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cerf’s up

In my last column (June 2020), I wrote  
about my experience with COVID-19 and  
the challenges involved with getting medical 
attention. The problem is still with us, even

with the improved availability of per-
sonal protection equipment and 
masks. The experience of calling for a 
doctor’s appointment and being told 
I could not come into the doctor’s of-
fice was unsettling to say the least. A 
“video consultation” was all that was 
offered. My reaction was “Wait, you 
won’t be getting any vital signs or 
other medical information that way!” 
This led to the natural conclusion that 
remote detection would be helpful in 
these conditions. Telemedicine has 
long been of interest, especially for 
treating patients in rural or isolated 
areas where physicians and hospitals 
may be in short supply or absent en-
tirely. Wearable sensors have become 
popular items for people who want to 
track their daily exercise or challenge 
themselves to exceed past perfor-
mance with new records.

Many companies make devices that 
can sense steps taken, pulse rate, 
heart beats, blood-oxygen levels, rate 
of motion, temperature, blood glu-
cose levels, and weight among other 
metrics. Some devices are already in 
regular use to record continuous 
health conditions such as wearable 
heart monitors. Until now, these have 
made local recordings for later analy-
sis. In the future, one can easily fore-
see real-time monitoring and diagno-
sis through the Internet. Many mobile 
phones support applications that 
gather, analyze, and present this in-
formation. There seems little doubt 
that many more devices will be devel-
oped for non-invasive measurement. 
It is entirely feasible for more invasive 

devices such as pacemakers, defibril-
lators, and arrhythmia detectors to be 
linked to watches or mobile phones. I 
will call these, generally, the Internet 
of Medical Things. Adding to these, 
videoconferencing and high-resolu-
tion cameras on mobile phones, one 
can begin to imagine a significant ca-
pacity for remote medical diagnosis 
and triage. The possibilities get longer 
as more sophisticated measurements 
become possible taking urine, stool, 
and blood samples (finger pricks) for 
local analysis. One can find research 
papers on artificial olfactory systems 
and while this work is still in its infan-
cy, it seems reasonable to anticipate 
successful manufacture of such sys-
tems in the not too distant future and 
which could contribute to the efficacy 
of telemedicine.

The utility of remote sensing has 
already become apparent with the 
COVID-19 epidemic and one might 
imagine that such practices may be-
come the norm rather than the excep-
tion. Such a practice might increase 
the capacity to perform diagnosis, 
with tools such as machine learning 
to provide continuous monitoring 
and useful alerts. It would be like hav-
ing a real-time, long-term and con-
tinuous doctor’s appointment. In-
creased dependence on such tools 
opens the question of accurate detec-
tion and diagnosis of adverse condi-
tions. False positive and negative de-
tection rates would need to be 
minimized. Legal controversies are 
surely predictable, especially in the 
litigious U.S. Despite these risks, 

however, the prospect has very posi-
tive potential.

Widespread practice of continuous 
monitoring could also help with the 
general assessment of population 
health, allowing for early detection of 
epidemic outbreaks and assistance in 
tracking the spread of communicable 
illnesses such as the SARS-COV-2 vi-
rus. Of course, this also raises the 
challenge of keeping personal medi-
cal information private. Cryptography 
and strong access control may well 
contribute to solutions but also pose 
challenges for cryptographic key man-
agement. Every access control mecha-
nism has the potential to be a point 
for denial of service. Managing keys 
and access to them will be a predict-
able challenge if the Internet of Medi-
cal Things is to become a common 
part of public health practice.

It seems inescapable that the Inter-
net of Medical Things will be greatly 
desired to aid the conduct of safe 
medical intervention. It will certainly 
drive the demand for Internet ad-
dressing, lending another argument 
to the importance of adding the IPv6 
addressing capability throughout the 
global Internet. Even if a vaccine for 
this current pandemic is developed, 
there will be other pandemics and 
other communicable disease situa-
tions that will benefit from remote di-
agnosis and triage. I think this notion 
is here to stay. 

Vinton G. Cerf is vice president and Chief Internet Evangelist 
at Google. He served as ACM president from 2012–2014.

Copyright held by author.

On the Internet of Medical Things
DOI:10.1145/3406779  Vinton G. Cerf
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Arthur Scherbius. The Enigma machine 
was a typewriter-like device with three 
rotors, each with an alphabet of its own, 
so each keystroke could create 17,576 
possible meanings (26 x 26 x 26).  When 
a fourth rotor was added, the possibili-
ties rose to 456,976 per keystroke.

The Germans had faith in their sys-
tem, but Turing & Co. met and mastered 
this challenge. The timely information 
they decrypted had profound effects at 
many critical moments. When Erwin 
Rommel and his Afrika Korps made 
their final lunge toward the Nile, Ultra 
intercepts kept the British informed of 
his exact plan of attack—for which they 
prepared well, then repulsed. In the Bat-
tle of the Atlantic, Ultra hacks not only 
allowed for the rerouting of convoys 
away from these predators, but also en-
abled subhunters to turn up and attack 
U-boats and their supply ships at even 
the most remote ocean locations.

Much Ultra-hacked information was 
shared with the Russians, too—to some 
extent under cover of a “legend” that the 
secret material was being provided by a 
British-run human spy ring. This proved 
crucial in many Eastern Front actions, 

but most notably in the massive tank 
battle at Kursk in July 1943, which truly 
broke the back of Hitler’s panzers. At this 
point, the Germans became convinced 
some traitor was leaking their most high-
ly classified information to the Allies, but 
they never lost faith in Enigma.

Nor did the Japanese ever give up on 
their Imperial Codes, the Magic hacking 
of which led to the ambush of Admiral 
Yamamoto’s massive forces at Midway, 
and greatly informed the American sub-
marine campaign against Japanese 
shipping. U.S. Navy “pigboats” sank over 
80% of Japan’s merchant ships, and 
about one-third of the Imperial Navy’s 
warships, almost always guided by Mag-
ic hacks. Indeed, the level of detail was 
so great that, in all the vast Pacific, an 
American submarine commander often 
had such exact information that he 
knew enemy ships’ names, cargoes, 
even what the noon position of the ship 
would be on its course the following day!

Truly, the impact of this first “infor-
mation war” was profound. Had the 
Axis powers been less complacent about 
the robustness of their codes, the out-
comes of critical battles and campaigns 
could well have gone in their favor, rath-
er than against them. The lesson for to-
day from this very cautionary tale is that 
the cybersecurity of armed forces is ab-
solutely crucial to their physical securi-
ty, and to their prospects for victory.

So, on this 75th anniversary of a war 
best known and remembered for its 
range of startling new weapons and 
the sheer grit of its soldiery in battle, 
let us take just a moment to recognize 
the pioneering high-performance 

John Arquilla 
Hacking the Axis
https://bit.ly/3eCnBS6 
May 7, 2020
Observations of the 75th 
anniversary of the end of 

World War II in Europe (May 8, 1945) in-
cluded remembrances of such searing 
events as the struggle on Omaha Beach 
on D-Day, the Battle of the Bulge, and at 
least some recognition of the enormous 
contribution made by the Russian peo-
ple to the defeat of Fascism. Yet in all 
this, I suspect the role of the first “high-
performance computing” capabilities 
of the Allies—known as Ultra in Britain, 
Magic in the U.S.—will receive too little 
attention. 

The truth of the matter is that the 
ability to hack into Axis communica-
tions made possible many Allied suc-
cesses in the field, at sea, and in the air.

Alan Turing and other “boffins” at 
Britain’s Bletchley Park facility built the 
machine—a much-improved version of 
a prototype developed by the Poles in the 
interwar period—that had sufficient 
computing power to break the German 
Enigma encoding system developed by 

How WWII Was Won, 
and Why CS Students 
Feel Unappreciated
John Arquilla considers how code-breaking helped end a war, while 
Jeremy Roschelle ponders the use of music in data science education. 

DOI:10.1145/3403958    http://cacm.acm.org/blogs/blog-cacm
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computing capacity of the Allies con-
tributed most significantly to the final 
margin of victory.

Jeremy Roschelle 
Learning 
Computational 
Thinking to Dominate 
the Music Industry
https://bit.ly/2YmIz2w

April 22, 2020
One of my early experiences in comput-
ing involved using the Music Logo pro-
gramming language to “program” some-
thing that sounded like Beethoven’s 
Fifth Symphony. Working with MIT pro-
fessor Jeanne Bamberger (http://web.
mit.edu/jbamb/www/), I used music as 
a context for programming and for in-
quiry into music. This process reshaped 
my views of what computing could be. I 
came to see computer science as provid-
ing a frame of analysis that could reveal 
the internal structure and patterns with-
in a wide variety of human experiences, 
not just those that intrinsically involve 
computers. This experience led to my 
career as a learning scientist.

More recently, I have had the oppor-
tunity to use music as a context to get 
middle school students in New York City 
excited about data science. I served in a 
consulting role for a multi-institutional 
team that developed Beats Empire, a 
game in which a student manages an 
artist’s rise to fame and fortune. To help 
their artists, the students must demon-
strate what they are learning about using 
data to analyze music industry trends. 
The game both engages students and 
can give teachers a sense of what stu-
dents know and can do. It is available for 
free at https://info.beatsempire.org/ .

Here I will share thoughts about music 
as a context for learning about computing.

1. Music as an authentic, accessi-
ble context

Students have complex experiences 
with music. They don’t just listen to mu-
sic; they talk about how artists use social 
media. They discuss streaming services 
and how they recommend music. They 
think about themes in song titles and 
lyrics. They think about who listens to 
music where and on what devices. This 
rich encounter of music on computing 
platforms can set the stage for a learning 
opportunity where students go behind 
the scenes to see how computing influ-
ences our experience of music.

In interviewing music industry ex-
perts, we found experts could easily and 
cogently explain to students how data is 
being used to shape artist’s music and 
careers—and why data science in the 
music industry can be a great career for 
women and people of color. For example, 
see the interview “A Visit to Chartmetric” 
(https://bit.ly/2Bjocts ), where I visited a 
company that specializes in creating an-
alytics dashboards for artists and their 
managers. Chartmetric was willing to ex-
plain what they do and why they love 
their jobs to middle school students.

2.  Students’ experience of a drive 
for data

As a learning researcher, I have been 
involved in many projects that try to in-
volve students with realistic data. Unfor-
tunately, as educators we often come up 
with “authentic” contexts that aren’t re-
ally something students ordinarily 
would do. In math, I know I have created 
a “manage a soccer team” unit where 
students looked at data about how fast 
team members can run a dash.

One thing I have learned is that in a 
game context, one can simulate a role 
where data collection is not “assigned” 
to students, but where they start from a 
purpose they care about: helping an art-
ist grow their career. In Beats Empire, 
students sometimes make spontaneous 
decisions for their artists. For example, 
they can recommend a mood or theme 
for an artist’s song based on their intu-
ition. But they can also collect data in the 
game, for example on trends in moods 
and themes. They look into what is pop-
ular in particular neighborhoods via an 
in-game map. The game is set up so pay-
ing attention to data and trends can dra-
matically increase the success of the 
player’s artist. This creates a relation-
ship to data that is much more like the 
real world; data is not as a context for a 
specific math concept or science princi-
ple, but rather as a tool for getting better 
at what you care about—in this case,  
music. This can be exciting to students.

3. Students’ opportunity to iterate 
with data

It’s also very common in a math or 
science class to cycle through using 
data only once. In a science lab, you col-
lect the data, analyze it, report it, and 
you are done. In this context, the coher-
ence between the processes of collect-
ing, storing, analyzing, and interpreting 
is often only in the eyes of the curricu-

lum designer or teacher, who make sure 
the phases of the cycle fit together. But 
students need to learn this, too.

It is important for students to see 
how the separate processes of collect-
ing, storing, analyzing, and interpreting 
data constrain each other. If you want to 
analyze a trend of a particular kind, it’s 
important to collect and store the data 
in an appropriate way. A gaming context 
can create a situation where iteratively 
looping through processes happens 
quickly and is essential to the game 
play. Students can start to connect their 
choice of analysis types to actions they 
can take in the game. Likewise, they 
could decide how to collect data based 
on the questions they want to answer. 
There are important lessons to be 
learned in how to iteratively refine the 
relationship between data and an over-
all purpose or initiative.

Students are always learning. Meet 
them where they are.

Overall, the field of the Learning Sci-
ences recognizes learning is not a spe-
cial type of experience that only hap-
pens in designated settings. People are 
always learning. Too often, we begin by 
thinking about what students are not 
learning and then we try to create an ar-
tificial experience so they will learn. But 
it’s also possible to take a context in 
which many students are enjoying 
learning about every day, like music, 
sports, food, or fashion, and think about 
how to deepen their learning about that 
experience. One path is by layering com-
puting-rich experiences into the con-
texts students are already motivated to 
learn about. Games can provide a bridge 
between what students like to learn and 
enhanced opportunities that will lead 
towards a career in computing. 

This material is based on work sup-
ported by the National Science Founda-
tion under Grants No. 1742011 and 
1741956. Opinions, findings, conclu-
sions, or recommendations expressed 
in this material are those of the author 
and do not necessarily reflect the views 
of the National Science Foundation.

John Arquilla is Distinguished Professor of Defense 
Analysis at the United States Naval Postgraduate School 
and author, most recently, of Why the Axis Lost; the views 
expressed are his alone. Jeremy Roschelle is Executive 
Director of Learning Sciences Research at Digital Promise 
and a Fellow of the International Society of the Learning 
Sciences.
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The Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research will 
be awarded in 2020 and 2021 to recognize outstanding research achievement towards the 
understanding of the COVID-19 pandemic through the use of high performance computing. 

The purpose of the award is to recognize the innovative parallel computing contributions 
towards the solution of the global crisis. Nominations will be selected based on performance 
and innovation in their computational methods, in addition to their contributions towards 
understanding the nature, spread and/or treatment of the disease. 

Teams may apply for the award.  Nominations will be evaluated on the basis of the following 
considerations:

• Evidence of important algorithmic and/or implementation innovations
• Clear improvement over the previous state of the art
• Performance is not dependent on an architecture that is specialized or cannot be replicated
• Detailed performance measurements demonstrate the submission’s claims in terms 

of scalability (strong as well as weak scaling), time to solution, and efficiency in using 
bottleneck resources (such as memory size or bandwidth, communications bandwidth, 
I/O), as well as peak performance. 

• Achievement is generalizable, in the sense that other scientists can learn and benefit from 
the innovations

• Although solving an important scientific or engineering challenge is important to 
demonstrate/justify the work, scientific outcomes alone are not sufficient for this prize.

Financial support of this $10,000 award is provided by Gordon Bell, a pioneer in high performance 
and parallel computing.

Call for Nominations

ACM Gordon Bell Special Prize 
for HPC-Based COVID-19 Research

For more information and to 
submit nominations, please visit:

https://awards.acm.org/bell/covid-19-nominations

Nominations for the 2020 award are due on October 8, 2020.

gordon-bell-prize-covide-cacm-ad-fp.indd   1 5/26/20   5:01 PM

https://awards.acm.org/bell/covid-19-nominations
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smith, a professor in the departments 
of Systems Design Engineering, and Phi-
losophy, of the University of Waterloo in 
Ontario, Canada. Although today’s deep 
learning systems rely on software to 
run basic neuromorphic systems using 
conventional field-programmable gate 
arrays (FPGA), central processing units 

T
H E  A B I L I T Y  O F  the human 
brain to process massive 
amounts of information while 
consuming minimal energy 
has long fascinated scien-

tists. When there is a need, the brain 
dials up computation, but then it rap-
idly reverts to a baseline state. Within 
the realm of silicon-based computing, 
such efficiencies have never been pos-
sible. Processing large volumes of data 
requires massive amounts of electrical 
energy. Moreover, when artificial intelli-
gence (AI) and its cousins deep learning 
and machine learning enter the picture, 
the problem grows exponentially worse.

Emerging neuromorphic chip de-
signs may change all of this. The con-
cept of a brain-like computing archi-
tecture, conceived in the late 1980s 
by California Institute of Technology 
professor Carver Mead, is suddenly 
taking shape. Neuromorphic frame-
works incorporate radically different 
chip designs and algorithms to mimic 
the way the human brain works—while 
consuming only a fraction of the en-
ergy of today’s microprocessors. The 
computing model takes direct aim at 
the inefficiencies of existing comput-
ing frameworks—namely the von Neu-
mann bottleneck—which forces a pro-

cessor to remain idle while it waits for 
data to move to and from memory and 
other components. This causes slow-
downs and limits more advanced uses.

“Neuromorphic chips introduce a 
level of parallelism that doesn’t exist in 
today’s hardware, including GPUs and 
most AI accelerators,” says Chris Elia-

Neuromorphic Chips 
Take Shape 
Chips designed specifically to model the neurons and synapses in  
the human brain are poised to change computing in profound ways.

Science  |  DOI:10.1145/3403960  Samuel Greengard

Intel combines 64 of its Loihi “brain-on-a-chip” neuromorphic chips to form a “Pohoiki 
Beach” neuromorphic system featuring eight million artificial neurons. 
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(CPUs), and graphics processing units 
(GPUs), chips specifically designed to 
accomplish these tasks could revo-
lutionize computing. Neuromorphic 
chips are packed with artificial neu-
rons and artificial synapses that mimic 
the activity spikes that occur within the 
human brain—and they handle all this 
processing on the chip. This results 
in smarter, far more energy-efficient 
computing systems.

The impact of commercial neuro-
morphic computing could be enor-
mous. The technology has repercus-
sions across a wide swath of fields, 
including image and speech recogni-
tion, robotics and autonomous vehi-
cles, sensors running in the Internet of 
Things (IoT), medical devices, and even 
artificial body parts. 

As Adam Stieg, associate director 
of the California NanoSystems Insti-
tute at the University of California at 
Los Angeles (UCLA) puts it: “The abil-
ity to perform computation and learn-
ing on the device itself, combined with 
ultra-low energy consumption, could 
dramatically change the landscape of 
modern computing technology.”

Modeling the Brain
The human brain is a remarkable prod-
uct of evolution. It has a baseline en-
ergy footprint of about 20 watts, while 
processing complex tasks in millisec-
onds. While today’s CPUs and GPUs 
can dramatically outperform the hu-
man brain for serial processing tasks, 
the process of moving data from mem-
ory to a processor and back not only 
creates latency, it expends enormous 
amounts of energy. A typical desktop 
computer burns through approximate-
ly 200 watts, while some supercomput-
ers pull as much as 20 megawatts.

The value of neuromorphic sys-
tems is they perform on-chip process-
ing asynchronously. Just as the human 
brain uses the specific neurons and 
synapses it needs to perform any given 
task at maximum efficiency, these chips 
use event-driven processing models to 
address complex computing problems. 
The resulting spiking neural network—
so called because it encodes data in a 
temporal domain known as a “spike 
train”—differs from deep learning net-
works on GPUs. Existing deep learning 
methods rely on a more basic brain 
model for handling tasks, and they 

must be trained in a different way than 
neuromorphic chips.

“If we look at biology, we see incredible 
energy efficiency. This is something we’re 
hoping to emulate in artificial systems,” 
says Garrick Orchard, a researcher in In-
tel’s Neuromorphic Computing Lab. The 
artificial neurons and synapses in neuro-
morphic chips can be stacked into layers 
and inserted in multiple cores. “The idea 
is that by taking inspiration from biology 
and by trying to better understand what 
principles are crucial for low-power com-
putation, we can mimic these character-
istics in silicon and push the boundaries 
of what’s possible.”

However, it isn’t just slashing energy 
consumption that’s appealing. Today’s 
CPUs and GPUs—especially when they 
are used in autonomous vehicles and 
other independent systems—typically 
rely on external systems, primarily 
clouds, to handle some of the process-
ing. The resulting latency is a problem 
for on-board systems that must make 
split-second decisions. “You can’t col-
lect a frame, pass it through to a deep 
neural net, and wait for the response 
when you’re traveling down a freeway 
at 70 miles an hour,” explains Abu Se-
bastian, Principal Research Staff Mem-
ber at IBM Zurich. “Everything has to 
happen instantaneously, and that re-
quires fast on-board processing.” 

So, while the need for clouds and 
edge networks won’t disappear with 
neuromorphic chips, autonomous sys-
tems will be able to handle additional 
critical computing tasks on board. In 
areas such as image processing, this 
could produce exponential improve-
ments. The latency gain of a spike-
based neural network is a fundamental 

benefit—and it evolves beyond today’s 
GPU systems. “Due to the asynchronous 
data-driven mode of computing, the sa-
lient information propagates in a fast 
manner through multiple layers of the 
network. The spikes begin to propagate 
immediately to higher layers once the 
lower layer provides sufficient activity. 
This is very different from conventional 
deep learning, where all layers have to 
be fully evaluated before the final out-
put is obtained,” Sebastian says.

Neuromorphic chips also have the 
ability to learn continuously. “Because 
of their synaptic plasticity and the way 
they learn, they can continue to adapt 
and evolve,” says Sebastian. In practical 
terms, for example, a robotic arm could 
learn to recognize different objects and 
pick them up and move them in a nu-
anced way. If a heavier grip is needed, the 
system would adjust accordingly, and if 
a lighter touch is required, it would also 
adapt. New items wouldn’t throw a neu-
romorphic system off-kilter; it would 
simply “evolve” and “at a much faster 
rate than a CPU could,” Orchard says.

By combining improved energy 
efficiency, reduced latency, and im-
proved on-board learning, neuromor-
phic chips could push image recogni-
tion and speech processing to new levels 
of speed, efficiency, and accuracy. The 
technology could seed speech process-
ing on virtually every type of device and 
produce new types of video cameras that 
operate at lower power and detect pat-
terns and events more efficiently, Elia-
smith says. Still another possible gain 
could take place in datacenters, which 
consume vast amounts of power and 
produce enormous carbon footprints.

The sum of these gains could pro-
duce revolutionary breakthroughs. Re-
searchers have begun to explore the pos-
sibility of developing prosthetics that 
would give amputees the sensation of 
touch, brain-implanted chips that could 
aid stroke or Alzheimer’s victims, self-
healing electronic skin, and even vision 
sensors—essentially retinal implants—
that could restore vision to the blind. 
Scientists also are exploring probabi-
listic neuromorphic systems that could 
predict the odds of an earthquake or re-
cession with a high level of accuracy. 

Says Eliasmith, “Neuromorphic de-
signs allow scaling that hasn’t been 
possible the past. We’re able to go far 
beyond what today’s systems can do.”

Neuromorphic 
systems perform 
on-chip processing 
asynchronously, 
using event-driven 
processing models 
to address complex 
computing problems.
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optimize chip performance. For in-
stance, Eliasmith, who also heads a 
startup company called Applied Brain 
Research, develops algorithms and soft-
ware used to program neuromorphic 
chips. This includes algorithms used for 
deep spiking networks, spiking and 
non-spiking adaptive controls, recur-
rent neural networks, on-chip learning, 
and spiking and non-spiking hierarchi-
cal reinforcement learning.

Meanwhile, in research labs, scien-
tists are experimenting further with the 
technology. For example, at UCLA, Stieg 
and chemistry professor James Gimze-
wski have developed neuromorphic 
systems that can recognize rewards—
similar to a rat in a maze—and artificial 
synapses that can “forget” by using vary-
ing input waves. Borrowing methods 
from human psychology, “We’re build-
ing circuits that can adapt more effi-
ciently by forgetting what isn’t impor-
tant,” Gimzewski explains. The pair also 
have developed nano-wire technology 
that mimics millions of connections in 
the brain. “This introduces a level of im-
permanence that allows the devices to 
be far more flexible,” says Stieg.

A New Model
For now, neuromorphic technology re-
mains in its infancy. There are no com-
mercial products, there are no killer 
applications. Yet, the field is advancing 
rapidly and radically. Commercially 
available chips should begin appear-
ing within the next year or two, and the 
technology will likely take off in earnest 
within the next three to five years. Neu-
romorphic chips are likely to have a sig-
nificant impact on edge devices and IoT 
systems that “must integrate dynamic 

and changing information that doesn’t 
necessary run on a single algorithm—
all while conserving energy,” Stieg says.

“The world is not linear. It’s not de-
terministic. It doesn’t give definitive 
answers,” he concludes. “Conventional 
von Neumann-based computing sys-
tems deal mostly with high-speed, pre-
dictable, deterministic processes. They 
perform these tasks well, but struggle 
when things become more complex. 
Neuromorphic computing aims to open 
up an entirely new and unexplored area 
of computing. It could allow us to do 
things with computers that we couldn’t 
have imagined in the past.” 
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Getting Smarter
Neuromorphic chips won’t replace to-
day’s CPUs and GPUs; they are more 
likely to be embedded next to them as 
separate cores. This would expand the 
way we use existing digital technol-
ogy—particularly on the edge of the 
network—and provide an accelerator 
for niche tasks. “Today’s computers 
are very good at what they do. They will 
continue to outperform neuromorphic 
computing systems for conventional 
processing tasks. The technologies are 
complementary and so they will co-
exist,” says G. Dan Hutcheson, CEO of 
VLSI Research, an independent mar-
ket analysis and consulting firm that 
tracks the semiconductor industry. 

Research and development efforts 
are beginning to produce tangible re-
sults. For instance, Intel Labs has de-
veloped Loihi, a research chip that uses 
a spiking neural network architecture. 
The processor contains 128 neuromor-
phic cores, three Lakemont (Intel Quark) 
CPU cores, and an off-chip communica-
tions network. The chip is designed with 
a high level of configurability, along with 
cores that can be optimized for specific 
tasks. This makes it appealing for spe-
cialized devices. More than 80 members 
of Intel’s Neuromorphic Research Com-
munity—including universities, govern-
ment labs, neuromorphic startup com-
panies, and Fortune 500 firms, are now 
experimenting with Loihi.

IBM has developed a neuromorphic 
chip named TrueNorth. It has 4,096 
cores, each with 256 neurons that, in 
turn, contain 256 synapses each. The 
microprocessor has 1/10,000th of the 
power density of a conventional von 
Neumann processor. It achieves this ef-
ficiency with a spiking neural network. 
Activity in the synthetic neurons oc-
curs only when and where it is needed. 
This makes the chip particularly suited 
to high-speed and low-energy image 
processing and classification tasks. Al-
though TrueNorth is an experimental 
chip, IBM is continuing to actively re-
search neuromorphic technology, in-
cluding approaches that focus on learn-
ing in the chip, Sebastian says.

More than 50 other AI startups around 
the world are actively developing neuro-
morphic chips and technology for a wide 
array of purposes, Hutcheson says. 
While all of this is taking place, others 
are developing software and systems to 

Neuromorphic 
technology remains 
in its infancy; there 
are no commercial 
products or killer 
applications. Yet the 
field is advancing 
rapidly and radically. 
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“In many ways it felt less about a visual 
effect and more like we were creating a re-
ality and aiming to work out exactly how 
the human face works, operates, but also 
how it ages over time,” added Stuart Ad-
cock, facial animation supervisor at Weta. 
Because of this wholesale replacement, 
“we were not limited to any photogra-
phy,” Adcock said. “We had full freedom, 
so when we did need to take it some-
where else, then we were able to do that.”

To build its model, the team first ran 
Smith through various facial exercises, 
such as raising his upper lip. Such “ac-
tion units,” which have overlapping, 
interacting effects in various regions 
of the face, constitute the elements of 
the widely used facial action coding 
system (FACS), originally based for de-
tailed understanding of the skull and 
its muscles. After a year or so of tuning 
a “puppet” to reproduce “current-age 
Will,” they turned their attention to his 
younger clone.

A
RTIF ICIA L IMAG ES HAVE 

been around almost as 
long as movies. As com-
puting power has grown 
and digital photography 

has become commonplace, special ef-
fects have increasingly been created 
digitally, and have become much more 
realistic as a result.

ACM’s Turing Award for 2019 to 
Patrick M. Hanrahan and Edwin E. Cat-
mull reflected in part their contribu-
tions to computer-generated imagery 
(CGI), notably at the pioneering anima-
tion company Pixar.

CGI is best known in science fic-
tion or other fantastic settings, where 
audiences presumably already have 
suspended their disbelief. Similarly, 
exotic creatures can be compelling 
when they display even primitive hu-
man facial expressions. Increasingly, 
however, CGI is used to save money 
on time, extras, or sets in even mun-
dane scenes for dramatic movies.

To represent principal characters, 
however, filmmakers must contend 
with our fine-tuned sensitivity to facial 
expressions. Falling short can leave 
viewers in the “uncanny valley,” dis-
tracted or even repulsed by a zombie-
like representation. “Trying to do real-
istic humans is still the most difficult 
aspect of visual effects,” said Craig Bar-
ron, creative director at visual develop-
ment and experience company Magno-
pus. Barron shared the 2008 Academy 
Award for Best Visual Effects for The Cu-
rious Case of Benjamin Button, in which 
the title character ages backward from 
an old man to an infant.

In the last decade, many films have 
included short flashbacks with younger 
versions of their characters. Within the 
last year, however, some films have used 
new techniques to create feature-length 
performances by convincingly “de-aged” 

actors. Artificial intelligence also in-
creasingly will augment the labor-inten-
sive effects-generation process, allowing 
filmmakers to tell new types of stories.

Synthetic Performers
“The idea of de-aging has been around 
for a while, and companies like Lola Vi-
sual Effects have been doing an amaz-
ing job of using 2D tools to basically 
track young patches onto old faces to 
make people look convincingly a differ-
ent age,” said Guy Williams of Weta 
Digital in Wellington, New Zealand. 
Williams was video-effects supervisor 
for Ang Lee’s 2019 action movie Gemini 
Man, in which Will Smith played an as-
sassin confronted by a younger clone of 
himself. In that film, filmmakers took 
the process a step further, he said. “In-
stead of modifying an image to make a 
performance looks younger, we erase 
the image, create a synthetic young per-
formance, and place it into the shot.”

Digital Humans  
on the Big Screen
Motion pictures are using new techniques in  
computer-generated imagery to create feature-length  
performances by convincingly “de-aged” actors. 

Technology  |  DOI:10.1145/3403972  Don Monroe

In Ang Lee’s 2019 action movie Gemini Man, Will Smith (right) is confronted by a younger 
clone of himself (left). This filmmakers went through a complicated process to “de-age” 
Smith for the younger role. 

http://dx.doi.org/10.1145/3403972
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Adcock likens this process to cre-
ating a musical score derived from a 
performance on one instrument. This 
representation allows the same musi-
cal piece to be performed on another 
instrument, which imparts its own 
characteristic sound.

To construct the “score,” the team 
built on its previous expertise animating 
fantastic characters like Gollum in The 
Hobbit, equipping Smith with facial 
markers and a head-mounted cam-
era rig that recorded his expressions. 
These rigs have been getting sleeker 
and lighter all the time, Adcock said. 
Such “performance capture,” as con-
trasted with “motion capture” of bodily 
movements, provides extremely high-
quality facial data for the animators.

Supporting the Storytellers
For renowned director Martin Scorsese, 
however, headgear and facial markers 
(dots on the actors faces) were still un-
acceptably disruptive to the human in-
teractions he sought in the 2019 epic 
The Irishman. The film features Robert 
De Niro, Al Pacino, and Joe Pesci, all 
now in their late 70s, in roles spanning 
many ages across several decades, so a 
strategy for de-aging was critical. This 
resulted in the film being nominated 
for Best Special Effects and nine other 
Academy Awards.

Beginning several years earlier, 
Pablo Helman and his team from In-
dustrial Light and Magic (ILM), the 
special effects house founded by 
George Lucas, worked with Scorsese 
to develop ways to create the desired 
images much less intrusively. To cap-
ture the performances, they built a 
bulky apparatus in which a normal 
camera was flanked by two infrared 
cameras and associated infrared 
lighting that provided synchronized, 
high-quality stereoscopic information 
needing neither visible facial markers 
nor changes in the lighting desired by 
the filmmakers.

The size and weight of this equipment 
posed some challenges; for example, 
precluding the popular hand-held Stea-
dicam shots. Moreover, although the 
infrared light did not interfere with the 
main camera, the infrared cameras were 
sensitive to cigarette smoke, and could 
not see through vintage car windshields.

In parallel with the hardware, the 
ILM team developed a new software 

pipeline to construct the de-aged im-
ages. In addition to FACS capture from 
the current actors, the team acquired 
huge numbers of images from their pre-
vious performances over the decades, al-
lowing them to select a facial model for 
each of the years in the film. Rather than 
reproduce the exact look of De Niro from 
Taxi Driver (1976) or Goodfellas (1990), 
however, they strove to create a de-aged 
version of his Irishman character. More-
over, instead of using animators to build 
a puppet with De Niro’s facial motions, 
their FLUX software morphed the cap-
tured performance and lighting data to 
create the new image.

The result was a compelling de-
aged character that let the actors act—
and interact.

“If you’re going to get the top actors 
of our time, you need to support their 
acting process and not create a tech-
nology or impose a technology that 
would somehow diminish that per-
formance. That’s what they were able 
to achieve,” said Barron, who said the 
less-intrusive technology “allows more 
adoption among a wider group of peo-
ple into different kind of films.”

Under the Hood
Unlike the latest superhero movie, a 
film like The Irishman succeeds when 
the audience forgets about its tech-
nical sophistication. Nonetheless, 
achieving this realism requires an 
enormous, diverse team innovating in 
both hardware and software (and a 
reported $160-million budget).

“There are people that are creative, 
they’re thinking about design and light-
ing and composition and performance 

Instead of using 
animators to build a 
puppet with DeNiro’s 
facial motions, the 
FLUX software 
morphed captured 
performance and 
lighting data to create 
the new image.

ACM 
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News
HUMAN-COMPUTER 
PARTNERSHIPS

Wendy Mackay 
is a research 
director at Inria 
Paris-Saclay, the 
French national 
research 
institute for the 

digital sciences, at the 
Université Paris-Saclay in Paris, 
France. She heads up the ExSitu 
research group, a lab of 30 
people that explores the limits 
of human-computer interaction.

“I have always been 
interested in how people 
interact with technology,” 
Mackay says, and human-
computer partnerships have 
become a focus for her. People 
react to technology, she points 
out, but they also appropriate it 
and do innovative things with it; 
as a result, technology should 
be designed to support user-
innovation and enhance users’ 
capabilities, she says.

Mackay received a bachelor’s 
degree in experimental 
psychology from the University 
of California, San Diego; an  
M.S. in experimental psychology 
from Northeastern University, 
and a Ph.D. in Management in 
Technological Innovation from 
the Massachusetts Institute  
of Technology.

She started her professional 
career at Digital Equipment 
Corporation (DEC), worked 
there in different capacities 
over a period of 11 years. She 
was working on something new 
at the time: human-computer 
interaction. “It was a new field, 
combining psychology and 
how we think about people and 
technology, and putting them 
together, with an emphasis on 
innovation,” she explains.

After DEC, Mackay 
joined academia, teaching at 
Denmark’s University of Aarhus, 
France’s University of Paris-Sud, 
and even Stanford University as 
a visiting professor. 

In the future, Mackay 
plans to explore the physics 
of interactions with digital 
material. “We will use this to 
rethink how we use intelligent 
systems—machine learning and 
other types of AI—to enhance 
users’ capabilities, to move 
people forward and do more.”

—John Delaney
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scheduled for release late this year.
The filmmakers obtained legal per-

missions to use the actors’ likenesses 
in these films. Still, some commenters 
are worried about the effect of recycling 
actors from previous eras will make it 
harder for current actors to find roles, 
except as a blank slate onto which more 
famous faces are mapped.

Ironically, one of De Niro’s break-
out roles was as a young Vito Corleone 
in The Godfather Part II. With today’s 
technology, he might have been de-
moted to a body double for a de-aged 
Marlon Brando. 

Further Reading

Seymour, M., 
De-Aging the Irishman, fxguide, December 
2019, https://bit.ly/2XZV1DE

Tonelli, B., 
The Lies of The Irishman, Slate, August 
2019, https://bit.ly/3cATzwF

Pioneers of Modern Computer Graphics 
Recognized with ACM A.M. Turing Award, 
ACM, March 18, 2020, https://awards.acm.
org/about/2019-turing

The Hobbit: An Unexpected Journey 
VFX | Breakdown - Gollum, Weta Digital,       
https://bit.ly/2UbKgg

Dr. Ekman explains FACS (Facial Action 
Coding System), https://bit.ly/3gRRakx

How The Irishman’s Groundbreaking VFX 
Took Anti-Aging To the Next Level, Netflix, 
https://bit.ly/2AJFU99

Don Monroe is a science and technology writer based in 
Boston, MA, USA.
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of storytelling, and there’s the people 
under the hood that have to make that all 
work. It’s really a collaboration between 
the technologist and the artist,” said Bar-
ron, whose current work at Magnopus 
aims to extend storytelling to the realm 
of virtual and augmented reality. “It’s the 
collaboration that determines whether 
the project is successful or not.”

For example, the Weta team worked 
together to improve the “facial solver” 
that represents the captured positions 
of face markers and other features in 
terms of underlying action units. Al-
though there may be different ways 
to break down the various training 
movements, they used deep learning 
to ensure their description matched 
the way their animators think about 
those movements. With that training, 
the solver could then decide, for each 
frame of the footage, which muscles 
were firing, Stuart said. “It gave us a 
good starting point.”

“The power of AI being applied 
to visual effects is relatively new and 
there are huge potentials for that,” 
Barron said. “To harness the power of 
the computer to teach it to simulate 
reality, whether it’s through creating a 
performance or a synthetic human or 
an environment, I think will have a lot 
of benefit to creating more and more 
credible illusions.”

Bringing Back the Dead
Creating lifelike representations of ac-
tors in roles they never played does 
raise challenging ethical issues. One is 

the ability to put words in the mouths 
of politicians, or to put celebrities into 
pornographic scenes. Fortunately, such 
“deepfakes” are unlikely to have the 
Hollywood-level resources and actor co-
operation used to make truly convincing 
fakes, although they are already good 
enough to cause trouble. (Some critics 
noted that The Irishman repeated some 
implausible claims from the book on 
which it was based, but worries about 
movies distorting historical facts are 
nothing new.)

Another concern is reuse of actors 
who are unavailable, or even dead. The 
2016 “Star Wars story” Rogue One, for 
example, included a brief but contro-
versial appearance by Peter Cushing, 
who had died in 1994. The most ambi-
tious re-animation so far is the reported 
casting of James Dean, who died in 
1955, as a costar in the film Finding Jack, 

“The power of AI 
being applied to 
visual effects is 
relatively new and 
there are huge 
potentials for that,” 
Barron said. 

ACM named Maria Florina 
“Nina” Balcan of Carnegie 
Mellon University to receive 
the ACM Grace Murray Hopper 
Award for her contributions to 
minimally supervised learning. 

Balcan’s pioneering work 
in machine learning solved 
longstanding open problems, 
enabled entire lines of research 
crucial for modern AI systems, 
and set the agenda of the field for 
years to come.

