts or past reputation, among 
others. This tension is an important 
one from an organizational perspec-
tive, as it determines if a blockchain 
network can be considered a novel or-
ganizational form versus not.12

A permissionless blockchain pro-
tocol, instead, allows a network of 
economic agents to agree, at regular 
intervals, on the true state of a set of 
shared data without assigning residual 
rights to trusted entities. The flexibility 
in terms of what such shared data rep-
resents across settings (for example, 
currency, intellectual property, and 
financial assets, contracts) makes it 

digital assets that are native to a block-
chain—decentralized verification goes 
from being costly, scarce and prone 
to abuse, to being cheap and reliable. 
While this process is unlikely to be 
more efficient on a per transaction ba-
sis than verification through a central-
ized intermediary, the ability to per-
form it without trusting a third party 
can lead to savings from increased 
competition, the absence of central-
ized control, higher privacy and cen-
sorship resistance, and the removal 
of single points of failure. At the same 
time, when frictions between offline 
events and their digital representa-
tions are high, these improvements are 
unlikely to materialize in the absence 
of complementary innovations, as in-
termediaries will still be able to control 
key existing complements to digital 
verification and use them to exert influ-
ence over market participants.

As decentralized verification be-
comes cheaper, the scale at which it 
can be efficiently implemented also 
drops: On a distributed ledger, data 
integrity can be built, from the ground 
up, from the most basic transaction 
attributes to more complex ones. For 
example, a robust reputation system 
can be constructed from the full set 
of interactions an economic agent has 
throughout the economy, increasing 
transparency and accountability. Ex-
pensive audits and due diligence can 
be progressively substituted with more 
frequent and fine-grained verification 
to ensure market safety and reduce the 
risk of moral hazard. A lower cost of 
verification also makes it easier to de-
fine property rights at a more granular 
scale than before, as any digital asset 
(or small fraction of it) can be traded, 
exchanged or tracked at a low cost on a 
shared ledger.k

Cost of Networking
The ability to verify state (for example, 
the current ownership status of a digi-
tal asset) at a lower cost because of the 
reduction in the cost of verification al-
lows a blockchain protocol to not only 
reach consensus about the history and 

k In the same way that Twitter, because of the 
140 character limitation, enabled new forms 
of communication, costless verification has 
the potential to change how information mar-
kets, digital property rights, and payments are 
designed.
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a general-purpose technology (GPT). 
GPTs typically take a long time to dif-
fuse through the economy, but also 
lead to productivity gains across multi-
ple industries.9,22,33,37 Classic examples 
of GPTs include the steam engine, elec-
tricity, and the Internet. While permis-
sionless networks have been compared 
to communication protocols such as 
TCP/IP—which focus on how informa-
tion is packetized and routed through 
the Internet—they fundamentally dif-
fer from them because they allow for 
the secure provision, transfer and en-
forcement of property rights. On these 
networks, trust in a platform operator 
is replaced by trust in the underlying in-
centives, code and consensus rules. As 
a result, market power of the interme-
diary, privacy risk and censorship risk 
can be potentially reduced. The switch 
in the trust model also introduces new 
challenges, as bugs in the code can 
leave participants with little recourse 
beyond trying to coordinate a hard fork 
of the network. Issues with this new 
trust model have resulted from benign 
programming mistakes (such as the 
Parity wallet library removal),l from 
deliberate attempts at defrauding in-
vestors by promising high returns in 
the absence of any real technical or 
business plan (as in the case of fraudu-
lent initial coin offerings), as well as 
from malicious attacks (such as the 
DAO hack, which led to a split of the 
Ethereum network).m Similarly, while 
blockchain protocols can be designed 
to offer participants a high degree of 
privacy (for example, Zk-Stark, Zcash, 
and Monero), and users can take ad-
ditional measures to protect their 
privacy from the public (for example, 
using a mixing service, not reusing ad-
dresses), many shared ledgers such as 
the Bitcoin one are pseudonymous,n 
allowing third parties to deanonymize 
transactions and trace movements of 
funds over time.

Whereas permissioned networks 
only take advantage of the reduction in 
the cost of verification, permissionless 
ones build on the first by adding a self-

l See https://bit.ly/2Uyv3GP
m See https://www.bloomberg.com/features/ 

2017-the-ether-thief/
n Like a writer writing under a pseudonym, if 

a Bitcoin user is ever tied to an address, the 
history of her transactions can be read on 
the blockchain.

contained incentives system to also 
deliver a decrease in the cost of launch-
ing and operating a network without 
relying on trusted intermediaries. The 
effects of this reduction in the cost of 
networking are felt both in the phase 
of bootstrapping a new platform, and 
in the phase of operating it. In the first 
phase, a native token can be used to 
create incentives for adoption and to 
fund the development and scaling of 
the network, for example by having 
mining rewards or by raising capital 
through an initial coin offering (ICO). 
In the second phase, market design is 
used to define the conditions under 
which participants can earn tokens for 
contributing resources to the network 
(for example, computing power in the 
case of Bitcoin, computing and appli-
cations for Ether, disk storage for File-
coin, digital content and advertising in 
the case of the Basic Attention Token).

Since during the bootstrapping 
phase the actual utility the network 
can deliver to users is limited by its 
small scale, and network effects work 
against users switching from existing 
alternatives, this phase relies on con-
tributions from early adopters and 
investors with positive expectations 
about the future value of the network. 
As in open source projects,47,48 early 
adopters may be willing to dedicate 
time and effort to support a new net-
work because they want to create a via-
ble alternative to established products 
or they derive utility from advancing 
the underlying technology (for exam-
ple, consumption utility from early ac-
cess, from working on novel, complex 
problems, job-market signaling). In-
vestors, instead, as in traditional equi-
ty finance, may come in early because 
they expect the token to appreciate in 
value and reward their investment.14 
Of course, individuals can be simulta-
neously early adopters and investors 
and contribute both effort and capital 
to these projects. For this set of indi-
viduals, the presence of a native token 
serves a similar purpose to founder 
and early-employee equity in startups 
and allows these projects to attract tal-
ent without raising investment from 
traditional angels and venture capital-
ists. Since it only takes a few lines of 
code to write a smart contract for an 
initial coin offering, open source co-
debases can be forked or imitated at a 

low cost, and regulation is still uncer-
tain in many jurisdictions, the ability 
to profit from launching a new crypto-
currency or manipulating its trading 
have attracted a large number of bad 
actors and speculators.

While lower entry barriers and the 
presence of technical investors could 
in theory open up capital for new types 
of entrepreneurs and ideas that tradi-
tional investors may be more reluctant 
to fund, the absence of regulation and 
oversight also allows fraudulent proj-
ects to blend in with legitimate ones 
and raise capital from unsophisticated 
investors. Combined with the fact that 
the value of a new token is, in most cas-
es, purely based on expectations about 
its future success, and that such expec-
tations, because of technical, regulatory 
and market uncertainty can rapidly turn 
when new information emerges or sen-
timent evolves, the valuations of crypto-
currencies have been extremely volatile. 
The resulting turmoil and speculative 
bubbles have made it more difficult for 
investors to identify high-quality proj-
ects and teams, have attracted specula-
tors and low-quality entrants and have 
shifted attention from technology R&D 
to short-term speculative returns.

If in the first phase of growth of a 
blockchain-based network, incentives 
are predominantly targeted at acceler-
ating adoption, in the second phase the 
key challenges from a market design 
perspective are ensuring that the incen-
tives continue to support contributions 
of key resources to the ecosystem and 
avoiding a tragedy of the commons. By 
design, the protocol layer is a shared 
resource among all network partici-
pants, and everyone benefits from in-
vestments in it—from better security 
to removing technical constraints on 
throughput, latency or liveness. At 
the same time, because of the public 
good nature of these improvements, 
in the absence of proper governance, 
a blockchain-based network may fail 
to invest enough resources on them. 
From a valuation perspective, whereas 
the bootstrapping phase of a new token 
is associated with extremely high vola-
tility, as uncertainty around a network’s 
potential is resolved, it should enter a 
more stable growth trajectory.o

o This is similar to the process of early-stage 
startup funding and growth.

https://bit.ly/2Uyv3GP
https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/
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and exchange digital assets without 
the need for traditional intermediar-
ies such as banks, significant work is 
needed before users can reap the full 
benefits of this change—such as great-
er privacy, higher portability between 
service providers, and increased com-
petition—as many implementations 
lack the convenience and usability of 
the centralized solutions consumers 
are used to. For example, while Bitcoin 
users can store and protect their own 
private keys, a large number of them 
rely on third-party wallets to do so, es-
sentially trusting these entities with 
their funds as in traditional systems.

Conclusion
The article focuses on two key costs 
affected by blockchain technology: 
the cost of verification, and the cost 
of networking. For markets to thrive, 
participants must be able to efficiently 
verify and audit transaction attributes, 
including, for example, the credentials 
and reputation of the parties involved, 
characteristics of assets exchanged, 
and external events and information 
that have implications for contractual 
arrangements.

Outside the boundaries of an or-
ganization, this is typically achieved 
by relying on trusted intermediaries. 
In exchange for their services, inter-
mediaries charge fees and capitalize 
on their ability to observe all transac-
tions taking place within their market-
places. This informational advantage, 
combined with network effects and 
economies of scale, gives them sub-
stantial market power and control over 
market participants. Consequences of 
market power include higher prices, 
user lock-in and high switching costs, 
the presence of single points of failure, 
censorship risk, barriers to innovation, 
and reduced privacy.

Blockchain technology, by reduc-
ing the costs of running decentralized 
networks of exchange, allows for the 
creation of ecosystems where the ben-
efits from network effects and shared 
digital infrastructure do not come at 
the cost of increased market power and 
data access by platform operators. This 
reduction in the cost of networking has 
profound consequences for market 
structure, as it allows open source proj-
ects and startups to directly compete 
with entrenched incumbents through 

Overall, relative to blockchain im-
plementations that only take advan-
tage of the reduction in the cost of veri-
fication (for example, permissioned 
networks), those that also benefit from 
the reduction in the cost of networking 
(for example, permissionless ones) are 
different on at least four dimensions. 
First, they are less likely to leave market 
power in the hands of their founders or 
early participants. This limits the abil-
ity of any party to unilaterally censor 
transactions or exclude participants 
from the network, and removes single 
points of failure, as the network does 
not depend on the availability of one or 
a few key players to operate.p

Second, they are less reliant on off-
chain governance, relational contracts 
and laws to support their operations, as 
by design, to take advantage of the low-
er cost of networking they need to em-
bed as much as possible of the incen-
tives and governance rules required for 
their operations into the protocol. Of 
course, permissionless networks still 
need off-chain governance and coordi-
nation between their key stakeholders 
to execute a hard fork, implement con-
troversial changes, or respond to an 
attack, but relative to more closed net-
works that rely on trusted intermediar-
ies they leave less discretion to any sin-
gle party, and end up codifying more of 
their rules into their codebases.