ACM President Cherri M. 
Pancake said although Balkan 
is still in the early stages of 
her career, “she has already 
established herself as the world 

leader in the theory of how AI 
systems can learn with limited 
supervision. More broadly, 
her work has realigned the 
foundations of machine learning, 
and consequently ushered in 
many new applications that have 
brought about leapfrog advances 
in this exciting area of artificial 
intelligence.”

Balcan introduced the first 
general theoretical framework 
for semi-supervised learning, 
showing how to achieve provable 
guarantees on the performance 
of such techniques with concrete 
implications for many different 
types of semi-supervised 

learning methods.
She also made significant 

contributions to active learning 
by establishing performance 
guarantees for active learning 
that hold even when “noise” 
is present in the data, and 
with colleagues she developed 
algorithms that can learn more 
efficiently under more specialized 
forms of “label noise.”

Balcan proposed a 
theoretical foundation for 
understanding the general 
kinds of structures that can 
be detected by clustering, 
as well as characterizing 
the functionality of specific 

clustering algorithms. She 
also devised novel clustering 
algorithms derived from these 
theoretical foundations, and 
showed applications of these 
algorithms in computational 
biology and Web search.

The ACM Grace Murray 
Hopper Award is given to the 
outstanding young (under 35) 
computer professional of the 
year, selected on the basis of a 
single recent major technical or 
service contribution. The award 
is accompanied by a prize of 
$35,000 (financial support 
for this award is provided by 
Microsoft).

Milestones

Balcan to Receive ACM Grace Murray Hopper Award 

https://bit.ly/2XZV1DE
https://bit.ly/3cATzwF
https://awards.acm.org/about/2019-turing
https://www.youtube.com/watch?v=HUGdsjwTf2s
https://bit.ly/3gRRakx
https://bit.ly/2AJFU99
https://awards.acm.org/about/2019-turing
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countries looking for help on Game 
Quitters every month.

Adair sees clear negative effects 
from excessive video gaming every day 
in the people he helps. Extreme video 
game addicts, he says, may neglect to 
eat, sleep, or to perform work or school 
duties. “The most common case I see is 
a college student, usually male, who is 
now beginning to fail school and can’t 
seem to get themselves away from 
games,” says Adair.

In Adair’s view, video games them-
selves cause some of these problems. 
Some sufferers find the perception of 
achievement within games so addic-
tive that they stop pursuing goals in the 
real world. In other scenarios, he says, 
the technology may be used as a dis-
traction from actual depression or anx-
iety. In either case, the effects of exces-
sive video gaming on lives are very real.

“Struggling gamers are losing their 
jobs, failing school, and getting di-
vorced. The real-life impact is signifi-
cant and can be devastating,” he says.

Not everyone agrees that the nega-
tive effects of video gaming should be 
clinically labeled as an addiction.

Mental health researchers, led by 
psychologist Andrew Przybylski, pub-
licly contested WHO’s classification. 
Przybylski, an associate professor, se-
nior research fellow, and director of re-
search at the Oxford Internet Institute 
of the University of Oxford, says WHO 
relies too heavily on research into gam-
bling behaviors, which are addictive, 
and has not reached a consensus on 
the symptoms of video game overuse.

There is even less agreement 
about the negative effects around 
smartphones and other consumer 
technology platforms.

Digital Tools, Physical Effects
While WHO has formally recognized vid-
eo game addiction, it has not recognized 

I
T ’ S  E A S Y  TO  think the world is 
suffering from full-blown tech-
nology addiction.

We read daily headlines 
about how social media plat-

forms threaten our mental health, 
our relationships, and even demo-
cratic society itself. We hear smart-
phone addiction is the latest scourge 
sweeping the nation’s youth, and we 
even see tech leaders like Chris 
Hughes, who co-founded Facebook, 
publicly call for the break-up of the 
firm he created because of its addic-
tive content and features.

It certainly seems like “technology 
addiction” is a real condition and that 
it is everywhere. But the truth is a little 
less black and white.

Technology addiction is a broad 
term that isn’t always well defined. It 
can mean any type of negative behav-
ior across video gaming, smart-
phone usage, and use of social me-
dia platforms like Facebook. It is 
medically unclear if these negative 
behaviors are actually addictive, and 
it is difficult to tell if these behaviors 
are due to the way the technology in 
question works or because we have a 
hard time controlling our own use of 
individual technologies.

Video game addiction was added by 
the World Health Organization (WHO) 
in 2018 to its International Classifica-
tion of Diseases, which the organiza-
tion describes as the international 
standard for disease reporting. The 
move was welcomed by some who see 
video game addiction as a real disease, 
but it was contested by others who ar-
gued that video game addictions—
and other types of technology addic-
tion—do not meet clinical standards 
of addiction.

While everybody seems to agree 
video gaming in excess can cause 
harm, there is less consensus on 

whether or not smartphones and con-
sumer technology have negative ef-
fects on our behavior and, if so, how to 
classify these effects.

Bad Habit or Actual Addiction?
WHO says video game addiction oc-
curs when gaming interferes with life, 
and the individual is unable to stop 
gaming despite this interference. It 
also says this severity of behavior must 
occur for a year or more to classify as 
an addiction.

Clearly, some people experience 
real physical and mental harm from 
overusing video games.

“For gamers who struggle with vid-
eo game addiction, it’s a real condition 
that impacts many areas of life, includ-
ing school, employment, mental and 
physical health, and relationships,” 
says Cam Adair, founder of Game Quit-
ters, a video game addiction support 
group. Adair describes himself as a 
video game addict who was hooked for 
10 years, playing up to 16 hours a day, 
until the habit caused problems in his 
life, including forcing him to drop out 
of school. Today, he speaks and writes 
about his recovery, and helps other 
video game addicts kick the habit. He 
sees validation for video game addic-
tion as a harmful condition worth 
treating in the 75,000 people in 95 

Are We Addicted  
to Technology?
Experts agree technology causes some negative behaviors,  
but they are divided on how bad the problem is.

Society  |  DOI:10.1145/3403966 Logan Kugler
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addictions related to smartphone use or 
to other consumer technologies. Neither 
has the Diagnostic and Statistical Manu-
al of Mental Disorders, the U.S. ‘bible’ of 
psychological conditions.

However, one 2016 study led by Suli-
man Aljomaa of King Saud University 
in Saudi Arabia and published in Com-
puters in Human Behavior found that, 
among undergraduate university stu-
dents surveyed, the smartphone “ad-
diction percentage among participants 
was 48%.” However, the degree of ad-
diction differed based on factors like 
gender and social status.

Another study, published in the 
journal BMC Psychiatry, found prob-
lematic smartphone usage was associ-
ated with increased anxiety and de-
pression in children and young 
people, although these symptoms 
were self-reported.

Other researchers say studies such 
as these are flawed.

In a 2018 study published in the 
Journal of Behavioral Addictions, Taya-
na Panova and Xavier Carbonell sur-
veyed a range of literature that claimed 
smartphones were addictive. The re-
searchers cite addiction’s clinical 
symptoms as “mood modification, tol-
erance, salience, withdrawal symp-
toms, conflict, and relapse.” However, 
they found much of the literature re-
lied on self-reported results and incon-
sistent questions to determine if a clin-
ical addiction was present.

Panova and Carbonell concluded 
problematic smartphone use is “an 
evolving public health concern that re-
quires greater study to determine the 
boundary between helpful and harm-
ful technology use.” However, they 
said, excessive smartphone use doesn’t 
merit the term “addiction.”

Przybylski, the psychologist who 
contested WHO’s classification of vid-
eo games as an addiction, echoes this 
view. He says we aren’t even thinking 
about the problems posed by technol-
ogy properly yet. The potential negative 
effects of technology deserve serious 
consideration, conversation, and 
study, he says, but that is not what is 
happening now. “I’m certain that the 
world would be a better place if we de-
leted most of the existing research [on 
technology addiction] and started 
anew with open, transparent, and re-
producible science.”

Przybylski would like to see indepen-
dent scientists investigating technology 
addiction show their work using robust 
methods, as well as soliciting participa-
tion from video game, technology, and 
social media companies in their stud-
ies. “It’s pretty clear that there may be 
something going on, but it is not clear 
that technology is to blame,” he says. 
“The current literature is a bit like blam-
ing a runny nose for the flu.”

What the Doctors Order?
Despite the debate, excessive video 
gaming’s negative effects are severe 
enough to merit prescriptive solutions.

Game Quitters offers educational 
programs for gamers, parents, and 
medical professionals. Traditional 
therapy and residential programs for 
gaming addicts exist, too, including 
some run by the U.K. National Health 
Service. Adair says these are still being 
developed, and they can be expensive, 
with private residential treatments 
running $10,000 or more per month. 
“That’s one reason why I believe it’s es-
sential that free or affordable solu-
tions are developed and provided for 
people struggling,” says Adair. “If 
someone has a video game addiction, 
cost should not be a barrier for them to 
receive help.”

Yet the “solution” to excessive 
smartphone and technology use, if 
needed at all, is unclear.

Behavioral scientist Nir Eyal, author 
of Hooked: How to Build Habit-Forming 
Products, argues often and vocally that 
technology is not addictive. Eyal also 
has written about how to use technolo-
gy responsibly, in his book Indis-
tractable: How to Control Your Attention 
and Choose Your Life. In both books, 
Eyal argues that technology use or 
abuse is up to the user. He recom-
mends individuals assess how they 
spend their time at a granular level, to 
better understand what distracts them 
and why.

Others argue we need to address 
technology’s negative effects by taking 
back power from the massive technol-
ogy companies that make smart-
phones, software, and platforms.

Tristan Harris, a former Google 
product manager who now runs the 
nonprofit Center for Humane Technol-
ogy, which is dedicated to realigning 
people’s relationships with massive 

technology companies, argues firms 
like Apple, Facebook, and Google engi-
neer products to capture maximum at-
tention, since their business models 
rely on active users and captive audi-
ences for advertising. Because of this, 
popular technology tools and plat-
forms direct our behavior in ways we 
can’t always control.

The Center for Humane Technology 
pushes for societal change through 
writing, speaking, and lobbying policy 
makers for greater oversight over tech 
companies.

At the end of the day, people like 
Adair are not sure it even matters if ex-
cessive technology usage is classified 
as an addiction, or who is to blame. 
With extreme gaming behavior, says 
Adair, the effects are real no matter 
what you call it or at whom you point 
fingers. “While professionals may de-
bate the merits of a video game addic-
tion diagnosis, the gamer themselves 
is actively struggling.” 

Further Reading

Aljomaa, S., 
Smartphone addiction among university 
students in the light of some variables, 
Computers in Human Behavior, Aug. 2016, 
http://bit.ly/2xf0VHh

Eyal, N., 
Hooked: How to Build Habit-Forming 
Products, November 2014,  
https://amzn.to/2TFBYvZ

Panova, T. and Carbonell, X., 
Is smartphone addiction really  
an addiction?, National Center for 
Biotechnology Information, Jun. 12, 2018, 
https://www.ncbi.nlm.nih.gov/pmc/ 
articles/PMC6174603

Sohn, S., Rees, P., Wildridge, B.,  
Kalk, N., and Carter, B., 
Prevalence of problematic smartphone 
usage and associated mental health 
outcomes amongst children and  
young people: a systematic review,  
meta-analysis and GRADE of the evidence,  
BMC Psychiatry, November 29, 2019,  
http://bit.ly/31SmNDF

Thompson, N., 
Our Minds Have Been Hijacked by  
Our Phones. Tristan Harris Wants  
to Rescue Them, WIRED, Jul. 26, 2017, 
http://bit.ly/3azwCcJ

Logan Kugler is a freelance technology writer based 
in Tampa, FL, USA. He has written for over 60 major 
publications.
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ty efforts must take into consideration 
how race, class, gender, and other as-
pects of identity shape strategies and 
approaches to broadening participa-
tion in computing.6 Research sup-
ports that such approaches are a key 
component in ensuring the full ac-
cess, engagement, and inclusion of 
women and girls of color in STEM and 
computing.1,2,9,14

Employing an intersectional frame-
work is critical in understanding how 
to address the underrepresentation of 
Latinas in computing. Latina girls and 
women in the U.S. are avid users of 
technology, but they are significantly 
underrepresented in its creation. 
There are several unique barriers fac-
ing Latinas’ participation in computer 
science, including: a lack of access to 
CS classes in school and afterschool 
programs;4 lower levels of STEM and 
CS confidence and self-efficacy;18 a 
lack of family support and encourage-
ment to pursue computing careers;3 

A
CHIEVING DIVERSITY IN 

computing is a pressing 
national concern in the 
U.S.8,14 Computing-relat-
ed jobs will be among the 

fastest growing and highest-paying 
over the next decade according to the 
U.S. Bureau of Labor Statistics.16 Yet, 
women are significantly underrepre-
sented in computing degrees and ca-
reers, holding only 26% of U.S. com-
puting occupations.17 There is even a 
greater dearth of women of color in 
computing, especially Latinas. Eigh-
teen percent of the U.S. population is 
Hispanic and Latinx, yet currently 
only 1% of the jobs in the computing 
workforce are occupied by Latinas. 
Latinx girls represented a mere 4% of 
all students taking the AP computer 
science exam in 2017.11 In 2014, His-
panic women received only 2% per-
cent of doctoral degrees in computer 
and information sciences.

The National Center for Women & 

Information Technology (NCWIT; see 
https://www.ncwit.org) was chartered 
in 2004 to broaden the participation 
of women and girls across the technol-
ogy ecosystem (K–12, higher educa-
tion, and industry). NCWIT’s organi-
zational mission is centered around 
the concept of intersectionality: equi-

TECHNOLOchicas 
provides various 
types of resources, in 
English and Spanish, 
to help families 
encourage the young 
women in their lives 
to pursue computing.

Broadening Participation 
TECHNOLOchicas:  
A Critical Intersectional Approach 
Shaping the Color of Our Future 
A unique partnership seeks to address the underrepresentation and  
unique barriers facing Latina women and girls of color in information technology. 

• Richard Ladner, Column Editor 

http://dx.doi.org/10.1145/3408052
https://www.ncwit.org
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ple is “Top 10 Ways Families Can En-
courage Girls’ Interest in 
Computing,”b which offers tips for 
sparking interests and taking advan-
tage of hands-on learning opportuni-
ties as just a couple of key ways for 
families to help further the TECH-
NOLOchicas mission of increasing 
the meaningful participation of Lati-
nas in the tech industry. Connecting a 
girl’s current interests to computing 
concepts and discussing how comput-
ing is relevant in improving everyday 
social issues is also critical. Online 
videos and profiles of more than 300 
TECHNOLOchicas help girls see real-
life, diverse Latinas in tech. These sto-
ries also help young girls understand 
how they can connect their own inter-
ests into the development of cutting-
edge products and solutions for soci-
ety at large.

Measuring Impact
“In the four years since the launch of 
TECHNOLOchicas, important strides 
have been made in raising awareness 

b See https://www.ncwit.org/resources/ 
top-10-ways-families-can-encourage-girls- 
interest-computing

and a lack of Latina role models in 
computer science.5,8,10,15

In January 2015, NCWIT and 
Google convened a historic roundta-
ble session in Washington, D.C., to ad-
dress the challenge of how to increase 
Latinas’ awareness, interest, and in-
volvement in technology. Dozens of 
stakeholders from various sectors—
including government, industry, and 
non-profit change leaders—partici-
pated in the 2015 meeting. Attendees 
spent the day identifying ways to 
broaden the participation of Latinas 
in tech, and developing key strategies 
to support and encourage young Lati-
nas. Participants agreed on the value 
of creating a media campaign to rede-
fine the mainstream image of comput-
er science and information technolo-
gy to make it more inclusive and 
appealing to young Latinas. In part-
nership with the Televisa Foundation,a 
TECHNOLOchicas was born (see 
https://technolochicas.org/).

Guided by the distinctive voices 

a TECHNOLOchicas is co-produced by NCWIT 
and the Televisa Foundation with support 
from Apple, Qualcomm, Microsoft, AT&T, 
Univision and the Computing Alliance of 
Hispanic Serving Institutions (CAHSI).

and perspectives of Latinas, TECH-
NOLOchicas was designed as a na-
tional initiative attentive to the 
unique barriers facing Latinas in 
gaining access and inclusion in com-
puting, and to inspire the next gener-
ation of Latina technology innova-
tors. Visibility is a key aspect of the 
initiative, as we understand that 
young Latinas “can’t be what they 
can’t see.” The first TECHNOLOchi-
cas public service announcement 
(PSA) debuted on January 18, 2016, 
bringing positive Latina role models 
into the homes of millions. The pro-
gram celebrates and highlights Lati-
nas achieving success in tech who in-
spire young women to pursue 
computing. The campaign helps to 
show the Latinx community that their 
daughters can achieve the same, or 
even greater, success in the technol-
ogy industry.

TECHNOLOchicas provides vari-
ous types of resources, in English and 
Spanish, to help families encourage 
the young women in their lives to pur-
sue computing. These materials in-
clude research-based guides and tips, 
inspirational videos, and profiles of 
real-life Latina role models. An exam-

https://www.ncwit.org/resources/top-10-ways-families-can-encourage-girls-interest-computing
https://technolochicas.org/
https://www.ncwit.org/resources/top-10-ways-families-can-encourage-girls-interest-computing
https://www.ncwit.org/resources/top-10-ways-families-can-encourage-girls-interest-computing
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in various ways from exposure to Lati-
na professionals, including:

 • “... learning more about Latina 
women in the STEM Field and how they 
got to where they are today.”

 • “...listening to the different back-
grounds of the TECHNOLOchicas that 
led to where they are now”

 • “...being around so many ambitious 
Latinas.”

 • “..listening to the different back-
grounds of the TECHNOLOchicas that 
led to where they are now.”

The ambassadors themselves are 
also positively impacted by their expe-
riences in the TECHNOLOchicas pro-
gram. The following quotes exemplify 
the types of impact reported:

 • “TECHNOLOchicas is an inspiring 
and powerful community to be a part of. 
I’m not only surrounded by incredible 
leaders in STEM, but I’m also collabo-
rating with them to inspire and shape 
the next generation of Latina Engi-
neers.”

 • TECHNOLOchicas motivates me to 
continue to be the best engineer I can 
possibly be while helping others become 
the best version of themselves as well.

At its core, TECHNOLOchicas seeks 
to inspire Hispanic girls and their fam-
ilies. Collected qualitative data sug-
gests this effect is being realized. After 
attending an outreach event, girls re-
port being inspired. Asked what they 
plan to do after attending their local 
event, responses include persisting in 
the face of challenges, focusing on do-
ing well in school, and sticking with 
computing or engineering because 
they can see now where it will get them. 
Representative excerpts include:

As a result of attending today’s 
event, I plan to…

 • Learn and teach others about com-
puting;

 • Continuing to work hard in my engi-
neering class;

 • Work even harder because my op-
portunities are endless.

Since TECHNOLOchicas began, 
there has been a promising trend up-
ward in the percentage of Latinas tak-
ing the AP Computer Science Princi-
ples (CSP) exam. As The College Board 
(2019) notes, the CSP exam was de-
signed to invite a more diverse group of 
students to technology. In 2017, 2,642 
Latinas took the exam, reflecting six 
percent of all test takers. By 2019, 6,393 

where more than 5,000 Latinas have 
learned directly from their peer role 
models. For many, these events have 
been their first exposure to comput-
ing, and for others it has served as en-
couragement to pursue a path in com-
puting. Providing exposure to 
computing fields through a shared 
cultural lens helps students create a 
computing identity at a young age and 
helps them persist. It is also impor-
tant for Latinas pursuing computing 
degrees to have access to mentorship 
and role models that share a common 
cultural background. TECHNOLOchi-
cas Ambassadors hold events around 
the country to expose girls to coding 
and other aspects of computing ca-
reers. Events are evaluated qualitative-
ly. Participants report that they benefit 

through our simple message of, ‘I’m 
Latina and I love technology.’” TECH-
NOLOchicas PSAs have aired more 
than 10,000 times in more than 20 
Univision markets across the country 
reaching millions of Spanish-speak-
ing households. There are more than 
320 TECHNOLOchicas Ambassadors 
throughout the United States and 
Puerto Rico, a network of college-
aged Latinas who serve as near-peer 
role models to the younger students 
and facilitate hands-on computing 
workshops, provide guidance and 
practical advice on how to gain access 
to pathways into computing, and in-
spire girls to become the future of the 
tech workforce.

TECHNOLOchicas has held more 
than 500 outreach events nationwide, 
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Latinas sat for the test, and represent-
ed 6.7% of the testing population. 
While there is no direct linkage be-
tween TECHNOLOchicas and the num-
ber of Latinas taking the CSP exam, it 
nonetheless encouraging that Latinas 
are receiving support and encourage-
ment to consider educational and ca-
reer pathways in technology.

Shaping the Color of Our Future
NCWIT, as well as other change leaders 
working to advance the Latinx commu-
nity, including Latinas in STEM,c His-
panic Heritage Foundation,d and the 
Eva Longoria Foundation,e can change 
the trajectory and economic prospects 
of Latinx families in the U.S., who can 
help fill the anticipated 3.5 million 
computing-related job openings by 
2026.6 By being part of this change, we 
hope that future generations of Latinas 
will face fewer barriers to pursuing ca-
reers in computing. As women of color 
in this space, it is both rewarding and 
fills us with great pride to know that we 
are uplifting entire communities, and 
an entire nation.

The TECHNOLOchicas initiative 
has helped us see we have the potential 
to influence the participation of wom-
en and girls of color from other under-
represented backgrounds (including 
Black and Native American) in comput-
ing. We need more national programs 
and initiatives that employ an intersec-
tional approach to address the short-
age of Latinas and other girls of color 
in tech. Recently, NCWIT spearheaded 
The Color of Our Future initiative, which 
anchors NCWIT programs, initiatives, 
and research-based resources focused 
on broadening the meaningful partici-
pation of underrepresented women 
and girls of color to positively impact 
the future of computing.

Yet in order to shape the future of 
tech, we need both intersectional and 
mainstream approaches to equity and 
representation. The presence of tar-
geted, intersectional programs should 
not erase the need for more inclusive 
programs targeted at broadening the 
participation of women and other un-
derrepresented populations across 
the tech ecosystem. Computing pro-

c See http://www.latinasinstem.com
d See https://hispanicheritage.org/
e See https://evalongoriafoundation.org/

Becoming  
an ‘Adaptive’ Expert

Improving Social 
Alignment during  
Digital Transformation

Keeping CALM:  
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Dark Patterns: Past, 
Present, Future
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Persistent?
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On the Value  
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grams and the overall tech industry 
should be intentional and holistic in 
their approaches and aim to be as in-
tersectional and inclusive as possible.

TECHNOLOchicas has empowered 
many Latinas in tech, giving them a 
sense of belonging and confidence 
they often lacked. Helping Latinas of 
all ages see the potential they have to 
influence the technologies that are 
created in the future will be game-
changing for this industry. 
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          queue.acm.org

currently has credence in security cir-
cles, but, candidly, that is just a black-
box test of a system. In point of fact, the 
goal of any security test or review is to 
determine if an attacker can carry out 
a successful attack against the system.

Determining what is or is not a suc-
cessful attack requires the security 
tester to think like the attacker, a trick 
KV finds easy, because at heart (what 
heart?) I am a terrible person whose 
first thought is, “How can I break this?” 

Dear KV,
I am working on a project that has 
been selected for an external security 
review by a consulting company. They 
are asking for a lot of information but 
not really explaining the process to 
me. I cannot tell what kind of review 
this is—pen (penetration) test or some 
other thing. I do not want to second-
guess their work, but it seems to me 
they are asking for all the wrong things. 
Should I point them in the right direc-
tion or just keep my head down, grin, 
and bear it?

Reviewed

Dear Reviewed,
I have to say that I am not a fan of keep-
ing one’s head down, or grinning, or 
bearing much of anything on someone 
else’s behalf, but you probably knew 
that before you sent this note. Many 
practitioners in the security space are 
neither as organized nor as original in 
their thinking as KV would like. In fact, 
this is not just in the security space, but 
let me limit my comments, for once, to 
a single topic.

Overall, there are two broad types 
of security review: white box and black 
box. A white-box review is one in which 
the attackers have nearly full access 
to information such as code, design 
documents, and other information 
that will make it easier for them to de-
sign and carry out a successful attack. 

A black-box review, or test, is one in 
which the attackers can see the system 
only in the same way a normal user or 
consumer would.

Imagine you are attacking a con-
sumer device such as a phone. In a 
white-box situation, you have the de-
vice, the code, the design docs, and 
everything else the development 
team came up with while building the 
phone; in a black-box case, you have 
only the phone itself. The pen-test idea 

Kode Vicious 
Broken Hearts 
and Coffee Mugs
The ordeal of security reviews.
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V self if you have any type of ability or in-
tuition around security.

Lastly, we come to the code reviews. 
Any reviewer who wants to start here 
should be fired out of a cannon im-
mediately. The code is actually the 
last thing to be reviewed—for many 
reasons, not the least of which is that 
unless the security-review team is even 
larger than the development team, 
they will never have the time to finish 
reviewing the code to sufficient depth.

Code reviews must be targeted and 
must look deeply at the things that re-
ally matter. It is all of the previous steps 
that have told the reviewers what really 
matters, and, therefore, they should be 
asking to look at maybe 10% (and hope-
fully less) of the code in the system. The 
only broad view of the code should be 
carried out, automatically, by the code-
scanning tools previously mentioned, 
which include static analysis. The stat-
ic analysis tools should be able to iden-
tify hot spots that the other, human re-
views have missed.

With the review complete, you should 
expect a few outputs, including sum-
mary and detailed reports, bug-tracking 
tickets that describe issues and mitiga-
tions (all while being secured from pry-
ing eyes), and hopefully a set of tests the 
QA team can use to verify that the identi-
fied security issues are fixed and do not 
recur in later versions of the code.

It is a long process littered with bro-
ken hearts and coffee mugs, but it can 
be done if the reviewers are organized 
and original in their thinking.

KV

 Related articles 
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How to Improve Security?
Kode Vicious
https://queue.acm.org/detail.cfm?id=2019582

Security Problem Solved?
John Viega
https://queue.acm.org/detail.cfm?id=1071728

Pickled Patches
Kode Vicious
https://queue.acm.org/detail.cfm?id=2856150

George V. Neville-Neil (kv@acm.org) is the proprietor of 
Neville-Neil Consulting and co-chair of the ACM Queue 
editorial board. He works on networking and operating 
systems code for fun and profit, teaches courses on 
various programming-related subjects, and encourages 
your comments, quips, and code snips pertaining to his 
Communications column.

Copyright held by author.

Security testing is often quite easy be-
cause of the incredibly low overall 
quality of software and the increasing-
ly large number of software modules 
used in any product. To paraphrase 
Weinberg’s Second Law, “If architects 
designed buildings the way program-
mers built programs, the first wood-
pecker that came along would destroy 
all of society.” The difficult parts of 
security work are constraining the at-
tacks to those that matter and getting 
past those developers with a modicum 
of clue who are able to build systems 
that at least resist the most common 
script kiddie attacks.

Your letter seems to imply your ex-
ternal reviewers are interested in a 
white-box review since they are asking 
for a great deal of information, rather 
than just taking your system at face 
value and trying to violate it. What to ex-
pect from a white-box security review, 
at least at a high level, should not be a 
surprise to anyone who has ever partici-
pated in a design review, as the two pro-
cesses should be reasonably similar. 
The review would work in a top-down 
fashion, where the reviewer asks for an 
overall description of the system, hope-
fully enshrined in a design document 
(please have a design document); or 
the same information can be extracted, 
painfully, through a series of meetings.

Extracting a design in a review meet-
ing takes a great deal longer in the ab-
sence of a design document but, again, 
looks similar to a design review. First, 
there must be a lot of coffee in the room. 
How much coffee? At least one pot per 
person, or two if you have KV in the 
room. With the coffee in place, you need 
a large whiteboard, at least two meters 
(six feet) long.

Then we have the typical line of in-
terrogation: “What are the high-level 
features?” “How many distinct pro-
grams make up the system?” “What 
are they called?” “How do they com-
municate?” and for each program, 
“What are the major modules of this 
program?” KV once asked a software 
designer after he had filled a four-
meter whiteboard with named boxes, 
“What’s the architecture that holds 
all this together?” to which the answer 
was, “This system is too complex to 
have an architecture.” The next sound 
was KV’s glasses clattering on the table 
and a very heavy sigh. Needless to say, 

that piece of software was riddled with 
bugs, and many were security related.

A good reviewer will have a mini-
mal checklist of questions to ask about 
each program or subsystem, but noth-
ing too prescriptive. A security review 
is an exploration, a form of spelunk-
ing, in which you dig into the dirty, un-
loved corners of a piece of software and 
push on the soft parts. Overly prescrip-
tive checklists always miss the impor-
tant questions. Instead, the questions 
should start broad and then get more 
focused as issues of interest appear—
and trust me, they always will.

When issues are found, they should 
be recorded, though perhaps not in an 
easily portable form, since you never 
know who else is reading your ticketing 
system. You want to get inside a system 
and go read the bugs. If you have a bad 
apple or two inside the company (and 
what company is free of rotten apples?) 
and they do a search on “Security P1,” 
they are going to walk away with a lot 
of fodder for zero-day attacks against 
your system.

Once the system and its modules 
have been described, the next step is 
to look at the module application pro-
gramming interfaces (APIs). You can 
learn a lot about a system and its se-
curity from looking at its APIs, though 
some of what you will learn will never 
be able to be unseen. It can be pretty 
scarring, but it has to be done.

The APIs have to be looked at, of 
course, because they show what data 
is being passed around and how that 
data is being handled. There are secu-
rity scanning tools for this type of work, 
which can be used to direct you toward 
where to perform code reviews, but it is 
often best to spot-check the APIs your-

The goal of any 
security test or 
review is to determine 
if an attacker can 
carry out a successful 
attack against  
the system.
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al data-relevant programming content 
as their interests demand.

However, CS1 courses that eschew 
these trends don’t only fail to engage 
the budding data scientist: they also do 
a disservice to computer science stu-
dents. There are innumerable datasets 
that cover a very broad span of human 
interests, from politics and economics 
to sports and voting in music competi-
tions. Through their use, computing can 
be seen even by novices for what it now 
is: a field that engages with humans and 
the world. This alters some of the stan-
dard perceptions that keep away many 
groups of students. The introduction 
of data also makes it easy to concretely 
illustrate the social consequences and 
perils of data-driven decision making, 
even to novices. Thus, we should view the 
rise of data science curricula as a criticism 
of computing curricula, and work to ad-
dress our shortcomings.

Why Not a Separate  
Data Science Track?
Given these weaknesses of CS1 (which 
often extend into CS2), perhaps the rise 
of parallel data science tracks (let’s call 
them DST) presents the solution? Sadly, 
the DST courses we have reviewed take 
a rather ad hoc view of computing and 
programming. There is little emphasis 
on program design, software testing, 
or the impact of data structure on com-

O
N  A  G R O W I N G  number of 
campuses, data science pro-
grams offer introductory 
courses that include a non-
trivial amount of program-

ming. The content of such courses over-
laps that of traditional computer science 
introductory courses, but neither course 
subsumes the other. This situation cre-
ates challenges for students. Introducto-
ry courses should help students decide 
which disciplines to pursue further, but 
misaligned data science and computer 
science introductions leave students 
unable to switch between areas without 
starting over. This in turn puts pressure 
on departments to determine how to 
accommodate students as they explore 
their curricular options. In universities 
where finances follow student enroll-
ments, overlaps such as these can also 
lead to turf wars and other tensions that 
adversely impact students.

We view “data science” as the process 
of answering questions about the world 
through the application of (usually sta-
tistical) computational methods to data. 
Data scientists benefit from some com-
puting background. In recent years we 
have also seen the rise of the related pro-
fession of “data engineers,” who need a 
substantial computing background. In 
addition, the central role of data across 
computing demands CS majors with 
basic data-science skills. Therefore, for 

the sake of this broad spectrum of stu-
dents, it is time to rethink the content of 
introductory computing. We believe the 
approach described in this column—
data-centric introductory computing—can 
support and engage students with di-
verse interests.

Introductory Data Science as a 
Critique of Introductory Computing
A conventional CS1 course,1 which em-
phasizes control structures and impera-
tive programming, aligns poorly with 
the learning goals of aspiring data en-
gineers or data scientists. Data science 
uses rich functions that transform and 
compute with sophisticated data, both 
of which are far from the focus of CS1. 
The explicit manipulation of aggregat-
ed data—such as cleaning, splitting, or 
refactoring—is best done through oper-
ations that more closely resemble que-
ries and higher-order functions,4 both 
of which occur much later in traditional 
curricula. Data science works with real 
datasets that touch on real-world prob-
lems, rather than artificial starter prob-
lems based on numbers, strings, and 
arrays. In all of these ways, conventional 
CS1 courses appear inauthentic or ir-
relevant for data-facing students. More-
over, the end goal of conventional early 
CS courses is usually to prepare students 
for more CS courses, rather than to pre-
pare them to continue to learn addition-
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V plexity. These are not merely important 
issues: they are critical. Even small pro-
grams may end up influencing policy de-
cisions or research findings. We have to 
be able to trust the code and the results.

Many data scientists, and especially 
data engineers, will want to take more 
(traditional) CS courses such as cloud 
computing, security and privacy, soft-
ware engineering, visualization, and da-
tabases. The limited computing prepa-
ration that a DST would offer leads to 
one of three outcomes, all unhappy:

 • Each of these courses needs to be 
reconstructed in a separate “data sci-
ence department” or equivalent, re-
sulting in a huge duplication of labor 
and cost (which is simply infeasible at 
many institutions).

 • Students will arrive in these upper-
level computing courses without the rel-
evant computing prerequisites. These 
students will have vastly poorer educa-
tional outcomes and create a significant 
burden for faculty.

 • Those upper-level courses will have 
to scale back their prerequisites, result-
ing in weaker curricula for traditional 
computing students.

In general, many students who are 
offered both DST and CS1 options lack 
sufficient understanding of either disci-
pline to predict which focus best aligns 
with their interests. In educational sys-
tems (like in the U.S.) where students 
can easily move between disciplines in 
college, the choice between DST and 
CS1-CS2 is premature.

Reform Introductory Computing!
We suggest that there is a strong alter-
native: to integrate data-science compo-
nents into introductory computing. This 
requires a significant rethinking of what 
introductory computing looks like, and 
is a major departure from the traditional 
CS1-CS2 structure. What might this re-
thinking entail?

We should begin the curriculum in 
“data science” with some basic data en-
gineering. That is, students begin right 
away with datasets of some complex-
ity reflecting real-world questions. Per-
haps surprisingly, we believe that even 
the choice of representation matters, 
and recommend focusing specifically 
on data represented in tabular formats. 
This offers many advantages:

 • Innumerable real-world data is 
published as tables. Students can pick 

data sets of interest to them (within 
some constraints), enabling them to 
personalize their education and feel 
more invested in it. Exercises become 
much less artificial.

 • Even quite young students under-
stand tables instinctively,2 and have ex-
perienced them in everything from mid-
dle-school math classes to spreadsheets.

 • Despite this, tables are a fairly so-
phisticated data structure: an unbound-
ed homogenous sequence of bounded 
heterogeneous structures. Getting to 
this point in a traditional computing 
curriculum takes quite a while.

 • Tables (especially tidy5 ones) are 
inherently parsed, eliminating a com-
plex and imprecise step that greatly 
complicates other interesting data for-
mats like text.

In short, tables are a “sweet spot” in 
introductory computing.

Doing useful work also requires 
some basic statistics. However, most 
students enter college with a rudimen-
tary knowledge of some operations 
such as central tendencies. In our ex-
perience, even mathematically nervous 
non-majors are able to successfully ap-
ply them with reasonable amounts of 
support. Teaching basic visualization 
generates meaningful artifacts beyond 
code. Furthermore, showing students 
core programming concepts such as 
conditionals (for selecting data or iden-

The end goal 
of conventional 
early CS courses 
is usually to prepare 
students for more 
CS courses, rather 
than to prepare 
them to continue 
to learn additional 
data-relevant 
programming 
content as their 
interests demand.

tifying data-entry errors) and functions 
(for running experiments on datasets 
with similar column structure) not 
only enables them to complete projects 
with experimental data analysis, it also 
grounds typical programming content 
in a rich and meaningful context.

From Data to the Rest of Computing
Tables are, of course, not a universally 
appropriate data structure. Once stu-
dents start engaging with the world, 
they soon encounter many other kinds 
of natural structures to represent, 
whether sport competition brackets 
or genealogical information or travel 
networks (respectively, usually, trees, 
DAGs, and graphs). While these can be 
encoded in tables, this requires varying 
degrees of inelegance, which students 
can easily see.

This, of course, is where computing 
really shines. For decades we have built 
theory and languages for complex data 
structures: to represent them, program 
over them, and reason about them. Thus, 
these data structures—which represent 
a limitation of tables—are a perfect 
point of transition to traditional com-
puter science, through data structures 
and systematic programs over them. 
Not only are non-tabular datatypes more 
natural in these cases, they also offer dif-
ferent affordances, and can even confer 
significant performance advantages. We 
can get to these points potentially earlier 
than we would in traditional CS1-CS2; 
with much greater motivation; and with 
students already well-equipped to do 
useful work through their exposure to 
tables. From a computing perspective, 
this should be regarded as a win-win.

While data scientists arguably do 
not need all these data structures, we 
believe exposing students to the limita-
tions of tables through concrete data-
facing examples is valuable in and of 
itself. This also represents a branch 
point in the curriculum. Those certain 
they do not want to learn more comput-
ing can move on to statistics and other 
disciplines (armed with a solid intro-
duction to programming and comput-
ing), while the rest can proceed with a 
more traditional computing path.

Data-Centricity
In short, we propose a rethinking of tra-
ditional CS1-CS2 with rudimentary data 
science preceding, and fluidly leading 
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municate across disciplines in the lan-
guage of computation. Computing’s 
application to a wide variety of disci-
plines will stand up front and center, 
without compromising the core of our 
subject. Our goal, therefore, should be 
to create at scale the new kinds of part-
nerships that currently only happen in 
very specialized settings.

A data-centric introduction to com-
puting also buys students time in curri-
cula that give them choice. They do not 
have to prematurely commit to “data 
science” or “computing,” which they 
are likely doing on the basis of what they 
have heard from parents, friends, and 
newspaper articles. Instead, they can 
experience the two subjects together 
for themselves before having to choose 
between the two (and, even if they pick 
a third, they will have a useful, applied 
understanding of computing).

Even in a time of exploding enroll-
ments, we owe it to our students to ask 
these questions and act on the answers. 
It is easy to think we are successful in a 
hot marketplace, but the integration of 
data science could create curricula of 
lasting value even in a weak one. At some 
(perhaps more resource-rich) institu-
tions this will take the path of whole-
cloth reform; at others (more resource-
starved), educators will have to find an 
incremental path. All this provides an 
opportunity and imperative for educa-
tors and researchers, and (reflecting the 
breadth of the field) contributions can 
come from people with many different 
kinds of expertise (pedagogy, statistics, 
visualization, programming languages, 
and more). 
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to, more traditional data structures. We 
call this approach data-centric comput-
ing, with the formula

Data-centric computing = 
data science + data structures

(in that order: this + is not commutative). 
We have been prototyping this approach 
for a few years at Brown University, with 
great success, and have learned a good 
deal from it.

This shift certainly presents challeng-
es. It requires a fairly different introduc-
tory pedagogy that has not been devel-
oped well in the computing education 
community. Everything from program-
ming methodologies to problem de-
composition to topic ordering, and the 
interleaving of statistics with program-
ming, is open and needs study. Mathe-
matics education techniques like no-
tice-and-wonder,3 which was 
popularized for data reasoning by the 
New York Times,a becomes relevant. Stu-
dents need to be taught to contend with 
precision and accuracy; we have to deter-
mine the right way to introduce data 
cleansing; and so on. We therefore call 
on the computing education communi-
ty to rethink its approaches, prescrip-
tions, and open questions.

The Promise
Moving introductory computing to 
data-centricity can open many doors. 
Other subjects, given an accessible, 
useful introductory computing course, 
may rethink their approach. A new gen-
eration of students will be able to com-

a https://nyti.ms/3dwwaNe
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Regents approved the degree, we be-
gan preparing the first courses, using 
Udacity’s platform and their course 
design and production experience. 
Each of the initial five courses cost ap-
proximately $300,000 to develop. In 
January 2014, OMSCS was launched 
with 380 students.

Progress and Service
We took the words emblazoned on the 
seal of Georgia Tech—“Progress and 
Service”—as our mission. To start 
with, we committed the program to a 
unique admissions policy—GRE is not 

T
HE ONLINE MASTER of Sci-
ence in Computer Science 
(OMSCS), a degree program 
at the College of Computing 
(CoC), Georgia Institute of 

Technology, grew out of a conversation 
I had with Sebastian Thrun (co-founder 
of online learning platform Udacity) 
in September 2012. We set as our goal 
to expand access to quality learning 
opportunities by using massive open 
online course (MOOC) technology to 
mitigate obstructions of time, space, 
and financial ability. This called for a 
fundamental, revolutionary shift from 
the prevailing paradigm of higher edu-
cation, in which a brand is bolstered by 
exclusion and high tuition fees.

As a preliminary step, I, as dean 
of CoC, convened a faculty working 
group, chaired by Kishore Ramach-
andran, from the School of Computer 
Science. Its members were notably 
concerned with maintaining the qual-
ity of CoC’s academic content, the 
logistics, and the student and faculty 
experience—a focus on quality that 
would become a key principle of the 
program. The document the group cre-
ated became the operational manual 
for putting the program into practice. 
The working group, in turn, engaged 
with the faculty through a series of 
deliberations and town hall meetings, 
and in spring 2013 the faculty voted 
to move forward. The program then 

earned the support of Georgia Tech’s  
President and Provost, who advocated 
for it with the Board of Regents of the 
University System of Georgia. While 
the faculty debated and planned, 
Thrun and I sought funding to cover 
the costs of preparing, organizing, 
and introducing the first courses. In 
January 2013, AT&T provided a $2 mil-
lion gift, and added $2 million more 
a year later. AT&T’s generous support 
signaled to Georgia Tech the potential 
of the program, and enabled OMSCS 
to have positive net income from the 
start. When, in May 2013, the Board of 
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respect and responsibility to the “pio-
neers”—the first student cohort. 
Thus, we admitted only half of the ac-
cepted students in the first semester, 
delaying the entry of the rest to the 
next semester. All went well.

In the first year, the Teaching Assis-
tants (TAs) were on-campus students, 
but as the number of students rose we 
were faced with the dearth of TAs. In 
the second year, we advertised for TAs 
among OMSCS students and were sur-
prised, even astounded, by their over-
whelming positive response. Research 
by Joyner5 found online TAs were far 
more likely to be intrinsically or altru-
istically motivated. The students, typi-
cally computing professionals with full-
time jobs and family, serve as TAs even 
after graduating—for modest pay, and 
sometimes even on a pure volunteer ba-
sis: in Spring semester 2019, 65 out of 
the 282 TAs were OMSCS alumni, in ad-
dition to 109 current OMSCS students.

Another issue was student services 
(for example, the Office of Student Life, 
registration, admissions, bursar, career 
services, and so forth), many of which 
were not designed for our scale. By care-
ful integration and cooperation we as-
sure OMSCS students receive the same 
services and policies as on-campus 
students. For example, an older stu-
dent body (that is, with families, aging 
parents, young children) requires more 
support for unforeseen health or other 
personal emergencies, and a geographi-
cally dispersed student body is likelier to 
be affected by natural disasters of which 
the university administration is not oth-
erwise aware. To reduce the burden on 
the school’s central Office of Student 
Life, which is responsible for validating 
and responding to requests for special 
accommodation, an application is used 
to track such cases and (with input from 
instructors) to determine the response.

Aware that student retention is 
critical for the success of OMSCS, we 
carefully monitor its metrics. 60.5% of 
those who started in the years 2014–
2017 have graduated or were still en-
rolled in the Spring 2019 term. Approx-
imately 15%–20% may drop out during 
any semester, yet all but 5%–6% return 
in the next semester. Students might 
need or wish to withdraw or leave the 
program for various reasons—some 
did not intend to obtain a degree in the 
first place, but rather update/upgrade 

required, and instead, OMSCS students 
have to obtain grade B or higher in two 
courses from a specified list in their 
first year to be officially admitted (for 
admission requirements see http://
www.omscs.gatech.edu/program-info/ 
admission-criteria). While the selectivity 
of the on-campus Master in Computer 
Science program (MSCS) is slightly high-
er than 10%, 70.7% of the more than 
26,000 OMSCS applicants were admitted. 
Added to the novel admissions policy, I 
insisted on keeping OMSCS tuition af-
fordable—less than $7,000 for the full de-
gree, payable by course, rather than 
$40,000 for a public on-campus program, 
or $70,000 or more in a private university.

CoC’s MSCS offers a degree on 
completing a course option (10 cours-
es, 30 credit hours), thesis or project 
options (each counting for nine credit 
hours). The course option is the only 
one available to OMSCS students as 
it is difficult to scale up the others. 
However, individual OMSCS students 
obtained a degree following one of 
the latter options. According to Goel 
and Joyner3 the data strongly suggests 
there is nothing inferior about the 
online course experience, students 
regularly rate their online courses as 
better than on-campus courses they 
have taken, and they regularly match 
or exceed the performance of their on-
campus counterparts.

The demographics of OMSCS differ 
from MSCS: the average age of a start-
ing OMSCS student is 32 as compared 
with 22 in MSCS, the majority of OMSCS 
students are domestic (67.1% in Spring 
semester 2019), while MSCS’ is inter-
national (55.4%), most work a full-time 
job and their backgrounds are more di-
verse (in the academic years 2017–2018 
and 2018–2019 70% of the applicants 
lacked undergraduate CS degree, 17% 
had a non-CS MS, and 5% had a Ph.D.). 
OMSCS attracted slightly more under-
represented minorities (14% vs. 10%). 
Goodman et al.4 showed most applicants 
would not pursue an advanced degree at 
all if it were not online and highly afford-
able and that OMSCS provides the first 
rigorous evidence online education can 
increase educational attainment. The 
different demographics of our online 
and residential programs have shown 
that the former has not cannibalized the 
latter, for which the number of applica-
tions has more than doubled.

OMSCS’ growth has been phenom-
enal—by Spring 2019 term OMSCS 
offered a total of 30 courses in four 
specializations to 8,662 students (for a 
current list of courses and course pre-
views, see https://www.omscs.gatech.
edu/current-courses). Goodman et al.4 
predicted OMSCS will be responsible 
for at least 7% increase in the number 
of master’s degrees in computer sci-
ence attained each year in the U.S. In 
fact, it now exceeds 10%.

The implications of OMSCS have 
not gone unnoticed, and the program 
has been widely recognized both in-
side and outside of higher education. 
In 2017, the University Professional 
and Continuing Education Associa-
tion gave OMSCS its National Program 
Excellence Award. In 2017, Georgia 
Tech appeared on Fast Company’s list 
of most innovative companies in the 
world—the third university recognized 
on the list, and the first recognized for 
education rather than research—on 
the strength of the OMSCS program. 
And, the OMSCS was cited in more 
than 1,200 news articles, including 
more than 50 in the Chronicle of Higher 
Education and Inside Higher Ed.

OMSCS’ success has inspired simi-
lar programs at other universities—
more than 40 MOOC-based M.S. degree 
programs, more affordable than their 
on-campus counterparts, have been 
launched recently by more than 30 uni-
versities. Georgia Tech too has launched 
two additional online master’s degrees.

What Has Not Gone the Way 
We Thought It Would?
From the start we determined to ex-
pand the program judiciously, out of 
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be available to University System of 
Georgia students and to Georgia high 
school students. The addition of online 
courses may help the students reduce 
their time on-campus, attain gradua-
tion sooner, and reduce the cost of col-
lege education by taking introductory 
courses before reaching Georgia Tech 
and then combine online learning with 
internships, co-ops, and while working.

Georgia Tech and CoC are dedicated 
to finding ways to use technology to ex-
pand the impact of CS education. As a 
public university, our responsibility is 
both to the students we serve and to 
the nation, and OMSCS pioneers the 
change in the educational landscape 
with both responsibilities in mind. Our 
future depends upon it.

Postscript
In the Spring 2020 term, 9,597 students 
enrolled in OMSCS, almost 1,500 gradu-
ated in this academic year. In December 
2019 the conference “Reimagine Educa-
tion” presented OMSCS with the Gold 
Award for the best distributed/online 
program for nurturing 21st-century skills. 
In May 2020 the University of Cambridge 
announced it will move all lectures online 
for the full 2020–2021 academic year. 
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their skills, and others perhaps had 
not anticipated the rigorousness of the 
program. At five years, it is too early yet 
to deduce retention, but we ascribe the 
relatively high retention thus far in part 
to the peer social connectedness.

Among the frequently cited criti-
cisms of online education is the lack of 
opportunity to experience the benefits of 
teacher-student and student-student in-
teractions. Our concerns were allayed as 
we soon discovered OMSCS engendered 
a palpable spirit of community and of 
service. OMSCS students have created 
and led more than 70 online forums—
entirely student-run social communities 
based on shared geography, interests, or 
background—where students can net-
work, ask for help, and form the kinds of 
relationships they might form on cam-
pus. Students across states and coun-
tries (all 50 U.S. states, 120 countries) 
coordinate projects across time zones, 
share solutions, and support each oth-
er—and offer advice to prospective ap-
plicants. The OMSCS program’s sense of 
community effortlessly spans the globe.

Lessons Learned
We learned OMSCS serves a large un-
met demand, underserved by the insti-
tutions of higher education. Faculty and 
administration in some institutions of 
higher education have been skeptical of 
online programs being able to provide 
as high quality education as residential 
ones, concerned that offering those pro-
grams will devalue their residential pro-
grams, and mindful of possible slip-
page in popular rankings that privilege 
student-faculty ratios.1 We learned an 
inclusive admission policy does not de-
tract from students’ attainment, nor 
from the college reputation.

Bacow et al.1 acknowledged “very 
few institutions are using either the 
savings from online education or the 
incremental revenue to reduce the 
price of education to students.” At the 
time OMSCS was established, many 
institutions charged tuition equal to 
or greater than the tuition charged to 
residential programs. We learned that 
high-quality low-cost online degrees 
are realizable and viable—OMSCS has 
been financially self-maintaining since 
its third year (in the first two years it 
was in the black thanks to AT&T), and 
thus far has produced cumulative net 
income to Georgia Tech of $13 million.

We learned that for a radical change 
in higher education to happen it must 
be led and supported by the faculty. 
Carmean and Friedman2 described 
how, at other institutions “...money, 
control, job security, tradition, and 
quality” precipitated into discussions 
“… within a faculty divided against it-
self, [that] too often disintegrate into 
questions of governance and control.” 
We avoided “the online education tin-
derbox” by respecting and addressing 
our faculty’s concerns.

Expanding Tomorrow’s Opportunity
The realignment of today’s workforce 
with tomorrow’s economy requires more 
than plugging shortages of master’s de-
grees. The shortfall in technology educa-
tion permeates every level of study. There 
are 1.6 million students in K–12 educa-
tion in the state of Georgia alone, but 
only 95 qualified CS teachers. We believe 
the MOOC-based technology that pow-
ers the OMSCS degree can expand the 
availability of computer science in K–12 
schools. The Constellations Center for 
Equity in CoC is developing a hybrid 
model of online and in-person instruc-
tion that will allow far more students ac-
cess to quality CS education.

CoC already offers its MSCS stu-
dents the use of the OMSCS videos. It 
offers undergraduates the choice of an 
online version of an introductory com-
puting course (Introduction to Com-
puting with Python). In the Spring 2019 
semester, 55% of the undergraduates 
made that choice and reported liking it 
as much or more than their in-person 
courses. Two more introductory cours-
es were offered undergraduates in the 
Fall 2019 semester. These courses will 

We believe  
the MOOC-based 
technology that 
powers the OMSCS 
degree can expand 
the availability  
of computer science 
in K–12 schools.

https://www1.udel.edu/edtech/e-learning/readings/barriers-to-adoption-of-online-learning-systems-in-us-higher-education.pdf
https://er.educause.edu/articles/2014/2/conjecture-tension-and-online-learning
mailto:galil@cc.gatech.edu
https://www1.udel.edu/edtech/e-learning/readings/barriers-to-adoption-of-online-learning-systems-in-us-higher-education.pdf
https://www1.udel.edu/edtech/e-learning/readings/barriers-to-adoption-of-online-learning-systems-in-us-higher-education.pdf
https://er.educause.edu/articles/2014/2/conjecture-tension-and-online-learning
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dered invisible by disciplinary and orga-
nizational divisions.14 While even the 
simplest dataset must be massaged pri-
or to use, the problem multiplies when 
instrument calibration degrades or au-
tomated pipelines are changed without 
notice. One interviewee suffered an in-
strument malfunction during a remote 
sensing experiment. Unknowingly, one 
in an array of sensors failed out of cali-
bration range during a field study, but 
the automated pipeline continued to 
generate data, which had to be pains-
takingly cleaned in the following weeks. 
In scientific fields that produce compar-
atively small amounts of data, cleaning 
is often done manually in a spreadsheet, 

A
S SCIE N CE COMES  to de-
pend ever more heavily on 
computational methods 
and complex data pipe-
lines, many non-tenure 

track scientists find themselves precari-
ously employed in positions grouped 
under the catch-all term “data science.” 
Over the last decade, we have worked 
in a diverse array of scientific fields, 
specializations, and sectors, across the 
physical, life, and social sciences; pro-
fessional fields such as medicine, busi-
ness, and engineering; mathematics, 
statistics, and computer and informa-
tion science; the digital humanities; 
and data-intensive citizen science and 
peer production projects inside and 
out of the academy.3,7,8,15 We have used 
ethnographic methods to observe and 
participate in scientific research, semi-
structured interviews to understand 
the motivations of scientists, and docu-
ment analysis to illustrate how science 
is assembled with data and code. Our 
research subjects range from principal 
investigators at the top of their fields 
to first-year graduate students trying to 
find their footing. Throughout, we have 
focused on the multiple challenges 
faced by scientists who, through incli-
nation or circumstance, work as data 
scientists.

The “thorny problems” we identify 
are brambly institutional challenges as-
sociated with data in data-intensive sci-
ence. While many of these problems are 
specific to academe, some may be 
shared by data scientists outside the 

university. These problems are not read-
ily curable, hence we conclude with 
guidance to stakeholders in data-inten-
sive research.

The Janitors of Science
Within data-intensive science, it is a 
truth universally acknowledged that a 
dataset in need of analysis must first be 
cleaned. This dirty job falls to the data 
scientist. Though the computational 
machinery of science has allowed new 
forms of scientific inquiry—and new 
kinds of scientists—to be developed, 
the machinery is fickle and only accepts 
pristine datasets. Yet the process of 
cleaning datasets is often hidden or ren-

Viewpoint  
Thorny Problems in  
Data (-Intensive) Science 
Data scientists face challenges spanning academic  
and non-academic institutions. 
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V and problems spotted visually, but with 
bigger data comes bigger spills that re-
quire bigger cleanups.

Continuing Education in Science
Early champions of “big data” infa-
mously predicted an “end of theory,”1 
arguing that with enough data and com-
putation, all research questions be-
come simply an abstract problem of 
data processing. In contrast to this anti-
disciplinary discourse, we see academic 
data scientists struggling to master the 
subject expertise necessary to make 
competent decisions about how to cap-
ture, process, reduce, analyze, visualize, 
and interpret research data. Domain 
scientists work closely with data scien-
tists to model scientific problems, rely-
ing on common understanding to de-
velop a team’s data pipeline and 
computational infrastructure. As a re-
sult, the integrity of the research pro-
cess can rest with data scientists. In 
such settings, data scientists must de-
velop “interactional expertise”5 by 
learning how to speak the jargon and 
conceptual vocabulary of a given disci-
pline, and, more cogently, learning to 
ask the right questions of disciplinary 
scientists. Interactional expertise is not 
a skill that is readily taught in formal 
settings, particularly in traditional dis-
ciplinary degree programs. In response, 
data scientists gain interactional exper-
tise in the fields in which they work by 
tactics such as making vocabulary lists 
of disciplinary jargon, quizzing col-
leagues in the hallway before a meeting, 
attending department seminars, taking 
classes, and reading literature of multi-
ple domains.

The Overwhelmingness 
of Openness
Data-intensive science is increasingly 
tied to practices of, and policies for, 
“open science.”12,13 Open science spans 
open access publications, open datas-
ets, open analysis code, open source 
software tools, and much more. The 
concept spreads over a myriad of tools, 
platforms, frameworks, and practices 
that change often. Conflicts arise be-
tween tools that are built on open 
source ecosystems and controlled by a 
mix of public and private entities, rang-
ing from file formats to high-perfor-
mance computing infrastructures. 
Managing so many overlapping mecha-

nisms can be overwhelming, especially 
when data scientists are hired to take 
the burden of maintaining infrastruc-
tures off the backs of domain research-
ers.11 Today’s scientific training may 
provide solid fundamentals for early 
career work, but rarely provides the 
skills necessary to keep pace with a fast-
changing, complex ecosystem. Re-
search groups face difficult trade-offs 
between migrating to new tools and 
maintaining old packages, versions, 
and formats that work well enough—
and are often embedded in legacy sys-
tems that must be maintained. These 
trade-offs can place data scientists in 
uncomfortable mediating positions, 
similar to when they must translate be-
tween different disciplines.

Scarcity of Career Paths
Despite the rapidly growing need for 
data scientists in scientific research col-
laborations, these roles can lack specif-
ic job descriptions, and therefore a ca-
reer path.7 Data scientists are often part 
of a research personnel pool that moves 
from project to project within a univer-
sity. Few of these jobs lead to faculty po-
sitions or other secure career tracks. 
Even in scientific enterprises that invest 
in computational infrastructure for 
data, we rarely find career advancement 
systems that include data-specific 
tracks. Those exceptions we have en-
countered occur outside university de-
partments, such as large-scale, globally 
distributed research projects with sig-
nificant division of labor. The scarcity of 
career paths for those with combined 
expertise in a scientific domain and in-
formation technology results in a pro-

found loss of research capacity for uni-
versities. Whether individuals entered 
academic data science jobs as a career 
choice or as a byway en route to a faculty 
post, the lack of perceived upward mo-
bility is resulting in departures for in-
dustry or other sectors.

Managing Infrastructures 
for the Long Term with 
Short-Term Funding
Scientific infrastructures accrete over 
long periods of time. Laboratories are 
constructed, equipment acquired, staff 
hired and trained, software and tools 
developed, journals and conferences 
launched, and new generations of sci-
entists educated and graduated. Data 
scientists are increasingly responsible 
for maintaining the continuity of essen-
tial knowledge infrastructures, yet proj-
ects may outlast individual grants, leav-
ing data scientists to operate in 
conditions of uncertainty about the 
long-term future of the infrastructure 
they build.9 This uncertainty poses com-
plex challenges, both in terms of antici-
pating the needs of future users and of 
sustainability. In some scientific fields, 
the project life cycle unfolds on the 
scale of decades, in distinct stages such 
as initial conception, setting scientific 
goals, designing data management sys-
tems, constructing instruments and fa-
cilities, collecting data, processing data 
through pipelines, and releasing “sci-
ence ready” data to the community. 
Builders of scientific infrastructure 
must make decisions in the present that 
will affect what data is collected and 
made available for decades, opening up 
some potential avenues of inquiry and 
closing down others.2 Data-intensive 
science is plagued by the tyranny of 
small decisions; choices optimal in the 
short term may create a thorny nest of 
complications five or 10 years later.

Untangling Thorny Problems
The data-intensive science problems we 
have outlined here are intertwined with 
the organizational and funding of sci-
ence within the university system.6 They 
only exist, and can only be addressed, 
within these larger institutional and po-
litical constraints. The specific circum-
stances of data science activities vary 
widely between and within the physical, 
life, biomedical, and social sciences; en-
gineering, humanities, and other fields. 

By bringing attention 
to these thorny 
problems, we aim 
to promote further 
discussion of the role 
of data science  
both inside and 
outside of data-
intensive science.
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Scientific practices in all of these fields 
are in flux, requiring new tools and in-
frastructures to handle data at scale, 
and grappling with new requirements 
for open science. Some individuals 
choose data science jobs in universities, 
but often the job finds them. Learning 
data science may be an investment that 
leads to a productive career, but all too 
often, time spent as the “data person” 
or “computer person” on the science 
team is labor not spent on dissertations, 
publications, or the scientific research 
that launches a tenure-track career.

These scientific environments have 
high personnel turnover rates, with in-
dividuals working in data science capac-
ities through sequential post-doctoral 
fellow or grant-funded research scien-
tist positions, or leaving for jobs in the 
corporate sector. Labor statistics are un-
likely to capture the growth or turnover 
rate of these positions in science be-
cause the work is hidden behind so 
many different job titles. It is difficult to 
assess the damage to scientific progress 
when trusted data scientists move on to 
other institutions, as the losses may be-
come apparent only months or years 
later. No matter how well code is docu-
mented, no paper trail can substitute 
for the rich domain expertise and tacit 
knowledge of those who conducted the 
science.4,10

By bringing attention to these thorny 
problems, we aim to promote further 
discussion of the role of data science 
work both inside and outside of data-
intensive science. Our list of problems 
is by no means exhaustive and our pro-
posed remedies by no means complete. 
We offer our vignettes in the spirit of di-
agnosis and invite data scientists work-
ing in other fields, disciplines, and in-
dustries to contribute their own sets of 
thorny problems and solutions. We 
have written from the point of view of 
academic science as one permutation 
of data science, a term that escapes easy 
definition even as it advances. Much 
work remains. 
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WHEN WORK BEGAN at Mozilla on the record-and-
replay debugging tool called rr, the goal was to 
produce a practical, cost-effective, resource-efficient 
means for capturing low-frequency nondeterministic 
test failures in the Firefox browser. Much of the 
engineering effort that followed was invested in 
making sure the tool could actually deliver on this 
promise with a minimum of overhead.

What was not anticipated, though, was that rr would 
come to be widely used outside of Mozilla—and not 
just for sleuthing out elusive failures, but also for 
regular debugging.

Developers Robert O’Callahan and 
Kyle Huey recount some of the more 
interesting challenges they faced in 
creating and extending rr, while also 
speculating about why it has expe-
rienced a surge in popularity more 
recently. O’Callahan, a Mozilla Dis-
tinguished Engineer, led the rr devel-
opment effort. Huey also worked on rr 
while at Mozilla. Both have since left 
to create their own company, Pernos-
co, where their focus has turned to de-
veloping new debugging tools.

Helping to steer the discussion are 
two other engineers of note: Devon 
O’Dell, a senior systems engineer at 
Google who has never made a secret 

To Catch 
a Failure: 
The Record-
and-Replay 
Approach 
to Debugging
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of his keen interest in debugging, 
and Terry Coatta, the CTO of Marine 
Learning Systems.

DEVON O’DELL: What frustrations with 
other debuggers spurred you to start 
working on rr?

ROBERT O’CALLAHAN: The original 
motivation was that Mozilla was 
running lots of tests—as organiza-
tions do—and many of them failed 
nondeterministically, which made 
these things really difficult to de-
bug. When you’re running tests at 
large scale—say, thousands or mil-
lions of tests on each commit—low 

failure rates like these can get to be 
pretty annoying.

You can just disable those tests, of 
course. But actually fixing them, espe-
cially since many correspond to under-
lying product bugs, seems far more ap-
pealing. So, we thought about how to 
do that and concluded that a tool able 
to record a test failure and then replay 
it as often as necessary would be just 
the thing—if we could build it, that 
is—since that would really lower the 
risk. Obviously, if a test needs to be run 
thousands of times to catch a failure, 
you would like for that to be automated. 
You would also want to be able to debug 
that failure reliably. That’s why the basic 

idea we started out with was: How can 
we record tests with the lowest overhead 
possible and then have the ability to re-
play the execution as often as needed?

TERRY COATTA: The simplistic solu-
tion here, of course, would be: “Hey, no 
problem. I just record everything this 
processor does.” So, just for clarity, 
what constitutes “low overhead” in the 
world of debuggers?

O’CALLAHAN: Good point. From the us-
er’s perspective, it just means the code 
doesn’t appear to run any slower when 
you’re recording than when you aren’t. 
Achieving that, obviously, requires 
some extra work. I should add, for com-
parison’s sake, that many tools in this 
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about, which is that the CPUs are de-
terministic such that, whenever you 
run the same sequence of instruc-
tions from the same starting state, you 
ought to end up with the same results, 
the same control flow, and everything 
else. That’s critical, and, obviously, 
there are some instructions that don’t 
meet these requirements—something 
that generates random numbers, for 
example. That clearly would not be de-
terministic.

This means we need a way to trap 
any nondeterministic behaviors or in-
structions, or at least have some means 
for telling programs they should avoid 
these things. For example, with X86 
architectures, there is a CPUID instruc-
tion you need to watch out for. So, for 
most modern CPUs and kernels, we 
did some work to ensure there is an API 
you can use to say, “Hey, on all CPUID 
instructions in this process, you need 
to trap and make sure they don’t use 
RDRAND. Do your own thing instead.” 
The same goes for hardware transac-
tional memory, which is something 
modern Intel CPUs provide for.

The problem is, while the trans-
actions themselves are OK, they can 
sometimes fail for spurious reasons. 
Which is to say, you might choose 
to run a transaction, and, behold, it 
works! It doesn’t abort! But if you run 
it again, it’s just possible the transac-
tion will abort, owing to some internal 
cache state or something else in the 
environment you can’t see or control. 
That effectively means we need to tell 
our programs to avoid using transac-
tional memory.

Another thing we rely upon—and 
this is really important—is having 
some way to measure progress through 
a program. That is so we can deliver 
asynchronous events, like signals or 
context switches, at exactly the same 
point during replay as they came up 
during recording. If the CPUs are de-
terministic and you execute one mil-
lion instructions starting from some 
particular state while recording, you 
should end up in the same state in the 
replay. But if you execute one million 
and three instructions in the replay, 
you’re probably going to end up in 
some different state, and that would be 
a problem.

This is just to say that we need a 
way to count the number of instruc-

space would slow a program by a factor 
of 3, 5, 100—or even as much as 1,000—
depending on the technology. Our goal 
was to get to less than a 2x slowdown.

It’s certainly the case that the tech-
nology you pick is going to have a big 
influence on the amount of overhead. 
As you just mentioned, if you were to 
instrument so you could look at ev-
erything the CPU does, that obviously 
would require a lot of work.

O’DELL: What would you say it is 
about the rr approach that lets you 
achieve the execution speed you were 
looking for? How does that vary from 
other debuggers?

O’CALLAHAN: The fundamental idea 
is one that several systems share: If you 
can assume the CPU is deterministic 
and you’re able to record the inputs to 
your system—say, to your virtual-ma-
chine guest or to some process—and 
you’re also able to reproduce those 
inputs perfectly during replay, then 
the CPU will do the same thing. Hope-
fully, this means you can avoid actually 
having to monitor what the CPU does. 
That’s the idea, anyway. And it isn’t a 
new idea, either.

So, we record only what crosses the 
process boundary—for example, sys-
tem calls and signals. Crossing the pro-
cess boundary isn’t so frequent since 
that will cost you time just by virtue of 
crossing a protection domain.

KYLE HUEY: We do record each injec-
tion of nondeterministic state. So, any 
time there is a syscall or some sort of 
asynchronous signal, we record that. 
But while we have to record all these 
things, we don’t create any of our own.

O’CALLAHAN: So, here’s the deal: Re-
cord-and-replay tends to be all or noth-
ing. That means you basically need to 
catch all these different forms of non-
determinism. If you miss something, 
the behavior you will observe when 
you replay is probably going to diverge 
from what actually happened, which 
means you’re going to end up in a very 
different state since programs are very 
chaotic. Which is to say, you really need 
to make sure you’ve nailed down all 
those sources of nondeterminism and 
have recorded every single one.

COATTA: What do you require from 
the hardware so as to collect all the 
necessary information?

O’CALLAHAN: First, there’s that big 
assumption we have already talked 

If the CPUs  
are deterministic  
and you execute  
one million 
instructions 
starting from some 
particular state 
while recording,  
you should end up  
in the same state  
in the replay.
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tions executed, ideally such that we 
can then, during replay, stop the pro-
gram once that many instructions 
have been executed. This happens to 
be pretty much what hardware per-
formance counters allow you to do, 
which means we really depend upon 
hardware performance counters to 
make this all work. And that, as it 
turns out, is probably also the key to 
getting rr to work with low overhead. 
Hardware performance counters are 
basically free to use—especially if 
you’re just counting, rather than in-
terrupting your program to sample.

While it’s very fortunate for us that 
these counters are available, we also 
depend on them being absolutely re-
liable—and that’s the hard part. Basi-
cally, you need to make sure the count 
of events is the same each and every 
time you execute a particular instruc-
tion sequence. This also means, if your 
counter happens to be one that counts 
the number of instructions retired, it 
needs to report the same number of in-
structions retired as were actually ex-
ecuted. This can be quite a challenge 
since many people use performance 
counters just to measure performance, 
in which case this property isn’t really 
essential. If measuring performance is 
your use case and the counter is off by 
just a few instructions, it’s no big deal. 
But we, on the other hand, actually do 
care about this. The brutal truth is that 
a lot of these counters don’t measure 
exactly what they say they do. Instead, 
they deliver spurious overcounting or 
spurious undercounting.

That’s a big problem for us. So, we 
had to look for a reliable counter we 
could use with Intel devices, which 
were our initial targets. Ultimately, we 
found one that’s reliable enough—a 
conditional branch counter, actually. 
That is what we use now to count the 
number of retired conditional branch-
es, and we have found it actually does 
exactly what the manufacturer says 
it does. And that’s really what makes 
rr possible. Had we found there were 
no counters that were accurate in this 
way, this project simply would not have 
been feasible.

COATTA: Does Intel claim its counters 
are accurate? Or does it offer no assur-
ances at all?

O’CALLAHAN: That’s a difficult ques-
tion to answer. What I can tell you is 

that many of the cases where its coun-
ters deliver slightly erroneous values 
are documented as errata in the prod-
uct datasheet. So, I believe there are 
people at Intel who care—perhaps not 
enough to fix the issue, but at least 
enough to divulge the problems.

COATTA: Are you concerned that the 
one precious performance counter you 
know you actually can rely upon might 
suddenly go nondeterministic on you?

O’CALLAHAN: Absolutely, and I’m 
hopeful that articles in leading com-
puter science publications might serve 
to draw attention to this very concern.

O’DELL: You earlier mentioned the as-
sumption of determinism you make in 
light of the obvious lack of determin-
ism you find with execution orderings 
in multithreaded programs. It’s my 
understanding rr runs everything in a 
single thread more or less to counter 
this, but I imagine there’s probably 
much more to it than that.

O’CALLAHAN: To be clear, I should 
point out that rr runs everything on a 
single core. That is very important. We 
context-switch all those threads onto 
a single core. By doing so, we avoid 
data races since threads aren’t able to 
touch shared memory concurrently. 
We control scheduling that way and so 
are able to record the scheduling deci-
sions, using the performance counter 
to measure progress. In this way, con-
text switching becomes deterministic 
during replay, and we no longer have to 
worry about data races.

O’DELL: Does this also help you with 
issues such as memory reordering?

O’CALLAHAN: Yes. If we are talking 
about weak memory models, you en-
sure everything will be sequentially 
consistent by forcing all of it onto a sin-
gle core. There is, therefore, a class of 
memory-ordering bugs that cannot be 
observed under rr.

COATTA: You’ve mentioned that you 
require the hardware to be capable of 
deterministically measuring progress 
in certain ways. But it also sounds as 
though there is a whole raft of con-
straints you face here. For example, 
it sounds like you need to be able to 
interface with the scheduler in order 
to understand or map all the threads 
down to a single core.

O’CALLAHAN: We don’t need to in-
tegrate with the operating-system 
scheduler. Actually, we use the ptrace 

API to accomplish high-level control 
of what’s going on here. That’s a com-
plicated API with a number of differ-
ent features, but one of the things you 
can do with it is to start and stop indi-
vidual threads. We use it to stop all the 
threads and then start just the ones 
we want to run. After that, whenever 
our scheduler decides, “Hey, it’s time 
for a context switch,” we interrupt 
the running threads as necessary and 
start a different thread. Then we pick 
another thread and run that using our 
scheduler. Essentially, the operating-
system scheduler isn’t left with any-
thing to do. We control everything, 
and that’s good since integrating with 
the operating-system scheduler is 
kind of a pain.

Just the same, there’s still at least 
some interaction with the operating-
system scheduler in the sense that, 
whenever a program goes into a sys-
tem call and the system call blocks, 
we need to be able to switch threads 
in our scheduler. That means basi-
cally setting aside the thread that was 
running to wait for an exit system call. 
In the meantime, we can also start 
running a different thread. We need 
an operating-system interface that 
will tell us when a thread has blocked 
and basically has been descheduled 
in the kernel.

Fortunately, there is just such an in-
terface out there. Linux gives us these 
scheduling events—performance 
events, actually. There is a genuine Linux 
performance counter API that provides 
us with a way to be notified whenever 
the thread we are running blocks and 
triggers one of these deschedules. We 
use that for our event notification.

COATTA: It sounds like you have got 
this kind of super-detailed integration 
that leaves you dependent on certain 
very specific features of the processor. 
I suppose you rely on some interesting 
pieces of the operating system as well. 
As you have already suggested, this can 
lead to revelations of some behaviors 
people aren’t necessarily expecting. 
Which leads me to wonder if any inter-
esting episodes have come up around 
some of these revelations.

O’CALLAHAN: Because of the require-
ment that the performance counters 
be perfectly accurate, some kernel 
changes unexpectedly hurt us. In one 
recent instance, there was a change 



38    COMMUNICATIONS OF THE ACM   |   AUGUST 2020  |   VOL.  63  |   NO.  8

practice

ken the performance counter interface 
in a way that is problematic for us.

A recurring theme with rr is that one 
capability just seems to beget another. 
As an example, once the ability of rr 
to handle nondeterminism had been 
clearly demonstrated, it occurred to 
O’Callahan and Huey that even more 
nondeterminism might be employed 
to discover weird edge cases. In this 
way, rr has come to be used as not only 
a debugger, but also a tool for improv-
ing software reliability.

That is, by combining record-and-
replay with the ability to harness non-
determinism, it became apparent that 
a program could be tested just by un-
leashing a torrent of nondeterminism 
on it to see what might come up as a 
consequence. Any problems bobbing 
to the surface then could be dealt with 
proactively, instead of waiting for fail-
ures to show up in production.

COATTA: You indicated the original 
impetus for creating rr was to cap-
ture hard-to-reproduce errors that 
surface during automated testing. 
But now, is it also being used in 
some other ways?

O’CALLAHAN: Actually, the funny 
thing is, while we designed rr to cap-
ture test and automation, it’s mostly 
being used now for other things—
primarily for ordinary debugging, in 
fact. On top of record-and-replay, you 
can simulate reverse execution by 
taking checkpoints of the program 
as it executes forward, and then roll-
ing back to a previous checkpoint 
and executing forward to any desired 
state. When you combine that with 
hardware data watchpoints, you can 
see where some state in your pro-
gram isn’t correct and then roll back 
to look at the code responsible for 
that. Especially with C and C++ code, 
I think that almost amounts to a pro-
gramming superpower.

Once people discovered that, they 
started using it and found there were 
some other benefits. That’s when 
rr really started catching on. At this 
point, there’s a fair number of people, 
both at Mozilla and elsewhere, who 
have taken to using it for basically all 
their debugging.

that landed in the kernel and then 
ended up briefly freezing the perfor-
mance counters until a kernel inter-
rupt could be entered, and that led to 
a few events being lost.

We seem to be the only ones who 
really care about this sort of thing. 
Anyway, we ended up finding that 
bug, and, hopefully, we will get it 
fixed before the kernel is released. 
That sort of thing tends to happen to 
us quite a bit.

HUEY: In the same vein, we found 
a bug in the Xen hypervisor related 
to a workaround to a bug in the In-
tel silicon that goes so far back into 
the dark days that nobody seems to 
be quite sure which CPU originally 
introduced it. What happened there 
was, if something ended up in the 
performance-monitoring unit’s in-
terrupt handler and was counted as 
zero, it automatically got reset to “1” 
since, apparently, if you left it at zero, 
it would just trigger another inter-
rupt. And that, as you might imagine, 
is enough nondeterminism to break 
rr since it adds one event to the count. 
It took us something like a year to find 
that, which proved to be just no end of 
fun. And then they never did actually 
get it fixed.

O’CALLAHAN: Another aspect of this 
is that the sheer breadth of complexity 
with the X86 architectures is pretty stag-
gering. The more instructions there are, 
the more ways there are to get things 
wrong. For example, there are a number 
of special instructions for accessing cer-
tain weird registers so you can ensure 
they have the right values during record-
and-replay. And, trust me, this can prove 
to be very nontrivial. One register lets 
you know whether your process uses 
one of the X87 floating-point instruc-
tions from the 1980s. For our record-
and-replay purposes, we need the value 
in that register to remain constant. If it 
also happens to be correct, so much the 
better. There are lots of weird instruc-
tions like that, which can be really eye-
opening—and kind of scary.

HUEY: There definitely is a lot of com-
plexity in the X86 space submerged 
just below the surface.

COATTA: As I listen to you talk about 
this, I’m thinking to myself, “Oh my 
God, this sounds like software-developer 
hell.” You’ve got some super-complicat-
ed user software that relies on a whole 

bunch of other super-complicated sub-
merged bits of software. Does this ever 
get to you? Have you had to invest super-
human amounts of effort into testing? 
Basically, how do you manage to cope 
with so much complexity?