Third, they involve a lower privacy 
risk, as no single entity (or group of en-
tities) has preferential access to or vis-
ibility over the information generated 
by the network.q In traditional plat-
forms, the privacy risk is particularly 
salient in markets where consumers 
pay for services by allowing interme-
diaries to access and monetize their 
data, an issue that is increasingly rel-
evant because of the role such data can 
play in the training of AI algorithms.1 
Whereas the trend of consumers re-
linquishing private information in ex-

p The censorship risk is visible when an in-
termediary revokes or degrades access to a 
participant, and when it loses control over 
the marketplace because of an attack or 
technical failure. All three cases have been 
observed in online platforms, which are 
concentrated markets because of network 
effects and economies of scale in data collec-
tion, storage, and processing.

q Privacy may still be a concern if a public ledger 
exposes information about participants and 
their transactions.2

change for free or subsidized digital 
services is unlikely to change because 
of blockchain technology—as small 
incentives and frictions can be used by 
digital platforms to persuade even pri-
vacy sensitive individuals to relinquish 
sensitive information2—startups in 
this space are experimenting with ap-
proaches that give users greater con-
trol over how, when and why their pri-
vate data is accessed and monetized.

Fourth, blockchain implementa-
tions that take advantage of the lower 
cost of networking inevitably induce 
architectural changes in how firms cre-
ate and capture value within markets. 
Architectural innovations, by destroy-
ing the usefulness of the assets and ac-
cumulated knowledge of incumbents,23 
open opportunities for entrants to re-
shape the dimensions firms compete 
on, and experiment with new business 
models. In particular, by allowing for 
the separation of some of the benefits 
of network effects from the costs of 
market power—since even in the ab-
sence of a platform architect partici-
pants in a blockchain network are able 
to rely on shared infrastructure—the 
technology offers new ways to reward 
contributors, allocate rents in a mar-
ketplace, and build applications on 
top of shared data while preserving the 
privacy of the underlying information. 
In traditional digital marketplaces, 
platform operators have wide visibility 
over all interactions that take place on 
their networks, and users are unable to 
directly custody or control the digital 
assets they use or create while transact-
ing on them. This is a direct result of 
the inability of these systems to gener-
ate and trade scarce, digital assets and 
establish digital property rights with-
out also assigning control over them 
to a third-party (usually the platform 
operator). Before Bitcoin, for example, 
a central clearing house of some type 
was necessary to prevent the copying 
and double spending of digital cash. 
Bitcoin solves this problem by allowing 
users to self-custody digital tokens and 
exchange them without relinquishing 
control over them to a third-party. This 
reduces switching costs between digital 
wallets and offers users a higher degree 
of privacy from service providers. Inter-
estingly, while blockchain technology 
provides individuals and organizations 
with the opportunity to self-custody 
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the design of platforms where the 
rents from direct and indirect network 
effects are shared more widely among 
participants (for example, users, appli-
cation developers, and investors), and 
no single entity has full control over 
the underlying digital assets.

Because of the absence of a central 
clearing house or market maker, these 
novel networks, when permissionless, 
exhibit low barriers to entry and in-
novation. As long as applications are 
compatible with the rules of the pro-
tocol, they can be deployed without 
permission from other participants, 
and compete for market share. This 
reduces the expropriation risk appli-
cation developers face when building 
on top of traditional digital platforms. 
Furthermore, since contributors can 
participate in governance in a way that 
is often proportional to their stake in 
the system, these networks can demo-
cratically evolve over time to accommo-
date changes that are beneficial to the 
majority of their constituents.r

From a talent acquisition perspec-
tive, unlike open source projects, the 
digital platforms built on top of cryp-
to tokens do not have to rely solely on 
pro-social contributions of time and 
labor and job market signaling27 to 
support their development. Using a 
native token, they can directly incen-
tivize early contributions by develop-
ers, investors and early adopters. This 
novel source of funding combines 
crowdfunding with the simultane-
ous crowdsourcing of key resources 
needed to scale a platform and attract 
both developer and user activity on to 
it. Because of the reduction in the cost 
of verification, this model also allows 
for equity in the system to be defined 
at a much narrower scale, and to be 
allocated to a wider population of 
participants in response to verifiable 
contributions of resources.

Similarly, by allowing for the defini-
tion of scarce digital property rights, 
native tokens allow decentralized net-
works of exchange to coordinate ac-
tivity around shared objectives and 

r Minorities that disagree with a change face 
reduced lock-in because they can fork and 
launch a backward-compatible platform. At 
the same time, since forks introduce uncer-
tainty and may decrease overall value, off-
chain governance is needed to support funda-
mental changes in market design.

transact digital resources without 
assigning market power to a market 
maker. Through blockchain-based net-
works, individuals and organizations 
can source ideas, information, capital 
and labor, and enforce contracts for dig-
ital assets with substantially reduced 
frictions. These changes allow for the 
design of novel types of networks that 
blend features of competitive markets 
with the more nuanced forms of gover-
nance used within vertically integrated 
firms and online platforms.s

Whereas intermediaries will still be 
able to add substantial value to trans-
actions by focusing on tasks that are 
complementary to digital verification 
(for example, secure recording of of-
fline events, curation, and certification 
of identity and services), they are likely 
to face increased competition because 
of the ability to establish and exchange 
digital assets on decentralized open 
networks without them.t This chal-
lenges some of their revenue sources 
and reduces their influence over mar-
kets, opening up opportunities for new 
business models and novel approaches 
to data privacy, ownership and por-
tability, as well as to the regulation of 
networks that should be considered 
public utilities. By reducing barriers 
to entry within sectors that are cur-
rently heavily concentrated because of 
network effects and control over data, 
the technology may enable a new wave 
of innovation in digital services, and 
greater consumer choice.

For these changes to materialize, 
however, substantial hurdles will have 
to be overcome. First, the technology 
will need to reach a level of performance 
(for example, throughput, latency, and 
cost per transaction) comparable to tra-
ditional networks. While decentraliza-
tion inevitably comes at a cost, the gains 
from greater competition, openness, 
privacy and censorship resistance will 
have to outweigh the lower efficiency 
of blockchain networks to make adop-
tion worthwhile. Hybrid networks that 

s For example, the hedge fund Numerai uses 
smart contracts to reward contributions to its 
financial prediction model by a distributed 
community of data scientists.

t Beyond financial applications, early applica-
tions that may be affected by these changes 
are those that involve the exchange of digital 
content, media, and new types of digital assets 
and goods.

These changes 
allow for the design 
of novel types of 
networks that 
blend features 
of competitive 
markets with 
the more 
nuanced forms of 
governance used 
within vertical 
integrated firms and 
online platforms. 
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embrace key features of permissionless 
systems—such as low barriers to entry 
and a competitive market for resources 
and applications—while initially bor-
rowing trust from existing institutions 
to overcome scaling problems, may also 
provide a viable transition path when 
performance is an obstacle to adoption.

Second, regulatory frameworks will 
have to evolve to reduce uncertainty 
for founders and network participants, 
and to provide stronger protections for 
investors and early adopters. Because 
of their similarities but also their dif-
ferences with equity,14 crypto tokens 
lend themselves to both legitimate fun-
draising activity by high quality entre-
preneurs, as well as fragrant abuse by 
fraudsters.13 As in other technological 
bubbles, this constitutes a challenge for 
the space, as investors have a difficult 
time separating projects worth support-
ing from the much larger number of 
low-quality imitators, and entry by spec-
ulators has brought extreme price vola-
tility and additional risks to the market.

Third, and possibly most impor-
tant, blockchain technology, like other 
technological advancements, is not a 
panacea for every possible technical 
and market challenge a digital ecosys-
tem may face. As discussed through-
out this article, the technology can add 
substantial value under fairly narrow 
conditions: 1) when last mile prob-
lems are not severe and digital verifi-
cation can be implemented in a novel 
or more fine-grained way because of a 
reduction in the cost of verifying state 
without assigning control to an inter-
mediary; 2) when the reduction in the 
cost of networking allows participants 
to allocate rents from a digital plat-
form more efficiently between users, 
developers, and investors; 3) when the 
combination of a reduction in both 
costs (verification and networking) al-
lows for the definition of new types of 
digital assets and property rights; 4) 
when there is a need for greater privacy 
and ability for users to control when 
and how their data is accessed and 
used. When none of these conditions 
are met instead, more centralized so-
lutions that rely on traditional inter-
mediaries and relational contracts are 
unlikely to be replaced, as the benefits 
of transitioning to a blockchain-based 
system are unlikely to counterbalance 
the costs introduced by a decentralized 

infrastructure and governance, and the 
replication of state across the network.
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released.1 Software fixes include add-
ing memory fences (that may retard 
speculation), placing secrets in sepa-
rate address spaces, selectively flush-
ing caches, and converting indirect 
branches into pseudo-returns. These 
changes can hurt performance and 
can rely on undocumented chip imple-
mentation features. Hardware fixes 
disable features or patch microcode 
of current chips—where possible—or 
await changes deployed in new chips.

I recommend the following paper as 
a much gentler introduction to Spectre 
than the original paper.3 It excellently 
reviews how speculative execution and 
caches can be exploited, presents spe-
cific exploits using speculative branches 
that are direct (Variant 1) and indirect 
(Variant 2), touches on other variants, 
and concludes discussing software and 
hardware options for mitigating Spectre.

In the long run, do we manage or 
eliminate Spectre? We can manage 
it by working to discover and patch 
variants as they arise, much as society 
manages crime. More boldly, I assert 
we should seek to eliminate Spectre 
by defining an Architecture 2.0 that 
can be refined into implementations 
with provable properties regarding 
information exfiltration, including via 
microarchitecture timing. While this 
is hard (or even not completely possi-
ble), it is important as society depends 
on public computer systems to store 
our private information. 
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I N F O R M AT I O N  S E C U R I T Y  I S  important, 
as much of life’s private information 
is now stored on shared comput-
ers accessible from anywhere in the 
world. Many attacks begin by exploit-
ing flaws in a system’s implementa-
tion (bugs) or specification. Most 
exploited flaws today are in software, 
as software presents a large attack 
surface. While much rarer, hardware 
flaws can cause even correct software 
to leak information and fixing can 
even require new hardware.

As the complexity of modern sys-
tems has grown, we have become de-
pendent on abstraction to manage it, 
and yet this gives rise to subtle classes 
of flaws when the assumptions that un-
derpin these abstractions are violated. 
Abstractions in the logical systems can 
be perfect: once matrix properties are 
proven, they apply to all arrays of num-
bers. Abstractions of the physical world 
are approximations or models. For ex-
ample, while light is neither a particle 
nor a wave, both are useful models. 

A useful abstraction in computer 
science is the instruction set architecture 
(ISA) that separates software and hard-
ware. Today, only a few commercially 
successful ISAs separate many mil-
lions of lines of software from scores of 
hardware implementations. Moreover, 
since IBM System/360 in 1964, these 
ISAs are specified as the timing-inde-
pendent functional behavior of “instruc-
tions” that are somewhat primitive (for 
example, branches, loads, and adds) 
and where each processing core logical-
ly executes instructions sequentially.

In 2018, Spectre—detailed in the pa-
per that follows—demonstrated that a 
computer the CS community believed 
to be correct—its implementation fol-
lows its ISA—could rapidly leak infor-
mation to a malicious adversary. The 
public revelation began with three Spec-
tre variants—including Meltdown—in 
January,2,3,4 expanded to a dozen by Oc-
tober,1 and has continued to grow since 
then. Spectre is possible because the 

ISA—like any abstraction of the physical 
world—is imperfect. In particular, the 
timing-independent ISA is implemented 
with a supposedly hidden microarchi-
tecture that is all about timing: its pur-
pose is to make a computer as fast as 
possible within cost constraints. 