HUEY: Well, we used to work on web 
browsers, so this just seems simple by 
comparison.

O’CALLAHAN: It’s true that the stuff 
we’re interfacing with now is kind 
of crazy and low level. On the other 
hand, it doesn’t change all that rapidly. 
It’s not as if Intel’s architecture revs 
are coming at some incredible pace—
especially not now. The kernel is also 
evolving pretty slowly at this point.

Because rr is purely a user-space 
tool (which was one of our design 
goals from the start), we depend on 
the kernel behavior of a bunch of 
APIs, but we don’t really care about 
how those APIs are implemented so 
long as they don’t break stuff. The 
kernel is also open source, so we can 
always see exactly what’s going on 
there. The hardware, of course, tends 
to be much more opaque, but it’s also 
more fixed.

Still, I have to admit it takes a lot 
of effort just to make sure things 
work consistently across architec-
ture revs. It’s also scary to depend on 
so many things, sometimes in some 
very subtle ways, and have absolutely 
no control over those things. But we 
actually invested a fair amount of en-
ergy in talking to people at Intel to 
nudge them in the right direction or 
at least discourage them from doing 
things that are sure to break stuff. 
For the most part, they have actually 
been quite helpful.

HUEY: I would add that we have done 
some amount of testing on the hard-
ware. Of course, what we can do is fairly 
limited since, by the time we get access 
to any new Intel silicon, we are already 
essentially committed to it. Thank-
fully, there hasn’t been a new microar-
chitecture released in a while, so that 
hasn’t been a huge deal.

We also periodically run our re-
gression test suite against the current 
kernel version, and we end up find-
ing things there on a semi-regular ba-
sis—maybe once a quarter. Usually it’s 
something relatively benign, but every 
now and then we’ll find something 
more troubling: Maybe they’ve just bro-
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One of the more appealing ben-
efits—of both rr and record-and-replay 
in general—is the clean separation you 
get between the act of reproducing a bug 
and the act of debugging it. You run your 
program, you record it, and—in doing 
so—you reproduce the bug. Then you 
can just continue supplying fresh input 
and debugging what comes just as often 
as you like. That could lead to a session 
that lasts a day, or even weeks—if you are 
up for that. But, with each pass, you will 
learn a bit more about what happened 
in that test case until you have finally got 
the bug figured out. That means you end 
up with a workflow that looks a little dif-
ferent from the traditional debugging 
workflow. People take to that, I think, 
since it’s instinctive.

COATTA: Isn’t there also another 
mode that gives you complete control 
over thread scheduling? How has that 
been employed as part of your debug-
ging efforts?

HUEY: Assuming you care about the 
reliability of your software, once you 
have a useful tool for dealing with non-
determinism, one relatively obvious 
thing to do is to throw as much non-
determinism at it as you can. Basically, 
that means searching the execution 
space to find weird edge cases, which is 
just what Rob has attempted to do with 
chaos mode.

O’CALLAHAN: Right. We have already 
talked about how rr operates on a sin-
gle core and the sorts of things that can 
affect program execution there. One 
issue is that there are certain kinds of 
bugs we’ve had trouble reproducing. 
In fact, we had some Mozilla Firefox 
test failures that would show up only 
intermittently—and, in some cases, 
only on certain platforms. To get to 
the bottom of that, we had sometimes 
run as many as 100,000 test iterations 
and still not be managed to reproduce 
a failure. That’s when we started to 
think we probably needed to do anoth-
er pass where we injected some more 
nondeterminism. The most obvious 
way to go about that was to randomize 
the scheduler, or at least randomize 
the decisions it was making.

That allowed us to study what sorts 
of schedules, for example, would be 
required to reproduce some particular 
bug. It also let us explore why rr wasn’t 
producing those schedules. With a 
number of iterations like this, we ac-

tually managed to implement an im-
proved form of chaos mode.

While we value these benefits of run-
ning in chaos mode, the overhead is 
high. We tried to limit that but couldn’t 
eliminate all of it, so we decided to 
make chaos mode purely an option. 
Still, by turning on chaos mode to run 
your tests, you’re likely to find some of 
your more interesting failures.

Anecdotally, a lot of people have 
reported they’ve found chaos mode 
to be useful for reproducing bugs that 
generally are very hard to reproduce. 
Something else we’ve discovered 
about using chaos mode that I consid-
er to be particularly interesting is that 
many Mozilla tests that fail intermit-
tently actually turn out to fail on only 
one platform—say, either Android or 
macOS. Yet when you debug them, 
you find it’s actually a cross-platform 
bug that shows up on only one plat-
form since it’s either particularly slow 
or has some type of thread scheduler 
that makes it possible for the bug to 
be reproduced there. I should add 
that rr chaos mode often makes it pos-
sible to take a bug that was failing only 
on Android and then reproduce it on 
desktop Linux. This turns out to be 
rather useful.

COATTA: Why not always run things in 
chaos mode in the first place and, thus, 
surface failures more readily?

O’CALLAHAN: Chaos mode is clearly 
recommended if you’re trying to repro-
duce an intermittent failure. But pair-
ing chaos mode with the record-and-
replay tool is also advisable. I mean, 
if you stripped out all the record-and-
replay stuff, you would still be able to 
reproduce failures with some kind of 
controlled scheduling. But then what 
would you do with them?

Work to add new functionality to rr 
itself now seems to have concluded. 
But the story of renewal and exten-
sion will carry on with efforts to 
build new tools on top of the existing 
record-and-replay technology to de-
liver a “new debugging experience” 
in which developers can move be-
yond examining one state in one pro-
gram space at a time to represent-
ing all of the program space within 
a database such that it can then be 
queried by a reworked debugger to 

One of the 
more appealing 
benefits—both  
of rr and  
record-and-replay 
in general—is  
the clean separation 
you get between  
the act of 
reproducing  
a bug and  
the act of  
debugging it.
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build a picture of the control flow. This 
is something you have to do by manu-
ally aggregating the data points.

Instead, what we’re looking for is 
something that lets us observe a func-
tion execution and then—assuming 
we’ve already recorded and stored the 
control flow for the entire program—
look at a function and immediately see 
which lines of the function have been 
executed. Which is to say, you should be 
able to view the control flow in an intui-
tive way. This, of course, will require a lot 
more debugger implementation.

O’DELL: It sounds like work on this 
might already be underway.

O’CALLAHAN: Yes, we have imple-
mented a lot of this already. It’s not out 
there yet, but we’re working on it.

O’DELL: On a related UX [user experi-
ence] note, do you foresee some way to 
make it easier for people to map men-
tal models of protocols to code?

O’CALLAHAN: Much could be done to 
present dynamic program execution to 
developers in a more intuitive way. For 
example, one thing we’re doing with our 
new product is to make it much easier 
to explore the dynamic execution tree. 
That way, you can look at a function invo-
cation and request a full list of the func-
tions that are dynamically called from 
that. This maps pretty nicely to the men-
tal models people have for programs 
and the ways they work. It also provides 
a great way to explore a program.

A lot more could be done here. If we 
were to build information about func-
tions such as malloc and free into our 
debugger, that would also prove really 
powerful in terms of helping people 
understand exactly what their pro-
grams are doing. I think that would be 
pretty exciting. 
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obtain information across time. A 
project to build this new debugger is 
already underway.

COATTA: Looking back over your effort to 
build rr, is there anything you would do 
differently?

O’CALLAHAN: Yes. But I should first 
say I think we generally made good 
design decisions, as most of our bets 
seem to have paid off pretty well. 
That includes our choice to focus on 
a single-core approach to replay even 
though that decision has been criti-
cized, given that it essentially locks 
rr out of a large and growing class 
of highly parallel applications. The 
main problem is that we still don’t 
know how to even handle those ap-
plications all that well. I don’t think 
anybody has a clue when it comes to 
recording highly parallel applications 
with data races with low overhead us-
ing existing hardware and software.

By keeping our focus mostly on sin-
gle-core applications, we have managed 
to do a pretty good job with those. It’s 
important to have a tool that works well 
for a large set of users, even if it doesn’t 
work as well for some other set of users. 
It’s better to narrow your focus and be 
really good at something than to make 
the compromises a broader focus might 
require. I have no regrets about that.

I’m also fine with the decision not 
to do program-code instrumentation. 
I continue to be grateful for that every 
single time Intel releases a thousand 
new instructions and we don’t have to 
care since we’re not faced with having 
to add all of those to our instrumenta-
tion engine.

But, since you asked about what we’d 
do differently, I suppose we would prob-
ably write rr in Rust rather than C++ if 
we were starting today. Beyond that, 
though, I’m pretty satisfied with the 
core design decisions we have made. 
Kyle, do you see this differently?

HUEY: Not really. The things I’d want 
to do differently would be possible only 
in a different universe where saner hard-
ware and saner kernels can be found.

COATTA: What do you see happening 
with rr as you move forward?

HUEY: We would like to add support 
for AMD and ARM architectures, but 
that’s going to require silicon improve-
ments from both of them.

O’CALLAHAN: We also need to improve 
our support for GPUs since rr doesn’t 
work when you have sessions that di-
rectly access the GPU. To fix that, we’ll 
need to get to where we better under-
stand the interactions between CPU 
user space and GPU hardware so we can 
figure out how to get rr to record and re-
play across that boundary—especially 
when it comes to recording any GPU 
hardware effects on CPU user space—if 
that’s even possible.

I think there’s room to build alterna-
tive implementations of record-and-re-
play using different approaches, but as 
for rr itself, it’s basically there already. I 
just don’t see adding a large number of 
new features. Instead, I think the future 
will involve building on top of the record-
and-replay technology, which is some-
thing we’re already exploring. The basic 
idea is that, once you can record and re-
play an execution, you have access to all 
program states. Traditional debuggers 
don’t really leverage that because they’re 
limited to looking at one state at a time.

The future lies with this new idea 
called omniscient debugging that lets you 
represent all program space in a data-
base and then rework your debugger 
such that it can make queries to obtain 
information across time. In theory, de-
velopers ought to be able to use this to 
obtain results instantaneously. That’s 
where the next frontier lies in terms of 
improving the user experience.

A debugger like rr actually is an im-
portant stepping stone in this direction 
since what you really want is the abil-
ity to record some test failure with low 
overhead and then parallelize the analy-
sis by farming it out to many different 
machines and combining the results. 
The effect of this would be essentially 
to deliver a precomputed analysis that 
enables a faster, more satisfying debug-
ging experience for the developer.

COATTA: A new debugging user ex-
perience? Apart from delivering the 
results faster, what exactly do you have 
in mind?

O’CALLAHAN: One of the things you 
typically do with traditional debuggers 
is single-stepping, right? Basically, 
you want to trace out the control flow 
in functions. So, you step, step, step, 
step, step. You find yourself staring at 
a very narrow window that lets you look 
at the current state, which you then can 
manipulate through time as you try to 
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W H E N  YO U  U P L OA D  photos to Instagram, back up 
your phone to the cloud, send email through Gmail, 
or save a document in a storage application like 
Dropbox or Google Drive, your data is being saved  
in a datacenter. These datacenters are airplane-
hangar-sized warehouses, packed to the brim with 

racks of servers and cooling mecha-
nisms. Depending on the application 
you are using, you are likely hitting one 
of the datacenters operated by Face-
book, Google, Amazon, or Microsoft. 
Aside from those major players, which 
I refer to as hyperscalers, many other 
companies run their own datacenters 
or rent space from a colocation center 
to house their server racks.

Carbon footprints. Most of the hy-
perscalers have made massive strides 
toward achieving carbon-neutral foot-
prints for their datacenters. Google, 
Amazon, and Microsoft have pledged 
to decarbonize completely; however, 
none has yet succeeded in that quest.

If a company claims to be carbon 
neutral, this usually means it is off-
setting its use of fossil fuels with re-
newable energy credits (RECs). A REC 
represents one MWh (megawatt-
hour) of electricity that is generated 
and delivered to the electrical grid 
from a renewable energy resource 
such as solar or wind power. By pur-
chasing RECs, carbon-neutral com-
panies are essentially giving back 

clean energy to prevent someone else 
from emitting carbon. Most compa-
nies become carbon neutral by invest-
ing in offsets that primarily avoid emis-
sions, such as paying people not to cut 
down trees or buying RECs. These off-
sets do not actually remove the carbon 
the companies are emitting.

A net zero company actually must re-
move as much carbon as it emits. 
Though the company is still creating 
carbon emissions, those emissions are 
equal to the amount of carbon the 
company removes.

If a company calls itself carbon nega-
tive, it is removing more carbon than it 
emits each year. This should be the 
gold standard for how companies 
operate. None of the FAANG (Face-
book, Apple, Amazon, Netflix, and 
Google) today claim to be carbon nega-
tive, but Microsoft issued a press re-
lease stating it would be by 2030.

Power usage efficiency, or PUE, is 
defined as the total energy required to 
power a datacenter (including lights 
and cooling) divided by the energy used 
for servers. A perfect PUE would be 1.0, 
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While U.S. companies have followed 
suit on pledging to lower their carbon 
footprints, Chinese Internet giants 
such as Baidu, Tencent, and Alibaba 
have not.

What is Using Power 
in a Datacenter?
According to a study from Procedia 
Environmental Sciences, 48% of the 
power in a datacenter goes to equip-
ment such as servers and racks, 33% 
to HVAC (heating, ventilation, and air 
conditioning), 8% to UPS (uninterrupt-
ed power supply) losses, 3% to lighting, 
and 10% to everything else.

HVAC requires a delicate process of 
making sure hot air from server ex-
haust does not mix with cool air and 
raise the temperature of the entire 
datacenter. This is why most datacen-
ters have hot and cold aisles. The goal 
is to have the cold air flow into one side 
of the racks, while the hot air exhaust 
comes out the other side. Optimizing 
air flow throughout the racks and serv-
ers is essential for HVAC efficiency.

Power comes off the grid as AC pow-
er. This can be single-phase, which has 
two wires (a power wire and a neutral 
wire); or three-phase, which has three 
wires, each 120 electrical degrees out 
of phase with each other. The key dif-
ference between the two is that three-
phase power can handle higher loads 
than single-phase. The frequency of 
the power off the grid can be either 
50Hz or 60Hz. Voltage is any of the fol-
lowing: 208V, 240V, 277V, 400V, 415V, 
480V, or 600V.

Since most equipment in a data-
center uses DC power, the AC power 
needs to be converted. This results in 
power losses and wasted energy add-
ing up to around 21%–27%. To break 
this down, there is a 2% loss when util-
ity medium voltage, defined as greater 
than 1000V and less than 100 kV, is 
transformed to 480VAC; a 6%–12% 
loss within a centralized UPS because 
of conversions from AC to DC and DC 
back to AC; and a 3% power loss at the 
PDU (power distribution unit) level 
resulting from the transformation 
from 480VAC to 208VAC. Standard 
power supplies for servers convert 
208VAC to the required DC voltage, 
resulting in a 10% loss, assuming the 
power supply is 90% efficient. This is 
all to say that power is wasted through-

since 100% of electricity consumption 
would be used on computation. Con-
ventional datacenters have a PUE of 
about 2.0, while hyperscalers have got-
ten theirs down to about 1.2. According 
to a 2019 study from the Uptime Insti-
tute, which surveyed 1,600 datacenters, 
the average PUE was 1.67.

PUE as a method of measurement is 
a point of contention. PUE does not ac-
count for location, which means a 
datacenter that is located in a part of 
the world that can benefit from free 
cooling from outside air will have a 
lower PUE than one in a very hot cli-
mate. PUE should be measured as an 
annual average since seasons change 
and affect the cooling needs of a data-
center over the course of a year. Accord-
ing to a study from the University of 
Leeds, “comparing a PUE value of data-
centers is somewhat meaningless un-
less it is known whether it is operating 
at full capacity or not.”

Google claims an average yearly 
PUE of 1.1 for all its datacenters, while 
individually some are as low as 1.08. 
One of the actions Google has taken 
for lowering its PUE is using machine 
learning to cool datacenters with in-
puts from local weather and other fac-
tors—for example, if the weather out-
side is cool enough the datacenter can 
use it without modification as free 
cold air. It can also predict windfarm 
output up to 36 hours in advance. 
Google took all the data it had from 
sensors in its facilities monitoring 
temperature, power, pressure, and 
other resources to create neural net-
works to predict future PUE, tempera-
ture, and pressure in its datacenters. 

This way Google can automate and rec-
ommend actions for keeping its data-
centers operating efficiently from the 
predictions. Google also sets the tem-
perature of its datacenters to 80°F, 
rather than the usual 68°F–70°F, sav-
ing a lot of power for cooling. Weather 
local to the datacenter is a huge factor. 
For example, Google’s Singapore data-
center has the highest PUE and is the 
least efficient of its sites because Sin-
gapore is hot and humid year-round.

Wired conducted an analysis of how 
Google, Microsoft, and Amazon stack 
up when comparing the carbon foot-
prints of their datacenters. Google 
claims to be net zero for carbon emis-
sions and publishes a transparency re-
port of its PUE every year. While Micro-
soft claims it will be carbon negative by 
2030, it is still carbon neutral today. It 
also claims to be pursuing 100% renew-
able energy by 2025.

Amazon, on the other hand, has the 
worst carbon footprint of the large tech 
companies. As noted previously, the lo-
cation of the datacenter matters, so 
some Amazon regions might be green-
er than others because of the weather 
conditions in those areas or having 
more access to solar or wind energy. 
Amazon founder and CEO Jeff Bezos 
has pledged to get to net zero by 2040. 
Greenpeace seems to believe other-
wise, claiming in a 2019 report that 
Amazon is not dedicated to that pledge 
since its Virginia datacenters were at 
only 12% renewable energy.

In 2018, Apple claimed 100% of its 
energy was from renewable sources. 
Facebook claims it will be at 100% re-
newable energy by the end of 2020. 

Google’s datacenter in Eemshaven, Netherlands, has been powered entirely by renewable 
energy since the day it opened in late 2016. 
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out traditional datacenters in trans-
formations and conversions.

In an attempt to lessen the amount 
of wasted power from conversions, 
some people rely on high-voltage DC 
power distribution. The Lawrence 
Berkeley National Lab conducted a 
study in 2008 in which the use of 
380VDC power distribution for a facil-
ity was compared with a traditional 
480VAC power-distribution system. 
The results showed the facility using 
DC power eliminated multiple conver-
sion stages resulting in a 7% decrease 
in energy consumption compared 
with a typical facility with AC power 
distribution. This is rarely done at hy-
perscale, however. Hyperscalers tend 
to have three-phase AC going to the 
rack, then convert to DC at the rack or 
server level.

More Power-Efficient Compute
In addition to RECs and using 100% 
renewable energy, there are other ways 
hyperscalers have made their data-
centers more power efficient. In 2011, 
the Open Compute Project started out 
of a basement lab in Facebook’s Palo 
Alto headquarters. Its mission was 
to design from a clean slate the most 
efficient and economical way to run 
compute at scale. This led to using a 
480VAC electrical distribution system 
to reduce energy loss, removing any-
thing in the servers that didn’t con-
tribute to efficiency, reusing hot aisle 
air in winter to heat the offices and the 
outside air flowing into the datacenter, 
and removing the need for a central 
power supply. The Facebook team in-
stalled the newly designed servers in 
the Prineville datacenter, which result-
ed in 38% less energy to do the same 
work as the existing datacenters. It also 
cost 24% less.

Let’s dive into some of the details 
of the Open Compute designs that al-
low for power efficiency. The Open 
Rack design includes a power-bus bar 
with either 12VDC or 48VDC of dis-
tributed power to the nodes. The bus 
bar runs along the back of the rack 
vertically. It transmits power from the 
rack-level PSUs (power supply units) 
to the servers in the rack. The bus bar 
allows the servers to plug in directly to 
the rack for power, so when you ser-
vice an Open Rack you do not need to 
unplug power cords; you can just pull 

the server out from the front of the 
rack. With the Open Compute de-
signs, network connections to servers 
are at the front of the rack so the tech-
nician never has to go to the back of 
the rack (that is, the hot aisle).

Redundancy. Conventional designs 
have PSUs in every server. The Open 
Rack design has centralized PSUs for 
the rack, which allow for N+M redun-
dancy, the most common deployment 
being N+1. This means there is an extra 
PSU per rack of servers. In a conven-
tional system this would be 1+1 since 
there is one extra PSU in every individu-
al server. Keeping the PSUs centralized 
to the rack reduces the number of pow-
er-converting components; this in-
creases the efficiency of the system.

Right-sized PSUs. Server designers 
tend to choose PSUs that have enough 
headroom to deliver power for the max-
imum configuration. Server vendors 
would rather carry a small number of 
oversized power-supply SKUs than a 
large number that are right-sized to 
purpose, since economies of scale pre-
fer the former. This leads to an oversiz-
ing factor of at least two to three times 
the required capacity for conventional 
power supplies. In comparison, a rack-
level PSU will be less oversized since it 
is right-sized for purpose. The hyper-
scalers also have the advantage of 
economies of scale for their hardware. 
The typical Open Rack-compliant pow-
er supply is oversized at only 1.2 times 
the required capacity, if that.

Optimal efficiency. Every power 
supply has a sweet spot for load versus 
efficiency. The 80 Plus certification 
program measures PSU efficiency us-
ing these different grades: bronze, sil-
ver, gold, platinum, and titanium. The 
most power-efficient grade is titani-
um. The most common grade of PSU 
used in datacenters is silver, which 
has a maximum efficiency of 88%, 
meaning it wastes 12% electric energy 
as heat at the various load levels. In 
comparison, the 12V and 48VDC PSUs 
have data showing maximum efficien-
cies at 95% and 98%, respectively. This 
means the rack-level PSUs waste only 
between 5% and 2% of energy.

While the efficiency of the rack-level 
PSU is important, you still need to 
weigh the cost of the number of conver-
sions being made to get the power to 
each server. For every unnecessary 

One of the actions 
Google has taken 
for lowering  
its PUE is using 
machine learning 
to cool datacenters 
with inputs  
from local weather 
and other factors.
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ciency of the PSU is 89%–94%, depend-
ing on the load, placing the grade of 
the Olympus power supply around an 
80 Plus platinum.

Like all technical decisions, using 
per-server AC power supplies versus 
rack-level DC is a trade-off. By having 
separate power supplies, different 
workloads can balance the power they 
are consuming individually rather than 
at a rack level. In turn, though, Micro-
soft needs to build and manufacture 
multiple power supplies to ensure they 
are right sized to run at maximum effi-
ciency for each server configuration. 
Serviceability also requires technicians 
to unplug power cables and go to the 
back of the rack.

At the time Microsoft made the deci-
sion to use individual AC power sup-
plies per server, the Open Rack design 
was at v1 (not v2 like it is today), the 
cost of the copper for the power-bus 
bar was higher, and the loss of efficien-
cy to resistance was a factor. The Open 
Rack v1 design had an efficiency con-
cern with power loss resulting from 
heating the copper in the bus bar. If a 
rack holds 24 kW of equipment, a 
12VDC power-bus bar must deliver 
2kA of current. This requires a very 
thick piece of copper, which has a sig-
nificant power loss because of resis-
tance in the bus bar.

Let’s break down how to measure 
the relationship of power to resistance. 
Ohm’s law declares electric current (I) 
is proportional to voltage (V) and in-
versely proportional to resistance (R), 
so V=IR. To see the relationship of pow-
er to resistance, combine Ohm’s law 
(V=IR) with P=IV, which translates to 
power (P) being the product of current 
(I) and voltage (V). Substituting I=V/R 
gives P=(V/R)V=V2/R. Then, substituting 
V=IR gives P=I(IR)=I2R. So, P=I2R is how 
you can calculate the power loss result-
ing from resistance in the bus bar.

In making its decision, Microsoft 
balanced the conversion efficiency 
against the material cost of the bus bar 
and the resistive loss. Open Rack v2, 
however, changes the tradeoffs of the 
original decision. With a 48VDC bus 
bar, a rack that holds 24kW of equip-
ment requires only 500A, as opposed to 
the 2kA required by the 12VDC power-
bus bar from the v1 spec. This trans-
lates into a much cheaper bus bar and 
lower losses from resistance. The bus 

power conversion, you are paying an ef-
ficiency cost. For example, with a 
48VDC rack-level power supply, the 
server might need to convert the rack 
provided from 48VDC to 12VDC, then 
that 12VDC to VCORE. VCORE is the 
voltage supplied to the CPU, GPU, or 
other processing core. With its 48VDC 
power supply, Google advocates for us-
ing 48V to PoL (point of load) to deliver 
power to the servers. This means plac-
ing a DC-to-DC or linear power-supply 
regulator going from the rack-level PSU 
to the server, which would reduce the 
number of conversions needed to get 
the power to the processing cores. The 
48VDC-to-DC regulators required for 
Google’s implementation, however, 
are not common and come at a premi-
um cost. It is likely that Google’s moti-
vation for opening the specs for the 
48VDC rack is to drive more volume to 
those parts and thus drive down costs. 
In contrast, 12VDC-to-DC regulators 
are quite common and low cost.

Reading a Power-Efficiency Graph
The accompanying figure is an example 
of a power-efficiency graph for a power 
supply. You can see that the peak of the 
graph is where the PSU is the most ef-
ficient. Divide the output power by the 
input power to calculate efficiency. The 
x-axis of the graph measures the load 
of the power supply in watts, while the 
y-axis measures efficiency.

If you know the peak load is 120W 
and idle is 60W, as shown in the figure, 
then this power supply would be more 
than is needed since it can handle up 
to 150W. At a peak load of 120W with 
230VAC, this power supply would have 
a maximum efficiency of around 94% 
and a minimum efficiency at idle of 
around 92% with 230VAC. You now 
know the losses of this specific power 
supply and can compare it with other 
supplies to see if they are more effi-
cient. This allows you to choose the 
right power supply for the load.

Open Compute servers without a 
bus bar. Not all Open Compute servers 
include a power-bus bar. Microsoft’s 
Olympus servers require AC power. The 
Olympus power supply has three 340W 
power-supply modules, one for each 
phase, with a total maximum output of 
1,000W. Therefore, these power sup-
plies assume all deployments are 
three-phase power. The minimum effi-

With the Open 
Compute 
designs, network 
connections  
to servers are at  
the front of the rack 
so the technician 
never has to go  
to the back  
of the rack  
(that is,  
the hot aisle).
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bar still has more loss than 208VAC 
cables, but there is an improved effi-
ciency from the power-supply unit at 
the rack level, which makes it compel-
ling. As stated earlier, however, you 
need to be mindful of the number of 
conversions needed to get the power to 
the components on the motherboard. 
If your existing equipment is 12VDC, 
you would want to avoid any extra con-
versions using that with a 48VDC bus 
bar. Save the 48VDC bus bar for new 
equipment that has 48V to PoL to avoid 
extra conversions.

The main difference between Mi-
crosoft’s design with individual power 
supplies and the 24VDC and 48VDC 
Open Rack designs is the way the initial 
power is delivered to the servers. Mi-
crosoft’s design distributes three-
phase power to the servers individually 
through power supplies, while the 
24VDC and 48VDC power-bus bars dis-
tribute the power delivery to the serv-
ers. Once power is delivered to the serv-
er, it is typically sent through a 
DC-to-DC power-supply regulator, 
which in turn powers the components 
on the motherboard. This step is 
shared whether the power is coming 
from a single power-bus bar or individ-
ual power supplies.

Another interesting bit comes into 
play with UPSes. As noted earlier, 
there are losses in efficiency because 
of UPSes. What does this mean in 
terms of a DC bus bar or individual AC 
PSUs? When AC power is going into 

each individual server, you have two 
choices: a UPS on the AC before it gets 
distributed to the individual servers, 
or a UPS per server integrated into 
each server’s PSU. Deploying and ser-
vicing individual batteries per server 
is a nightmare for maintenance. Be-
cause of this, most facilities that use 
AC power to the servers wind up using 
rack-wide or building-wide UPSes. 
Since the batteries in a UPS are DC, an 
AC UPS has an AC-to-DC converter for 
charging the batteries and a DC-to-AC 
inverter to provide AC power from the 
battery. For online UPSes, meaning 
the battery is always connected, this 
requires two extra conversions from 
AC to DC, and DC back to AC, with 
power-efficiency losses for both.

With a DC rack-level design, battery 
packs can be attached directly to the 
bus bar. The rack-level PSUs are the 
first AC-to-DC conversion state so 
there is no need for another conver-
sion since everything from there runs 
on DC. The downside is that the rack-
level PSU needs to adjust the voltage 
level to act as a battery charger. This 
means the servers need to accept a 
fairly wide tolerance on the 48V target, 
around +/-10V, so 40-56V isn’t unrea-
sonable. Because DC-to-DC convert-
ers are fairly tolerant about input 
voltage ranges, this is fairly straight-
forward, without any significant 
loss in power efficiency. It’s impor-
tant to note that for hyperscalers 
UPSes are present only to allow for a 

generator to kick in—a few seconds 
rather than 10–15 minutes for a tradi-
tional datacenter.

With commodity servers, such as 
Dell or Supermicro, the cost of indi-
vidual power supplies is much higher 
in terms of power efficiency since 
those PSUs do not have as high an 80 
Plus grade and do have much more 
oversizing. They also tend to lack 
power-supply regulators that mini-
mize power-conversion losses in sup-
plying power to the components on 
the board. This would lead to around 
an 8%–12% gain in power efficiency by 
moving from a bunch of commodity 
servers in a rack to an Open Compute 
Project design—not to mention that 
the serviceability ease of the bus bar 
would benefit technicians as well.

By designing rack-level architec-
tures, huge improvements can be 
made for power efficiency over conven-
tional servers, since PSUs will be less 
oversized, more consolidated, and re-
dundant for the rack versus per server. 
While the hyperscalers have benefited 
from these gains in power efficiency, 
most of the industry is still waiting. 
The Open Compute Project was started 
as an effort to allow other companies 
running datacenters to benefit from 
the power efficiencies as well. If more 
organizations run rack-scale architec-
tures in their datacenters, the wasted 
carbon emissions caused by conven-
tional servers can be lessened.
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J O U R N A L I S M  I N VO LV E S  T H E  search for and critical 
analysis of information.18 How journalists discover 
and select sources of this information is important 
to avoid bias, to be credible and trusted, and to 
create angles with which to generate new stories of 
value to readers.

Journalist creative thinking, to discover and generate 
new associations during this search and analysis of 
information, contributes to the generation of new 
stories. Journalists are known to seek opportunities 
to develop new creative skills with which to discover 
information.17 Applying these skills enables journalists 
to maintain control over their work.25 And emerging 

forms of investigative journalism de-
mand new creative search and associa-
tion skills.10

However, discovering and examin-
ing information sources about complex 
stories takes time—time that journal-
ists increasingly lack as news organiza-
tions reduce staff numbers.22 The digi-
talization of news production and 
consumption has led many news busi-
nesses to become uncompetitive. Some 
work practices are slow to change due 
to conflicts with journalist professional 
values for autonomy.8 Therefore, as 
coping strategies, journalists often use 
subsets of available and familiar infor-
mation sources to create stories, which 
in turn can reduce the diversity of an-
gles used to report stories.

Although journalism is one of the 
creative industries, explicit support for 
the creative skills of journalists is rare. 
For example, it is not one of the five 
journalist capabilities reported in Co-
hen et al.,4 and few digital tools support 
journalist creativity.

INJECT was a new digital tool de-
signed to support journalists to discov-
er new associations with which to gen-
erate stories with angles more novel 
and valuable than stories published 
previously. It integrated creative search 
algorithms with which to discover in-
formation in published news stories 
and interactive support to form new as-
sociations with this information during 

Digital 
Creativity 
Support 
for Original 
Journalism

DOI:10.1145/3386526

A tool that helps journalists discover 
new story angles by offering insight 
not search results.

BY NEIL MAIDEN, KONSTANTINOS ZACHOS, AMANDA BROWN, 
DIMITRIS APOSTOLOU, BALDER HOLM, LARS NYRE, 
ALEKSANDER TONHEIM, AND AREND VAN DEN BELD

 key insights
 ˽ Journalists identified more with digital 

tools to support them to discover 
and generate new angles on stories 
more quickly than now—tools that 
recognized and augmented their 
existing creativity skills.

 ˽ Different creative search algorithms 
applied to news information 
operationalized the strategies for 
discovering new angles on stories 
reported by experienced journalists.

 ˽ Evaluations of the INJECT digital tool  
in three newsrooms revealed it increased  
the novelty of stories written by 
journalists, but younger journalists  
more open to new technologies and 
working more autonomously were  
more likely to use the tool.
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The crawler was directed 
to fetch verified news stories 
from 1,105 predefined RSS feeds 
published by 380 diverse news 
titles in 6 languages.

INJECT’s creative 
news index is now an 
important asset of more 
than 500 million pieces 
of news information 
for computational 
manipulation.
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Unlike in journalism, digital creativ-
ity support has been implemented for 
professionals in other creative indus-
tries, such as the performing arts, mu-
sic, and film and television. Examples 
of the digital support include Story-
Crate, a collaborative editing tool devel-
oped to drive users’ creative workflows 
within a location-based television pro-
duction environment2 and Trigger Shift, 
which appropriated information tech-
nologies into performance art in the-
ater.21 Other domains for which digital 
creativity support has been developed 
include theatre, scientific discovery, 
and caring for older people.

Therefore, to fill the gap in journal-
ism, new digital creativity support was 
developed that aligned with the work 
practices, tools and values of journal-
ists. The resulting tool was called IN-
JECT.

Designing INJECT with Journalists
INJECT’s design was informed by es-
tablished cognitive models of creative 
thinking. Most of these models de-
scribe dual processes of developing and 
evaluating ideas to generate outcomes 
that are both novel and valuable.12,14 De-
veloping ideas is a divergent and asso-
ciative process that can be spontaneous 
and deliberate, and involves retrieving 
relevant items from memory and gen-
erating associations with new informa-
tion.9 By contrast, evaluating ideas is 
more analytic, but can be interleaved 
tightly with developing ideas.7

Therefore, INJECT was designed to 
support journalists to discover new in-

formation, generate associations be-
tween this information and items from 
memory to discover new angles on 
news stories, and evaluate these angles 
quickly during story development.

To align INJECT to these work prac-
tices, tools, and values, journalists were 
included in the tool’s design. Inter-
views were held with experienced and 
inexperienced journalists to discover 
problems, requirements, and con-
straints. Paper-based then digital wire-
frames of the INJECT tool were devel-
oped and presented to professional 
journalists. New releases of the work-
ing INJECT software were prototyped 
for their usability and impact with pro-
fessional and student journalists.

The user-centered design process 
uncovered three important values that 
most journalists held about their 
work—values the INJECT tool was de-
signed to uphold.

The first value was the importance of 
discovering information already report-
ed in verified newspapers, as opposed 
to in unverified sources, as the starting 
point for discovering new angles on sto-
ries. Even though it was argued that 
published news might constrain their 
creative thinking, most journalists ex-
pressed a preference for it to direct the 
discovery of new associations and an-
gles. Feedback on prototypes revealed 
three specific types of verified news in-
formation were effective for discover-
ing angles: 1) published news stories  
similar but not the same as the new 
story being written; 2) entities such as 
people, places, and organizations that 
might relate to these new stories, and; 
3) guidance for directed creative think-
ing to develop the stories. INJECT was 
designed to direct journalists to gener-
ate new associations between informa-
tion discovered in similar stories and in 
entities referenced in these stories.

The second value was to recognize 
the existing creativity skills of journal-
ists. Many who engaged in INJECT’s de-
sign initially rejected the need for digi-
tal support for their creative thinking. 
After all, journalism is one of the cre-
ative industries, and many chose it as a 
profession to be creative. Instead, jour-
nalists identified with the need to gen-
erate new angles more quickly.

The third value was that creative 
thinking was not separate from but part 
of everyday journalistic work. Indeed, 

creative thinking. It was designed to 
contribute to journalist engagement in 
professional-level creative work, that is, 
work that generated income and pro-
vided a living.12 This work included 
writing stories that were creative, that 
is, judged to be novel and valuable14 

through the application of the creativity 
skills1 of the journalists.

Existing Creativity Support 
Technologies for Journalists
Digital tools that enhance the creativ-
ity skills of journalists are rare. One 
exception was the Story Discovery En-
gine, which used artificial intelligence 
algorithms for investigative reporting.3 
The Tell Me More system mined the Web 
for similar stories reported by different 
sources and extracted text that offered 
new information in the form of quotes, 
actors and figures.11 Both of these tools 
had similar objectives to INJECT, but 
were not framed as creativity support 
tools for journalists. The SocialSen-
sor news app surfaced fast moving 
trends from social media content, but 
revealed biases arising from such con-
tent.23 Many different data visualization 
tools support journalists to make sense 
of, for example, social media content.6 
However, none supported human cre-
ative thinking to discover new angles 
on news stories.

To work around the lack of bespoke 
tools for information search and analy-
sis tasks, many journalists use generic 
search tools such as Google,13 but these 
lack explicit support for human cre-
ative thinking about news stories.

Figure 1. The INJECT tool’s three-tier architecture, showing its layers, services and external 
information sources.
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mentions of DBpedia resources using 
entity detection and disambiguation al-
gorithms with adjustable precision and 
recall, which were used to refine IN-
JECT’s sensitivity to news content using 
measures such as entity prominence, 
topical pertinence, and disambigua-
tion confidence. Polyglot implemented 
named entity extraction, speech tag-
ging, sentiment analysis, morphologi-
cal analysis, and transliteration in all of 
INJECT’s six target languages—Eng-
lish, German, Dutch, French, Italian, 
and Norwegian. It could detect, for ex-
ample, that Forente Nasjoner is Norwe-
gian for the entity United Nations, the 
international organization founded in 
1945;

 • Automatic parser mechanisms that 
detected nouns and verbs to index sto-
ries using common objects and actions. 
The parsers split news text into sen-
tences then applied part-of-speech tag-
ging to mark up words as belonging to 
lexical, part-of-speech categories. Shal-
low parsing was applied to generate a 
machine understanding of the struc-
ture of a sentence without parsing it 
fully into a parsed tree form. The output 
was a division of the text’s sentences 
into a series of words that, together, 
constituted a grammatical unit. To se-
lect candidate objects and actions from 
these units with which journalists 
might also discover associations, the 
mechanism applied lexical extraction 
heuristics on a syntax structure rule-
tagged sentence. For example, the pro-
cessor parsed the news headline The 
Yemen war in the world’s worst humani-
tarian crisis to extract the nouns such as 
war, world and crisis.

INJECT’s creative news index. For 
each fetched story, the creative news in-
dex generated a new entry composed of 
all extracted named entities, objects 
and actions and frequencies of occur-
rence, the author, URL, image URL, and 
publication date. A typical entry for a 
news story of 400 words was composed 
of between 30 and 50 entities, objects, 
and actions. Early prototyping of the 
INJECT tool revealed that indexes with 
this volume and type of content were 
sufficient to generate new associations 
that journalists reported could be effec-
tive for discovering new angles.