Spectre shows that current ISAs—
call them Architecture 1.0—are inad-
equate to protect information. Spectre 
exploits two key micro-architecture 
techniques:

Instruction speculation. A proces-
sor core seeks to execute dozens of in-
structions concurrently by speculating 
past branches, committing ISA chang-
es if speculation is correct and rolling 
them back when speculation is wrong. 
Perversely, Spectre speculatively exe-
cutes instructions whose ISA changes it 
knows will be rolled back. Its subtle goal 
is to leave microarchitectural “bread-
crumbs” of a supposedly hidden secret.

Caching. Each processor core uses 
a hierarchy of caches to make memory 
accesses 100X faster than DRAM mem-
ory. Like a hash table, each cache keeps 
data in buckets called sets to aid look-
up. Caches are invisible to the ISA so 
their sets don’t need to be restored on 
incorrect speculation. Spectre exploits 
this to place, and later find, “bread-
crumbs” that reveal a secret. It thus 
uses the contents of a cache as a “side 
channel” to transmit a (secret) data 
value. Microarchitecture structures be-
yond caches have also been exploited.3

There has been some progress ad-
dressing Spectre since it was publicly 
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Abstract
Modern processors use branch prediction and speculative 
execution to maximize performance. For example, if the 
destination of a branch depends on a memory value that is 
in the process of being read, CPUs will try to guess the des-
tination and attempt to execute ahead. When the memory 
value finally arrives, the CPU either discards or commits 
the speculative computation. Speculative logic is unfaith-
ful in how it executes, can access the victim’s memory and 
registers, and can perform operations with measurable 
side effects.

Spectre attacks involve inducing a victim to speculatively 
perform operations that would not occur during correct 
program execution and which leak the victim’s confidential 
information via a side channel to the adversary. This paper 
describes practical attacks that combine methodology from 
side-channel attacks, fault attacks, and return-oriented pro-
gramming that can read arbitrary memory from the victim’s 
process. More broadly, the paper shows that speculative exe-
cution implementations violate the security assumptions 
underpinning numerous software security mechanisms, such 
as operating system process separation, containerization, 
just-in-time (JIT) compilation, and countermeasures to 
cache timing and side-channel attacks. These attacks repre-
sent a serious threat to actual systems because vulnerable 
speculative execution capabilities are found in microproces-
sors from Intel, AMD, and ARM that are used in billions of 
devices.

Although makeshift processor-specific countermeasures 
are possible in some cases, sound solutions will require fixes 
to processor designs as well as updates to instruction set 
architectures (ISAs) to give hardware architects and software 
developers a common understanding as to what computa-
tion state CPU implementations are (and are not) permitted 
to leak.

1. INTRODUCTION
Computations performed by physical devices often leave 
observable side effects beyond the computation’s nominal 
outputs. Side-channel attacks focus on exploiting these side 
effects to extract otherwise-unavailable secret information. 
Since their introduction in the late 90s,14 various physical 
effects such as power consumption have been leveraged to 
extract cryptographic keys as well as other secrets.13

External side-channel measurements can be used to 
extract secret information from complex devices such as 
PCs and mobile phones. However, because these devices 
often execute code from a potentially unknown origin, 
they face additional threats in the form of software-based 

The original version of this paper appeared in 
Proceedings of the 40th IEEE Symposium on Security and 
Privacy (May 2019).

attacks, which do not require external measurement equip-
ment. Although some attacks exploit software logic errors, 
other software attacks leverage hardware properties to  
infer sensitive information. Attacks of the latter type include 
microarchitectural attacks exploiting cache timing3, 6, 17 and 
branch prediction history.1 Software-based techniques 
have also been used to induce computation errors, such as 
fault attacks that alter physical memory11 or internal CPU 
values.25

Several microarchitectural design techniques have facili-
tated the increase in processor speed over the past decades. 
One such advancement is speculative execution, which is 
widely used to increase performance and involves having 
the CPU guess likely future execution directions and pre-
maturely execute instructions on these paths. More spe-
cifically, consider an example where the program’s control 
flow depends on an uncached value located in external 
physical memory. As this memory is much slower than the 
CPU, it often takes several hundred clock cycles before the 
value becomes known. Rather than wasting these cycles by 
idling, the CPU attempts to guess the direction of control 
flow, saves a checkpoint of its register state, and proceeds 
to speculatively execute the program on the guessed path. 
When the value eventually arrives from memory, the CPU 
checks the correctness of its initial guess. If the guess was 
wrong, the CPU discards the incorrect speculative execution 
by reverting the register state back to the stored checkpoint, 
resulting in performance comparable to idling. However, if 
the guess was correct, the speculative execution results are 
committed, yielding a significant performance gain as use-
ful work was accomplished during the delay.

From a security perspective, speculative execution involves 
executing a program in possibly incorrect ways. However, 
because CPUs are designed to maintain functional cor-
rectness by reverting the results of incorrect speculative 
executions to their prior states, these errors were previously 
assumed to be safe.

In this paper, we analyze the security implications of such 
incorrect speculative execution. We present a class of micro-
architectural attacks which we call Spectre attacks. At a high 
level, Spectre attacks trick the processor into speculatively 
executing instruction sequences that should not have been 
executed under correct program execution. As the effects 
of these instructions on the nominal CPU state are eventu-
ally reverted, we call them transient instructions. Transient 

http://dx.doi.org/10.1145/3399742


research highlights 

 

94    COMMUNICATIONS OF THE ACM   |   JULY 2020  |   VOL.  63  |   NO.  7

instructions can, however, have observable effects that con-
vey information. By influencing which transient instructions 
are speculatively executed, we are able to leak information 
from within the victim’s memory address space.

Spectre attacks can be applied to leak information across 
a broad range of security domains. In this paper, we describe 
several implementations and variations, such as attacks that 
extract information from other processes and from kernel 
memory, and that violate sandboxes enforced by program-
ming languages.

At a high level, Spectre attacks violate memory isolation 
boundaries by combining speculative execution with data 
exfiltration via microarchitectural covert channels. More 
specifically, to mount a Spectre attack, an attacker starts by 
locating or introducing a sequence of instructions within 
the process address space which, when executed, acts as a 
covert channel transmitter that leaks the victim’s memory 
or register contents. The attacker then tricks the CPU into 
speculatively and erroneously executing this instruction 
sequence, thereby leaking the victim’s information over the 
covert channel. Finally, the attacker retrieves the victim’s 
information over the covert channel. Although the changes 
to the nominal CPU state resulting from this erroneous 
speculative execution are eventually reverted, previously 
leaked information or changes to other microarchitectural 
states of the CPU, for example, cache contents, can survive 
nominal state reversion.

The above description of Spectre attacks is general and 
needs to be concretely instantiated with a way to induce erro-
neous speculative execution as well as with a microarchitec-
tural covert channel. Although many choices are possible 
for the covert channel component, the implementations 
described in this work use cache-based covert channels,24 
that is, Flush+Reload29 and Evict+Reload.5, 15

The underlying vulnerability arises from the composi-
tion of widely used microarchitectural features, rather than 
an implementation error in a single component. We have 
verified the vulnerability in all processors tested that imple-
ment speculative execution, such as multiple designs from 
Intel, AMD, and ARM. This contrasts with a related issue, 
Meltdown,16 which exploits a vulnerability specific to many 
Intel and a few ARM processors, which allows user-mode 
instructions to infer the contents of kernel memory.

Following the practice of responsible disclosure, we par-
ticipated in an embargo of the results. This process was 
unusually complex due to the large number of stakeholders 
and affected products.

2. BACKGROUND
In this section, we introduce some of the microarchitectural 
components of modern high-speed processors as well as 
several attack techniques.

2.1. Speculative execution
Often, the processor does not know the future instruction 
stream of a program. For example, this occurs when out-of-
order execution reaches a conditional branch instruction 
whose direction depends on preceding instructions whose 
execution is not completed yet. In such cases, the processor 

can preserve its current register state, make a prediction as 
to the path that the program will follow, and speculatively 
execute instructions along the path. If the prediction turns 
out to be correct, the results of the speculative execution are 
committed (i.e., saved), yielding a performance advantage 
over idling during the wait. Otherwise, when the processor 
determines that it followed the wrong path, it abandons the 
work it performed speculatively by reverting its register state 
and resuming along the correct path.

We refer to instructions which are performed erroneously 
(i.e., as the result of a misprediction), but may leave micro-
architectural traces, as transient instructions. Although the 
speculative execution maintains the architectural state of 
the program as if execution followed the correct path, micro-
architectural elements may be in a different (but valid) state 
than before the transient execution.

Speculative execution on modern CPUs can run several 
hundred instructions ahead.

2.2. Branch prediction
During speculative execution, the processor makes guesses 
as to the likely outcome of branch instructions. Better pre-
dictions improve performance by increasing the number of 
speculatively executed operations that can be successfully 
committed.

Branch predictors of modern processors can have multi-
ple prediction mechanisms for direct and indirect branches. 
Indirect branch instructions can jump to arbitrary target 
addresses computed at runtime, such as instructions that 
jump to an address in a register, memory location, or on 
the stack (e.g., “jmp eax” on x86). Return instructions are 
a type of indirect branch, and modern CPUs often include 
additional mechanisms for predicting return addresses.

For conditional branches, recording the target address 
is not necessary for predicting the outcome of the branch, 
because the destination is typically encoded in the instruction 
although the condition is determined at runtime. To improve 
predictions, the processor maintains a record of branch out-
comes, both for recent direct and indirect branches.

2.3. The memory hierarchy
To bridge the speed gap between the faster processor and the 
slower memory, processors use a hierarchy of successively 
smaller but faster caches. The caches divide the memory into 
fixed size chunks called lines, with typical line sizes being 
64 or 128 bytes. When the processor needs data from mem-
ory, it first checks if the L1 cache contains a copy. In the case 
of a cache hit, that is, the data is found in the cache, the data is 
retrieved from the L1 cache and used. Otherwise, in the case 
of a cache miss, the procedure is repeated to attempt to retrieve 
the data from the next cache levels, and finally the external 
memory. Once a read is completed, the data is typically stored 
in the cache (and a previously cached value is evicted to make 
room) in case it is needed again in the near future.

2.4. Microarchitectural side-channel attacks
The microarchitectural components discussed above 
improve the processor performance by predicting future 
program behavior. To that aim, they maintain state that 
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call. In other cases, the attacker may leverage the speculative 
(mis-)execution of its own code to obtain sensitive informa-
tion from the same process. For example, attack code, which 
is sandboxed by an interpreter, a just-in-time compiler, or a 
“safe” language, may wish to read memory it is not supposed 
to access. Although speculative execution can potentially 
expose sensitive data via a broad range of covert channels, 
the examples given cause speculative execution to first read 
a memory value at an attacker-chosen address and then per-
form a memory operation that modifies the cache state in a 
way that exposes the value.

For the final phase, the sensitive data is recovered. For 
Spectre attacks using Flush+Reload or Evict+Reload, the 
recovery process consists of timing the access to memory 
addresses in the cache lines being monitored.

Spectre attacks only assume that speculatively exe-
cuted instructions can read from memory that the victim 
process could access normally, for example, without trig-
gering a page fault or exception. Hence, Spectre is orthog-
onal to Meltdown,16 which exploits scenarios where some 
CPUs allow out-of-order execution of user instructions 
to read kernel memory. Consequently, even if a proces-
sor prevents speculative execution of instructions in user 
processes from accessing kernel memory, Spectre attacks 
still work.