All index entries were uploaded to 
an external Elasticsearch cluster to be 
manipulated by the discoverer’s cre-

journalists sought support for more 
original journalism that was embedded 
in daily work tasks and tools, such as 
text editors.

The INJECT Tool
The INJECT tool was implemented with 
natural language processing, multi-
language creative search, and interac-
tive creativity support capabilities. It in-
dexed content from millions of verified 
stories published by hundreds of news 
titles in multiple languages in order to 
provide journalists with a sufficiently 
large external information source from 
which to discover associations.

The INJECT tool’s three-tier archi-
tecture is shown in Figure 1. The inter-
action layer was a sidebar designed to 
be simple, fit with existing work prac-
tices, and encourage journalists to dis-
cover new angles on stories quickly 
without learning new skills.

The application layer was composed 
of services designed to generate large 
numbers of possible associations be-
tween information that journalists 
were writing about using indexed news 
content from millions of already pub-
lished news stories.

These services retrieved this content 
from INJECT’s data layer, called the cre-
ative news index, which was designed 
so the discoverer service could under-
take divergent creative searches that 
were more sophisticated than were pos-
sible with existing Web search and 
news site APIs. The index was populat-
ed by the presser service, which indexed 
millions of verified news stories as pos-
sible starting points for discovering 
new angles on stories. The text proces-
sor service was invoked by the presser 
to make sense of and to generate in-
dexed content from published news, 
and by the discoverer to expand creative 
search queries.

INJECT’s presser. The presser gener-
ated indexes of millions of verified 
news stories that could be retrieved, on 
request, as starting points for journal-
ists to discover associations with which 
to generate new angles on stories. It 
had a crawler component that fetched 
news stories to index from open RSS 
feeds, and an importer component that 
fetched stories from accessible news-
papers’ archives.

The crawler was directed to fetch 
verified news stories from 1,105 pre-

defined RSS feeds published by 380 di-
verse news titles in six languages. These 
feeds, titles and languages were select-
ed by INJECT’s editorial team to gener-
ate indexes of diverse views and angles 
on news, and ranged from major daily 
newspapers in the U.S., regional news-
papers in the Netherlands, and tabloid 
titles in the U.K. On a normal news day, 
it fetched about 15,000 verified stories. 
Stories from high-frequency feeds were 
fetched every 30 minutes, others every 
12 hours. During each fetch cycle, the 
crawler automatically read all news sto-
ries accessible via the URLs in each RSS 
feed, removed navigation links, adverts 
and embedded media such as links, im-
ages, and videos, and sent the remain-
ing text string, along with story’s au-
thor, URL, image URL, and published 
date, to the text processor service. This 
text string, author, date, and URLs pro-
vided a rich external information 
source with which journalists could 
discover and generate new associations 
and angles on news stories.

The importer component was simi-
lar to the crawler but was directed to 
fetch stories from local JSON files. It 
was developed to address the need of 
news organizations to use their own 
stories as starting points for more origi-
nal journalism. Like the crawler, it also 
sent a text string, along with author, 
URL, image URL, and published date, 
to the text processor service.

INJECT’s text processor. The text 
processor service generated new en-
tries to add to the creative news index 
by analyzing the natural language text 
string of each fetched news story with 
the following:

 • Named entity extraction mecha-
nisms to index stories using real names 
such as people and places. The mecha-
nisms that treated candidate-named 
entities as groups of consecutive words 
describing a concept such as a person 
(for example, Tawakkol Karman), loca-
tion (for example, Sana’a), organization 
(for example, United Nations) or object 
(for example, war crime). This enabled 
the processor to extract entities with 
which journalists might discover asso-
ciations not described in the text, for 
example the entity Sana’a from the text 
the capital of Yemen. After experimen-
tation with alternatives, the processor 
invoked the DBpedia Spotlight5 and 
Polyglot20 services. Spotlight annotated 
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the editor, the sidebar invoked the text 
processor service to extract named enti-
ties (for example, Yemen), nouns and 
verbs (for example, crisis, ecological) as 
candidate topics to present at the top of 
the sidebar, see Figure 2. This feature 
was implemented to increase the side-
bar’s usability and enabled journalists 
to work more quickly.

The journalist could then use the 
icons beneath these topics to select be-
tween six predefined creative strategies 
that mimicked the strategies of experi-
enced journalists.15 These strategies 
were implemented in the discoverer 
service to retrieve creative news index 
entries with the following:

A. Quantified information associat-
ed with the topics;

B. Information about people associ-
ated with the topics;

C. Information about events associ-
ated with the background of the topics;

D. Information about future conse-
quences associated with the topics;

E. Datasets and visualizations asso-
ciated with the topics; and,

F. Comical information associated 
with the topics.

For strategies A-E, the discoverer:
1. Disambiguated each noun topic 

term by discovering its correct sense in 
the online lexicon at WordNet using 
context knowledge from other terms in 
the query (for example, that crisis is an 
unstable situation of extreme danger or 
difficulty rather than a crucial stage or 
turning point in the course of something). 
It then expanded each term with other 

Figure 2. The INJECT sidebar on the right side of the Google Docs text editor. 

terms with similar meanings (for exam-
ple, the term crisis is synonymous with 
exigency and flashpoint) and included 
these terms in the search query. Term 
sense disambiguation and query ex-
pansion was implemented to retrieve 
index entries that were different lexi-
cally but related semantically to the 
topic terms, so that journalists could 
generate new associations based on dif-
ferent types of semantic similarity;

2. Invoked an Elasticsearch search 
via the news API with the expanded 
query terms and logic operators set by 
the journalist to control search breadth. 
Elasticsearch returned a set of indexed 
entries that achieved a threshold match 
score in response times acceptable to 
journalists;

3.  Scored the returned index entries 
for relevance based on the frequencies 
of original and expanded query terms 
in the title of each story, to prioritize en-
tries with headlines related to topic 
terms. This scoring mechanism was 
implemented to reflect the structure of 
most news stories with the most impor-
tant information at the start of stories;

4. Filtered the scored index entries 
using constraints specified for the se-
lected strategy, so that journalists were 
presented with information to form as-
sociations consistent with that strategy. 
For example, for quantified informa-
tion (A), it filtered to retain entries with 
a minimum threshold of 100s of quan-
tity, measure and value keywords, for 
exawwmple Sterling, population and ac-
tual numbers. For information about 
events associated with the background 
of the topic terms (C), it filtered to re-
tain entries with more than 500 words 
of content and a minimum threshold of 
100s of keywords indicative of back-
ground articles such as cause, impact 
and studies from sources such as the 
Economist and the New York Times. And 
for information about people (B), it 
generated orders of entries that refer-
ence a person entity named in a mini-
mum number of entries.

The discoverer sent JSON represen-
tations of each remaining index entry 
to the sidebar to display as a news card. 
By contrast, for strategy F, discoverer 
generated simpler keyword queries 
that searched the caption text of over 
60,000 political cartoons accessed by 
INJECT via an API from an external da-
tabase.

ative search algorithms. Elasticsearch 
is a scalable open source search engine 
with a REST API that provides scalable, 
near real-time search. This perfor-
mance was essential to support jour-
nalists to discover new angles on sto-
ries more quickly. In April 2020, the 
Elasticsearch cluster held over 17 mil-
lion entries, with another 350,000 new 
entries being added each month.

INJECT’s sidebar and discoverer. 
Journalists interacted with the INJECT 
sidebar to discover new associations 
and angles on stories. The sidebar was 
designed to provide journalists with in-
dex information and features and gen-
erate new associations with this infor-
mation without opening another 
application. To work within the space 
constraints of the widget, the sidebar 
was implemented with mouse hover-
boxes and information that journalists 
could use to discover associations 
quickly. Its design also supported jour-
nalists to flip quickly between ideation 
and evaluation processes during story 
development.

Figure 2 depicts use of the sidebar in 
the Google Docs editor to discover asso-
ciations leading to angles for a new sto-
ry about the Yemen humanitarian cri-
sis. The sidebar was also implemented 
for Wordpress, Adobe InCopy text edi-
tors, Google Chrome Web browser, and 
content management systems that use 
the TinyMCE text editor, as well as a 
separate Web application that a jour-
nalist could reshape as the sidebar.

If the journalist highlighted text in 

A journalist writing a 
new story about the 
Yemen crisis is presented 
with news articles and 
information about places, 
things, people and 
organizations with which 
to discover associations 
leading to new angles.
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This automation of information dis-
covery was designed to enable journal-
ists to commit more cognitive resourc-
es to generating associating and 
evaluating ideas. The sidebar present-
ed the retrieved information as a scrol-
lable sequence of news cards. Journal-
ists could select the information to view 
using sidebar features to sequence the 
news cards by relevance, date of publi-
cation or random, and to present news 
published within selected periods.

Each news card in the sidebar pre-
sented the title, publication, date, first 
sentence, and 10 randomly selected en-
tities. Clicking on the title opened the 
original new story or cartoon, at source, 
in a new browser tab. Positioning the 
cursor over each rectangle presented a 
pop-up creativity spark generated for 
that places, things, people and organi-
zations. This feature was implemented 
as a mouse hover-over to enable jour-
nalists to explore multiple sparks and 
discover different associations quickly. 
The sparks themselves were designed 
to direct the deliberate generation of 
associations and ideas by journalists. 
Each was generated by the sidebar from 
a predefined set of spark types to direct 
journalists to think about, for example, 
the history and relevance of places, the 
motives of people and their opponents, 
the future and emotional impact of ob-
jects, and available data about organi-
zations.

Figure 3 shows these features in 
three different INJECT sidebars pre-
sented for different angles using the 
same information about the Yemen hu-
manitarian crisis.

The sidebar also presented other 
styles of news card showing only enti-
ties, word clouds, and sparks in list 
form. These other styles, shown in Fig-
ure 4, were added to reduce compari-
sons with Google search that reduced 
journalists’ expectations for creativity 
support.

Furthermore, to support journalists 
to evaluate as well as discover ideas, the 
sidebar launched Google Web searches 
in new browser tabs from within IN-
JECT, to retrieve information with 
which to analyze and critique ideas, see 
Figure 5.

The INJECT tool was tested by jour-
nalists working in multiple languages. 
When sufficiently robust, it was evalu-
ated in different newsrooms.

Figure 3. Three INJECT sidebars presented for the new story about the Yemen crisis, showing 
(from left-to-right) information to support a background angle, a people angle, and a comical 
angle based on political cartoons.

Figure 4. Three INJECT sidebars presented for the same new story about the Yemen crisis  
in Norwegian, showing (from left-to-right) showing use of a background information angle,  
a people angle, and use of creativity sparks in list form.
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Figure 5. INJECT features to distinguish it from Google search, including a different form of 
presentation of creative ideas, additional digital capabilities, and a feature to launch Google 
search from INJECT with the topic terms, selected angle, and title of the retrieved news item.

Three of the seven judges were domain experts in journalism—associate professors 
of journalism at local higher education institutions. The other four had roles that 
equipped them with extensive local knowledge, as head of information at a regional 
institute in business and trade, two local business leaders in tourism, and a retired 
legal stenographer. All seven lived in the regions covered by these newspapers.

Each judge was assumed to be able to rate 40 news stories accurately in the available 
three-hour period, so each rated 20 news stories that journalists had written with 
support from INJECT and 20 written without it in the same period 12 months earlier. 
A random number generator algorithm at random.org was used to select the 40 news 
stories, and numbers of stories proportionate with the total number of stories written 
by each journalist with the support of INJECT were selected. The 40 news stories were 
then randomly ordered in a questionnaire using another algorithm at random.org, 
anonymized and presented with two 1–7 scales to capture each judge’s novelty rating 
and value rating of each news story.

The Expert Judgment 
Process Used to Rate  
News Stories

chives of the three newspapers gener-
ated by the importer component and 
INJECT also searched over 50,000 digi-
tal cartoons. The journalists used IN-
JECT’s Web application version.

To investigate the research ques-
tion, news stories produced by the jour-
nalists with and without the support of 
INJECT were rated by seven individuals 
with journalism expertise and/or 
knowledge of the regions of the three 
newspapers, see the sidebar “The Ex-
pert Judgment Process Used to Rate 
News Stories.”

INJECT was used in all three news-
rooms. No major technical problems 
were reported. A total of 72 published 
stories were written with the support of 
INJECT by 10 of the journalists. Jour-
nalists used already-published news 
stories as effective starting points for 
new angles on stories. Based on the ex-
pert analysis, a Mann-Whitney test re-
vealed that the novelty ratings were 

greater for the news stories written with 
the support of INJECT (Mdn=3) than 
without the support of INJECT (Mdn=2), 
U=6997.5, p<0.0001. INJECT use was 
associated with an increase on the nov-
elty of news stories, albeit from ratings 
that indicated low novelty of most non-
INJECT news stories.

In contrast, a second Mann-Whitney 
test revealed the value ratings were not 
greater for the news stories written with 
the support of INJECT (Mdn=5) than 
without the support of INJECT (Mdn=5), 
U=9156, p>0.05. The average value rat-
ing of all of the news stories was 4.7 out 
of 7, and the lowest and highest average 
valuated articles were 3.71 and 5.86. 
This was unsurprising, given that all of 
the news stories had passed through 
editorial processes.

Most of the journalists needed time 
to learn to use INJECT, and many re-
ported comparisons to Google: “You 
need to adjust slightly, because we are 
used to search engines that give us the 
most popular hits.” INJECT use was re-
lated to journalist attitudes. Four 
younger journalists in one newspaper 
who were open to new technologies 
and worked more autonomously used 
INJECT more frequently. By contrast, 
more experienced journalists were less 
willing to adopt INJECT after the evalu-
ation: “We seem to have certain stub-
bornness against using INJECT and 
other tools like it.”

The evaluation in the three news-
rooms revealed the journalists did pro-
duce news stories that were more novel 
if not more valuable with support from 
INJECT. In fact, all were published, in-
dicating sufficient value for purpose. 
One interpretation of this result was 
the stories written without the tool’s 
support had value but lower novelty, 
that is, the stories were not creative. Ar-
ticles written with the tool’s support 
had increased novelty but not increased 
value. In a strict sense, these articles 
were more novel rather than creative, 
but still had sufficient value to publish.

More results are reported in Maiden 
et al.15

Conclusion
Demonstrating INJECT to other news 
organizations reinforced our judgment 
that digital support for journalist cre-
ative thinking is rare.2,11 However, its 
positive reception revealed the poten-

Evaluating the INJECT Tool 
in Three Newsrooms
The INJECT tool was installed in the 
newsrooms of three regional newspa-
pers in Norway to investigate the effec-
tiveness of its creativity support. One 
research question explored was wheth-
er journalists produced news stories 
that were more novel and valuable with 
INJECT’s support.

INJECT was introduced into the dai-
ly work of four journalists in each of the 
three newspapers for two months in 
2018, for use in Norwegian and English. 
The 12 journalists received INJECT 
training and helpdesk support and 
were encouraged by their editors to use 
INJECT. During the evaluation, the 
numbers of English-language entries in 
the creative news index increased from 
2.7 million to 3.2 million and Norwe-
gian-language entries from 260,000 to 
300,000. The index also included 62,160 
Norwegian-language articles from ar-

http://random.org
http://random.org
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tial of INJECT to support journalist cre-
ative thinking.

To uphold the three journalist val-
ues uncovered during design, INJECT’s 
interactive support was separated from 
indexing published news. The sidebar 
design enabled journalists to access IN-
JECT’s guidance in as few as two clicks, 
without leaving the text editor. It dem-
onstrated how to establish digital sup-
port for creative thinking as part of 
journalists’ daily work tools, although 
more evaluations are needed.

INJECT’s creative news index is now 
an important asset of more than 500 
million pieces of news information for 
computational manipulation. New 
computational analyses under develop-
ment will detect patterns, biases and 
angles on news shown to be novel, and 
hence creative. One will analyze differ-
ences in topic reporting in different 
languages to generate angles underre-
ported in a target language. Rolling out 
new INJECT versions with these fea-
tures will support news businesses to 
remain competitive and fulfil their role 
in liberal democracies.
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ON  OCTOBER 23,  2008,  Alan Greenspan, the Chair of the 
U.S. Federal Reserve, was testifying before Congress 
in the immediate aftermath of the September 2008 
financial crash. Undoubtedly the high point of the 
proceedings occurred when Representative Henry 
Waxman pressed the Chair to admit “that your 
view of the world, your ideology, was not right,” to 
which Greenspan admitted “Absolutely, precisely.”17 
Fast forward 10 years to another famous mea culpa 
moment in front of Congress, that of Mark Zuckerberg 
on April 11, 2018. In light of both the Cambridge 

Analytica scandal and revelations of 
Russian interference in the 2016 U.S. 
election, Zuckerberg also admitted to 
wrong: “It’s clear now that we didn’t 
do enough to prevent these tools from 
being used for harm. That goes for fake 
news, foreign interference in elections, 
and hate speech, as well as developers 
and data privacy.”15

As far as mea culpas go, Greens-
pan’s was considerably more concise, 
but also much more insightful as to 
the root problem. Greenspan admit-
ted the problem was not due to mis-
guided user expectations, or to poorly 
worded license agreements, or to 
rogue developers. Instead he recog-
nized the problem lay in a worldview 
that seemed to work for a while … un-
til it didn’t. In the immediate after-
math of the financial crisis, there were 
calls for reforms, not only of the finan-
cial services industry, but also within 
universities, where it was thought that 
unrealistic models and assumptions 
within economics departments20 and 
business schools11 were also responsi-
ble for inculcating a worldview that 
led to the crisis. It is time for us in 
computing departments to do some 
comparable soul searching.

This article is one attempt at this 
task. It argues the well-publicized so-
cial ills of computing will not go away 
simply by integrating ethics instruc-
tion or codes of conduct into comput-
ing curricula. The remedy to these ills 

Why 
Computing 
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the Social 
Sciences
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Fully appreciating the overarching scope 
of CS requires weaving more than ethics 
into the reigning curricula.

BY RANDY CONNOLLY

 key insights
 ˽ The social ills of computing will not go 

away simply by integrating more ethics 
instruction or codes of conduct into 
computing curricula.

 ˽ A better approach to addressing  
these problems would be to move  
the academic discipline of computing 
away from engineering-inspired 
curricular models and supplement 
it with the methods, theories, and 
perspectives of the social sciences.

 ˽ In practice, computing is already 
moving tentatively into the 
methodological and theoretical 
pluralism of the social sciences, but 
this movement has not been fully 
recognized within academic computing.
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instead lies less in philosophy and 
more in fields such as sociology, psy-
chology, anthropology, communica-
tions, and political science. That is, 
because computing as a discipline 
is becoming progressively more en-
tangled within the human and social 
lifeworld, computing as an academic 
discipline must move away from engi-
neering-inspired curricular models 
and integrate the analytic lenses sup-
plied by social science theories and 
methodologies. To this end, the arti-
cle concludes by presenting three re-
alistic recommendations for trans-
forming academic computing in light 
of this recognition.

The World View of Computing
Academic departments are not one-
dimensional monoliths, so right at 
the start I must acknowledge there 
is a wide range of perspectives and 

beliefs at play in any individual com-
puting department. It’s also true that 
computing, like any academic disci-
pline, has somewhat arbitrary intel-
lectual demarcations: its boundaries 
are less like high fences and more like 
a series of irregular stones that mark 
the rough borderlands around its do-
main. Computing, as a new field, ini-
tially laid out a very preliminary series 
of markers to help distinguish it from 
mathematics and engineering. Per-
haps the most important of these was 
computing’s unique disciplinary way 
of thinking and practicing, which, as 
narrated by Tedre and Denning,22 was 
variously labeled as “algorithmizing,” 
“algorithmic thinking,” “algorithmics,” 
and, more recently, as “computational 
thinking.” Over the decades, the claims 
made about the utility and power of this 
mode of thinking became increasingly 
ambitious and by the 2000s it became 

common to argue that everyone can 
benefit from thinking like a computer 
scientist.23 Analogous movements, 
such as Computer Science for All, Can-
Code, and Computing at School, are all 
motivated by the premise that compu-
tational thinking will be a necessary 
part of all future work and thus it is es-
sential that children learn it in school.

Within academia, computing and 
computational thinking has also fol-
lowed an expansionist arc. The Digital 
Humanities—that is, using computa-
tional approaches and technologies 
within the humanities—was seen by 
its advocates as a way to refresh the 
humanities by modernizing its meth-
ods, moving it out of dusty dark librar-
ies and into the clean, bright air of the 
datacenter.5 Computational social sci-
ence is another recent curricular ex-
periment in adopting the methodolo-
gies and techniques of computing.19 
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by social institutions, human failings, 
or antiquated theories, is the ideology 
that leads to tech executives testifying 
to Congress about how it all went 
wrong. Not only is it academically arro-
gant, it’s short-sighted as well, because 
instead of replacing social science ap-
proaches, academic computing would 
be immeasurably improved by supple-
menting its own with the methods, the-
ories, and perspectives of the social 
sciences. Indeed, one could even go 
further and make the claim that not 
only would computing be improved by 
more social science, but that comput-
ing today actually is a social science.

Why Computing Is a Social Science
Broadly speaking, the social sciences 
are a range of academic disciplines 
that studies human society and hu-
man individuals in the context of so-
ciety. Long established fields such as 
sociology, economics, anthropology, 
psychology, and political science no 
doubt first come to mind when think-
ing about the social sciences. But 
disciplines such as education, law, 
linguistics, geography, gender stud-
ies, communications, archeology, 
and even business school fields such 
as management, marketing, and hu-
man resources can all potentially be 
categorized as falling under the broad 
net of social science. While this diver-
sity of specialized fields can be an ob-
stacle when it comes to generalizing 
about its nature, this diversity is both 
a strength and a reflection of the com-
plexities of its domain of study. This 
is a point that needs to be reiterated. 
One of the key insights (and values) 
of the social science of the past half 
century is its embrace of complexity. 
That is, methodological and theoreti-
cal pluralism is what defines both the 
social sciences in general, but also 
its subject, humans in social, politi-
cal, economic, and cultural contexts. 
This is seemingly quite different from 
the natural and engineering sciences, 
where the predictability of its subjects 
can be better assumed and thus a sin-
gle methodological approach for mak-
ing and evaluating knowledge claims 
is possible.

I would like to argue that in prac-
tice computing is already starting to 
move out of the methodologically sin-
gular natural/engineering sciences 

and moving tentatively into the meth-
odological pluralism of the social sci-
ences, but that this movement has not 
been fully recognized within academ-
ic computing.

One can get a preliminary sense of 
the social scientific nature of comput-
ing by looking at one manifestation of 
its social scientific nature, namely, 
how computing is already deeply impli-
cated in relations of power. As re-
nowned sociologist Manuel Castells 
noted, power relations are “the founda-
tional relationship of society because 
they construct and shape the institu-
tions and norms that regulate social 
life.”8 One of the key insights of con-
temporary social science has been its 
recognition of the role and influence of 
power and politics throughout our 
lives, our society, our institutions, and 
our technologies of knowledge.

In the contemporary world, power 
rarely relies on coercion, but instead is 
enacted through persuasion—that is, 
by the construction of meaning 
through knowledge production and 
distributed by communication sys-
tems. Scholars in the 1970s and 1980s, 
for instance, focused their power anal-
ysis on newspapers, radio, and TV, but 
in the past decade a wide range of 
scholars from fields as diverse as law, 
sociology, economics, and communi-
cations are now focused on the truth- 
and power-constructing regimes of 
data and the algorithms that process it. 
Power “is operationalized through the 
algorithm, in that the algorithmic out-
put cements, maintains or produces 
certain truths.”3 Or, simply, “Data are a 
form of power.”14

As computing professionals, we of-
ten see ourselves as problem solvers in 
some manner. We might be using a 
type of algorithmic reasoning, to say, 
find a bug, document a process, design 
a data structure, or engineer a redun-
dancy system. Very few of us would 
think that we are also doing politics. 
“I’m just creating something cool / 
solving a problem for my client / doing 
my job.” It is often true that one’s com-
puting work is relatively innocuous in 
terms of its relationship to power. But 
it’s not always true.

“In the future, how we perceive the 
world will be determined more and 
more by what is revealed to us by digi-
tal systems … To control these is the 

Finally, within computing itself, re-
search has expanded significantly be-
yond both the analysis and creation 
of algorithms and the design and im-
plementation of hardware and soft-
ware architectures, to now include 
using these computational lenses to 
examine social, psychological, and 
cultural phenomenon more generally. 
ACM’s Transactions series now covers 
health care, computing education, 
economics and computation, and so-
cial computing, and are just a sam-
pling of this new research growth with-
in academic computing.

Along with this expansion have 
come bold claims about computing’s 
ability to better understand and ex-
plain the social world without needing 
background in social theory, economic 
models, or psychological concepts.1,18 
While there is no doubt that many 
fruitful insights into social phenome-
non are being made and will continue 
to be made through the adoption of 
computational approaches, it is strik-
ing how the flow of ideas appear to be 
in just one direction. For instance, an 
article in Nature argued it is completely 
legitimate for a computer scientist to 
study social phenomenon even with lit-
tle knowledge of traditional social sci-
ence methods and theories due to the 
insights provided by large datasets.12 
Another recent article wryly noted, it is 
telling that those in the traditional so-
cial sciences are often called upon to 
embrace computational approaches, 
but “computational experts dealing 
with social phenomenon are rarely 
called to conversely embrace tradition-
al sociological thought.”2

This triumphalist, almost quasi-
colonizing mentality that computing 
appears to have in relation to other dis-
ciplines, is, at least partially, to blame 
for computing’s current fraught rela-
tionship with other societal actors. 
This mentality perhaps made sense 
when the discipline was initially stak-
ing its academic claims in the 1970s 
and 1980s, or when the discipline was 
undergoing the harrowing student 
registration crisis of the first years of 
the 2000s. But a too-strong belief that 
computing provides a privileged in-
sight, a methodologically superior set 
of techniques and approaches that can 
be applied universally and which sup-
plies truth propositions unblemished 
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sciences, and fewer with the natural 
sciences or engineering. To get there, I 
have three recommendations:

Recommendation 1: Embrace other 
disciplines’ insight. First, computing 
must divest itself of its colonizing men-
tality toward other disciplines and to 
instead recognize that theoretic frame-
works from outside computing have 
value and would indeed improve com-
puting. Take, for instance, the subfield 
of data science. It has been especially 
good at identifying patterns in hetero-
geneous data sets. But to explain pat-
terns and correlations “requires social 
theory and deep contextual knowl-
edge.”16 Computer scientists are also 
increasingly finding themselves work-
ing in social and psychological do-
mains. This work can be improved by 
theories and approaches already in 
place in those fields. A better under-
standing of human psychology, power, 
and the incentive structures in society, 
may have allowed us to avoid some of 
the socio-technical problems we face 
today. The lack of deep security mea-
sures in the initial Internet protocols, 
for instance, betrays the hopeful, but 
naïve understanding of human motiva-
tion held by the early pioneers of the 
Internet. The legitimation crises facing 
democracies today is at least partly a 
consequence of the social fragmenta-
tion enabled by digital platforms cre-
ated by programmers with a minimal-
ist understanding of what new 
communications modalities can do to 
an unprepared audience.4 Finally, con-
sider the relatively newfound apprecia-
tion within AI research about how pre-
existing human biases can pollute the 
training data using within machine 
learning. Perhaps less surprise would 
have been encountered had those 
working within AI been required to 
take, say, a course in anthropology. For 
almost 50 years, the most introductory 
anthropology training has endeavored 
to instill a recognition that cultural dif-
ferences and perceptions of otherness 
biases the observations of researchers. 
And, yet, in AI research, we are now 
only starting to recognize this fact be-
cause of an institutionalized blindness 
to the accumulated insights of a centu-
ry of social research.

For too long within computing we 
have instead a tendency to rely on 
pop-culture theories about inevitable 

essence of politics.”21 This has already 
been recognized within legal studies, 
where scholars such as Karen Yeung, 
Shoshana Zuboff, Anthony Casey, and 
Anthony Nisbett, have made compel-
ling arguments that algorithms are al-
ready transforming the rule- and stan-
dard-based nature of law and justice, 
to a privatized and force-based one 
implemented via algorithms. Recom-
mendation algorithms, automated 
sanctioning systems, reactive violation 
detection and prediction systems, and 
nudge architectures are replacing the 
human agency built into our legal and 
political systems with an architecture 
of unknowable black boxes allowing 
the one-way surveil and control of peo-
ple without any corresponding contes-
tation.24 In Casey and Niblett’s analo-
gy,7 we are moving from a society of 
rooms, some of which have Do Not En-
ter signs (and thus can be ignored or vi-
olations forgiven), to a society of rooms 
with locked doors. As such, our range of 
possible action will no longer be con-
trolled by law, but instead be controlled 
by code. That is, we will increasingly be 
disciplined by policies devised by cyber-
security professionals, using algorithms 
implemented by computer scientists, 
making use of data analytics provided 
by data scientists, and engineered to 
run hyper-efficiently by software engi-
neers. It’s no wonder that James Suss-
kind ends his 2018 book on the future of 
politics with an exhortation to comput-
er professionals: “The future of politics 
will depend, in large part, on how the 
current generation of technologists ap-
proaches its work. That is their burden 
whether they like it or not.”21 But this 
reckoning will not happen unless we 
also are willing to make changes to 
computing curricula that reflects com-
puting’s expanding role in shaping the 
future of our societies.

Three Recommendations for 
Transforming Computing
Despite the title of this essay, I’m not 
actually advocating for the institu-
tionalized transfer of computing de-
partments into social science facul-
ties—such a move is no doubt highly 
impractical and implausible—but 
rather for a change in mentality, a rec-
ognition that the field now and in the 
future will have more affinities with 
the concerns of the academic social 

The triumphalist, 
almost  
quasi-colonizing 
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that computing 
appears to have  
in relation to  
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is, at least  
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for computing’s  
current fraught 
relationship  
with other  
societal actors.
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other computing topics that can also 
be learned after graduation, thereby 
opening up potential space in the 
curricula for non-computing courses.

But for this to happen, ACM curric-
ular recommendations must lead the 
way. Future ACM curricula must ac-
knowledge that computing students 
need more than just computer and 
mathematics courses. They must ac-
knowledge that graduates in the 2020s 
will face greater responsibilities and 
the intellectual worldview of gradu-
ates must broaden as a recognition of 
how computing is both shaping and 
shaped by political, social, economic, 
and cultural institutions. If the ACM is 
unwilling to make these changes, the 
current social structure of the disci-
pline will endlessly recreate itself, and 
the social ills enabled by computing 
will continue to surprise its creators.

Another rebuttal to this recommen-
dation might be that “we already have a 
computer ethics course.” While an im-
portant first step for sure, we need to do 
more to fully educate our computing 
graduates than simply teach them de-
ontological vs. utilitarian algorithms 
for ethical trolley problems. I’m not 
minimizing the vital work done by 
groups such as the ACM Committee on 
Professional Ethics, Computing Profes-
sionals for Social Responsibility, and 
Computing for the Social Good.13 The 
problem with computing ethics is that 
at present it stands by itself in the 
computing curricula. By only having a 
single mandated course about the re-
lationship of computing to the wider 
human and social world, how can it 
not but strike a student that this is pe-
ripheral (and hence irrelevant) knowl-
edge? Just one look at the curriculum 
and a student will no doubt get the im-
pression that the ethics course is not 
all that important in comparison to 
courses such as numeric theory, algo-
rithm evaluation, and programming.

This is the natural consequence of 
the engineering model that computing 
curricula seems to inhabit. That is, the 
belief there is so much computing and 
mathematics content to be learned 
that there is no room for anything else. 
As a result, we normalized the belief 
that the world is irrelevant next to com-
puting precisely through the structure 
of our curriculum. It is sometimes said 
that workers of organizations adopt a 

technology-driven social change that 
painted an attractive and self-satis-
fied veneer over our work. Moving 
forward, we need to do better, and be 
willing to inform both our work and 
our thinking, with the more nu-
anced, historically grounded, empir-
ically supported thinking of the so-
cial sciences. We would all benefit 
from remembering the perspective 
articulated by Peter Denning: “I am 
now wary of believing what looks 
good to me as a computer scientist is 
good for everyone.”10

Recommendation 2: Replace some 
computing courses with social science 
ones. The best way to achieve my first 
recommendation is to embrace my 
second recommendation: modestly re-
duce the number of computing cours-
es in our programs and in the ACM cur-
ricular recommendations in order to 
accommodate some mandatory social 
science courses.

I can already hear the rebuttal. 
“Surely there is no room for additional 
non-computing courses … we don’t 
have enough curricular room even to 
cover all the essential computing top-
ics!” I have been actively involved in 
the design of two of my university’s 
computing programs, and I too re-
member well that feeling of having 
too many topics and not enough 
course spots. Regardless, the percep-
tion that topic X and topic Y absolute-
ly must make it into the curriculum 
are sometimes more a reflection of in-
dividual faculty desires rather than a 
reflection of informed pedagogy or the 
hireability of students.

Take, for instance, the topic of Web 
development. By far, it is the main 
source of employment for CS gradu-
ates, and yet Web development has 
shrunk to being just one of several 
sub-areas within the elective-only Plat-
form-Based Knowledge area in the 
ACM 2013 CS curricula guidelines. In-
deed, many CS programs do not in-
clude any Web topics in their curricu-
la, a point of some astonishment by 
those outside the CS academy.9 So if 
we, as computing curricula experts, 
are willing to let our students graduate 
without what are arguably the most 
important skills needed for successful 
employment because we think they 
can learn it on their own in the work-
force, then surely there are one or two 

We need to do more 
to fully educate 
our computing 
graduates than 
simply teach them 
deontological 
vs. utilitarian 
algorithms  
for ethical  
trolley problems.



AUGUST 2020  |   VOL.  63  |   NO.  8  |   COMMUNICATIONS OF THE ACM     59

contributed articles

Communication & Society 20, 1 (Jan. 2017), 1–13; 
https://doi.org/10.1080/1369118X.2016.1216147.

4. Bennett, W.L. and Pfetsch, B. Rethinking political 
communication in a time of disrupted public spheres. 
J. Communication 68, 2 (Apr. 2018), 243–253;  
https://doi.org/10.1093/joc/jqx017.

5. Berry, D.M. The computational turn: Thinking about 
the digital humanities. Culture Machine 12, (2011).

6. Calhoun, C. Plenary: Communication as social science 
(and more). Intern. J. Communication 5, (2011), 18.

7. Casey, A.J. and Niblett, A. The death of rules and 
standards. Indiana Law J. 92, (2016).

8. Castells, M. A sociology of power: My intellectual 
journey. Annual Review of Sociology 42, 1 (July 
2016), 1–19; https://doi.org/10.1146/annurev-
soc-081715-074158.

9. Connolly, R. Facing backwards while stumbling 
forwards. In Proceedings of the 50th ACM Technical 
Symposium on Computer Science Education (New 
York, NY, USA, 2019), 518–523.

10. Denning, P.J. Remaining trouble spots with 
computational thinking. Commun. ACM 60, 6 (May 
2017), 33–39; https://doi.org/10.1145/2998438.

11. Giacalone, R.A. and Wargo, D.T. The roots of the global 
financial crisis are in our business schools. J. Business 
Ethics Education 6, (2009), 147–168.

12. Giles, J. Computational social science: Making the 
links. Nature 488, 7412 (Aug. 2012), 448–450; https://
doi.org/10.1038/488448a.

13. Goldweber, M. et al. Computing for the social good 
in education. ACM Inroads 10, 4 (Dec. 2019), 24–29; 
https://doi.org/10.1145/3368206.

14. Iliadis, A. and Russo, F. Critical data studies: An 
introduction. Big Data & Society 3, 2 (Dec. 2016); 
https://doi.org/10.1177/2053951716674238.

15. Kang, C. and Rose, V. Zuckerberg faces hostile 
Congress as calls for regulation mount. New York 
Times (Apr. 11, 2018).

16. Kitchin, R. Big data, new epistemologies and paradigm 
shifts. Big Data & Society 1, 1 (July 2014); https://doi.
org/10.1177/2053951714528481.

17. Leonhardt, D. Greenspan’s mea culpa. New York Times 
(Oct. 23, 2008).

18. Mayer-Schönberger, V. and Cukier, K. Big Data: A 
Revolution that Will Transform How We Live, Work, 
and Think. Houghton Mifflin Harcourt, 2013.

19. Shah, D.V. et al. Big data, digital media, and 
computational social science. The Annals of 
the American Academy of Political and Social 
Science 659, 1 (May 2015), 6–13; https://doi.
org/10.1177/0002716215572084.

20. Shiller, R.J. How should the financial crisis change 
how we teach economics? The J. Economic Education 
41, 4 (Sept. 2010), 403–409; https://doi.org/10.1080/0
0220485.2010.510409.

21. Susskind, J. Future Politics: Living Together in a World 
Transformed by Tech. Oxford University Press, 2018.

22. Tedre, M. and Denning, P.J. The long quest for 
computational thinking. In Proceedings of the 16th Koli 
Calling Intern. Conf. Computing Education Research 
(New York, NY, USA, 2016), 120–129.

23. Wing, J.M. Computational thinking and thinking about 
computing. Philosophical Trans. Royal Society A: 
Mathematical, Physical and Engineering Sciences. 
366, 1881 (2008), 3717–3725; https://doi.org/10.1098/
rsta.2008.0118.

24. Yeung, K. ‘Hypernudge:’ Big data as a mode of 
regulation by design. Information, Communication & 
Society 20, 1 (Jan. 2017), 118–136; https://doi.org/10.1
080/1369118X.2016.1186713.

Randy Connolly (rconnolly@mtroyal.ca) is a professor at 
Mount Royal University, Calgary, Alberta, Canada.

Copyright held by author/owner.  
Publication rights licensed to ACM.

world view that is a reflection of the or-
ganizational structure of their work-
place. Our students do so as well, ex-
cept in this case, it’s their academic 
discipline’s organization. This is a 
problem though that we can fix ... or at 
the very least make an attempt at doing 
it better.

Recommendation 3: Embrace mul-
tidisciplinarity through faculty hiring. 
My final recommendation involves 
more boldly moving our discipline to-
ward multidisciplinarity. Computing 
has sometimes struggled with main-
taining a balance between academic 
disciplinary coherence on the one 
hand, with career-oriented students, on 
the other, who are mainly interested in 
the professionally relevant topics. In 
this regard, computing is quite similar 
to its cousin in the social sciences, the 
discipline of communications. That 
field weathered a series of crises 
brought on by technological change 
and by the contrasting pulls of faculty 
and student interests, by embracing 
multi-disciplinary opportunities.

Craig Calhoun, in his 2011 plenary 
address on communications as a social 
science, argued using a metaphor from 
ecology that porous edges are better 
than sharp boundaries when it comes 
to newer academic disciplines such as 
communications. Edges are zones 
where ecosystems overlap, and where 
biodiversity and biodensity are much 
higher than in the central areas of any 
one ecosystem. “There are more song-
birds at the edges of forests than in the 
middle.”6 This is what computing also 
needs as an academic discipline: to 
move to the edge and to participate in 
the rich academic biodiversity that hap-
pens where computing interacts with 
other disciplines. Some researchers in 
CS are already there. But rather than 
make this an exotic vacation, it should 
be our discipline’s home flora and fau-
na. And we should not inhabit this edge 
with a colonizing ideology that sees 
computational thinking as the best way 
to understand and inhabit this world. 
Indeed, the whole point of inhabiting 
an edge is to take strength from multi-
ple sources, from multiple world views, 
from multiple methodologies and the-
oretic angles, and not to pave it over 
with a single approach.

How can this be achieved? One 
way would be to hire more tenurable 

faculty into computing departments 
who are specialists in the human and 
social side of computing. We don’t 
need to limit ourselves to CS Ph.D.s. 
There are communications, sociology, 
law, psychology, anthropology, and 
other Ph.D.s out there whose disserta-
tion topics are clearly computing relat-
ed or even computational in approach.

Conclusion
Computing professionals and academ-
ics have helped create something awe-
some over the past half century. Awe-
some is truly the appropriate word, 
especially if we are cognizant of its ety-
mological heritage. “Awesome” is de-
rived from the ancient Greek word dei-
non, and this word captures better the 
full dimensions of computing’s awe-
someness. To be deinon is to be both 
wondrous and terrifying at the same 
time. “There are many deinon creatures 
on the earth, but none more so than 
man” sings the chorus in Sophocles’ 
tragedy Antigone.

Within computing we have gener-
ally only focused on the wondrous 
and have ignored the terrifying or del-
egated its reporting to other disci-
plines. Now, with algorithmic gover-
nance replacing legal codes, with 
Web platform enabled surveillance 
capitalism transforming economics, 
with machine learning automating 
more of the labor market, and with 
unexplainable, non-transparent algo-
rithms challenging the very possibili-
ty of human agency, computing has 
never been more deinon. The conse-
quences of these changes will not be 
fully faced by us but will be by our 
children and our students in the de-
cades to come. We must be willing to 
face the realities of the future and em-
brace our responsibility as comput-
ing professionals and academics to 
change and renew our computing cur-
ricula (and the worldview it propa-
gates). This is the task we have been 
given by history and for which the fu-
ture will judge us. 
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FOR MER U.S.  PRESIDENT Obama put forth the initiative 
‘CSForAll’ in order to prepare all students to learn 
computer science (CS) skills and be prepared for 
the digital economy. The ‘ForAll’ portion of the 
title emphasizes the importance of inclusion in 
computing via the participation and creation of tools 
by and for diverse populations in order to “avoid the 
consequences of narrowly focused AI (computing 
and other) applications, including the risk of biases 
in developing algorithms, by taking advantage of a 
broader spectrum of experience, backgrounds, and 
opinions.”10 Throughout this report, the Obama 
administration highlighted the number one priority, 
and challenge, of the field of CS: to equip the next 
generation with CS knowledge and skills equitably in 
preparation for the currency of the digital economy.

An increase in government funding 
is part of the initiative for CSForAll. Of 
the $4 billion pledged in state fund-
ing, only $100 million is sent directly 
to the K–12 school system.17 The rest 
of the funding is set aside for research 
and initiatives involving policymakers 
to help expand CS opportunities. In 
just one year, the National Science 
Foundation (NSF) and Corporation for 
National and Community Service 
(CNCS) were called to make $135 mil-
lion in CS funding available.17 The ini-
tiative also called for “expanding ac-
cess to prior NSF supported programs 
and professional learning communi-
ties through their CS10k that led to 
the creation of more inclusive and ac-
cessible CS education curriculum in-
cluding “Exploring CS and Advanced 
Placement (AP) CS Principles.” Ac-
cording to Smith,17 more than 30 
school districts began expanding their 
CS programs at the start of this initia-
tive. A majority of this federal funding 
for research, such as from the NSF, is 
awarded to higher education.11

The potential benefit in funding 
higher education institutions to con-
tribute to CSForAll lends itself to re-
search. Researchers show that engag-
ing students in CS at the K–12 level 
will not solve the shortage problem if 
CS programs at the university level 
cannot scale.8,9 Broadening Participa-
tion in Computing (BPC) Alliances, 
originally comprised of 10 (now 8) 
initiatives, connect educational insti-
tutions of different levels, back-
grounds, and resources with the col-
lective mission to broaden 
participation in the CS systems and 
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Robotics Technology for Societal Im-
pact (ARTSI) were two partnerships 
created to connect students at His-
torically Black Colleges and Universi-
ties (HBCUs) with the resources of R1 
institutions. We note these two alli-
ances no longer exist.3 They served an 
important purpose to further enable 
and support students to successfully 
complete CS undergraduate pro-
grams at HBCUs and facilitated their 
matriculation in graduate school at 
other institutions. A4RC united the 
two types of institutions to connect 
students and faculty in year-round re-
search collaborations, including 
methods courses, spring visits, and 
summer research opportunities. 
ARTSI had a similar yet more specific 
focus on robotics.3

Currently, eight NSF Alliances (that 
is, Access Computing, CAHSI, ECEP, 
iAAMCS, Exploring Computer Sci-
ence, NCWIT, STARS and CRA-WP) ex-
ist to broadening participation in 
computing. Based in North Carolina, 
the Students & Technology in Aca-
demia, Research, and Service (STARS) 
Alliance includes universities, K–12 
school districts, and community col-
leges. The goal of STARS is to pool re-
sources and energy while propagating 
effective practices of broadening par-
ticipation for underrepresented 
groups at the local level.3

The STARS Alliance includes North 
Carolina State University, UNC Char-
lotte, North Carolina A&T University, 
Duke University, and UNC Greens-
boro. Because of North Carolina’s rep-
utation and involvement in BPC, we 
expect undergraduate CS programs in 
NC to be some of the best equipped to 
broaden participation at both the un-
dergraduate and K–12 levels. There-
fore, we turn to several of these higher 
education institutions (that is, North 
Carolina A&T, NC State, UNC Char-
lotte, and Duke University) who have 
partnered with STARS and compare 
them to other, similar NC institutions 
with CS programs (Wake Forest Uni-
versity and UNC Chapel Hill) to in-
form the field if and how access to CS 
can be broadened at the college level. 
Specifically, we examine the demo-
graphics of students completing un-
dergraduate CS degrees from 2007–
2017 to see the trends over the 10-year 
horizon.

APCS course offerings, a 57% increase 
of women and a 300% increase of His-
panic students taking the APCS exam 
since Georgia Computes first began.3 
Similarly, Into the Loop connects 
UCLA with Los Angeles Unified 
School District (one of the largest and 
most diverse in the U.S.) in order to 
focus on developing curricula and 
teacher training for broadening par-
ticipation in CS.7

The Alliance for the Advancement 
of African American Researchers in 
Computing (A4RC) and Advancing 

workforce. Some BPC Alliances work 
toward this goal through reforming 
statewide systems. For example, 
Georgia Computes! connected the 
University of Georgia with the state’s 
middle schools to recruit students 
for high school and college CS cours-
es by training high school teachers to 
teach CS courses (including APCS), 
and by training college faculty to con-
duct summer camps and teach high 
school retention curricula.3 As of 
2010, the state of Georgia experi-
enced a 68% increase in high school 

Table 1. Institution type and degrees offered by institution.

Institution 

Institution Type Degrees Offered

Public Private HBCU PhD M.S./A. B.S./A.

Duke + + + +

NC A&T + + + + +

NCSU + + + +

UNC, Chapel Hill + + + +

UNC, Charlotte + + + +

Wake Forest + + +

Note. += descriptive of institution

Table 2. Participation in BPC initiatives by institution.

Institution BP Alliance Partner? Alliance(s)

Duke Yes ARTSI

NC A&T Yes ARTSI, A4RC, STARS

NCSU Yes STARS

UNC, Chapel Hill No

UNC, Charlotte Yes STARS

Wake Forest No

Note. += descriptive of institution

Figure 1. Number of students completing CS bachelor’s degrees between 2007 to 2017.
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schools for having a technology lit-
eracy requirement for graduation.21 
The state also prides itself in offer-
ing classroom and online courses to 
all students.5 For example, education 
programs in the fundamentals of CS 
are available through NC’s statewide 
career technical education programs 
and North Carolina Virtual Public 
School.21 NC is also recognized as one 
of 14 states participating in the South-
ern Regional Education Board (SREB) 
initiative.18 Funded by the Gates Foun-
dation, this initiative developed out 
of SREB’s Strengthening Statewide 
College/Career Readiness Initiative 
(SSCRI).

North Carolina was also an early 
adopter as one of only 17 states that 
permitted an Advanced Placement 
(AP) computer science course to satis-
fy a core math or science high school 
graduation requirement.5 This is an 
important distinction. By allowing AP 
CS to fulfill high school core require-
ments, North Carolina sends the mes-
sage that it prioritizes computer sci-
ence and recognizes it as an important 
part of K–12 education curricula. The 
state showed further support of AP CS 
courses in 2014 when it began paying 
for AP examination fees instead of re-
quiring students to do so out-of-pock-
et. The idea was to cover testing fees 
for low-income students in order to 
encourage more students to take AP 
tests and obtain college credit for high 
school courses.15 This is important for 
AP CS as research has shown that stu-
dents who take an AP computer sci-
ence course are 4.5 times more likely 
to major in CS than those who do not.5 
By collectively offering graduation 
credit for AP CS courses and paying 
for students to take AP exams, North 
Carolina has arguably taken initial 
steps towards broadening exposure 
and access to computer science for its 
students.

Due to their reputable leadership 
in broadening access at the K–12 level, 
it may be unsurprising that higher ed-
ucation institutions in NC receive 
funds to scale their CS programs. For 
example, Google awarded CS Capacity 
grants to eight universities across the 
U.S. in 2015. These grants provided 
funding for the past three years (con-
cluding in 2018) to assist participating 
institutions in implementing “innova-

Background:  
Broadening Participation
Prior studies1,2,4,11,12,16 offer evidence 
regarding both the importance and 
challenges associated with broaden-
ing participation in computing. Creat-
ing firm foundations to the path of CS 
at the undergraduate level undoubt-
edly rests on social/psychological, 
structural, and systemic barriers. The 
structural barriers include disparities 
in access to and availability of rigor-
ous computer science curricula, lack 
of access to peer networks/mentors/
sponsors, and bias in selection pro-
cesses and coursework. Social/psycho-
logical barriers include perceptions of 
who should (should not) participate, 
lack of cultural hooks and relevance 
to engage and retain students, and 
misconceptions about what comput-
ing is. Lastly, the systemic barriers are 
policies, practices or procedures that 
preclude equity in access and/or di-
verse pathways to computing.1

Work by Gates and her colleagues4 
in the context of the Hispanic popula-
tion indicates that peer-led learning 
and affinity research group models 
have been successful interventions. 
These methods focus on academic 
preparation and peer-driven activities 
to create agency and resilience among 
students. In addition, culturally rele-
vant and responsive pedagogy in-
cludes interventions, such as aligned 
curricula, a multi-CS course sequence, 
exposure to diverse CS role models, 
peers and instructors, and in-school 
and out-of-school leadership growth 
opportunities and equally.16

Withstanding these barriers and 
myriad of interventions, computing 
acumen2 can be an equalizer to work-
force opportunities in the broader so-
ciety. To be an equalizer, however, 
broadening participation efforts must 
recognize the preparatory privilege as-
sociated with families that could pro-
vide parental knowledge, guidance, 
summer camp opportunities, in-
home computers, software, even pri-
vate tutoring.7

Institutions
In the last 10 years, researchers have 
acknowledged North Carolina (NC) 
for taking considerable measures to 
broaden participation in CS educa-
tion. Some have recognized NC high 

Creating firm 
foundations to the 
path of CS at the 
undergraduate 
level undoubtedly 
rests on social/
psychological, 
structural, and 
systemic barriers. 
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We specifically explore the participa-
tion of female, Black, Hispanic and 
Native American students.  It should 
be noted this sample of schools in-
cludes two private institutions and an 
HBCU (see Table 1). The sample also 
includes those that are involved in 
BPC initiatives and those that are not 
(see Table 2). These universities are 
described in further detail here:

Duke University is a private, non-
profit, research university located in 
Durham, NC. It offers BS, MS, and 
Ph.D. degrees in CS. Duke’s CS depart-
ment is housed in their College of En-
gineering. Their department has par-
ticipated in one of the original 10 BPC 
initiatives, ARTSI, which partnered 

with HBCUs on the specific topic of ro-
botics. Duke is a member of the STARS 
Alliance.

North Carolina A&T University is a 
public, research HBCU located in 
Greensboro, NC. It offers BS, MS, and 
Ph.D. degrees in CS. Its CS depart-
ment is housed in the College of Engi-
neering. NC A&T participated in A4RC 
and ARTSI and is a current STARS Alli-
ance member.

North Carolina State University 
(NCSU) is a public research university 
located in Raleigh, NC. As proudly 
stated on their website, it is home to 
one of the nation’s oldest CS depart-
ments and offer degrees at the BS, sev-
eral master’s options, and Ph.D. lev-
els. The CS department at NCSU is 
housed in its College of Engineering. 
NCSU is also a partner in STARS, one 
of the original and still funded BPC Al-
liances.

The University of North Carolina at 
Chapel Hill is a public research uni-
versity located in Chapel Hill, NC. It 
offers CS degrees at the bachelor’s, 
master’s, and Ph.D. levels. The CS de-
partment at UNC Chapel Hill is 
housed in their College of Arts and 
Sciences.

The University of North Carolina at 
Charlotte is a public research univer-
sity located in Charlotte, NC. It offers 
CS degrees at the bachelor’s, master’s, 
and Ph.D. levels. Their CS department 
is housed in the College of Computing 
and Informatics. UNC Charlotte is 
also a STARS Alliance member.

Wake Forest University is a private 
research university institution located 
in Winston-Salem, NC. While it offers 
CS bachelor’s and master’s degrees, 
unlike the other institutions in our 
sample, it does not have a Ph.D. pro-
gram. Wake Forest has not and does 
not participate in any of the BPC ini-
tiatives. It may also be worth noting its 
CS program is one of the youngest in 
our sample.

Current Study
Based on the literature noted here, we 
explored the following questions:

 • In the presence of CS curricula 
availability at six undergraduate insti-
tutions in North Carolina, how can 
public educational data from the last 
decade inform the field about CS ac-
cessibility among female, Black, His-

tive, inclusive, and sustainable ap-
proaches to address current scaling 
issues in university CS educational 
programs.”8 Duke University, North 
Carolina State University, and the Uni-
versity of North Carolina-Chapel Hill 
were CS Capacity grant recipients.

With this significant recognition 
and momentum, we examined how 
NC is actually faring in broadening 
participation at the undergraduate 
level. Therefore, we explore how many 
students have completed CS degrees 
at the following institutions in the last 
10 years: Duke University, North Caro-
lina State University, UNC Chapel Hill, 
North Carolina A&T University, Wake 
Forest University, and UNC Charlotte. 

Figure 2. Percentage of Black students completing CS bachelor’s degrees between 2007  
to 2017.
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Figure 3. Percentage of Black females completing CS bachelor’s degrees between 2007 to 
2017.
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2007–2017 over the 10-year horizon 
(see Figure 3). This data shows that 
Black female completion is somewhat 
jagged with some spikes to 25 and 26 
Black males in more recent years.

The lack of Native American stu-
dents completing CS bachelor’s de-
grees across these schools is particu-
larly staggering. Despite NC being a 
state with one of the largest Native 
American populations,22 almost no 
Native American students have com-
pleted CS degrees across these schools 
in the last decade. The percentage of 
Native American students completing 
CS degrees is below 3.5% across all six 
institutions. This represents 12 stu-
dents total over the time horizon as 

panic or Latino, and Native American 
students at the undergraduate level?

 • How can these trends at the un-
dergraduate level inform the field 
about CS accessibility among female, 
Black, Hispanic or Latino, and Native 
American students at the high school 
level?

To answer these questions, we 
downloaded and summarized data 
from the Integrated Postsecondary 
Education Data System (IPEDS) data 
collection. IPEDS data consist of sta-
tistics on postsecondary institutions 
regarding tuition and fees, number 
and types of degrees and certificates 
conferred, number of students apply-
ing, number of students enrolled, 
number of employees, financial statis-
tics, graduation rates, student finan-
cial aid, and academic libraries. We 
specifically explored the number of 
computer science bachelor’s degrees 
conferred by gender and race/ethnici-
ty from 2007–2017.

Trends in the Last Decade
There was a total of 5,025 CS degrees 
completed from 2007–2017 across all 
six institutions. Overall, the number 
of students completing CS degrees 
has increased from 2007 to 2017 (see 
Figure 1). Wake Forest and North Car-
olina A&T had the smallest amount of 
growth. The largest growth occurred 
at UNC Charlotte with an increase 
from 2007 to 2017 of 214 students. 
While there has been an increase in 
the number of White and Asian stu-
dents completing CS degrees in the 
last 10 years for these schools, little 
has changed in the number of Black 
students at any of the schools (see 
Figure 2).

Here, we show mostly percentage 
trends with the exception of Figure 1. 
We include the raw numbers (or abso-
lute numbers) in an online appendix 
(http://dl.acm.org/citation.cfm?doid=
3372122&picked=formats), which 
captures the scope of each institution. 
This helps to reduce bias in reporting 
or providing misleading interpreta-
tions of the data. Figure 1 shows a gen-
eral increase in the number of stu-
dents completing CS undergraduate 
degrees.

The largest percentage of students 
completing CS degrees were Black stu-
dents from North Carolina A&T, aver-

aging an 85.32% completion rate (see 
Figure 2). The numbers remain small 
for Black students at all the other 
schools. In fact, most CS bachelor’s 
degrees completed by Black students 
at non-HBCUs are less than 20% 
though the raw data (see online ap-
pendix) shows an upward trend at 
UNC-Charlotte and North Carolina 
A&T. Across all non-HBCU institu-
tions, more White students complet-
ed CS bachelor’s degrees than all oth-
er ethnicities. However, gender trends 
remain consistent across all institu-
tions in this study. We found that a to-
tal of 215 Black males and 94 Black 
females completed CS bachelor’s de-
grees at North Carolina A&T between 

Figure 4. Native American males completing CS bachelor’s degrees between 2007 to 2017.
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Figure 5. Percentage of White males completing CS bachelor’s degrees between  
2007 to 2017.
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tutions, with the exception of Wake 
Forest in 2014. The numbers were 
considerably worse for women. Wom-
en identifying as Hispanic only made 
up only 4.55% of those who completed 
CS degrees in each institution.

Across all institutions, males com-
pleted more CS degrees than females. 
While the number of males is increas-
ing, the number of females is not in-
creasing at the same rate. At the ma-
jority of schools (with the exception of 
the one HBCU), CS degrees were com-
pleted by White males. White men ac-
counted for 100% of all CS bachelor’s 
degrees completed at Wake Forest 
University in both 2009 and 2013 (see 

Figure 5). While the number of com-
pleted CS bachelor’s degrees appears 
to be increasing across these institu-
tions (see Figure 1) in NC, the diversity 
seems to follow suit as the number of 
White males decreases as the data il-
lustrates (Figure 5). This diversity, 
however, is still met with a lack of rep-
resentation among ethnic groups as 
the raw data in the online appendix 
indicates.

In comparison, Figure 6 shows the 
data for White females. For this group, 
data were missing for Duke University 
in 2012 and Wake Forest University in 
2011. In 2013, none of the institutions 
had double-digits percentage comple-
tion rates for White females. From 
North Carolina A&T State University, 
White females completed CS under-
graduates in 2007 (3.85%), 2012 
(2.56%) and 2017 (3.33%). The largest 
one-year percentages for this demo-
graphic occurred in 2014 (33.33%) and 
2008 (25%) at Wake Forest University. 
Overall, this data does not show a con-
sistent pattern of sustained growth for 
the group.

Prior work13 indicated that NC was 
one of the states with the fastest grow-
ing Hispanic population. From 2000 
to 2010, North Carolina had a 141% 
change in its Hispanic population. In 
2014, North Carolina ranked eleventh 
in the Hispanic population among all 
50 states and the District of Columbia 
with 890,000.13 From the 2018 U.S. 
Census Bureau,13 Hispanic/Latino, 
Black/African Americans, Native 
Americans, Whites, and Asians repre-
sent 9.5%, 22.2%, 1.6%, 63.1% and 
3.1%, respectively, of NC’s population.

Given this growing demographic 
nationally and in NC, we provide Fig-
ures 7, 8, and 9 to explore insights on 
Hispanic CS graduation rates in the 
state. Figure 7 shows the largest spike 
in 2014 (22.22%) at Wake Forest Uni-
versity. For a more careful observation 
of this spike, Figure 10 also shows the 
raw data with UNCC graduating an in-
creasing number of Hispanic students 
in CS. The raw data also indicates that 
22 Hispanic completed CS degrees 
from UNCC and two graduated from 
Wake Forest. The University of North 
Carolina-Charlotte (UNCC) shows 
some upward trend in the latter years 
of the dataset.

Our findings are based on repre-

noted in Figure 4. None of these stu-
dents are female, meaning zero Native 
American females completed CS 
bachelor’s degrees across these insti-
tutions in the last 10 years.

Duke and UNC Chapel Hill had the 
largest percentage of Asian students 
completing CS degrees. The raw data 
indicated that Duke and UNC Chapel 
Hill, respectively, graduated 122 and 
126 Asian students over the 10-year 
horizon. For all other institutions, less 
than 15% of students completing CS 
degrees in the last 10 years were Asian. 
Also, in the last 10 years, less than 12% 
of students completing CS degrees 
identified as Hispanic across all insti-

Figure 6. Percentage of White females completing CS bachelor’s degrees between  
2007 to 2017.

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

P
er

ce
n

t 
of

 S
tu

d
en

ts

Percent of White Female Students Completing CS Bachelor’s Degrees
2007–2017

Duke University 4.35%

3.85%

4.42%

10.00%

3.75%

0.00%

0.00%

0.00%

3.85%

15.79%

4.30%

25.00%

4.55%

0.00%

5.41%

8.33%

13.16%

0.00%

8.33%

0.00%

3.92%

6.98%

11.49%

6.67%

0.00%

0.00%

7.03%

20.83%

7.32%

—

—

2.56%

5.45%

4.44%

5.19%

17.65%

0.00%

0.00%

8.28%

5.56%

7.27%

0.00%

11.54%

0.00%

7.84%

7.50%

6.36%

33.33%

10.45%

0.00%

5.85%

6.67%

5.83%

16.00%

8.60%

0.00%

9.84%

8.87%

7.12%

21.21%

11.61%

3.33%

6.90%

6.29%

5.78%

4.55%

North Carolina A&T State University

North Carolina State University at Raleigh

University of North Carolina at Chapel Hill

University of North Carolina at Charlotte

Wake Forest University

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 7. Percentage of Hispanic students completing CS bachelor’s degrees between  
2007 to 2017.
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ers to MSIs and community colleges.14 
Alternative datasets, such as ACM’s 
Survey of Non-Doctoral Granting De-
partments in Computing, CRA’s Taul-
bee Survey, and the National Center 
for Education Statistics, can also pro-
vide some comparison of our results. 
Withstanding the dataset, the role of 
MSIs and community colleges exper-
tise (both CS domain and inclusive BP 
acumen) should not be ignored. We 
are cognizant of the impacts of insti-
tutions’ admissions policies, role of 
academic preparation, curricula ac-
cess and availability at the K–12 level, 
broader discipline career fit and bias-
es that can impact this discourse.

sentation. Notably, the composition 
of a program (demographics) can only 
change very slowly. Recruitment and 
retention of students is a slow-moving 
goal with enrollees from underserved 
groups with the hopes of translating 
to significant percentage growth and 
enrollment. This, however, in the dis-
aggregate creates a false sense of suc-
cess relative to broadening participa-
tion in CS. Hence, students benefitting 
from preparatory privilege would be 
more naturally attracted to these ca-
reers while other mechanisms should 
consider alternative approaches to 
broadening participation.

HBCUs, Hispanic-serving and oth-
er minority-serving institutions do 
seem to be doing well with regards to 
answering the call to broadening par-
ticipation. This, however, is not new 
for these institutions—as institution-
al culture and mission have driven 
these efforts to attract and retain un-
derserved and marginalized groups20 
as well as prepare them for graduate 
education and workforce alternatives. 
This brings to bear if there should be 
varied types of BPC strategies based 
on institutional types. This will re-
quire thoughtful intention, context, 
and culturally attuned climates be-
yond the pure numbers, and the 
awareness that representation is not 
inclusion. Our study does not account 
for critical factors, such as student en-
rollment/majors, and student/faculty 
diversity data, which could offer a 
clearer comparison among the insti-
tutions listed in this manuscript.

Conclusion
We assert that institutions should ex-
amine trends in public educational 
data as leadership and other stake-
holders formulate strategies and 
make decisions around broadening 
participation. In this study, we used 
IPEDS data for a 10-year horizon. 
As noted on the National Center for 
Education Statistics website, “IPEDS 
annually gathers information from 
about 7,000 colleges, universities, and 
technical and vocational institutions 
that participate in the federal student 
aid programs.” This captures a variety 
of college and university types, allows 
for institutional comparisons and 
incorporates the Classification of In-
structional Programs (CIP) system tax-

onomy which categorizes a discipline 
by groupings.

While our work involved analyses 
from the IPEDS data which has a 
broader definition of computing 
based on degree program codes in 
computer and information sciences, 
the CIP taxonomy classifications often 
do not align with the precise names of 
majors. In the ever-changing field of 
CS, this can create significant variabil-
ity in how institutions analyze the data 
and the decisions that they make. Fur-
ther, IPEDS is based on self-report, 
and institutional time burden and re-
sources influence IPEDS data collec-
tion which can create additional barri-

Figure 8. Percentage of Hispanic males completing CS bachelor’s degrees between  
2007 to 2017.
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Figure 9. Percentage of Hispanic females completing CS bachelor’s degrees between  
2007 to 2017.
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participation practices, strategies and 
culture—and provide equitable fund-
ing where there are notable results.

Given our results, an examination 
of North Carolina’s MSIs, community 
colleges and smaller PWIs is worth ex-
ploring.  In addition, the definition of 
computing is broader than CS and can 
draw from information sciences/tech-
nology which can show offer addition 
insights regarding participation in the 
field. When aggregated, the numbers 
appear promising, and the number of 
students completing CS bachelor’s 
degrees is increasing. However, it ap-
pears to be increasing at much higher 
rates for White men than for any other 
group. Some groups have not partici-
pated any more or less in the last 10 
years. In fact, we found zero Native 
American women to have completed a 
CS degree in the last decade at any of 
the six institutions. Though North 
Carolina is not home to a Hispanic-
serving institution despite the state’s 
growing Hispanic population, has a 
significant Black demographic and is 
home to a significant Native American 
population, IPEDS, and other data 
sources can be used to (re)formulate 
decisions associated with CS partici-
pation and (re)develop more inclusive 
programs.
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We also contend these decisions 
should be anchored in an effective, 
contextualize broadening participa-
tion strategy. Engaging students in CS 
at the K–12 level will not solve the 
shortage problem if CS programs at the 
university level cannot scale.8,9 To ad-
dress this question, we observed the 
following: Of these six institutions, 
four have participated in at least one 
BPC project in the last 10 years. Our re-
sults indicate that some progress has 
been made in the last decade across 
large R1 institutions in our sample. 
While North Carolina A&T and UNC-
Charlotte have shown growth the raw 
data, these institutions can serve as 
models for effective strategies for tar-
geting Black and Hispanic students, 
respectively. The efforts at both institu-
tions can be viewed as part of the orga-
nizational culture with some critical 
mass of faculty committed to integrat-
ing broadening participation into re-
search initiatives.

Thirdly, there is a need to disaggre-
gate the numbers and employ intersec-
tional (race/ethnicity and gender via 
those underrepresented in the field) 
interpretations to get a true picture of 
who is participating and graduating in 
CS. Larger predominately white insti-
tutions (PWIs), agencies and corpo-
rate foundations can stand to learn 
from HBCUs (in this case North Caro-
lina A&T), minority-serving institu-
tions (MSIs) and other colleges (in this 
case, UNC-Charlotte) about inclusive 
excellence to enhance broadening 

Figure 10. Hispanic students completing CS bachelor’s degrees between 2007 to 2017.
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“If we do not live up to the traditional standards 
of science, there will come a time when 
no one takes us seriously.” 
 —Peter J. Denning, 1980.13

FOR TY YEARS AGO,  Denning argued that computer 
science research could be strengthened by increased 
adoption of the scientific experimental method. 
Through the intervening decades, Denning’s call 
has been answered. Few computer science graduate 
students would now complete their studies without 
some introduction to experimental hypothesis testing, 
and computer science research papers routinely use 
p-values to formally assess the evidential strength of 
experiments. Our analysis of the 10 most-downloaded

articles from 41 ACM Transactions 
journals showed that statistical sig-
nificance was used as an evidentiary 
criterion in 61 articles (15%) across 
21 different journals (51%), and in 
varied domains: from the evalua-
tion of classification algorithms, to 
comparing the performance of cloud 
computing platforms, to assessing 
a new video-delivery technique in 
terms of quality of experience.

While computer science research 
has increased its use of experimental 
methods, the scientific community’s 
faith in these methods has been erod-
ed in several areas, leading to a ‘repli-
cation crisis’27,32 in which experimen-
tal results cannot be reproduced and 
published findings are mistrusted. 
Consequently, many disciplines have 
taken steps to understand and try to 
address these problems. In particu-
lar, misuse of statistical significance 
as the standard of evidence for exper-
imental success has been identified 
as a key contributor in the replication 
crisis. But there has been relatively 
little debate within computer science 
about this problem or how to address 
it. If computer science fails to adapt 
while others move on to new stan-
dards then Denning’s concern will 
return—other disciplines will stop 
taking us seriously.

Threats of  
a Replication 
Crisis  
in Empirical 
Computer Science

DOI:10.1145/3360311

Research replication only works if  
there is confidence built into the results.

BY ANDY COCKBURN, PIERRE DRAGICEVIC,  
LONNI BESANÇON, AND CARL GUTWIN

 key insights
 ˽ Many areas of computer science research 

(performance analysis, software 
engineering, AI, and human-computer 
interaction) validate research claims 
by using statistical significance as the 
standard of evidence.

 ˽ A loss of confidence in statistically 
significant findings is plaguing other 
empirical disciplines, yet there has been 
relatively little debate of this issue and its 
associated ‘replication crisis’ in CS.

 ˽ We review factors that have contributed 
to the crisis in other disciplines, with a 
focus on problems stemming from an 
over-reliance on—and misuse of—null 
hypothesis significance testing.

 ˽ Our analysis of papers published in a 
cross section of CS journals suggests 
a large proportion of CS research faces 
the same threats to replication as those 
encountered in other areas.
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Beyond issues of statistical signifi-
cance, computer science research raises 
some distinct challenges and opportu-
nities for experimental replication. 
Computer science research often re-
lies on complex artifacts such as 
source code and datasets, and with ap-
propriate packaging, replication of 
some computer experiments can be 
substantially automated. The replica-
bility problems associated with access 
to research artifacts have been broadly 
discussed in computer systems re-
search (for example, Krishnamurthi25 
and Collberg9), and the ACM now awards 
badges to recognize work that is repeat-
able (the original team of researchers 
can reliably produce the same result us-
ing the same experimental setup), repli-
cable (a different team can produce the 

same result using the original setup), 
and reproducible (a different team can 
produce the same result using a dif-
ferent experimental setup).5 However, 
these definitions are primarily direct-
ed at experiments that analyze the re-
sults of computations (such as new 
computer algorithms, systems, or 
methods), and uptake of the badges 
has been slow in fields involving exper-
iments with human participants. Fur-
thermore, the main issues contribut-
ing to the replication crisis in other 
experimental disciplines do not stem 
from access to artifacts; rather, they 
largely stem from a misuse of eviden-
tiary criteria used to determine wheth-
er an experiment was successful or not.

Here, we review the extent and 
causes of the replication crisis in other 

areas of science, with a focus on issues 
relating to the use of null hypothesis 
significance (NHST) as an evidentiary 
criterion. We then report on our analy-
sis of a cross section of computer sci-
ence publications to identify how com-
mon NHST is in our discipline. Later, 
we review potential solutions, dealing 
first with alternative ways to analyze 
data and present evidence for hypothe-
sized effects, and second arguing for 
improved openness and transparency 
in experimental research.

The Replication Crisis  
in Other Areas of Science
In assessing the scale of the crisis in 
their discipline, cancer researchers at-
tempted to reproduce the findings of 
landmark research papers, finding they 
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tenable and the resultant finding is la-
belled ‘statistically significant.’ When 
the p-value exceeds the α level, results 
interpretation is not straightforward—
perhaps there is no effect, or perhaps 
the experiment lacked sufficient power 
to expose a real effect (a Type II error or 
false negative, where β represents the 
probability of this type of error).

Publication bias. In theory, rejec-
tion of the null hypothesis should ele-
vate confidence that observed effects 
are real and repeatable. But concerns 
about the dichotomous interpretation 
of NHST as ‘significant’ or not have been 
raised for almost 60 years. Many of these 
concerns stem from a troublesome 
publication bias in which papers that re-
ject the null hypothesis are accepted for 
publication at a much higher rate than 
those that do not. Demonstrating this 
effect, Sterling41 analyzed 362 papers 
published in major psychology jour-
nals between 1955 and 1956, noting 
that 97.3% of papers that used NHST 
rejected the null hypothesis.

The high publication rates for pa-
pers that reject the null hypothesis 
contributes to a file drawer effect35 in 
which papers that fail to reject the 
null go unpublished because they are 
not written up, written up but not 
submitted, or submitted and rejected.16 
Publication bias and the file drawer ef-
fect combine to propagate the dissemi-
nation and maintenance of false 
knowledge: through the file drawer ef-

could not do so in 47 of 53 cases,3 and 
psychology researchers similarly failed 
to replicate 39 out of 100 studies.31 
Results  of a recent Nature survey of 
more than 1,500 researchers found 
that 90% agree there is a crisis, that 
more than 70% had tried and failed to 
reproduce another scientist’s experi-
ments, and that more than half had 
failed to replicate their own findings.2

Experimental process. A scientist’s 
typical process for experimental work 
is summarized along the top row of 
Figure 1, with areas of concern and po-
tential solutions shown in the lower 
rows. In this process, initial ideas and 
beliefs (item 1) are refined through for-
mative explorations (2), leading to the 
development of specific hypotheses 
and associated predictions (3). An ex-
periment is designed and conducted 

(4, 5) to test the hypotheses, and the re-
sultant data is analyzed and compared 
with the predictions (6). Finally, results 
are interpreted (7), possibly leading to 
adjustment of ideas and beliefs.

A critical part of this process con-
cerns the evidentiary criteria used for 
determining whether experimental re-
sults (at 6) conform with hypotheses 
(at 3). Null hypothesis significance 
testing (NHST) is one of the main 
methods for providing this evidence. 
When using NHST, a p-value is calcu-
lated that represents the probability of 
encountering data at least as extreme 
as the observed data if a null hypothe-
sis of no effect were true. If that proba-
bility is lower than a threshold value 
(the α level, normally .05, representing 
the Type I error rate of false positives) 
then the null hypothesis is deemed un-

 •  Publication bias: Papers supporting their hypotheses are accepted for publication  
at a much higher rate than those that do not.

 •  File drawer effect: Null findings tend to be unpublished and therefore hidden  
from the scientific community.

 •  p-hacking: Manipulation of experimental and analysis methods to produce 
statistically significant results. Used as a collective term in this paper for  
a variety of undesirable research practices.

 • p-fishing: seeking statistically significant effects beyond the original hypothesis.

 •  HARKing: Hypothesising After the Results are Known: Post-hoc reframing  
of experimental intentions to present a p-fished outcome as having been  
predicted from the start.

Some Terminology

Figure 1. Stages of a typical experimental process (top, adapted from Gundersen18), prevalent concerns at each stage (middle), and potential 
solutions (bottom).
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a. Publication bias
influences 
project choice

b. Publication bias
influences 
exploration

c. HARKing
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mid-experiment
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f. HARKing,
p-hacking, and
p-fishing

g. File drawer 
effect

Registered Reports

Preregistration
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evidentiary criteria
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evidentiary criteria

Data repositories

2. Exploratory studies 
and iteration
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and predictions

4. Experimental
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5. Conduct
experiment

6. Data analysis and
hypothesis testing

7. Interpretation
and publication
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fect, correct findings of no effect are 
unpublished and hidden from view; 
and through publication bias, a single 
incorrect chance finding (a 1:20 chance 
at α = .05, if the null hypothesis is true) 
can be published and become part of a 
discipline’s wrong knowledge.

Ideally, scientists are objective and 
dispassionate throughout their inves-
tigations, but knowledge of the publi-
cation bias strongly opposes these ide-
als. Publication success shapes 
careers, so researchers need their ex-
periments to succeed (rejecting the 
null in order to get published), creat-
ing many areas of concern (middle row 
of Figure 1), as follows.

Publication bias negatively influences 
project selection. There are risks that the 
direction of entire disciplines can be 
negatively affected by publication bias 
(Figure 1a and g). Consider a young fac-
ulty member or graduate student who 
has a choice between two research proj-
ects: one that is mundane, but likely to 
satisfy a perceived publication criterion 
of p < .05; the other is exciting but risky 
in that results cannot be anticipated 
and may end up in a file drawer. Publica-
tion bias is likely to draw researchers 
towards safer topics in which outcomes 
are more certain, potentially stifling re-
searchers’ interest in risky questions.

Publication bias also disincentivizes 
replication, which is a critical element 
of scientific validation. Researchers’ 
low motivation to conduct replications 
is easy to understand—a successful rep-
lication is likely to be rejected because it 
merely confirms what is already 
‘known,’ while a failure to replicate is 
likely to be rejected for failing to satisfy 
the p < .05 publication criterion.

Publication bias disincentivizes 
exploratory research. Exploratory studies 
and iteration play an important role in 
the scientific process (Figure 1b). This 
is particularly true in areas of comput-
er science, such as human-computer 
interaction, where there may be a range 
of alternative solutions to a problem. 
Initial testing can quickly establish vi-
ability and provide directions for itera-
tive refinement. Insights from explora-
tions can be valuable for the research 
community, but if reviewers have been 
trained to expect standards of statisti-
cal evidence that only apply to confir-
matory studies (such as the ubiquitous 
p-value) then publishing insights from 

exploratory studies and exploratory 
data analyses may be difficult. In addi-
tion, scientists’ foreknowledge that ex-
ploratory studies may suffer from these 
problems can deter them from carry-
ing out the exploratory step.

Publication bias encourages HARK-
ing. Publication bias encourages re-
searchers to explore hypotheses that 
are different to those that they original-
ly set out to test (Figure 1c and f). This 
practice is called ‘HARKing,’23 which 
stands for Hypothesizing After the Re-
sults are Known, also known as ‘out-
come switching’.