4. VARIANT 1: EXPLOITING CONDITIONAL BRANCH 
MISPREDICTION
In this section, we demonstrate how conditional branch 
misprediction can be exploited by an attacker to read arbi-
trary memory from another context, for example, another 
process.

Consider the case where the code here is part of a func-
tion (e.g., a system call or a library) receiving an unsigned 
integer x from an untrusted source. The process running 
the code has access to an array of unsigned bytes: array1 
of size array1_size, and a second byte array array2 of 
size 1 MB.

depends on past program behavior and assume that future 
behavior is similar to or related to past behavior.

When multiple programs execute on the same hard-
ware, either concurrently or via time-sharing, changes in 
the microarchitectural state caused by the behavior of one 
program may affect other programs. This, in turn, may 
result in unintended information leaks from one program 
to another.

Initial microarchitectural side-channel attacks exploited 
timing variability14 and leakage through the L1 data cache27 
to extract keys from cryptographic primitives. Over the years, 
channels have been demonstrated over multiple micro-
architectural components, such as lower level caches10, 17 
and branch history.1

In this work, we use the Flush+Reload technique,6, 29 
and its variant Evict+Reload.5 Using these techniques, the 
attacker begins by evicting a cache line from the cache that  
is shared with the victim. After the victim executes for 
a while, the attacker measures the time it takes to per-
form a memory read at the address corresponding to the 
evicted cache line. If the victim accessed the monitored 
cache line, the data will be in the cache, and the access will 
be fast. Otherwise, if the victim has not accessed the line,  
the read will be slow. Hence, by measuring the access time, 
the attacker learns whether the victim accessed the monitored 
cache line between the eviction and probing steps.

The main difference between the two techniques is the 
mechanism used for evicting the monitored cache line  
from the cache. In the Flush+Reload technique, the attacker 
uses a dedicated machine instruction, for example, x86’s 
clflush, to evict the line. Using Evict+Reload, eviction 
is achieved by forcing contention on the cache set that  
stores the line. Due to the limited size of the cache, read-
ing several other memory locations that map to the same  
cache set can cause the processor to discard (evict) the 
desired line.

3. ATTACK OVERVIEW
Spectre attacks induce a victim to speculatively perform 
operations that would not occur during strictly serialized 
in-order processing of the program’s instructions, and that 
leak victim’s confidential information via a covert channel 
to the adversary.

In most cases, the attack begins with a setup phase, 
where the adversary performs operations that mistrain the 
processor so that it will later make an exploitably erroneous 
speculative prediction. In addition, the setup phase may 
include steps that help induce speculative execution, such 
as manipulating the cache state to remove data that the pro-
cessor will need to determine the actual control flow. During 
the setup phase, the adversary can also prepare the covert 
channel that will be used for extracting the victim’s informa-
tion, for example, by performing the flush or evict part of a 
Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively 
executes instruction(s) that transfer confidential informa-
tion from the victim context into a microarchitectural covert 
channel. This may be triggered by having the attacker request 
that the victim performs an action, for example, via an API 

The code fragment begins with a bounds check on x. 
This check is essential for security because it prevents 
the processor from reading sensitive memory outside of 
array1. Otherwise, an out-of-bounds input x could trigger 
an exception or could cause the processor to access sensi-
tive memory by supplying x = (address of a secret byte to 
read) − (base address of array1).

Figure 1 illustrates the four cases of the bounds check in 
combination with speculative execution. Before the result of 
the bounds check is known, the CPU speculatively executes 
code following the condition by predicting the most likely 
outcome of the comparison. There are many reasons why 
the result of a bounds check may not be immediately known, 
for example, a cache miss preceding or during the bounds 
check, congestion of a required execution unit, complex 
arithmetic dependencies, or nested speculative execution. 

if (x < array1_size)
y = array2[array1[x] * 4096];
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i = k, but slowly for all other k ∈ 0.255. Alternatively, by using 
Evict+Time, the adversary can immediately call the target 
function again with an in-bounds value x’ and measure 
how long this second call takes. If array1[x’] equals k, 
then the location accessed in array2 is in the cache, and 
the operation will tend to be faster. (The multiplication by 
4096 simplifies the attack by ensuring that each potential 
value of k maps to a different memory page, avoiding effects 
due to intra-page prefetching.)

Many different scenarios can lead to exploitable leaks 
using this variant. For example, instead of performing a 
bounds check, the mispredicted conditional branch(es) 
could be checking a previously computed safety result or an 
object type. Similarly, the code that is speculatively executed 
can take other forms, such as leaking a comparison result into 
a fixed memory location or may be spread over a much larger 
number of instructions. The cache status described above is 
also more restrictive than may be required. For example, in 
some scenarios, the attack works even if array1_size is 
cached, for example, if branch prediction results are applied 
during speculative execution even if the values involved in 
the comparison are known. As a result, mitigation efforts 
are likely to be ineffective if targeted narrowly to a specific 
code pattern or scenario (see Sections 6 and 7).

4.1. Experimental results
We performed experiments on multiple Intel x86 processor 
architectures (Ivy Bridge, Haswell, Broadwell, Skylake, and 
Kaby Lake) and AMD Ryzen. The Spectre vulnerability was 
observed on all these CPUs, and we observed that specu-
lative execution can run hundreds of instructions ahead. 
Similar results were observed on both 32- and 64-bit modes, 
and under both Linux and Windows. Some processors based 
on the ARM architecture also support speculative execution, 
and our initial testing confirmed that ARM Cortex-A57 and 
Cortex-A53 and Qualcomm Kyro 280 CPUs.

4.2. Example implementation in C
Proof-of-concept code in C for x86 processors is found in 
the full paper or is available from https://gist.github.com/ 
anonymous/99a72c9c1003f8ae0707b4927ec1bd8a. This unop-
timized implementation can read around 10KB/s on an 
i7-4650U with a low (<0.01%) error rate.

4.3. Example implementation in JavaScript
We developed a proof-of-concept in JavaScript and tested it 
in Google Chrome version 62.0.3202, which allows a Website 
to read private memory from the process in which it runs. 
The code is illustrated in Listing 1.

On branch-predictor mistraining passes, index is set 
(via bit operations) to an in-range value. On the final 
iteration, index is set to an out-of-bounds address into  
simpleByteArray. We used a variable localJunk to ensure 
that operations are not optimized out. The “|0” operation 
converts the value to a 32-bit integer, acting as an optimiza-
tion hint to the JavaScript interpreter. Like other optimized 
JavaScript engines, V8 performs just-in-time compilation to 
convert JavaScript into machine language. Dummy opera-
tions were placed in the code surrounding Listing 1 to make 

However, as illustrated, a correct prediction of the condition 
in these cases leads to faster overall execution.

Unfortunately, during speculative execution, the condi-
tional branch for the bounds check can follow the incorrect 
path. In this example, suppose an adversary causes the code 
to run such that:

• the value of x is maliciously chosen (out-of-bounds), 
such that array1[x] resolves to a secret byte k some-
where in the victim’s memory;

• array1_size and array2 are uncached, but k is 
cached; and

• previous operations received values of x that were valid, 
leading the branch predictor to assume the if will 
likely be true.

This cache configuration can occur naturally or can be cre-
ated by an adversary, for example, by causing eviction of 
array1_size and array2 and then having the kernel use 
the secret key in a legitimate operation.

When the compiled code above runs, the processor begins 
by comparing the malicious value of x against array1_
size. Reading array1_size results in a cache miss, and 
the processor faces a substantial delay until its value is avail-
able from DRAM. In the meantime, the branch predictor 
assumes the if will be true, then speculative execution adds 
x to the base address of array1 and requests the data at the 
resulting address from the memory subsystem. This read is a 
cache hit, and quickly returns the value of the secret byte k.  
Speculative execution continues, using k to compute the 
address of array2 [k*4096], and sending a request to 
read this address from memory (resulting in a cache miss). 
At some point after the read from array2 is initiated, the 
processor realizes that its speculative execution was errone-
ous and rewinds its register state. However, the speculative 
read from array2 affects the cache state in an address- 
specific manner, where the address depends on k.

To complete the attack, the adversary measures which 
location in array2 was brought into the cache, for example, 
via Flush+Reload or Prime+Probe. This reveals the value of k, 
because the victim’s speculative execution cached array2 
[k*4096], causing array2[i*4096] to read quickly for  
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Figure 1. Before the correct outcome of the bounds check is 
known, the branch predictor continues with the most likely 
branch target, leading to an overall execution speed-up if the 
outcome was correctly predicted. However, if the bounds check 
is incorrectly predicted as true, an attacker can leak secret 
information in certain scenarios.

https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
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an array in kernel memory, with an index large enough that 
the user-space memory is accessed instead.

See the full paper for additional details.

5. VARIANT 2: POISONING INDIRECT BRANCHES
In this section, we demonstrate how indirect branches can 
be poisoned by an attacker and the resulting misprediction 
of indirect branches can be exploited. If the determination 
of the destination address of an indirect branch is delayed, 
due to a cache miss, speculative execution will often con-
tinue at a location predicted from previous code execution.

In Spectre variant 2, the adversary mistrains the branch 
predictor with malicious destinations, such that speculative 
execution continues at a location chosen by the adversary. 
This is illustrated in Figure 2, where the branch predictor 
is (mis-)trained in one context and applies the prediction 
in a different context. More specifically, the adversary can 
misdirect speculative execution to locations that would 
never occur during a legitimate program execution. This 
is an extremely powerful means for attackers, for example, 
enabling exposure of victim’s memory even in the absence 
of an exploitable conditional branch misprediction lever-
aged in Section 4.

simpleByteArray.length be stored in local memory so 
that it can be removed from the cache during the attack. See 
Listing 2 for the resulting disassembly output from D8.

As the clflush instruction is not accessible from JavaScript, 
we use cache eviction instead,19 that is, we access other mem-
ory locations in a way such that the target memory locations 
are evicted afterward. The leaked results are conveyed via the 
cache status of probeTable[n*4096] for n ∈ 0.255, so the 
attacker has to evict these 256 cache lines. The length param-
eter (simpleByteArray.length in the JavaScript code and  
 [ebp-0xe0] in the disassembly) needs to be evicted as well.

JavaScript does not provide access to the rdtscp instruc-
tion, and Chrome intentionally degrades the accuracy of 
its high-resolution timer to dissuade timing attacks using 
performance.now(). However, the Web Workers feature 
of HTML5 makes it simple to create a separate thread that 
repeatedly decrements a value in a shared memory loca-
tion.22 This approach yields a high-resolution timer that pro-
vides sufficient resolution.

4.4. Example implementation exploiting eBPF
As a third example of exploiting conditional branches, we 
developed a reliable proof-of-concept which leaks kernel 
memory from an unmodified Linux kernel without patches 
against Spectre by abusing the extended BPF (eBPF) inter-
face. eBPF is a Linux kernel interface based on the Berkeley 
Packet Filter (BPF)18 that can be used for a variety of pur-
poses, such as filtering packets based on their contents. 
eBPF permits unprivileged users to trigger the interpreta-
tion or JIT compilation and subsequent execution of user-
supplied, kernel-verified eBPF bytecode in the context of the 
kernel. The basic concept of the attack is similar to the con-
cept of the attack against JavaScript.

In this attack, we use the eBPF code only for the specu-
latively executed code. We use native code in user space to 
acquire the covert channel information. This is a difference 
to the JavaScript example above, where both functions are 
implemented in the scripted language. To speculatively 
access secret-dependent locations in user-space memory, 
we perform speculative out-of-bounds memory accesses to 

Context A Context B

call [ function]
...

function A
function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget
legit function

speculate

Figure 2. The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes its 
prediction on the basis of training data from context A, leading 
to speculative execution at an attacker-chosen address which 
corresponds to the location of the Spectre gadget in the victim’s 
address space.

1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;
4 localJunk ˆ= probeTable[index|0]|0;
5 }

Listing 1. Exploiting speculative execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length
2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below
3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray
4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address + index)
5 shll rsi,12 ; Multiply rsi by 4096 by shifting left 12 bits
6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds
7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable
8 xorl rsi,rdi ; XOR the read result onto localJunk
9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 2. Disassembly of JavaScript example from Listing 1.
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execution. Future processors (or existing processors with 
different microcode) may behave differently, for example, if 
measures are taken to prevent speculatively executed code 
from modifying the cache state. In this section, we examine 
potential variants and conclude that virtually any observable 
effect of speculatively executed code can potentially lead 
to leaks of sensitive information. Although the following 
techniques are not needed for the processors we tested, it is 
essential to understand potential variations when designing 
or evaluating mitigations.

Spectre variant 4. Spectre variant 4 uses speculation in 
the store-to-load forwarding logic.7 The processor specu-
lates that a load does not depend on the previous store. The 
exploitation mechanics are similar to variant 1 and 2 that we 
discussed in detail in this paper.

Evict+Time. The Evict+Time attack20 works by measur-
ing the timing of operations that depend on the state of the 
cache. This technique can be adapted to use Spectre as fol-
lows. Consider the code:

if (false but mispredicts as true)
read array1[R1]

read [R2]

Suppose register R1 contains a secret value. If the spec-
ulatively executed memory read of array1[R1] is a cache 
hit, then nothing will go on the memory bus, and the read 
from [R2] will initiate quickly. If the read of array1[R1] 
is a cache miss, then the second read may take longer, 
resulting in different timing for the victim thread. In 
addition, other components in the system that can access 
memory (such as other processors) may be able to sense 
the presence of activity on the memory bus or other 
effects of the memory read. We note that this attack can 
work even if speculative execution does not modify the 
contents of the cache. All that is required is that the state 
of the cache affects the timing of speculatively executed 
code or some other property that ultimately becomes vis-
ible to the attacker.

Instruction timing. Spectre vulnerabilities do not nec-
essarily need to involve caches. Instructions whose timing 
depends on the values of the operands may leak information 
on the operands. In the following example, the multiplier is 
occupied by the speculative execution of multiply R1, R2.  
The timing of when the multiplier becomes available for 
multiply R3, R4 (either for out-of-order execution or after 
the misprediction is recognized) could be affected by the 
timing of the first multiplication, revealing information 
about R1 and R2.

if (false but mispredicts as true)
multiply R1, R2

multiply R3, R4

Contention on the register file. Suppose the CPU has a 
register file with a finite number of registers available for 
storing checkpoints for speculative execution. In the follow-
ing example, if condition on R1 in the second “if” is true, 
then an extra speculative execution checkpoint will be created 

For a simple example attack, we consider an attacker 
seeking to read a victim’s memory, who has control over two 
registers when an indirect branch occurs. This commonly 
occurs in real-world binaries because functions manipulat-
ing externally received data routinely make function calls 
although registers contain values that an attacker controls. 
Often these values are ignored by the called function and 
instead they are simply pushed onto the stack in the func-
tion prologue and restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget,” that 
is, a code fragment whose speculative execution will trans-
fer the victim’s sensitive information into a covert channel. 
For this example, a simple and effective gadget would be 
formed by two instructions (which do not necessarily need 
to be adjacent) where the first adds (or XORs, subtracts, etc.) 
the memory location addressed by an attacker-controlled 
register R1 onto an attacker-controlled register R2, followed 
by any instruction that accesses memory at the address in 
R2. In this case, the gadget provides the attacker control (via 
R1) over which address to leak and control (via R2) over how 
the leaked memory maps to an address which is read by the 
second instruction. On the CPUs we tested, the gadget must 
reside in memory executable by the victim for the CPU to 
perform speculative execution. However, with several mega-
bytes of shared libraries mapped into most processes,5 an 
attacker has ample space to search for gadgets without even 
having to search in the victim’s own code.

The choice of gadget depends on what state is known or 
controlled by the adversary, where the information sought 
by the adversary resides (e.g., registers, stack, memory, 
etc.), the adversary’s ability to control speculative execution, 
what instruction sequences are available to form gadgets, 
and what channels can leak information from speculative 
operations. For example, a cryptographic function that 
returns a secret value in a register may become exploitable 
if the attacker can simply induce speculative execution at  
an instruction that brings memory from the address speci-
fied in the register into the cache. Likewise, although the 
example above assumes that the attacker controls two regis-
ters, the attacker’s control over a single register, value on the 
stack, or memory value is sufficient for some gadgets.

In many ways, exploitation is similar to return-oriented 
programming (ROP),23 except that the correctly written soft-
ware is vulnerable, gadgets are limited in their duration 
but need not terminate cleanly (because the CPU will even-
tually recognize the speculative error), and gadgets must 
exfiltrate data via side channels rather than explicitly. Still, 
speculative execution can perform complex sequences of 
instructions, such as reading from the stack, performing 
arithmetic, branching (including multiple times), and read-
ing memory.

The full paper includes details about branch predictor 
behavior and mistraining techniques for a range of pro-
cessors, as well as attack implementations targeting a 
Microsoft Windows application and the KVM hypervisor.

6. VARIATIONS
So far, we have demonstrated attacks that leverage changes 
in the state of the cache that occur during speculative 
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7.1. Preventing speculative execution
Speculative execution is required for Spectre attacks. 
Ensuring that instructions are executed only when the 
control flow leading to them is ascertained would prevent 
speculative execution and, with it, Spectre attacks. Although 
effective as a countermeasure, this would cause a significant 
degradation in the performance of the processor.

Although current processors do not appear to have meth-
ods that allow software to disable speculative execution, 
such modes could be added in future processors, or poten-
tially be introduced via microcode changes. Still, this solu-
tion is unlikely to provide an immediate fix to the problem.

Alternatively, the software could be modified to use seri-
alizing or speculation blocking instructions that ensure that 
instructions following them are not executed speculatively. 
For x86, CPU vendors recommend the use of the lfence 
instruction.9 The safest approach to protect conditional 
branches would be to add such an instruction on the two 
outcomes of every conditional branch, but this amounts 
to disabling branch prediction and would dramatically 
reduce performance. An improved approach is to use static 
analysis9 to reduce the number of speculation blocking 
instructions required, as many code paths do not have the 
potential to read and leak out-of-bounds memory. In con-
trast, Microsoft’s C compiler MSVC takes an approach of 
defaulting to unprotected code unless the static analyzer 
detects a known bad code pattern but, as a result, misses 
many vulnerable code patterns.12

The approach requires that all potentially vulnerable soft-
ware is instrumented. Hence, for protection, updated soft-
ware binaries and libraries are required. This could be an 
issue for legacy software. In addition, this approach is primar-
ily focused on variant 1, and does not address all variants.

7.2. Preventing access to secret data
Other countermeasures can prevent speculatively executed 
code from accessing secret data. One such measure, used by 
the Google Chrome Web browser, is to execute each Website 
in a separate process.26 Because Spectre attacks only lever-
age the victim’s permissions, an attack such as the one we 
performed using JavaScript (cf. Section IV-C) would not be 
able to access data from the processes assigned to other 
Websites.

WebKit employs two strategies for limiting access to 
secret data by speculatively executed code.21 The first strat-
egy replaces array bounds checking with index masking. 
Instead of checking that an array index is within the bounds 
of the array, WebKit applies a bit mask to the index, ensur-
ing that it is not much bigger than the array size. Although 
masking may result in access outside the bounds of the 
array, this limits the distance of the bounds violation, pre-
venting the attacker from accessing arbitrary memory. The 
second strategy protects access to pointers by xoring them 
with a pseudo-random poison value. An adversary who does 
not know the poison value cannot use a poisoned pointer 
(although various cache attacks could leak the poison value), 
and the poison value ensures that mispredictions on the 
branch instructions used for type checks will result in point-
ers associated with the type being used for another type.

than if condition on R1 is false. If an adversary can detect 
this checkpoint, if speculative execution of code in hyper-
threads is reduced due to a shortage of storage, this reveals 
information about R1.

if (false but mispredicts as true)
if (condition on R1)

if (condition)

Variations on speculative execution. Even code that con-
tains no conditional branches can potentially be at risk. 
For example, consider the case where an attacker wishes to 
determine whether R1 contains an attacker-chosen value X 
or some other value. The ability to make such determina-
tions is sufficient to break some cryptographic implementa-
tions. The attacker mistrains the branch predictor such that 
after an interrupt occurs, the interrupt return mispredicts to 
an instruction that reads memory [R1]. The attacker then 
chooses X to correspond to a memory address suitable for 
Flush+Reload, revealing whether R1 = X. Although the iret 
instruction is serializing on Intel CPUs, other processors 
may apply branch predictions.

Leveraging arbitrary observable effects. Virtually any 
observable effect of speculatively executed code can be lev-
eraged to create the covert channel that leaks sensitive infor-
mation. For example, consider a processor that has been 
designed so that speculative reads cannot modify the cache. 
When the code here runs, the speculative lookup in array2 
still occurs, and its timing will be affected by the cache state 
entering speculative execution. This timing in turn can 
affect the depth and timing of subsequent speculative oper-
ations. Thus, by manipulating the state of the cache prior to 
speculative execution, an adversary can potentially leverage 
virtually any observable effect from speculative execution.

if (x < array1_size){
y = array2[array1[x] * 4096];
// do something detectable when
// speculatively executed

}

The final observable operation could involve virtually 
any side channel or covert channel, such as contention for 
resources (buses, arithmetic units, etc.) and conventional 
side-channel emanations (such as electromagnetic radia-
tion or power consumption).

A more general form of this would be:

if (x < array1_size) {
y = array1[x];
// something using y that is observable
// when speculatively executed

}

7. MITIGATION OPTIONS
Several countermeasures for Spectre attacks have been pro-
posed. Each addresses one or more of the features that the 
attack relies upon. We now discuss these countermeasures 
and their applicability, effectiveness, and cost.
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designs. As a result, we believe that long-term solutions  
will require fundamentally changing instruction set  
architectures.

More broadly, there are trade-offs between security 
and performance. The vulnerabilities in this paper, as 
well as many others, arise from a long-standing focus in 
the technology industry on maximizing performance. As 
a result, processors, compilers, device drivers, operating 
systems, and numerous other critical components have 
evolved compounding layers of complex optimizations 
that introduce security risks. As the costs of insecurity 
rise, these design choices need to be revisited. In many 
cases, alternative implementations optimized for security 
will be required.
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7.3. Preventing data from entering covert channels
Future processors could potentially track whether data was 
fetched as the result of a speculative operation and, if so, 
prevent that data from being used in subsequent operations 
that might leak it. However, current processors do not gen-
erally have this capability.