Diligent researchers will typically re-
cord a wide set of experimental data 
beyond that required to test their in-
tended hypotheses—this is good prac-
tice, as doing so may help interpret and 
explain experimental observations. 
However, publication bias creates 
strong incentives for scientists to en-
sure that their experiments produce 
statistically significant results. Con-
sciously or subconsciously, they may 
steer their studies to ensure that ex-
perimental data satisfies p < .05. If the 
researcher’s initial hypothesis fails 
(concerning task time, say) but some 
other data satisfies p < .05 (error rate, 
for example), then authors may be 
tempted to reframe the study around 
the data that will increase the paper’s 
chance of acceptance, presenting the 
paper as having predicted that out-
come from the start. This reporting 
practice, which is an instance of the 
so-called “Texas sharpshooter falla-
cy” (see Figure 2), essentially invali-
dates the NHST procedure due to in-
flated Type I error rates. For example, 
if a researcher collects 15 dependent 

Publication bias 
disincentivizes 
replication,  
which is a critical 
element of  
scientific validation.

Figure 2. HARKing (Hypothesizing After the 
Results are Known) is an instance of the 
Texas sharpshooter fallacy. Illustration by 
Dirk-Jan Hoek, CC-BY.
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techniques such as excluding certain 
data points (for example, removing 
outliers, excluding participants, or nar-
rowing the set of conditions under 
test), applying various transformations 
to the data, or applying statistical tests 
only to particular data subsets. While 
such analyses can be entirely appropri-
ate if planned and reported in full, en-
gaging in a data ‘fishing’ exercise to 
satisfy p < .05 is not, especially if the 
results are then selectively reported. 
Flexible data analysis and selective re-
porting can dramatically increase Type 
I error rates, and these are major cul-
prits in the replication crisis.38

Is Computer Science Research 
at Risk? (Spoiler: Yes)
Given that much of computer science 
research either does not involve ex-
periments, or involves deterministic 
or large-sample computational experi-
ments that are reproducible as long 
as data and code are made accessible, 
one could argue that the field is largely 
immune to replication issues that have 
plagued other empirical disciplines. To 
find out whether this argument is ten-
able, we analyzed the ten most down-

variables and only reports statisti-
cally significant ones, and if we as-
sume that in reality the experimental 
manipulation has no effect on any of 
the variables, then the probability of 
a Type I error is 54% instead of the 
advertised 5%.19

While many scientists might agree 
that other scientists are susceptible to 
questionable reporting practices such 
as HARKing, evidence suggests they 
are troublesomely widespread.20,21 For 
example, over 63% of respondents to a 
survey of 2,000 psychology researchers 
admitted failing to report all depen-
dent measures, which is often associ-
ated with the selective reporting of fa-
vorable findings.20

Even without any intention to mis-
represent data, scientists are suscepti-
ble to cognitive biases that may pro-
mote misrepresentations: for example, 
apophenia is the tendency to see pat-
terns in data where none exists, and it 
has been raised as a particular concern 
for big-data analyses;6 confirmation bias 
is the tendency to favor evidence that 
aligns with prior beliefs or hypotheses;30 
and hindsight bias is the tendency to see 
an outcome as having been predictable 

from the start,36 which may falsely as-
suage researchers’ concerns when re-
framing their study around a hypothe-
sis that differs from the original.

Publication bias encourages mid-
experiment adjustments. In addition 
to the modification of hypotheses, 
other aspects of an experiment may 
be modified during its execution 
(Figure 1e), and the modifications 
may go unreported in the final paper. 
For example, the number of samples 
in the study may be increased mid-
experiment in response to a failure to 
obtain statistical significance (56% of 
psychologists self-admitted to this 
questionable practice20). This, again, 
inflates Type I error rates, which im-
pairs the validity of NHST.

Publication bias encourages ques-
tionable data analysis practices. Di-
chotomous interpretation of NHST can 
also lead to problems in analysis: once 
experimental data has been collected, 
researchers may be tempted to explore a 
variety of post-hoc data analyses to 
make their findings look stronger or to 
reach statistical significance (Figure 1f). 
For example, they might consciously or 
unconsciously manipulate various 

Figure 3. Count of articles from among the ‘10 most downloaded’ (5/24/19) that use dichotomous interpretations of p from among ACM 
journals titled ‘Transactions on...’
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loaded articles for 41 ACM journals 
beginning with the name ‘Transactions 
on.’ We inspected all 410 articles to de-
termine whether or not they used p < α 
(with α normally 0.05) as a criterion for 
establishing evidence of a difference 
between conditions. The presence of 
p-values is an indication of statistical 
uncertainty, and therefore of the use of 
nondeterministic small-sample exper-
iments (for example involving human 
subjects). Furthermore, as we have pre-
viously discussed, the use of a dichoto-
mous interpretation of p-values as ‘sig-
nificant’ or ‘not significant’ is thought 
to promote publication bias and ques-
tionable data analysis practices, both 
of which heavily contributed to the rep-
lication crisis in other disciplines.

A total of 61 of the 410 computer 
science articles (15%) included at least 
one dichotomous interpretation of a p-
value.a All but two of the papers that 
used dichotomous interpretations 
(97%) identified at least one finding as 
satisfying the p < .05 criterion, suggest-
ing that publication bias (long ob-
served in other disciplines41) is likely to 
also exist in empirical computer science. 
Furthermore, 21 different journals 
(51%) included at least one article using 
a dichotomous interpretation of p with-
in the set of 10 papers inspected. The 
count of articles across journals is sum-
marized in Figure 3, with fields such as 
applied perception, education, software 
engineering, information systems, bio-
informatics, performance modeling, 
and security all showing positive counts.

Our survey showed four main ways 
in which experimental techniques are 
used in computer science research, 
spanning work in graphics, software 
engineering, artificial intelligence, and 
performance analysis, as well as the ex-
pected use in human-computer inter-
action. First, empirical methods are 
used to assess the quality of an artifact 
produced by a technique, using hu-
mans as judges (for example, the pho-
torealism of an image or the quality of 
streaming video). Second, empirical 
methods are used to evaluate classifi-
cation or prediction algorithms on re-
al-world data (for example, a power 

a Data for this analysis is available at  
osf.io/hkqyt/, including a quote extracted 
from each counted paper showing its use of 
a dichotomous interpretation.

scheduler for electric vehicles, using 
real data from smart meters). Third, 
they are used to carry out performance 
analysis of hardware or software, us-
ing actual data from running systems 
(for example, a comparison of real 
cloud computing platforms). Fourth, 
they are used to assess human perfor-
mance with interfaces or interaction 
techniques (for example, which of two 
menu designs is faster).

Given the high proportion of com-
puter science journals that accept pa-
pers using dichotomous interpreta-
tions of p, it seems unreasonable to 
believe that computer science research 
is immune to the problems that have 
contributed to a replication crisis in 
other disciplines. Next, we review pro-
posals from other disciplines on how 
to ease the replication crisis, focusing 
first on changes to the way in which ex-
perimental data is analyzed, and sec-
ond on proposals for improving open-
ness and transparency.

Proposals for Easing  
the Crisis: Better Data Analysis
Redefine statistical significance. Many 
researchers attribute some of the rep-
lication crisis to the dominant use of 
NHST. Among the noted problems 
with NHST is the ease with which ex-
periments can produce false-positive 
findings, even without scientists con-
tributing to the problem through ques-
tionable research practices. To address 
this problem, a group of 75 senior sci-
entists from diverse fields (including 
computer science) proposed that the 
accepted norm for determining ‘sig-
nificance’ in NHST tests be reduced 
from α = .05 to α = .005.4 Their proposal 
was based on two analyses—the rela-
tionship between Bayes factors and p-
values, and the influence of statistical 
power on false positive rates—both of 
which indicated disturbingly high false 
positive rates at α = .05. The authors 
also recommended the word ‘sugges-
tive’ be used to describe results in the 
range .005 <= p < .05.

Despite the impressive list of au-
thors, this proposal attracted heavy 
criticism (see Perezgonzalez33 for a re-
view). Some have argued the reasoning 
behind the .005 threshold is flawed, and 
that adopting it could actually make the 
replication crisis worse (by causing a 
drop in the statistical power of studies 

without reducing incentives for p-hack-
ing, and by diverting resources away 
from replications). Another argument 
is the threshold value remains arbi-
trary, and that focusing instead on ef-
fect sizes and their interval estimates 
(confidence intervals or credible in-
tervals) can better characterize results. 
There is also a pragmatic problem that 
until publication venues firmly an-
nounce their standards, authors will be 
free to choose terminology (‘statistical-
ly significant’ at p < .05 or ‘statistically 
significant’ at p < .005) and reviewers/
readers may differ in their expecta-
tions. Furthermore, the proposal does 
nothing to discourage or prevent prob-
lems associated with inappropriate 
modification of experimental methods 
and objectives after they begin.

Abandon statistical significance. 
Many researchers argue the replication 
crisis does not stem from the choice of 
the .05 cutoff, but from the general 
idea of using an arbitrary cutoff to clas-
sify results, in a dichotomous manner, 
as statistically significant or not. Some 
of these researchers have called for re-
porting exact p-values and abandoning 
the use of statistical significance 
thresholds.1 Recently, a comment pub-
lished in Nature with more than 800 
signatories called for abandoning bi-
nary statistical significance.28 Cum-
ming12 argued for the banning of p-val-
ues altogether and recommended the 
use of estimation statistics where 
strength of evidence is assessed in a 
non-dichotomous manner, by examin-
ing confidence intervals. Similar rec-
ommendations have been made in 
computer science.14 The editorial 
board of the Basic and Applied Social 
Psychology journal went further by an-
nouncing it would not publish papers 
containing any statistics that could be 
used to derive dichotomous interpreta-
tions, including p-values and confi-
dence intervals.42 Overall there is no 
consensus on what should replace 
NHST, but many methodologists are in 
favor of banning dichotomous statisti-
cal significance language.

Despite the forceful language 
opposing NHST (for example, “very 
few defenses of NHST have been at-
tempted,”12), some researchers believe 
NHST and the notion of dichotomous 
hypothesis testing still have their 
place.4 Others have suggested the calls 

http://osf.io/hkqyt/
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Openness, Preregistration, 
and Registered Reports
While the debate continues over the 
merits of different methods for data 
analysis, there is a wide agreement 
on the need for improved openness 
and transparency in empirical sci-
ence. This includes making materials, 
resources, and datasets available for 
future researchers who might wish to 
replicate the work.

Making materials and data available 
after a study’s completion is a substan-
tial improvement, because it greatly fa-
cilitates peer scrutiny and replication. 
However, it does not prevent ques-
tionable research practices, since the 
history of a data analysis (including 
possible p-hacking) is not visible in 
the final analysis scripts. And if others 
fail to replicate a study’s findings, the 
original authors can easily explain 
away the inconsistencies by question-
ing the methodology of the new study 
or by claiming that an honest Type I 
error occurred.

Overcoming these limitations re-
quires a clear statement of materials, 
methods, and hypotheses before the ex-
periment is conducted, as provided by 
experimental preregistration and reg-
istered reports, discussed next.

Experimental preregistration. In re-
sponse to concerns about questionable 
research practices, various authorities 
instituted registries in which research-
ers preregister their intentions, hypoth-
eses, and methods (including sample 
sizes and precise plans for the data 
analyses) for upcoming experiments. 
Risks of p-hacking or outcome switch-
ing are dramatically reduced when a 
precise statement of method predates 
the experimental conduct. Further-
more, if the registry subsequently 
stores experimental data, then the file 
drawer is effectively opened on experi-
mental outcomes that might otherwise 
have been hidden due to failure to at-
tain statistical significance.

Although many think preregistra-
tions is only a recent idea, and there-
fore one that needs to be refined and 
tested before it can be fully adopted, it 
has in fact been in place for a long time 
in medical research. In 1997, the U.S. 
Food and Drug Administration Mod-
ernization Act (FDAMA) established 
the registry ClinicalTrials.gov, and over 
96,000 experiments were registered in 

to abandon NHST are a red herring in 
the replicability crisis,37 not least due 
to the lack of evidence that doing so 
will aid replicability.

Adopt Bayesian statistics. Several re-
searchers propose replacing NHST 
with Bayesian statistical methods. One 
of the key motivators for doing so con-
cerns a common misunderstanding of 
the p-value in NHST. Researchers 
wish to understand the probability 
the null hypothesis is true, given the 
data observed (P(H0|D)), and p is often 
misunderstood to represent this val-
ue. However, the p-value actually rep-
resents the probability of observing 
data at least as extreme as the sample 
if the null hypothesis were true: 
(P(D|H0). In contrast to NHST, Bayes-
ian statistics can enable the desired 
computation of (P(H0|D).

Bayesian statistics are perfectly suit-
ed for doing estimation statistics, and 
have several advantages over confi-
dence intervals.22,26 Nevertheless, they 
can also be used to carry out dichoto-
mous tests, possibly leading to the 
same issues as NHST. Furthermore, 
Bayesian analysis is not immune to the 
problems of p-hacking—researchers 
can still ‘b-hack’ to manipulate experi-
mental evidence.37,39 In particular, the 
choice of priors adds an important ad-
ditional experimenter degree of free-
dom in Bayesian analysis.39

Help the reader form their own con-
clusion. Given the contention over the 
relative merits of different statistical 
methods and thresholds, researchers 
have proposed that when reporting re-
sults, authors should focus on assist-
ing the reader in reaching their own 
conclusions by describing the data and 
the evidence as clearly as possible. This 
can be achieved through the use of 
carefully crafted charts that focus on 
effect sizes and their interval esti-
mates, and the use of cautionary lan-
guage in the author’s interpretations 
and conclusions.11,14

While improved explanation and 
characterization of underlying experi-
mental data is naturally desirable, au-
thors are likely to encounter prob-
lems if relying only on the 
persuasiveness of their data. First, the 
impact of using more cautious lan-
guage on the persuasiveness of argu-
ments when compared to categorical 
arguments is still uncertain.15 Sec-

ond, many reviewers of empirical pa-
pers are familiar and comfortable 
with NHST procedures and its associ-
ated styles of results reporting, and 
they may criticize its absence; in par-
ticular, reviewers may suspect that 
the absence of reported dichotomous 
outcomes is a consequence of their 
failure to attain p < .05. Both of these 
concerns suggest that a paper’s ac-
ceptance prospects could be harmed 
if lacking simple and clear statements 
of results outcome, such as those pro-
vided by NHST, despite the simplistic 
and often misleading nature of such 
dichotomous statements.

Quantify p-hacking in published 
work. None of the proposals discussed 
here address problems connected 
with researchers consciously or sub-
consciously revising experimental 
methods, objectives, and analyses af-
ter their study has begun. Statistical 
analysis methods exist that allow re-
searchers to assess whether a set of al-
ready published studies are likely to 
have involved such practices. A com-
mon method is based on the p-curve, 
which is the distribution of statistical-
ly significant p-values in a set of stud-
ies.40 Studies of true effects should 
produce a right-skewed p-curve, with 
many lower statistically significant p-
values (for example, .01s) than high 
values (for example, .04s); but a set of 
p-hacked studies are likely to show a 
left-skewed p-curve, indicative of se-
lecting variables that tipped analyses 
into statistical significance.

While use of p-curves appears 
promising, it has several limitations. 
First, it requires a set of study results 
to establish a meaningful curve, and 
its use as a diagnostic tool for evi-
dence of p-hacking in any single arti-
cle is discouraged. Second, its useful-
ness for testing the veracity of any 
particular finding in a field depends 
on the availability of a series of related 
or replicated studies; but replications 
in computer science are rare. Third, 
statisticians have questioned the ef-
fectiveness of p-curves for detecting 
questionable research practices, dem-
onstrating through simulations that 
p-curve methods cannot reliably dis-
tinguish between p-hacking of null ef-
fects and studies of true effects that 
suffer experimental omissions such 
as unknown confounds.7

http://ClinicalTrials.gov
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its first 10 years, assisted by the deci-
sion of the International Committee of 
Medical Journal Editors to make pre-
registration a requirement for publica-
tion in their journals.34 Results suggest 
that preregistration has had a substan-
tial effect on scientific outcomes—for 
example, an analysis of studies funded 
by the National Heart, Lung, and Blood 
Institute between 1970 and 2012 
showed the rate at which studies 
showed statistically significant find-
ings plummeted from 57% before the 
introduction of mandatory preregis-
tration (in 2000) to only 8% after.21 
The success of ClinicalTrials.gov and 
the spread of the replication crisis to 
other disciplines has prompted many 
disciplines to introduce their own 
registries, including the American 
Economic Association (https://www.
socialscienceregistry.org/) and the po-
litical science ‘dataverse.’29 The Open 
Science Framework (OSF) also sup-
ports preregistration, ranging from 
simple and brief descriptions through 
to complete experimental specifica-
tion (http://osf.io). Although original-
ly focused on replications of psycho-
logical studies, it is now used in a 
range of disciplines, including by 
computer scientists.

Registered reports. While experi-
mental preregistration should en-
hance confidence in published find-
ings, it does not prevent reviewers from 
using statistical significance as a crite-
rion for paper acceptance. Therefore, it 
does not solve the problem of publica-
tion bias and does not help prevent the 
file drawer effect. As a result, the scien-
tific record can remain biased toward 
positive findings, and since achieving 
statistical significance is harder if p-
hacking is not an option, researchers 
may be even more motivated to focus 
on unsurprising but safe hypotheses 
where the null is likely to be rejected. 
However, we do not want to simply take 
null results as equivalent to statistical 
significance, because null results are 
trivially easy to obtain; instead, the fo-
cus should be on the quality of the 
question being asked in the research.

Registered reports are a way to pro-
vide this focus. With registered reports, 
papers are submitted for review prior to 
conducting the experiment. Registered 
reports include the study motivation, 
related work, hypotheses, and detailed 

method; everything that might be ex-
pected in a traditional paper except for 
the results and their interpretation. 
Submissions are therefore considered 
based on the study’s motivations (is 
this an interesting research question?) 
and method (is the way of answering 
the question sound and valid?). If ac-
cepted, a registered report is published 
regardless of the final results.

A recent analysis of 127 registered 
reports in the bio-medical and psycho-
logical sciences showed that 61% of 
studies did not support their hypothe-
sis, compared to the estimated 5%–20% 
of null findings in the traditional litera-
ture.10 As of February 2019, the Center 
for Open Science (https://cos.io/rr/) 
lists 136 journals that accept registered 
reports and 27 journals that have ac-
cepted them as part of a special issue. 
No computer science journal is cur-
rently listed.

Recommendations for 
Computer Science
The use of NHST in relatively small-
sample empirical studies is an impor-
tant part of many areas of computer 
science, creating risks for our own re-
producibility crisis.8,14,24 The following 
recommendations suggest activities 
and developments that computer scien-
tists can work on to protect the credibil-
ity of the discipline’s empirical research.

Promote preregistration. The ACM 
has the opportunity and perhaps the 
obligation to lead and support changes 
that improve empirical computer sci-
ence—its stated purpose includes ‘pro-
motion of the highest standards’ and 
the ACM Publications Board has the 
goal of ‘aggressively developing the 
highest-quality content.’ These goals 
would be supported by propagating to 
journal editors and conference chairs 
an expectation that empirical studies 
should be preregistered, preferably us-
ing transdisciplinary registries such as 
the Open Science Framework (http://
osf.io). Authors of papers describing 
empirical studies could be asked or re-
quired to include a standardized state-
ment at the end of their papers’ ab-
stract providing a link to the 
preregistration, or explicitly stating 
that the study was not preregistered (in 
other disciplines, preregistration is 
mandatory). Reviewers would also 
need to be educated on the value of 

With registered 
reports, papers  
are submitted  
for review prior  
to conducting  
the experiment.

http://ClinicalTrials.gov
https://www.socialscienceregistry.org/
http://osf.io
https://cos.io/rr/
http://osf.io
https://www.socialscienceregistry.org/
http://osf.io
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age conference chairs to experiment 
with registered report submissions.

Encourage data and materials open-
ness. The ACM Digital Library supports 
access to resources that could aid repli-
cation through links to auxiliary materi-
als. However, more could be done to 
encourage or require authors to make 
data and resources available. Currently, 
authors decide whether or not to upload 
resources. Instead, uploading data 
could be compulsory for publication, 
with exceptions made only following 
special permission from an editor or 
program chair. While such require-
ments may seem draconian given the 
permissive nature of current practice in 
computer science, the requirement is 
common in other disciplines and out-
lets, such as Nature’s ‘Scientific Data’ 
(www.nature.com/sdata/).

A first step in this direction would 
be to follow transparency and openness 
guidelines (https://cos.io/our-services/
top-guidelines/), which encourage 
authors to state in their submission 
whether or not they made their data, 
scripts, and preregistered analysis 
available online, and to provide links to 
them where available.

Promote clear reporting of results. 
While the debate over standards for 
data analysis and reporting continues, 
certain best-practice guidelines are 
emerging. First, authors should focus 
on two issues: conveying effect sizes 
(this includes simple effect sizes such as 
differences between means11), and help-
ing readers to understand the uncertain-
ty around those effect sizes by reporting 
interval estimates14,26 or posterior dis-
tributions.22 A range of recommenda-
tions already exist for improving report-
ing clarity and transparency and must be 
followed more widely. For example, most 
effect sizes only capture central tenden-
cies and thus provide an incomplete 
picture. Therefore, it can help to also 
convey population variability through 
well-known practices such as reporting 
standard deviations (and their interval 
estimates) and/or plotting data distri-
butions. When reporting the out-
comes of statistical tests, the name of 
the test and its associated key data 
(such as degrees of freedom) should be 
reported. And, if describing the out-
comes of a NHST test, the exact p-value 
should be reported. Since the proba-
bility of a successful replication de-

preregistration and the potential im-
plications of its absence.

It is worth noting that experimen-
tal preregistration has potential bene-
fits to authors even if they do not in-
tend to test formal hypotheses. If the 
registry entry is accessible at the time 
of paper submission (perhaps through 
a key that is disclosed to reviewers), 
then an author who preregisters an ex-
ploratory experiment is protected 
against reviewer criticism that the 
stated exploratory intent is due to 
HARKing following a failure to reject 
the null hypothesis.8

Another important point regarding 
preregistration is that it does not con-
strain authors from reporting unex-
pected findings. Any analysis that 
might be used in an unregistered ex-
periment could also be used in a pre-
registered one, but the language used 
to describe the analysis in the pub-
lished paper must make the post-hoc 
discovery clear, such as ‘Contrary to ex-
pectations ...’ or ‘In addition to the pre-
registered analysis, we also ran ...’

Publish registered reports. The edi-
torial boards of ACM journals that fea-
ture empirical studies could adapt 
their reviewing process to support the 
submission of registered reports and 
push for this publication format. This 
is perhaps the most promising of all 
interventions aimed at easing the rep-
lication crisis—it encourages re-
searchers to address interesting ques-
tions, it eliminates the need to 
produce statistically significant re-
sults (and, thus, addresses the file 
drawer problem), and it encourages 
reviewers to focus on the work’s im-
portance and potential validity.10 In ad-
dition, it eliminates hindsight bias 
among reviewers, that is, the sentiment 
that they could have predicted the out-
comes of a study, and that the findings 
are therefore unsurprising.

The prospect of permitting the sub-
mission of registered reports to large-
scale venues is daunting (for example, 
ACM 2019 Conference on Human-
Computer Interaction received approx-
imately 3,000 submissions to its papers 
track). However, the two-round sub-
mission and review process adopted by 
conferences within the Proceedings of 
the ACM (PACM) series could be adapted 
to embrace the submission of regis-
tered reports at round 1. We encour-

Experimental 
preregistration has 
potential benefits to 
authors even if they 
do not intend to test 
formal hypotheses.  

http://www.nature.com/sdata/
https://cos.io/our-services/top-guidelines/
https://cos.io/our-services/top-guidelines/
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pends on the order of magnitude of 
p,17 we suggest avoiding excessive pre-
cision (one or two significant digits are 
enough), and using scientific notation 
(for example, p = 2 × 10–5) instead of in-
equalities (for example, p < .001) when 
reporting very small p-values.

Encourage replications. The intro-
duction of preregistration and regis-
tered reports in other disciplines 
caused a rapid decrease in the propor-
tion of studies finding statistically sig-
nificant effects. Assuming the same 
was to occur in computer science, how 
would this influence accepted publica-
tions? It is likely that many more em-
pirical studies would be published 
with statistically non-significant find-
ings or with no statistical analysis 
(such as exploratory studies that rely 
on qualitative methods). It is also likely 
that this would encourage researchers 
to consider conducting experimental 
replications, regardless of previous 
outcomes. Replications of studies with 
statistically significant results help re-
duce Type I error rates, and replica-
tions of studies with null outcomes re-
duce Type II error rates and can test the 
boundaries of hypotheses. If better 
data repositories were available, com-
puter science students around the 
world could contribute to the robust-
ness of findings by uploading to regis-
tries the outcomes of replications con-
ducted as part of their courses on 
experimental methods. Better data re-
positories with richer datasets would 
also facilitate meta-analyses, which el-
evate confidence in findings beyond 
that possible from a single study.

Educate reviewers (and authors). 
Many major publication venues in 
computer science are under stress due 
to a deluge of submissions that cre-
ates challenges in obtaining expert re-
views. Authors can become frustrated 
when reviewers focus on equivocal re-
sults of a well-founded and potentially 
important study—but reviewers can 
also become frustrated when authors 
fail to provide definitive findings on 
which to establish a clear contribu-
tion. In the spirit of registered reports, 
our recommendation is to educate re-
viewers (and authors) on the research 
value of studying interesting and im-
portant effects, largely irrespective of 
the results generated. If reviewers fo-
cused on questions and method rath-

er than traditional evidentiary criteria 
such as p < .05, then researchers would 
be better motivated to identify inter-
esting research questions, including 
potentially risky ones. One potential 
objection to risky studies is their typi-
cally low statistical power: testing null 
effects or very small effects with small 
samples can lead to vast overestima-
tions of effect sizes.27 However, this is 
mostly true in the presence of p-hack-
ing or publication bias, two issues 
that are eliminated by moving beyond 
the statistical significance filter and 
adopting registered reports. 
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need to be equipped to most effectively advance 
human performance during the next decade. 

http://books.acm.org
http://store.morganclaypool.com/acm
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vices ecosystem. PyMatcher is intend-
ed for a “power user” who possess 
knowledge about entity matching, 
programming, and basic machine 
learning while CloudMatcher is target-
ed for “lay users” who may not know 
how to program or possess machine 
learning knowledge.

PyMatcher provides how-to guides 
that describe how to approach the de-
velopment of entity matching work-
flows. These guides describe how to 
develop a solution for a small sample 
of data (by downsampling, blocking, 
and training a matcher) and how to 
scale the solution to work with pro-
duction data. The entity matching 
workflow for CloudMatcher is similar 
to that of PyMatcher except that Cloud-
Matcher actively learns from the user 
how to block tuples. Afterwards, it ex-
ecutes the blocking rules that are 
learnt to obtain a set of candidate 
pairs of tuples and again actively 
learns from the users what are the 
(non-)matching candidate pairs of tu-
ples before deriving a model that can 
be applied to match tuples across two 
tables.

In short, Magellan makes it easy to 
develop an entity matching solution 
and easy to interoperate with other 
tools to form a bigger data integration 
pipeline that solves larger problems. It 
is a showcase for practical software de-
velopment tools that originate from 
data management research. It has been 
successfully applied to multiple entity 
matching problems in the real world, is 
used in production at many data science 
groups and companies, and is recently 
being commercialized, demonstrating 
that using data science ideas to build entity 
matching systems is highly promising. For 
more details, check out Magellan’s web-
site at https://sites.google.com/site/ 
anhaidgroup/projects/magellan. 

Wang-Chiew Tan is Director of Research at Megagon 
Labs, Mountain View, CA, USA.

Copyright held by author.

FERDINA N D  MAGE LLA N WAS  a Portu-
guese explorer who launched a Span-
ish expedition that completed the first 
circumnavigation of the Earth. It is 
in this spirit that Magellan was used 
as the name of the end-to-end entity 
matching system that is developed at 
the University of Wisconsin.

Entity matching (also known as 
entity resolution or reference reconcilia-
tion or deduplication) is a major task in 
the larger problem of data integration, 
a problem that is pervasive in many or-
ganizations. Despite being a subject of 
extensive research for many years, the 
entity matching problem is surprisingly 
simple to describe and understand. It is 
to determine whether two different rep-
resentations refer to the same real-
world entity. For example, whether the 
two tuples—(J. Doe, UWisc) and (John 
Doe, Univ. of Wisconsin)—refer to the 
same person.

Perhaps more surprisingly, most 
prior systems for entity matching are 
stand-alone systems, sometimes built 
for specific applications, and are diffi-
cult to interoperate in the larger data 
integration setting, which often in-
volves a composition of various other 
tasks such as data acquisition, prepa-
ration, transformation, cleaning, and 
schema matching, in addition to enti-
ty matching. For example, the two tu-
ples above may be the result of data 
extracted from acquired pdfs or text 
files and transformed into the format 
above before they are matched. Differ-
ent tasks need different libraries and 
techniques and they must interoper-
ate before an end-to-end entity match-
ing or data integration pipeline can be 
successfully executed. Magellan is 
able to provide all of the above.

Magellan’s key insight is that a suc-
cessful entity matching system must 
offer a versatile system building para-
digm for entity matching that can be 
easily adapted for different applica-
tion needs. Furthermore, it must also 
be easy to “plug-and-play” entity 

matching into data integration pipe-
lines or other systems. There already 
exist vibrant ecosystems of data sci-
ence libraries and tools (for example, 
those in Python and R), which are 
heavily used by data scientists to 
solve many data integration tasks. By 
developing entity matching tools 
within such ecosystems, Magellan 
makes it easy for data scientists to ex-
ploit the tools (including Magellan) 
in the ecosystems and in turn, make 
such ecosystems better at solving var-
ious data integration problems. In 
sum, Magellan distinguishes itself by 
making it easy to develop entity 
matching tools that incorporates ad-
vanced entity matching techniques. 
In addition, it allows researchers to 
“connect” and exploit the vast ecosys-
tems of data science tools and build 
entity matching tools directly into 
those ecosystems.

In Magellan, there are two entity 
matching tools developed for two 
widely used execution environments: 
(1) PyMatcher is an entity matching 
tool that is developed as part of the 
PyData ecosystem. This allows users 
to leverage the rich set of Python li-
braries to carry out the entire entity 
matching pipeline, which may in-
volve subtasks such as data cleaning, 
visualization, in addition to blocking 
and matching. (2) CloudMatcher is a 
cloud-based entity matching tool 
that is part of the Amazon Web Ser-
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By Wang-Chiew Tan 
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Abstract
Entity matching (EM) finds data instances that refer to the 
same real-world entity. In 2015, we started the Magellan 
project at UW-Madison, jointly with industrial partners, 
to build EM systems. Most current EM systems are stand-
alone monoliths. In contrast, Magellan borrows ideas from 
the field of data science (DS), to build a new kind of EM sys-
tems, which is ecosystems of interoperable tools for mul-
tiple execution environments, such as on-premise, cloud, 
and mobile. This paper describes Magellan, focusing on the 
system aspects. We argue why EM can be viewed as a spe-
cial class of DS problems and thus can benefit from system 
building ideas in DS. We discuss how these ideas have been 
adapted to build PyMatcher and CloudMatcher, sophisticated 
on-premise tools for power users and self-service cloud tools 
for lay users. These tools exploit techniques from the fields 
of machine learning, big data scaling, efficient user inter-
action, databases, and cloud systems. They have been suc-
cessfully used in 13 companies and domain science groups, 
have been pushed into production for many customers, and 
are being commercialized. We discuss the lessons learned 
and explore applying the Magellan template to other tasks 
in data exploration, cleaning, and integration.

1. INTRODUCTION
Entity matching (EM) finds data instances that refer to 
the same real-world entity, such as tuples (David Smith, 
UW-Madison) and (D. Smith, UWM). This problem, also 
known as entity resolution, record linkage, deduplication, 
data matching, et cetera, has been a long-standing chal-
lenge in the database, AI, KDD, and Web communities.2, 6

As data-driven applications proliferate, EM will become 
even more important. For example, to analyze raw data 
for insights, we often integrate multiple raw data sets into 
a single unified one, before performing the analysis, and 
such integration often requires EM. To build a knowledge 

The original version of this paper is entitled “Entity 
Matching Meets Data Science: A Progress Report from 
the Magellan Project” and was published in Proceedings 
of the 2019 SIGMOD Conference.

graph, we often start with a small graph and then expand it 
with new data sets, and such expansion requires EM. When 
managing a data lake, we often use EM to establish semantic 
linkages among the disparate data sets in the lake.

Given the growing importance of EM, in the summer 
of 2015, together with industrial partners, we started the 
Magellan project at the University of Wisconsin-Madison, to 
develop EM solutions.9 Numerous works have studied EM, 
but most of them develop EM algorithms for isolated steps in 
the EM workflow. In contrast, we seek to build EM systems, 
as we believe such systems are critical for advancing the 
EM field. Among others, they help evaluate EM algorithms, 
integrate R&D efforts, and make practical impacts, the same 
way systems such as System R, Ingres, Apache Hadoop, and 
Apache Spark have helped advance the fields of relational 
database management systems (RDBMSs) and Big Data.

Of course, Magellan is not the first project to build EM sys-
tems. Many such systems have been developed.9, 2 However, 
as far as we can tell, virtually all of them have been built as 
stand-alone monolithic EM systems, or parts of larger mono-
lithic systems that perform data cleaning and integration.2, 6, 9  
These systems often employ the RDBMS building template. 
That is, given an EM workflow composed of logical opera-
tors (specified declaratively or via a GUI by a user), they com-
pile this workflow into one consisting of physical operators 
and then optimize and execute the compiled workflow.

In contrast, Magellan develops a radically different system        
building template for EM, by leveraging ideas from the 
field of data science (DS). Although DS is still “young,” 
several common themes have emerged.

• For many DS tasks, there is a general consensus that it 
is not possible to fully automate the two stages of devel-
oping and productionizing DS workflows. So users 
must “be in the loop,” and many step-by-step guides 
that tell users how to execute the above two stages have 
been developed.

• Many “pain points” in these guides, that is, steps that 
are time-consuming for users, have been identified, 
and (semi)-automated tools have been developed to 
reduce user effort.

* Additional authors are Sanjib Das (Google), Erik Paulson (Johnson Con-
trol), Palaniappan Nagarajan (Amazon), Han Li (UW-Madison), Sidharth 
Mudgal (Amazon), Aravind Soundararajan (Amazon), Jeffrey R. Ballard 
(UW-Madison), Haojun Zhang (UW-Madison), Adel Ardalan (Columbia 
Univ.), Amanpreet Saini (UW-Madison), Mohammed Danish Shaikh (UW-
 Madison), Youngchoon Park (Johnson Control), Marshall Carter (American 
Family Ins.), Mingju Sun (American Family Ins.), Glenn M. Fung (American 
Family Ins.), Ganesh Krishnan (WalmartLabs), Rohit Deep (WalmartLabs), 
Vijay Raghavendra (WalmartLabs), Jeffrey F. Naughton (Google), Shishir 
Prasad (Instacart), and Fatemah Panahi (Google).

http://dx.doi.org/10.1145/3405476
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• Users often use multiple execution environments (EE), 
such as on-premise, cloud, and mobile, switching 
among them. So tools have been developed for all of 
these EEs.

• Finally, within each EE, tools have been designed to be 
atomic and interoperable, forming a growing ecosys-
tem of DS tools. Examples include PyData, the ecosys-
tem of 184,000+ interoperable Python packages (as of 
June 2019), R, tidyverse, and many others.4

We observed that EM bears strong similarities to many DS 
tasks.9 As a result, we leveraged the above ideas to build a 
new kind of EM systems. Specifically, we develop guides that 
tell users how to perform EM step by step, identify the “pain 
points” in the guides, and then develop tools to address 
these pain points. We develop tools for multiple execution 
environments (EEs), such that within each EE, tools interop-
erate and build upon existing DS tools in that EE.

Thus, the notion of “system” in Magellan has changed. 
It is no longer a stand-alone monolithic system such as 
RDBMSs or most current EM systems. Instead, this new 
“system” spans multiple EEs. Within each EE, it provides 
a growing ecosystem of interoperable EM tools, situated in 
a larger ecosystem of DS tools. Finally, it provides detailed 
guides that tell users how to use these tools to perform EM.

Since the summer of 2015, we have pursued the above 
EM agenda and developed small ecosystems of EM tools for 
on-premise and cloud EEs. These tools exploit techniques 
from the fields of machine learning, big data scaling, effi-
cient user interaction, databases, and cloud systems. They 
have been successfully used in 13 companies and domain 
science groups, have been pushed into production for many 
customers, and are being commercialized. Developing them 
has also raised many research challenges.4

In this paper, we describe the above progress, focusing on 
the system aspects. The next section discusses the EM prob-
lem and related work. Section 3 discusses the main system 
building themes of data science and the Magellan agenda. 
Sections 4–5 discuss PyMatcher and CloudMatcher, two cur-
rent thrusts of Magellan. Section 6 discusses the applica-
tion of Magellan tools to real-world EM problems. Section 7  
discusses lessons learned and ongoing work. Section 8 con-
cludes by exploring how to apply the Magellan template to 
other tasks in data exploration, cleaning, and integration. 
More information about Magellan can be found at sites.
google.com/site/anhaidgroup/projects/magellan.

2. THE ENTITY MATCHING PROBLEM
Entity matching, also known as entity resolution, record 
linkage, data matching, et cetera., has received enormous 
attention.2, 6, 5, 13 A common EM scenario finds all tuple 
pairs that match, that is, refer to the same real-world entity, 
between two tables A and B (see Figure 1). Other EM scenar-
ios include matching tuples within a single table, matching 
into a knowledge graph, matching XML data, et cetera.2

When matching two tables A and B, considering all pairs 
in A × B often takes very long. So users often execute a block-
ing step followed by a matching step.2 The blocking step 
employs heuristics to quickly remove obviously nonmatched 

tuple pairs (e.g., persons residing in different states). The 
matching step applies a matcher to the remaining pairs to 
predict matches.

The vast body of work in EM falls roughly into three 
groups: algorithmic, human-centric, and system. Most EM 
works develop algorithmic solutions for blocking and match-
ing, exploiting rules, learning, clustering, crowdsourcing, 
external data, et cetera.2, 6, 5 The focus is on improving accu-
racy, minimizing runtime, and minimizing cost (e.g., crowd-
sourcing fee), among others.13, 6

A smaller but growing body of EM work (e.g., HILDA1) 
studies human-centric challenges, such as crowdsourcing, 
effective user interaction, and user behavior during the EM 
process.