7.4. Limiting data extraction from covert channels
To exfiltrate information from transient instructions, 
Spectre attacks use a covert communication channel. 
Multiple approaches have been suggested for mitigating 
such channels (cf. Ge et al.4). A common approach is to 
degrade timers, which may decrease attack performance, 
but does not guarantee that attacks are not possible.

7.5. Preventing branch poisoning
To prevent indirect branch poisoning, Intel and AMD 
extended the ISA with mechanisms for limiting adversar-
ies’ ability to influence indirect branch speculation.2, 8 The 
performance impact varies from a few percent to a factor 
of 4 or more, depending on which countermeasures are 
employed, how comprehensively they are applied (e.g., 
limited use in the kernel vs. full protection for all pro-
cesses), and the efficiency of the hardware and microcode 
implementations.

Google suggests an alternative mechanism for prevent-
ing indirect branch poisoning called retpolines.28 A retpo-
line is a code sequence that replaces indirect branches with 
return instructions. The construct further contains code 
that makes sure that the return instruction is predicted 
to a benign endless loop through the return stack buffer, 
although the actual target destination is reached by push-
ing it on the stack and returning to it, that is, using the  
ret instruction. When return instructions can be pre-
dicted by other means, the method may be impractical. 
Intel issued microcode updates for some processors, 
which fall back to the BTB for the prediction, to disable 
this fallback mechanism.9

8. CONCLUSION
A fundamental assumption underpinning software secu-
rity techniques is that the processor will faithfully execute 
program instructions, such as its safety checks. This 
paper presents Spectre attacks, which leverage the fact 
that speculative execution violates this assumption. The 
techniques we demonstrate are practical, do not require 
any software vulnerabilities, and allow adversaries to read 
private memory and register contents from other pro-
cesses and security contexts.

Software security fundamentally depends on having 
a clear common understanding between hardware and 
software developers as to what information CPU imple-
mentations are (and are not) permitted to expose from 
computations. As a result, although the countermea-
sures described in the previous section may help limit 
practical exploits in the short term, they are only stop-
gap measures as there is typically formal architectural 
assurance as to whether any specific code construction 
is safe across today’s processors—much less future 
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for four applications that span a diverse 
range of properties: different flavors of 
bitcoin mining, but also deep learning 
and video transcoding. Their results 
show the promise of ASIC clouds—two 
to three orders of magnitude improved 
efficiency advantages compared to tradi-
tional CPU- or GPU-based approaches.

Perhaps an even more exciting con-
tribution of the paper is a methodology 
that federates different modeling ap-
proaches to derive pareto-optimal ASIC 
cloud configurations. Starting with data 
extracted from “place-and-route” circuit 
optimizations at the circuits level and 
computational fluid dynamics models 
at the systems level, this approach per-
forms an exhaustive search to find the 
best design optimized across a number 
of parameters: the area per ASIC and the 
number of ASICs and their operating 
voltage, the number of DRAM chips as-
sociated per ASIC, and choices around 
the case design and the power delivery 
and cooling subsystems. A notable con-
tribution is a refinement of a large 
amount of data into a “two-for-two” rule 
on when ASIC clouds are appropriate.

This is but the start of an interesting 
direction of exploration for the broader 
community. Given the nascent and fast-
evolving nature of current ASIC solu-
tions, how do we enable ASIC clouds to 
adapt rapidly to changing accelerator de-
signs, to diversity across different classes 
of accelerators? Can the holistic design 
of ASIC clouds enable additional optimi-
zations, for example, around addressing 
the speed and NRE of future specialized 
designs? These and other open ques-
tions highlight how we are entering an 
era of significant change, one where it is 
not “business as usual.” The architecture 
and methodology in this paper provide a 
foundation, and a baseline, to explore 
more interesting ideas at the confluence 
of two of the most exciting ideas the com-
munity is rallying around. 

Parthasarathy Ranganathan is a Distinguished Engineer 
and area technical lead for hardware and datacenters at 
Google, San Francisco, CA, USA.
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THE COMPUTER ARCHITECTURE community 
is at an interesting crossroads. Moore’s 
Law is slowing down, stressing tradi-
tional assumptions around computing 
getting cheaper and faster over time—
assumptions that underpin a signifi-
cant fraction of the economic growth 
over the past few decades. But at the 
same time, our demand continues to 
grow at phenomenal rates, with deeper 
analysis over growing volumes of data, 
new diverse workloads in the cloud, 
smarter edge devices, and new security 
constraints. Is the situation dire, or is 
this the beginning of a new phase in the 
evolution of system architecture?

Two recent trends provide hope that it 
is the latter! The first trend, at a microar-
chitecture level, is around specialization 
or domain-specific hardware/software 
codesign. Compared to a general-pur-
pose processor, a specialized architec-
ture such as an ASIC (application-specific 
integrated circuit) customizes the design 
for a specific application or workload 
class. A good example is Google’s TPU se-
ries of ASICs. Such specialization leads to 
significant area and power efficiencies. 
The trade-off, of course, is we now do not 
have the volume advantages of a general-
purpose system, whether it is around 
software ecosystem support (and ease of 
development) or around amortization 
of costs associated with building a cus-
tom chip (notably, the non-recurring ex-
penses or NRE). The second trend, at a 
system level, is around warehouse-scale 
computing, or more broadly cloud com-
puting, a computing model that treats 
the entire “datacenter as a computer.” 
This model helps amortize costs across 
larger ensembles, but also provides ad-
ditional benefits around ubiquitous ac-
cess, simpler system management, and 
better encapsulation of hardware under 
higher-level software interfaces and ab-
stractions. Initially popularized by large 
Internet services such as search, email, 
and social networks, cloud computing 
is now increasingly being adopted by 
traditional enterprises as well.

What happens when we combine  
these two trends? Can we build pur-

pose-built, warehouse-scale datacen-
ters customized for (not just comprised 
of) large-scale arrays of ASIC accelera-
tors or, to use a term coined in the fol-
lowing paper, ASIC clouds?

Interestingly, a proof point already ex-
ists, and from a very surprising source—
bitcoin mining. Consider recent de-
signs from companies such as Bitmaina 
or Bitfuryb that use ASICs with tens to 
hundreds of cores custom-designed to 
run Bitcoin’s hashing algorithm. Hun-
dreds of these chips are assembled into 
custom boards, and hundreds of these 
boards are assembled into custom 
racks or containers in very specialized 
datacenters. Bitfury even goes one step 
further, using specialized immersion 
cooling to submerge its servers. While 
such bitcoin-mining ASIC clouds have 
demonstrably provided massive scale 
out, are they likely to gain more broader 
mainstream acceptance? How effective 
are these designs compared to tradition-
al CPUs and GPUs and traditional data-
center designs? How do we reason about 
the architectural trade-offs or pervasive 
specialization from the ASIC to the server 
to the datacenter?

The following paper addresses these 
issues and more. The authors distill the 
lessons from bitcoin mining systems to 
develop a broader architectural frame-
work for ASIC clouds. Specifically, they 
propose a hierarchical design, starting 
with core specialized functions that 
are replicated across ASICs and con-
nected with a custom on-chip network; 
ASIC voltages are customizable allow-
ing trade-offs for energy efficiency and 
total costs of ownership. Multiple ASICs 
are assembled together in a specialized 
server with custom cooling and power 
delivery systems and workload-tailored 
DRAM and I/O subsystems. Multiple 
servers are further assembled into racks 
and datacenters, again with computa-
tion-specific customization of thermals 
and power delivery. Using this architec-
ture, the study examines ASIC clouds 

a www.bitmain.com
b www.bitfury.com
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Abstract
Planet-scale applications are driving the exponential growth 
of the Cloud, and datacenter specialization is the key enabler 
of this trend. GPU- and FPGA-based clouds have already 
been deployed to accelerate compute-intensive workloads. 
ASIC-based clouds are a natural evolution as cloud services 
expand across the planet. ASIC Clouds are purpose-built 
datacenters comprised of large arrays of ASIC accelerators 
that optimize the total cost of ownership (TCO) of large, 
high-volume scale-out computations. On the surface, ASIC 
Clouds may seem improbable due to high NREs and ASIC 
inflexibility, but large-scale ASIC Clouds have already been 
deployed for the Bitcoin cryptocurrency system. This paper 
distills lessons from these Bitcoin ASIC Clouds and applies 
them to other large scale workloads such as YouTube-style 
video-transcoding and Deep Learning, showing superior 
TCO versus CPU and GPU. It derives Pareto-optimal ASIC 
Cloud servers based on accelerator properties, by jointly 
optimizing ASIC architecture, DRAM, motherboard, power 
delivery, cooling, and operating voltage. Finally, the authors 
examine the impact of ASIC NRE and when it makes sense to 
build an ASIC Cloud.

1. INTRODUCTION
In the last decade, two parallel trends in the computational 
landscape have emerged. The first is the bifurcation of com-
putation into two sectors: cloud and mobile. The second is 
the rise of dark silicon15, 3, 4, 2 and dark silicon aware design 
techniques13, 14, 10, 16, 11 such as specialization and near-threshold 
computation. Specialized hardware has existed in mobile 
computing for a while due to extreme power constraints; 
however, recently there has been an increase in the amount 
of specialized hardware showing up in cloud datacenters. 
Examples include Baidu’s GPU-based cloud for distributed 
neural network acceleration, Microsoft’s FPGA-based cloud 
for Bing Search,9 and by JP Morgan Chase for hedgefund 
portfolio evaluation.12

At the level of a single node, we know that ASICs can offer 
order-of-magnitude improvements in energy-efficiency and 
cost-performance over CPU, GPU, and FPGA.

Our recent papers8, 6, 7, 17 explore the concept of ASIC Clouds 
which are purpose-built datacenters comprised of large 
arrays of ASIC accelerators. ASIC Clouds are not ASIC super-
computers that scale up problem sizes for a single tightly 
coupled computation; rather, ASIC Clouds target scale-out 
workloads consisting of many independent but similar jobs, 
often on behalf of millions or billions of end-users.

The content of this paper draws from “ASIC Clouds: 
Specializing the Data Center,” published in Proceedings 
of  the IEEE Int. Symp. Computer Architecture, June 2016,  and 
from “Specializing the Planet’s Computation: ASIC 
Clouds” published in IEEE Micro, June 2017. 

As more and more services are built around the Cloud 
model, we see the emergence of planet-scale workloads 
(think Facebook’s face recognition of uploaded pictures, 
or Apple’s Siri voice recognition, or the IRS performing tax 
audits with neural nets) where datacenters are performing 
the same computation across many users. These scale-out 
workloads can easily leverage racks of ASIC servers contain-
ing arrays of chips that in turn connect arrays of replicated 
compute accelerators (RCAs) on an on-chip network. The 
large scale of these workloads creates the economical jus-
tification to pay the nonrecurring engineering (NRE) costs 
of ASIC development and deployment. As a workload grows, 
the ASIC Cloud can be scaled in the datacenter by add-
ing more ASIC servers, unlike accelerators in say a mobile 
phone population,3 where the accelerator-to-processor ratio 
is fixed at tapeout.

Our research examined ASIC Clouds in the context of four 
key applications that show great potential for ASIC Clouds, 
such as YouTube-style video transcoding, Bitcoin and 
Litecoin mining, and Deep Learning. ASICs achieve large 
reductions in silicon area and energy consumption versus 
CPUs, GPUs, and FPGAs. We show how to specialize the ASIC 
server to maximize efficiency, employing optimized ASICs, a 
customized printed circuit board (PCB), custom-designed 
cooling systems and specialized power delivery systems, and 
tailored DRAM and I/O subsystems. ASIC voltages are cus-
tomized in order to tweak energy efficiency and minimize 
total cost of ownership (TCO). The datacenter itself can also 
be specialized, optimizing rack-level and datacenter-level 
thermals and power delivery to exploit the knowledge of the 
computation. We developed tools that consider all aspects 
of ASIC Cloud design in a bottom-up way, and methodolo-
gies that reveal how the designers of these novel systems 
can optimize TCO in real-world ASIC Clouds. Finally, we 
proposed a new rule that explains when it makes sense to 
design and deploy an ASIC Cloud, considering the engineer-
ing expense (NRE) of designing the machines.

Notably, the original version of this paper1, 8 predicted 
Machine Learning ASIC Clouds, before Google announced 
the first Tensor Processing cloud in 2016.5 The same paper 
also predicted video transcoding clouds before Facebook’s 

http://dx.doi.org/10.1145/3399734
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Mount Shasta video transcoding ASIC Cloud design was 
announced in March 2019.

2. ASIC CLOUD ARCHITECTURE
At the heart of any ASIC Cloud is an energy-efficient, high-
performance, specialized replicated compute accelerator, or 
RCA, that is multiplied up by having multiple copies per ASICs, 
multiple ASICs per server, multiple servers per rack, and mul-
tiple racks per datacenter as shown Figure 1. Work requests 
from outside the datacenter will be distributed across these 
RCAs in a scale-out fashion. All system components can be 
customized for the application to minimize TCO.

Each ASIC interconnects its RCAs using a customized 
on-chip network. The ASIC’s control plane unit also con-
nects to this network and schedules incoming work from 
the ASIC’s off-chip router onto the RCAs. Next, the packaged 
ASICs are arranged in lanes on a customized PCB, and con-
nected to a controller which bridges to the off-PCB interface 
(1-100 GigE, RDMA, PCI-e, etc). In some cases, DRAMs may 
connect directly to the ASICs. The controller can be imple-
mented by an FPGA, microcontroller, or a Xeon processor 
and schedules remote procedure calls (RPCs) that come 
from the off-PCB interface on to the ASICs. Depending on 
the application, it may implement the nonacceleratable part 
of the workload or perform UDP/TCP-IP offload.

Each lane is enclosed by a duct and has a dedicated fan 
blowing air through it across the ASIC heatsinks. Our sim-
ulations indicate that using ducts results in better cooling 
performance compared to conventional or staggered layout. 
The PCB, fans, and power supply are enclosed in a 1U server, 
which is then assembled into racks in a datacenter. Based on 
ASIC needs, the PSU and DC/DC converters are customized 
for each server.

3. DESIGNING AN ASIC CLOUD
Our ASIC Cloud Server configuration evaluator, as shown 
in Figure 2a, starts with a Verilog implementation of an 
accelerator, or a detailed evaluation of the accelerator’s 

properties from the research literature. In the design of 
an ASIC Server, we must decide how many chips should be 
placed on the PCB and how large, in mm2 of silicon, each 
chip should be. The size of each chip determines how many 
RCAs will be on each chip. In each duct-enclosed lane of 
ASIC chips, each chip receives around the same amount 
of airflow from the intake fans, but the most downstream 
chip receives the hottest air, which includes the waste 
heat from the other chips. Therefore, the thermally bottle-
necking ASIC is the one in the back, shown in our detailed 
Computational Fluid Dynamics (CFD) simulations as 
shown in Figure 2b. Our simulations show that breaking 
a fixed heat source into smaller ones with the same total 
heat output improves the mixing of warm and cold area, 
resulting in lower temperatures. Using thermal optimiza-
tion techniques, we established fundamental connection 
between an RCA’s properties, the number of RCAs placed 
in an ASIC, and how many ASICs go on a PCB in a server. 
Given these properties, our heat sink solver determines the 
optimal heat sink configuration. Results are validated with 
the CFD simulator. In the sidebar entitled “Design Space 
Evaluation,” we show how we apply this evaluation flow 
across the design space in order to determine TCO and 
Pareto optimal points that trade off $ per op/s (an accelera-
tor’s hardware cost efficiency) and W per op/s (an accelera-
tor’s energy efficiency).

4. APPLICATION CASE STUDIES
To explore ASIC Clouds across a range of accelerator prop-
erties, we examined four applications: Bitcoin mining, 
Litecoin mining, Video Transcoding, and Deep Learning 
that span a diverse range of properties, as shown in Figure 3.

Perhaps the most mature of these applications is Bitcoin 
mining. Our inspiration for ASIC Clouds came from our inten-
sive study of Bitcoin mining clouds,4 which are one of the first 
known instances of a real life ASIC Cloud. Figure 4 shows the 
massive scale out of the Bitcoin mining workload, which in 
2015 operated at the performance of 3.2 billion GPUs. Bitcoin 
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Figure 1. High-level abstract architecture of an ASIC Cloud. Specialized replicated compute accelerators (RCA) are multiplied up by having 
multiple copies per ASICs, multiple ASICs per server, multiple servers per rack, and multiple racks per datacenter. Server controller can be 
an FPGA, microcontroller, or a Xeon processor. Power delivery and cooling system are customized based on ASIC needs. If required, there 
would be DRAMs on the PCB as well.
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Figure 2. Evaluating an ASIC configuration. (a) The server cost, per server hash rate, and energy efficiency are evaluated using RCA 
properties and a flow that optimizes server heatsinks, die size, voltage, and power density. (b) Thermal verification of an ASIC Cloud server 
using CFD tools to validate the flow results. The farthest ASIC from the fan has the highest temperature and is the bottleneck for power per 
ASIC at a fixed voltage and energy efficiency.

Figure 3. Accelerator properties. We explored applications with 
diverse requirements.
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Bitcoin

clouds have undergone a rapid ramp from CPU to GPU to 
FPGA to the most advanced ASIC technology available today. 
Bitcoin is a very logic intensive design which has high power 
density and no need for SRAM or external DRAM.

Litecoin is another popular cryptocurrency mining sys-
tem that has been deployed into clouds. Unlike Bitcoin, 
it is an SRAM-intensive application which has low power 
density.

Video Transcoding, which converts from one video for-
mat to another, currently takes almost 30 high-end Xeon 
servers to do in real-time. As every cell phone can easily be 
a video source, as well as every Internet-of-Things device, it 
has the potential to be an unimaginably large planet-scale 
computation. Video Transcoding is an external memory-
intensive application that needs DRAMs next to each ASIC 
and also high off-PCB bandwidth.

Finally, Deep Learning is extremely compute-intensive 
and is likely to be used by every human on the planet. Deep 
Learning is often latency-sensitive so our Deep Learning 
neural net accelerator has a tight low-latency SLA.

For our Bitcoin and Litecoin studies, we developed the 
RCA and got the required parameters such as gate count 
from placed and routed designs in UMC 28nm using 
Synopsys IC compiler and analysis tools (e.g., PrimeTime). 
For Deep Learning and Video Transcoding, we extract 
properties from accelerators designed in the research 
literature.

Design space exploration is application-dependent, 
and there are frequently additional constraints. For exam-
ple, for video transcode application, we model the PCB 
real estate occupied by these DRAMs, which are placed on 
either side of the ASIC they connect to, perpendicular to 
airflow. As the number of DRAMs increases, the number 
of ASICs placed in a lane decreases for space reasons. We 
model the more expensive PCBs required by DRAM, with 
more layers and better signal/power integrity. We employ 
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Figure 5. Pareto curve example for Video Transcode. Exploring different 
number of DRAMs per ASIC and logic voltage for optimal TCO per 
performance point. Voltage increases from left to right. Diagonal lines 
show equal TCO per performance values and the closer to the origin the 
lower the TCO per performance. This plot is for 5 ASICs per lane.

two 10-GigE ports as the off-PCB interface for network-
intensive clouds, and model the area and power of the 
memory controllers.

After having all thermal constraints in place, we opti-
mized ASIC server design targeting two conventional key 
metrics, namely cost per op/s and power per op/s, and 
then apply TCO analysis. TCO analysis incorporates the 
datacenter- level constraints such as the cost of power deliv-
ery inside the datacenter, land, depreciation, interest, and 
the cost of energy itself. With these tools, we can correctly 
weight these two metrics and find the overall optimal point 
(TCO-optimal) for the ASIC Cloud.

Our ASIC Cloud infrastructure explores a comprehen-
sive design space, such as DRAMs per ASIC, logic voltage, 
area per ASIC, and number of chips. DRAM cost and power 
overhead are significant, and so the Pareto-optimal Video 
Transcoder designs ensure DRAM bandwidth is saturated, 
linked chip performance to DRAM count. As voltage and 
frequency are lowered, area increases to meet the perfor-
mance requirement. Figure 5 shows the Video Transcode 
Pareto curve for 5 ASICs per lane and different number of 
DRAMs per ASIC. The tool is composed of two tiers. The top 
tier uses brute force to explore all of the possible configu-
rations in order to find the energy-optimal, cost-optimal, 
and TCO-optimal points are chosen based on the Pareto 
results. The leaf tier consists of a variety of “expert solv-
ers” that compute optimal properties of the server compo-
nents; for example, CFD simulations for heat sinks, DC-DC 

Figure 4. Evolution of Specialization, Bitcoin cryptocurrency mining clouds. Numbers are ASIC nodes, in nm, which annotate the first date 
of release of a miner on that technology. Difficulty is the ratio of the total Bitcoin hash throughput of the world, relative to the initial mining 
network throughput, which was 7.15 MH/s. In the 6-year period preceding Nov 2015, the throughput increased by a factor of 50 billion times, 
corresponding to a world hash rate of approximately 575 million GH/s.
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converter allocation, circuit area/delay/voltage/energy esti-
mators, and DRAM property simulation. In many cases, 
these solvers export their data as large tables of memoized 
numbers for every component to the brute force solver.
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In Figure 7, we compare the performance of CPU 
Clouds versus GPU Clouds versus ASIC Clouds for the 
four applications that we presented. ASIC Clouds outper-
form CPU Cloud TCO per op/s by 6270x; 704x; and 8695x 
for Bitcoin, Litecoin, and Video Transcode, respectively. 
ASIC Clouds outperform GPU Cloud TCO per op/s by 
1057x, 155x, and 199x, for Bitcoin, Litecoin, and Deep 
Learning, respectively. 

6. FEASIBILITY OF ASIC CLOUDS: THE TWO-FOR- 
TWO-RULE
When does it make sense to design and deploy an ASIC 
Cloud? The key barrier is the cost of developing the ASIC 
Server, which includes both the mask costs (about $1.5M 
for the 28 nm node we consider here and much higher for 
the latest 7nm node) and the ASIC design costs, which col-
lectively comprise the nonrecurring engineering expense 
(NRE). To understand this trade-off, we proposed the 

5. RESULTS
Details of optimal server configurations for energy-optimal, 
TCO-optimal, and cost-optimal designs for each of the appli-
cations are shown in Figure 6.

For example, for Video Transcode, the cost-optimal 
server packs the maximum number of DRAMs per lane, 
36, maximizing performance. However, increasing the 
number of DRAMs per ASIC requires higher logic voltage 
(1.34V) and corresponding frequencies to attain perfor-
mance within the max die area constraint, resulting in less 
energy-efficient designs. Hence, the energy-optimal design 
has fewer DRAMs per ASIC and per lane (24), although 
gaining back some performance by increasing ASICs per 
lane, which is possible due to lower power density at 0.54V. 
The TCO-optimal design increases DRAMs per lane, 30, 
to improve performance, but is still close to the optimal 
energy efficiency at 0.75V, resulting in a die size and fre-
quency between the other two optimal points.

Figure 6. ASIC Cloud optimization results for four applications. Each table presents energy-optimal, TCO-optimal, and cost optimal server 
properties. Energy optimal server uses lower voltage to increase the energy efficiency. Cost optimal servers use higher voltage to increase 
silicon efficiency. TCO-optimal has a voltage between these two and balances energy versus silicon cost.
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Figure 8. Two-for-two rule: moderate speed-up with low NRE beats high speed-up at high NRE. The points are break even points for ASIC 
Clouds.
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the absolute speedup of the accelerator. The main barrier for 
ASIC Clouds is to reign in NRE costs so they are appropriate 
for the scale of the computation. In many research accelera-
tors, TCO improvements are extreme (such as in Figure 7),  
but authors often unnecessarily target expensive, latest 
generation process nodes because they are more cutting 
edge. This tendency raises the NRE exponentially, reducing 
economic feasibility. A better strategy is to target the older 
nodes that still attain sufficient TCO improvements.

7. POST-PUBLICATION INSIGHT: YOU WANT TO  
TARGET EIGHT TIMES TCO IMPROVEMENT
The two-for-two rule examines a lower bound for what the 
TCO improvements of an ASIC cloud need to be, based on 
how large the pre-ASIC cloud TCO is compared to the NRE 
of building an accelerator and show that extreme hundred 
times TCO improvements are not needed.

Our subsequent experience post-publication of the 
ASIC cloud suggests another way to look at the question 
of how aggressive an accelerator is necessary. We believe 
in most cases that eight times TCO improvement is usu-
ally a good place to target when developing a new kind of 
ASIC cloud.

In most realistic scenarios, the pre-ASIC cloud TCO can 
be in the hundreds of millions or billions of dollars, far 
out-shadowing the ASIC development costs for all but the 
latest nodes (e.g., 7nm). Practically speaking, the first two 
times will reduce your TCO in half, that is, one billion dol-
lars become 500 million dollars. The second two times will 
only save 250 million dollars, useful but not essential on the 
first ASIC iteration. The second two times is needed to pro-
vide risk margin for the performance and energy efficiency 

Figure 7. CPU Cloud vs. GPU Cloud vs. ASIC Cloud “Deathmatch.” 
ASIC servers greatly outperform the best non-ASIC alternative in 
terms of TCO per op/s.
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two-for-two rule. If the cost per year (i.e., the TCO) for run-
ning the computation on an existing cloud exceeds the NRE 
by 2X, and you can get at least a 2X TCO per operation/sec-
ond improvement, then going ASIC Cloud is likely to save 
money. Figure 8 shows a wider range of breakeven points. 
Essentially, as the TCO exceeds the NRE by more and more, 
the required speedup to break even declines. As a result, 
almost any accelerator proposed in the literature, no mat-
ter how modest the speedup, is a candidate for ASIC Cloud, 
depending on the scale of the computation. Our research 
makes the key contribution of noting that in deployment of 
ASIC Clouds, NRE and scale can be more determinative than 
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uncertainty of the design—will the original software be opti-
mized more making the chip less good relatively, will the 
chip have less than expected TCO improvement, et cetera. 
The final two times addresses the issue that the pre-ASIC 
cloud hardware (e.g., GPU or CPU) will also improve and 
could possibly improve by two times by the time you have 
deployed your ASIC cloud system.

8. CONCLUSION
Our research generalizes primordial Bitcoin ASIC Clouds 
into an architectural template that can apply across a range 
of planet-scale applications. Joint knowledge and control 
over datacenter and hardware design allow for ASIC Cloud 
designers to select the optimal design that optimizes energy 
and cost proportionally to optimize TCO. We demonstrated 
methodologies that can be used to design TCO-optimal 
clouds, answering long-standing questions even in contem-
porary Bitcoin ASIC Clouds. Our work analyses the impact 
of NRE and scale on deployment of ASIC Clouds, tying it to 
the TCO-improvement and in turn the energy and cost effi-
ciency of the cloud.

Our work advances research practice by showing how to 
examine accelerators at a systems level instead of at the level 
of a single chip. We evaluate ASIC Cloud chip design, server 
design, and finally datacenter design in a cross-layer system-
oriented way. This joint knowledge and control over data-
center and hardware design allow for ASIC Cloud designers 
to select the optimal design that optimizes energy and cost 
proportionally. We developed the tools and revealed how the 
designers of these novel systems can optimize the TCO in 
real-world ASIC Clouds.

We developed a rule of thumb for when it makes sense 
to go ASIC Cloud, the two-for-two rule. The main barrier 
for ASIC Clouds is to reign in NRE costs so they are appro-
priate for the scale of the computation. In many research 
accelerators, TCO improvements are extreme, but authors 
also target expensive, latest generation process nodes 
because they are more cutting edge. But this habit raises 
the NRE exponentially, reducing economic feasibility. Our 
most recent work6 suggests that a better strategy is to lower 
NRE cost by targeting older nodes that still have sufficient 
TCO per op/s benefit.

Looking to the future, our work suggests that both 
Cloud providers and silicon foundries would benefit by 
investing in technologies that reduce the NRE of ASIC 
design, such as open source IP such as RISC-V, in new 
labor-saving development methodologies for hardware 
and also in open source backend CAD tools. With time, 
mask costs fall by themselves, but currently older nodes 
such as 65 nm and 40 nm may provide suitable TCO per 
op/s reduction, with half the mask cost and only a small 
difference in performance and energy efficiency from 28, 
16, or 7 nm. Foundries should take interest in ASIC Cloud’s 
low-voltage scale out design patterns because they lead to 
greater silicon wafer consumption than CPUs within fixed 
environmental energy limits.

With the coming explosive growth of planet-scale com-
putation, we must work to contain the exponentially grow-
ing environmental impact of datacenters across the world. 
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on a slow-
er downstream flow than on a faster 
downstream flow. Show that swapping 
so that you paddle on a faster down-
stream flow reduces the time. For ex-
ample, consider the proof provided 
by my colleague Ernie Davis: http://
cs.nyu.edu/cs/faculty/shasha/papers/
ernieproof_canoe.pdf

Challenge: Consider the situation 
show in the second figure here.

a) If the paddler P can paddle with a 
water speed of two kilometers per hour 
only, then what is the best route P can 
take and how long will it take?

b) If the paddler P can paddle with 
a water speed of three kilometers per 
hour for one hour but two kilometers 
per hour at all other times, then what is 
the best route P can take and how long 
will it take?

c) If the paddler P can paddle with 
a water speed of three kilometers per 
hour for two hours but two kilometers 
per hour at all other times, then what is 
the best route P can take and how long 
will it take?

d) If the paddler P can paddle with 
a water speed of three kilometers per 
hour for three hours but two kilome-
ters per hour at all other times, then 
what is the best route P can take and 
how long will it take?

Solutions:
d. ABCDF: nine hours
e. ABCEF: five hours (paddles at three 

kilometers per hour between E and F)
f. ACEF: four hours (paddles at 

three kilometers per hour between A 
and C and between E and F)

g. ACEF or AEF: three hours (paddles 
at three kilometers the whole time).

Paddling Upstart: Given a general 
network of different downstream flows 
and a variety of paddle speeds with 
their durations, what is the best route 
to take and at which speeds? Please 
design an algorithm and provide an 
implementation in some widely used 
computer language (or several:).

Dennis Shasha (dennisshasha@yahoo.com) is a 
professor of computer science in the Computer Science 
Department of the Courant Institute at New York 
University, New York, USA, as well as the chronicler of his 
good friend the omniheurist Dr. Ecco.

All are invited to submit their solutions to 
upstartpuzzles@cacm.acm.org; solutions to upstarts and 
discussion will be posted at http://cs.nyu.edu/cs/faculty/
shasha/papers/cacmpuzzles.html

Copyright held by author.
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Publish Your Work 
Open Access 

With ACM!

ACM o� ers a variety of 
Open Access publishing options 

to ensure that your work is 
disseminated to the widest 

possible readership of computer 
scientists around the world.

Please visit ACM’s website 
to learn more about 

ACM’s innovative approach 
to Open Access at: 

www.acm.org/openaccess
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Challenge: Prove that if there is only 
a single route, then the paddler will 
reach the destination earlier by pad-
dling as fast as possible on the fastest 
downstream flowing part as long as 
possible?

 
Proof strategy: Imagine there is an-
other strategy in which it is better to 
paddle faster 

flow downstream at 1.5 kilometers per 
hour. Suppose a paddler is capable of 
paddling for a total of one hour at four 
kilometers per hour and then indefinite-
ly at two kilometers per hour. What is the 
best route to choose from the bottom to 
the top and how long will that take?

Solution to Warm-Up: Paddle at four 
kilometers per hour (water speed) on 
the black segment, reaching the mid-
dle point after one hour. Then paddle at 
two kilometers per hour (water speed) 
on the top red segments. This will take 
another four hours to reach the top be-
cause the effective land speed is only 
0.5 kilometers per hour.

OK, I think you are ready for more 
now.

Challenge: Suppose there is only 
one route of four kilometers along 
which the first two kilometers flow 
downstream at one kilometer per hour 
and the second two-kilometer segment 
flows downstream at two kilometers 
per hour. If a paddler can paddle at four 
kilometers per hour for one hour and 
three kilometers per hour for another 
hour, how should the paddler paddle 
to finish the course as fast as possible?

Solution: In the first hour, the pad-
dler achieves a water speed of four kilo-
meters per hour on the two-kilometer 
long, two kilometers per hour down-
stream segment thus finishing that seg-
ment. In the second hour, the paddler 
achieves a water speed of three kilome-
ters per hour on the two kilometer-long 
one kilometer per hour downstream 
segment, thus completing the route. If 
the paddler paddles at three kilometers 
an hour on the first segment and then 
four kilometers an hour on the second 
segment, the time will be 2 1/3 hours.

A STRON G CA N OE  paddler can achieve a 
water speed of about nine kilometers 
per hour. Most paddlers can achieve 
water speeds of at least two kilometers 
per hour pretty much indefinitely.

If a waterway is flowing against the 
paddler at speed w and the paddler has 
a water speed of s, then the paddler will 
achieve a land speed of s - w. This has 
consequences.

Warm-Up: Consider a system of wa-
terways like that in the first illustration 
in this column, where each segment 
is one kilometer long, the segments in 
black flow downstream at three kilome-
ters per hour, and the segments in red 

Upstart Puzzles 
Strategic Paddling
Choosing how to best navigate turbulent current events. 

[CONTINUED ON P.  111]

A canoe paddler can achieve a water 
speed of four kilometers per hour (km/hr) 
for one hour and two kilometers per hour 
indefinitely. What is the fastest way to go 
from the downstream point to the top point?

DOI:10.1145/3401749  Dennis Shasha

A network of waterways. Depending on 
the strength of the paddler (see text), the 
paddler may take different routes.
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