The third group of EM work develops EM systems. In 
2016, we surveyed 18 noncommercial systems (e.g., D-Dupe, 
Febrl, Dedoop, and Nadeef) and 15 commercial ones (e.g., 
Tamr, Informatica, and IBM InfoSphere).9, 12 Most of these 
systems are stand-alone monoliths, built using the RDBMS 
template. Specifically, such a system has a set of logical 
operations (e.g., blocking and matching) with multiple 
physical implementations. Given an EM workflow (compos-
ing of these operations) specified by the user using a GUI or 
a declarative language, the system translates the workflow 
into an execution plan and then optimizes and executes 
this plan.

3. THE MAGELLAN AGENDA
We now discuss system building ideas in the field of data sci-
ence (DS). Then we argue that EM is very similar in nature to 
DS and thus can benefit from these ideas. Finally, we suggest 
a system building agenda for Magellan.

System Building Ideas of Data Science: Although the 
DS field has been growing rapidly, we are not aware of any 
explicit description of its “system template.” But our exami-
nation reveals the following important ideas.

First, many DS tasks distinguish between two stages, 
development and production, as these stages raise differ-
ent challenges. The development stage finds an accurate 
DS workflow, often using data samples. This raises chal-
lenges in data exploration, profiling, understanding, clean-
ing, model fitting and evaluation, et cetera. The production 
(a.k.a. deployment) stage executes the discovered DS work-
flow on the entirety of data, raising challenges in scaling, 
logging, crash recovery, monitoring, et cetera.

Second, DS developers do not assume that the above two 
stages can be automated. Users often must be “in the loop” 
and often do not know what to do, how to start, et cetera. As a 
result, developers provide detailed guides that tell users how 
to solve a DS problem, step by step. Numerous guides have 

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1 b1

b2a2

a3

Matches

(a1, b1)

(a3, b2)
  

Table A Table B

Figure 1. An example of matching two tables.
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been developed, described in books, papers, Jupyter note-
books, training camps, blogs, tutorials, et cetera.

It is important to note that such a guide is not a user man-
ual on how to use a tool. Rather, it is a step-by-step instruc-
tion to the user on how to start, when to use which tools, and 
when to do what manually, in order to solve the DS task end 
to end. Put differently, it is an (often complex) algorithm for 
the user to follow. (See Section 4 for an example.)

Third, even without tools, users should be able to follow 
a guide and manually execute all the steps to solve a DS task. 
But some of the steps can be very time-consuming. DS devel-
opers have identified such “pain point” steps and developed 
(semi-)automatic tools to reduce the human effort.

Fourth, these tools target not just power users, but also 
lay users (as such users increasingly also need to work on the 
data), and use a variety of techniques, for example, machine 
learning (ML), RDBMS, visualization, effective user interac-
tion, Big Data scaling, and cloud technologies.

Fifth, it is generally agreed that users will often use mul-
tiple execution environments (EEs), such as on-premise, 
cloud, and mobile, switching among these EEs as appropri-
ate, to execute a DS task. As a result, tools have been devel-
oped for all of these EEs.

Finally, within each EE, tools have been designed to be 
atomic (i.e., each tool does just one thing) and interoper-
able, forming a growing ecosystem of DS tools. Popular 
examples of such ecosystems include PyData, R, tidyverse, 
and many others.4

The Similarities between EM and DS: We argue that EM 
bears strong similarities to many DS tasks. EM often shares 
the same two stages: development, where users find an 
accurate EM workflow using data samples, and production, 
where users execute the workflow on the entirety of data (see 
Section 4 for an example).

The above two EM stages raise challenges that are 
remarkably similar to those of DS tasks, for example, data 
understanding, model fitting, scaling, et cetera. Moreover, 
there is also an emerging consensus that it is not possible 
to fully automate the above two stages for EM. Similar to 
DS, this also raises the need for step-by-step guides that tell 
users how to be “in the loop,” as well as the need for identify-
ing “pain points” in the guide and developing tools for these 
pain points (to reduce user effort). Finally, these tools also 
have to target both power and lay users, and use a variety of 
techniques, for example, ML, RDBMS, visualization, scaling, 
et cetera.

Thus, we believe EM can be viewed as a special class 
of DS problems, which focuses on finding the semantic 
matches, for example, “(David Smith, UWM) = (D. Smith, 
UW-Madison).” As such, we believe EM can benefit from the 
system building ideas in DS.

Our Agenda: Using the above “system template” of DS, we 
developed the following agenda for Magellan. First, we iden-
tify common EM scenarios. Next, we develop how-to guides 
to solve these scenarios end to end, paying special atten-
tion to telling the user exactly what to do. Then we identify 
the pain points in the guides and develop (semi-)automatic 
tools to reduce user effort. We design tools to be atomic and 
interoperable, as a part of a growing ecosystem of DS tools. 

Developing these tools raises research challenges, which we 
address. Finally, we work with users (e.g., domain scientists, 
companies, and students) to evaluate our EM tools.

In the past few years, we have been developing EM tools 
for two popular execution environments: on-premise and 
cloud. Specifically, PyMatcher is a small ecosystem of on-
premise EM tools for power users, built as a part of the 
PyData ecosystem of DS tools, and CloudMatcher is a small 
ecosystem of cloud EM tools for lay users, built as a part of 
the AWS ecosystem of DS tools. The next two sections briefly 
describe these ecosystems.

4. PYMATCHER
We now describe PyMatcher, an EM system developed for 
power users in the on-premise execution environment.

Problem Scenarios: In this first thrust of Magellan, we 
consider an EM scenario that commonly occurs in practice, 
where a user U wants to match two tables (e.g., see Figure 1), 
with as high matching accuracy as possible, or with accuracy 
exceeding a threshold. U is a “power user” who knows pro-
gramming, EM, and ML.

Developing How-to Guide: We developed an initial guide 
based on our experience and then kept refining it based 
on user feedback and on watching how real users do EM. 
As of Nov 2018, we have developed a guide for the above 
EM scenario, which consists of two smaller guides for the 
development and production stages, respectively. Here, we 
focus on the guide for the development stage (briefly dis-
cussing the guide for the production stage at the end of this 
section).

This guide (which is illustrated in Figure 2) heavily uses 
ML. To explain it, suppose user U wants to match two tables 
A and B, each having 1 million tuples. Trying to find an accu-
rate workflow using these two tables would be too time- 
consuming, because they are too big. Hence, U will first 
“down sample” the two tables to obtain two smaller tables A′ 
and B′, each having 100K tuples, say (see the figure).

Next, suppose the EM system provides two blockers X 
and Y. Then, U experiments with these blockers (e.g., execut-
ing both on Tables A′ and B′ and examining their output) to 
select the blocker judged the best (according to some crite-
rion). Suppose U selects blocker X. Then next, U executes X 
on Tables A′ and B′ to obtain a set of candidate tuple pairs C.

A

down
sample

blocker
X

blocker
X

sample

cross-validate
matcher U

cross-validate
matcher V

label
G

S

C

Dblocker
Y

matcher
V

quality
check

B

A’

B’

A’

B’

A’

B’

C

Select the best blocker: X, Y Select the best matcher: U, V

0.89 F1

0.93 F1

no
(-,-)(-,-)

(-,-)
(-,-)
(-,-)
(-,-)

+
+
-
-
+

(-,-)
(-,-)

(-,-) +
-
+

(-,-)
(-,-)

(-,-)
(-,-)
(-,-)

(-,-)
(-,-)

yes

Figure 2. The steps of the guide for the development stage of 
PyMatcher.
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As an example of making a tool, that is, a command, 
X efficient for a user, we can make X easy to remember and 
specify (i.e., it does not require the user to enter many argu-
ments). Often, this also means that we provide multiple 
variations for X, because each user may best remember a 
particular variation.

Command X is efficient for machine if it minimizes run-
time and space. For instance, let A and B be two tables with 
schema (id,name,age). Suppose X is a blocker command that 
when applied to A and B produces a set of tuple pairs C. Then, 
to save space, X should not use (A.id, A.name, A.age, B.id, 
B.name, B.age), but only (A.id, B.id) as the schema of C.

If so, we need to store the “metadata information” that 
there is a key-foreign key (FK) relationship between tables A, 
B, and C. Storing this metadata in the tables themselves is 
not an option if we have already elected to store the tables 
using Pandas DataFrame (which cannot store such meta-
data, unless we redefine the DataFrame class). So we can use 
a stand-alone catalog Q to store such metadata for the tables.

But this raises a problem. If we use a command Y of some 
other package to remove a tuple from table A, Y is not even 
aware of catalog Q and so will not modify the metadata 
stored in Q. As a result, the metadata is now incorrect: Q still 
claims that an FK relationship exists between tables A and C. 
But this is no longer true.

To address this problem, we can design the tools to be 
self-contained. For example, if a tool Z is about to operate on 
table C and needs the metadata “there is an FK constraint 
between A and C” to be true, it will first check that constraint. 
If the constraint is still true, then Z will proceed normally. 
Otherwise, Z outputs a warning that the FK constraint is no 
longer correct and then stops or proceeds (depending on the 
nature of the command). Thus, Z is self-contained in that it 
does not rely on anything outside to ensure the correctness 
of the metadata that it needs.

Trade-Offs Among the Principles: It should be clear by now 
that the above principles often interact and conflict with one 
another. For example, as discussed, to make commands inter-
operate, we may use Pandas DataFrames to hold the tables, 
and to make commands efficient, we may need to store meta-
data such as FK constraints. But this means the constraints 
should be stored in a global catalog. This makes extracting a 
set of commands to create a new package difficult, because the 
commands need access to this global catalog.

There are many examples such as this, which together 
suggest that designing an “ecosystem” of tools and pack-
ages that follow the above principles requires making 
trade-offs. We have made several such trade-offs in design-
ing PyMatcher. But obtaining a clear understanding of these 
trade-offs and using it to design a better ecosystem is still 
ongoing work.

The Production Stage: So far, we have focused on the 
development stage for PyMatcher and have developed only 
a basic solution for the production stage. Specifically, we 
assume that after the development stage, the user has 
obtained an accurate EM workflow W, which is captured as a 
Python script (of a sequence of commands). We have devel-
oped tools that can execute these commands on a multicore 
single machine, using customized code or Dask (which is a 

Next, U takes a sample S from C and labels the pairs in S 
as “match”/“no-match” (see the figure). Let the labeled set 
be G, and suppose the EM system provides two learning-
based matchers U and V (e.g., decision trees and logistic 
regression). Then, U uses the labeled set G to perform cross 
validation for U and V. Suppose V produces higher match-
ing accuracy (such as F1 score of 0.93, see the figure). Then, 
U selects V as the matcher and applies V to the set C to pre-
dict “match”/“no-match,” shown as “+” or “−” in the figure. 
Finally, U may perform quality check (by examining a sam-
ple of the predictions and computing the resulting accu-
racy) and then go back and debug and modify the previous 
steps as appropriate. This continues until U is satisfied with 
the accuracy of the EM workflow.

Developing Tools for the Steps of the Guide: Over the past 
3.5 years, 13 developers have developed tools for the steps of 
the above guide (see Govind et al.8). As of September 2019, 
PyMatcher consists of 6 Python packages with 37K lines of 
code and 231 commands (and is open sourced9). It is built 
on top of 16 different packages in the PyData ecosystem 
(e.g., pandas and scikit-learn). As far as we can tell, PyMatcher 
is the most comprehensive open-source EM system today, in 
terms of the number of features it supports.

Principles for Developing Tools & Packages: In PyMatcher, 
each tool is roughly equivalent to a Python command, and 
tools are organized into Python packages. We adopted five 
principles for developing tools and packages:

1. They should interoperate with one another, and with 
existing PyData packages.

2. They should be atomic, that is, each does only one 
thing.

3. They should be self-contained, that is, they can be used 
by themselves, not relying on anything outside.

4. They should be customizable.
5. They should be efficient for both humans and 

machines.

We now illustrate these principles. As an example of facilitat-
ing interoperability among the commands of different pack-
ages, we use only generic well-known data structures such as 
Pandas DataFrame to hold tables (e.g., the two tables A and B 
to match and the output table after blocking).

Designing each command, that is, tool, to be “atomic” is 
somewhat straightforward. Designing each package to be so 
is more difficult. Initially, we designed just one package for 
all tools of all steps of the guide. Then, as soon as it was obvi-
ous that a set of tools form a coherent stand-alone group, we 
extracted it as a new package. However, this extraction is not 
always easy to do, as we will discuss soon.

Ignoring self-containment for now, to make tools and 
packages highly customizable, we expose all possible 
“knobs” for the user to tweak and provide easy ways for him/
her to do so. For example, given two tables A and B to match, 
PyMatcher can automatically define a set of features (e.g., 
jaccard(3gram(A.name), 3gram(B.name) ) ). We store this set 
of features in a global variable F. We give users ways to delete 
features from F and to declaratively define more features 
and then add them to F.
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As described, Falcon is well suited for lay users, who only 
have to label tuple pairs as match/no-match. We imple-
mented Falcon as CloudMatcher 0.1 and deployed as shown 
in Figure 5, with the goal of providing self-service EM to 
domain scientists at UW. Any scientist wanting to match 
two tables A and B can go to the homepage of CloudMatcher, 
upload the tables, and then label a set of tuple pairs (or 
ask crowd workers say on Mechanical Turk to do so). 
CloudMatcher uses the labeled pairs to block and match, 
as described earlier, and then returns the set of matches 
between A and B.

Developing an EM System for Multiple Users: We soon 
recognized, however, that CloudMatcher 0.1 does not scale, 
because it can execute only one EM workflow at a time. So 
we designed CloudMatcher 1.0, which can efficiently execute 
multiple concurrent EM workflows (e.g., submitted by mul-
tiple scientists at the same time). Developing CloudMatcher 
1.0 was highly challenging.7 Our solution was to break each 
submitted EM workflow into multiple DAG fragments, where 
each fragment performs only one kind of task, for example, 
interaction with the user, batch processing of data, crowd-
sourcing, et cetera. Next, we execute each fragment on an 
appropriate execution engines. We developed three execu-
tion engines: user interaction engine, crowd engine, and 
batch engine. To scale, we interleave the execution of DAG 
fragments coming from different EM workflows and coordi-
nate all of the activities using a “metamanager.” See Govind 
et al.7 for more details.

Providing Multiple Basic Services: CloudMatcher 1.0 imple-
mented only the above rigid Falcon EM workflow. As we inter-
acted with real users, however, we observed that many users 
want to flexibly customize and experiment with different EM 
workflows. For example, a user may already know a block-
ing rule, so he or she wants to skip the step of learning such 
rules. Yet another user may want to use CloudMatcher just to 
label tuple pairs (e.g., to be used in PyMatcher).

So we developed CloudMatcher 2.0, which extracts a set of basic 
services from the Falcon EM workflow and makes them available 
on CloudMatcher, and then allows users to flexibly combine 
them to form different EM workflows (such as the original 

Python package developed by Anaconda that can be used to 
quickly modify a Python command to run on multiple cores, 
among others). We have also developed a how-to guide that 
tells the user how to scale using these tools.

5. CLOUDMATCHER
We now describe CloudMatcher, an EM system developed for 
lay users in the cloud environment.

Problem Scenarios: We use the term “lay user” to refer 
to a user who does not know programming, ML, or EM, but 
understands what it means to be match (and thus can label 
tuple pairs as match/no-match). Our goal is to build a system 
that such lay users can use to match two tables A and B. We 
call such systems self-service EM systems.

Developing an EM System for a Single User: In a recent 
work,3 we have developed Falcon, a self-service EM system 
that can serve a single user. As CloudMatcher builds on 
Falcon, we begin by briefly describing Falcon.

To match two tables A and B, like most current EM solu-
tions, Falcon performs blocking and matching, but it makes 
both stages self-service (see Figure 3). In the blocking stage 
(Figure 3a), it takes a sample S of tuple pairs (Step ①) and 
then performs active learning with the lay user on S (in 
which the user labels tuple pairs as match/no-match) to 
learn a random forest F (Step ②), which is a set of n decision 
trees. The forest F declares a tuple pair p a match if at least 
αn trees in F declare p a match (where α is prespecified).

In Step ③, Falcon extracts all tree branches from the root 
of a tree (in random forest F) to a “No” leaf as candidate 
blocking rules. For example, the tree in Figure 4a predicts 
that two book tuples match only if their ISBNs match and 
the number of pages match. Figure 4b shows two blocking 
rules extracted from this tree. Falcon enlists the lay user to 
evaluate the extracted blocking rules and retains only the 
precise rules. In Step ④, Falcon executes these rules on tables 
A and B to obtain a set of candidate tuple pairs C. This com-
pletes the blocking stage (Figure 3a). In the matching stage 
(Figure 3b), Falcon performs active learning with the lay user 
on C to obtain another random forest G and then applies G 
to C to predict matches (Steps ⑤ and ⑥).

sampling

1 2 3 4 5 6
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learning
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blocking rules

blocking
rules

execute
blocking rules

cand set
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Figure 3. The workflow of Falcon, where a lay user labels tuple pairs as match/no-match in Steps ②, ③, and ⑤.
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The third column shows the main results. This column 
shows that PyMatcher found EM workflows that were sig-
nificantly better than the EM workflows in production 
in three cases: Walmart, Economics (UW), and Land Use 
(UW). The fourth column indicates that, based on those 
results, PyMatcher has been put into production in 6 out 
of 8 applications. This is defined as either (a) PyMatcher is 
used in a part of an EM pipeline in production or (b) the 
data resulted from using PyMatcher has been pushed into 
production, that is, being sent to and consumed by real-
world customers.

The fifth column shows that in all cases that we know of, 
PyMatcher does not require a large team to work on it (and 
the teams are only part-time). The final column lists addi-
tional notable results. (Note that funding from UW came 
from highly selective internal competitions.) More details 
about these applications can be found in Govind et al.8 and 
Konda et al.10

CloudMatcher: CloudMatcher has been successfully 
applied to multiple EM applications and has attracted 
commercial interest. It has been in production at 
American Family Insurance since the summer of 2018 
and is being considered for production at two other major 
companies.

Table 2 summarizes CloudMatcher’s performance on 
13 real-world EM tasks. The first two columns show that 
CloudMatcher has been used in 5 companies, 1 nonprofit, 
and 1 domain science group, for a variety of EM tasks. The 
next two columns show that CloudMatcher was used to match 
tables of varying sizes, from 300 to 4.9M tuples.

Ignoring the next two columns on accuracy, let us zoom 
in on the three columns under “Cost” in Table 2. The 
first column (“Questions”) lists the number of questions 
CloudMatcher had to ask, that is, the number of tuple pairs to 
be labeled. This number ranges from 160 to 1200 (the upper 
limit for the current CloudMatcher).

Falcon one). Appendix C of Govind et al.8 shows the list of ser-
vices that we currently provide. Basic services include upload-
ing a data set, profiling a data set, editing the metadata of 
a data set, sampling, generating features, training a clas-
sifier, et cetera. We have combined these basic services to 
provide composite services, such as active learning, obtain-
ing blocking rules, and Falcon. For example, the user can 
invoke the “Get blocking rules” service to ask CloudMatcher 
to suggest a set of blocking rules that he/she can use. As 
another example, the user can invoke the “Falcon” service 
to execute the end-to-end Falcon EM workflow.

6. REAL-WORLD APPLICATIONS
We now discuss real-world applications of PyMatcher and 
CloudMatcher, as well as their typical usage patterns. In the 
discussion here, we measure EM accuracy using precision, 
the fraction of predicted matches that are correct, and recall, 
the fraction of true matches that are returned in the set of 
predicted matches.

Applications of PyMatcher: PyMatcher has been success-
fully applied to multiple real-world EM applications in both 
industry and domain sciences. It has been pushed into 
production in most of these applications and has attracted 
significant funding (e.g., $950K from UW-Madison, $1.1M 
from NSF, and $480K from industry). It has also been used 
by 400+ students in 5 data science classes at UW-Madison. 
Finally, it has resulted in multiple publications, both in the 
database field and in domain sciences.4

Table 1 summarizes the real-world applications. The first 
column shows that PyMatcher has been used in a variety of 
companies and domain sciences. The second column shows 
that PyMatcher has been used for three purposes: debugging 
an EM pipeline in production (Walmart), building a better 
EM pipeline than an existing one (economics and land use), 
and integrating disparate data sets (e.g., Recruit, Marshfield 
Clinic, and limnology).

Table 1. Real-world deployment of PyMatcher.

Problem owner Problem type Notable result In production? Team Other

Walmart Debug a system in 
 production that 
matches products

Improved recall by 34%, reduced precision 
by 0.65%

Yes 1 student, 
1 employee

Funding

Recruit holdings Matching names of 
stores, companies, 
properties

Reported 98.9% accuracy on matching 10K 
store names

Yes Multiple 
employees

Press release

Johnson controls Matching suppliers Precision and recall in 96–100% Unknown 1 student Funding
Marshfield clinic Matching drugs 99.2% precision and 95.3% recall Yes 1 student, 

1 employee
Paper

Economics (UW) Matching grants. Build a 
better EM pipeline

Precision in [96.7%, 98.8%], recall in 
[94.2%, 97.1%] A system in production 
achieves 100% precision, recall in [65.1%, 
71.8%]

Not yet 2 students Paper 
published, 
funding from 
UW

Land use (UW) Matching cattle ranches. 
Build a better EM 
pipeline

Precision in [89.7%, 99.0%], recall in [79.2%, 
92.2%] A system in production achieves 
precision in [94.9%, 100%], recall in [29.4%, 
46.6%]

Yes 1 student,  
1 programmer,  
2 staff persons

Paper planned, 
funding from 
UW

Biomedicine (UW) Matching ontology terms metasra.biostat.wisc.edu Yes 1 student Paper 
published

Limnology (UW) Matching table attributes High-value data sets created from multiple 
data sets

Yes 2 students Funding from 
UW

http://metasra.biostat.wisc.edu
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achieves high accuracy, often in the 90 percentage. The three 
cases of limited accuracy are “Vehicles,” “Addresses,” and 
“Vendors.” A domain expert at American Family Insurance 
(AmFam) labeled tuple pairs for “Vehicles.” But the data 
was so incomplete that even he was uncertain in many cases 
on whether the tuple pair matches. At some point, he real-
ized that he had incorrectly labeled a set of tuple pairs, but 
CloudMatcher provided no way for him to “undo” the labeling, 
hence the low accuracy. This EM task is currently being re-
executed at AmFam.

For “Vendors,” it turned out that the portion of data 
that consists of Brazilian vendors is simply incorrect: the 
vendors entered some generic addresses instead of their 
real addresses. As a result, even users cannot match 
such vendors. Once we removed such vendors from the 
data, the accuracy significantly improved (see the row 
for “Vendors (no Brazil)”). It turned out that “Addresses” 
had similar dirty data problems, which explained the low 
recall of 76–81%.

Typical Usage Patterns: We observed the following pat-
terns of using PyMatcher and CloudMatcher. When working 
with enterprise customers, a common scenario is that the 
EM team, which typically consists of only a few developers, is 
overwhelmed with numerous EM tasks sent in by many busi-
ness teams across the enterprise.

To address this problem, the EM team asks busi-
ness teams to use CloudMatcher to solve their EM tasks 

In the next column (“Crowd”), a cell such as “$72” indi-
cates that for the corresponding EM task, CloudMatcher used 
crowd workers on Mechanical Turk to label tuple pairs, and 
it cost $72. A cell “-” indicates that the task did not use crowd-
sourcing. It used a single user instead, typically the person 
who submitted the EM task, to label, and thus incurred no 
monetary cost.

In the third column (“Compute”), a cell such as “$2.33” 
indicates that the corresponding EM task used AWS, which 
charged $2.33. A cell such as “-” indicates that the EM task 
used a local machine owned by us, and thus incurred no 
monetary cost.

Turning our attention to the last three columns under 
“Time,” the first column (“User/Crowd”) lists the total 
labeling time, either by a single user or by the Mechanical 
Turk crowd. We can see that when a single user labeled, 
it was typically quite fast, with time from 9m to 2h. When 
a crowd labeled, time was from 22h to 36h (this does not 
mean crowd workers labeled nonstop and took that long; 
it just meant Mechanical Turk took that long to finish the 
labeling task). These results suggest that CloudMatcher can 
execute a broad range of EM tasks with very reasonable 
labeling time from both users and crowd workers. The next 
two columns under “Time” show the machine time and the 
total time.

We now zoom in on the accuracy. The columns “Precision” 
and “Recall” show that in all cases except three, CloudMatcher 

Table 2. Real-world deployment of CloudMatcher.

Problem owner
Problem 
type Table A Table B

Precision 
(%) Recall (%)

Cost Time

Questions Crowd Compute
User/
crowd Machine Total

Fortune 500 
Company

Phoenix 
customers

300 300 96.4 99.03 160 – $2.33 9m 5m 14m

Commercial 
insurance 
policy 
holders

1049 17,572 96.15 97.22 321 – $2.33 18m 25m 43m

Commercial 
farm/
ranch 
policy 
members

109,974 4,922,505 99.5 95 780 – $13.96 50m 4h 58m 5h 48m

Vehicles 18,938 72,898 66.02–80.02 81.65–93.15 851 – $7.00 2h 46m 2h 46m
Drivers 790 634 99.86 94.89 250 – $2.33 10m 8m 18m

Johnson 
Controls 
International

Addresses 90,673 231,081 93.22–95.72 76.93–81.01 1200 $72 – 36h 48m 38m 37h 26m
Vendors 50,295 50,292 29.95–38.04 91.89–98.10 1160 $69.60 – 30h 31m 58m 31h 29m
Vendors (no 

Brazil)
28,152 28,149 95.44–97.75 88.82–92.41 1200 $72 – 22h 19m 22m 22h 41m

UW Health Doctors & 
staff

1786 1786 99.66 98.18 1200 – $4.66 50m 15m 1h 5m

Large Data 
Integration 
Company

Persons 48,119 48,119 100–100 98.42–100 462 – $7.00 36m 1h 35m 2h 11m

Marshfield 
Clinic

Drugs 446,048 440,048 99.14–99.63 98.45–99.14 1162 – – 1h 10m 8h 40m 9h 50m

Nonprofit Org Elected 
officials

9751 706,878 93.75–96.32 95.50–97.76 960 $57.60 – 23h 14m 23m 23h 37m

Domain Science UMetrics 
economics

2616 21,530 94.5–96.5 98.12–99.21 680 $61.20 – 23h 12m 12m 23h 24m
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Many New Pain Points: Existing EM work has largely 
focused on blocking and matching. Our work makes clear 
that there are many pain points that current work has 
ignored or not been aware of. Examples include how to 
quickly converge to a match definition, how to label col-
laboratively, how to debug blockers and matchers, and 
how to update an EM workflow if something (e.g., data 
and match definition) has changed. We believe that more 
effort should be devoted to addressing these real pain 
points in practice.

Monolithic Systems vs. Ecosystems of Tools: We found 
that EM is so much messier than we thought. Fundamentally, 
it was a “trial and error” process, where users kept experi-
menting until they find a satisfactory EM workflow. As a 
result, users tried all kinds of workflows, customization, 
data processing, et cetera. (e.g., see Konda et al.10).

Because EM is so messy and users want to try so many dif-
ferent things, we found that an ecosystem of tools is ideal. 
For every new scenario that users want to try, we can quickly 
put together a set of tools and a mini how-to guide that they 
can use. This gives us a lot of flexibility.

Many “trial” scenarios require only a part of the entire EM 
ecosystem. Having an ecosystem allows us to very quickly 
pull out the needed part, and popular parts end up being 
used everywhere. For example, several string matching 
packages in PyMatcher are so useful in many projects (not 
just in EM) that they ended up being installed on Kaggle, a 
popular data science platform.

Extensibility is also much easier with an ecosystem. 
For example, recently, we have developed a new matcher 
that uses deep learning to match textual data.11 We used 
PyTorch, a new Python library, to develop it, released it as a 
new Python package in the PyMatcher ecosystem, and then 
extended our guide to show how to use it. This smoothly 
extended PyMatcher with relatively little effort.

Clearly, we can try to achieve the above three desirable 
traits (flexibility/customizability, partial reuse, and extensi-
bility) with monolithic stand-alone systems for EM, but our 
experience suggests it would be significantly harder to do so. 
Finally, we found that it is easier for academic researchers 
to develop and maintain (relatively small) tools in an ecosys-
tem, than large monolithic systems.

Using Multiple Execution Environments (EEs): We found 
that users often want to use multiple EEs for EM. For exam-
ple, a user may want to work on-premise using his or her 
desktop to experiment and find a good EM workflow and 
then upload and execute the workflow on a large amount 
of data on the cloud. Whereas working on-premise, if the 
user has to perform a computation-intensive task, such as 
executing a blocker, he or she may opt to move that task to 
the cloud and execute it there. Similarly, collaborative tasks 
such as labeling and data cleaning are typically executed 
on the cloud, using Web interfaces, or on mobile devices, 
although the user is taking the bus, say.

This raises two challenges. First, we need to develop an 
ecosystem of EM tools for each EE, for example, Python 
packages for the on-premise EE, containerized apps for the 
cloud, and mobile apps for smart phones. Second, we need 
to develop ways to quickly move data, models, and workflows 

(in a self-service fashion), contacting the EM team only 
if CloudMatcher does not reach the desired EM accuracy. 
In those cases, the EM team builds on the results of 
CloudMatcher but uses PyMatcher to debug and improve the 
accuracy further.

We found that the EM team also often uses CloudMatcher 
to solve their own EM tasks, because it can be used to quickly 
solve a large majority of EM tasks, which tend to be “easy,” 
allowing the EM team to focus on solving the small number 
of more difficult EM tasks using PyMatcher.

For domain sciences at UW, some teams used only 
CloudMatcher, either because they do not have EM and ML 
expertise or they found the accuracy of CloudMatcher accept-
able. Some other teams preferred PyMatcher, as it gave them 
more customization options and higher EM accuracies.

Finally, some customers used both and switched between 
them. For example, a customer may use PyMatcher to 
experiment and create a set of blocking rules and then use 
CloudMatcher to execute these rules on large tables.

7. DISCUSSION
We now discuss lessons learned and ongoing work.

The Need for How-to Guides: Our work makes clear that it 
is very difficult to fully automate the EM process. The funda-
mental reason is because at the start, the user often does not 
fully understand the data, the match definition, and even 
what he or she wants. For example, in a recent case study 
with PyMatcher,10 we found that the users repeatedly revised 
their match definition during the EM process, as they gained 
a better understanding of the data.

This implies that the user must “be in the loop” and that 
a guide is critical for telling the user what to do, step by step. 
In addition, we found that these guides provide assurance to 
our customers that we can help them do EM end to end. The 
guides provide a common vocabulary and roadmap for every-
one on the team to follow, regardless of their background. 
Even for the EM steps where we currently do not have tools, 
the guide still helps enormously, because it tells the custom-
ers what to do, and they can do it manually or find some exter-
nal tools to help with it. Such guides, however, are completely 
missing from most current EM solutions and systems.

Difficulties in Developing How-to Guides: Surprisingly, 
we found that developing clear how-to guides is quite chal-
lenging. For example, the current guide for PyMatcher is still 
quite preliminary. It does not provide detailed guidance for 
many steps such as how to help users converge to a match 
definition, how to collaboratively label effectively, and how to 
debug learning-based matchers, among others. Developing 
detailed guidance for such steps is ongoing work.

Focusing on Reducing User Effort: Many existing EM 
works focus on automating the EM process. In Magellan, 
our focus switched to developing a step-by-step guide that 
tells users how to execute the EM process, identifying “pain 
points” of the guide and then developing tools to reduce the 
user effort in the pain points. We found this new perspective 
to be much more practical. It allows us to quickly develop 
 end-to-end EM solutions that we can deploy with real users 
on Day 1 and then work with them closely to gradually 
improve these solutions and reduce their effort.
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across the EEs, to allow users to seamlessly switch among 
the EEs. In Magellan, we have taken some initial steps to 
address these two challenges. But clearly a lot more remains 
to be done.

Serving Both Lay Users and Power Users: In Magellan, we 
have developed PyMatcher as a solution for power users and 
CloudMatcher as a self-service solution for lay users. Serving 
both kinds of users is important, as suggested by our experi-
ence with EM teams and business teams at enterprises, as 
well as with domain scientists at UW (see Section 6).

Support for Easy Collaboration: We found that in many 
EM settings there is actually a team of people wanting to 
work on the problem. Most often, they collaborate to label 
a data set, debug, clean the data, et cetera. However, most 
current EM tools are rudimentary in helping users collabo-
rate easily and effectively. As users often sit in different loca-
tions, it is important that such tools are cloud-based, to 
enable easy collaboration.

Managing Machine Learning “in the Wild”: Our work 
makes clear that ML can be very beneficial to EM, mainly 
because it provides an effective way to capture complex 
matching patterns in the data and to capture domain expert’s 
knowledge about such patterns. ML is clearly at the heart 
of EM workflows supported by PyMatcher and CloudMatcher. 
In many real-world applications we have worked with, ML 
helps significantly improve recall although retaining high 
precision, compared to rule-based EM solutions.

Yet to our surprise, deploying even traditional ML tech-
niques to solve EM problems already raises many challenges, 
such as labeling, debugging, coping with new data, et cetera. 
Our experience using PyMatcher also suggests that the most 
accurate EM workflows are likely to involve a combination of 
ML and rules. More generally, we believe ML must be used 
effectively in conjunction with hand-crafted rules, visualiza-
tion, good user interaction, and Big Data scaling, in order to 
realize its full potential.

Cannot Work on EM in Isolation: It turned out that 
when working on EM, users often perform a wide variety of 
non-EM tasks, such as exploring the data (to be matched), 
understanding it, cleaning, extracting structures from the 
data, et cetera. User also often perform many so-called DS 
tasks, such as visualization, analysis, et cetera., by invok-
ing DS tools (e.g., calling Matplotlib or running a cluster-
ing algorithm in scikit-learn). Worse, users often interleave 
these non-EM and DS tasks with the steps of the EM process. 
For example, if the accuracy of the current EM workflow is 
low, users may want to clean the data, then retrain the EM 
matcher again, then clean the data some more, et cetera.

As described, building different ecosystems of tools for 
different tasks (e.g., EM, schema matching, cleaning, explo-
ration, and extraction) is suboptimal, because constant 
switching among them creates a lot of overhead. Rather, we 
believe it is important to build unified ecosystems of tools. 
That is, for the on-premise EE, build one (or several) ecosys-
tem that provides tools not just for EM, but also for explo-
ration, understanding, cleaning, et cetera. Then, repeat for 
the cloud and mobile EEs. Further, these ecosystems should 
“blend in” seamlessly with DS ecosystems of tools, by being 
built on top of those.

Going forward, we are continuing to develop both the on-
premise and cloud-hosted ecosystems of EM tools. In par-
ticular, we are paying special attention to the cloud-hosted 
ecosystem, where in addition to CloudMatcher, we are devel-
oping many other cloud tools to label, clean, and explore the 
data. We are also working on ways for users to seamlessly 
move data, workflows, and models across these two ecosys-
tems. Finally, we are looking for more real-world applica-
tions to “test drive” Magellan.

8. CONCLUSION
We have described Magellan, a project to build EM systems. 
The key distinguishing aspect of Magellan is that unlike cur-
rent EM systems, which use an RDBMS monolithic stand-
alone system template, Magellan borrows ideas from the 
data science field to build ecosystems of interoperable EM 
tools. Our experience with Magellan in the past few years 
suggests that this new “system template” is highly promis-
ing for EM. Moreover, we believe that it can also be highly 
promising for other non-EM tasks in data integration, such 
as data cleaning, data extraction, and schema matching, 
among others. 
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L I N E A R  A L G E B R A  O P E R AT I O N S  are at the 
core of machine learning. Multiple 
specialized systems have emerged 
for the scalable, distributed execu-
tion of matrix and vector operations. 
The relationship of such computa-
tions to data management and data-
bases however brings frictions. It is 
well known that a great deal of human 
time and machine time is being spent 
nowadays on fetching data out of the 
database and performing a computa-
tion on a specialized system. One an-
swer to the issue is that we truly need a 
new kind of non-SQL database that is 
tuned to these computations.

The creators of SimSQL opted for 
the decidedly incremental approach. 
Can we make a very small set of chang-
es to the relational model and RDBMS 
software to render them suitable for 
executing linear algebra in the data-
base?

We have come across the “brand 
new system” versus “incremental to 
relational” question many times in 
the database field. For example, do we 
need brand new query languages and 
query processors for data cubes? Or do 
we need to have our query processors 
pay attention to specific cases that are 
especially common in data analytics 
queries over stars and snowflakes? Do 
semi-structured query languages need 
to depart from SQL or it is enough to 
be incremental to SQL? Same for que-
ry processors. Repeat the questions 
to graph data and RDF data. In many 
cases, new custom systems emerged 
only to figure out later that we could/
should have tackled the problem in-
crementally. That is the trap the au-
thors of the following paper avoid.

This is not to say that radical 
changes and extensions should be for-
bidden. Rather it says that we should 
closely scrutinize the necessity of the 
changes, do them when needed and 
keep them minimal. The authors 

identify the right opportunities. Here 
is a non-exhaustive list:

• Writing matrix and vector opera-
tions as a join over the index can be 
syntactically tedious. They solve the 
problem by introducing special syn-
tactic features.

 • They notice a connection between 
signatures and size estimation and ex-
ploit it.

 • They allow their query user to 
move across different denormaliza-
tions to find the one that makes sense 
from expressiveness and performance 
point of view. The point where types 
relate to performance is whether the 
right level of granularity for distribu-
tion in a shared-nothing architecture 
is specified.

Overall, the extensions of this pa-
per follows a thoughtful and minimal 
approach that is worth studying in 
the particular field of linear algebra 
operations, as well as generally in the 
design of systems for analytics. 
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Abstract
As data analytics has become an important application for 
modern data management systems, a new category of data 
management system has appeared recently: the scalable 
linear algebra system. We argue that a parallel or distrib-
uted database system is actually an excellent platform upon 
which to build such functionality. Most relational systems 
already have support for cost-based optimization—which is 
vital to scaling linear algebra computations—and it is well 
known how to make relational systems scalable.

We show that by making just a few changes to a parallel/
distributed relational database system, such a system can 
become a competitive platform for scalable linear algebra. 
Taken together, our results should at least raise the possibil-
ity that brand new systems designed from the ground up to 
support scalable linear algebra are not absolutely necessary, 
and that such systems could instead be built on top of exist-
ing relational technology.

1. INTRODUCTION
Data analytics, such as machine learning and large-scale sta-
tistical processing, is an important application domain, and 
such computations often require linear algebra. As such, a 
lot of recent efforts have been targeted at building distrib-
uted linear algebra systems, with the goal of supporting 
large-scale data analytics. Unlike classical efforts in high-
performance computing such as ScaLAPACK6, such systems 
may include support for storage/retrieval of data to/from 
disk, buffering/caching of data, and automatic logical/physi-
cal optimizations of computations (automatic rewriting of 
queries, pipelining, etc.). Such systems also typically offer 
some form of recovery, as well as a domain-specific language.

One example of such a system is SystemML, developed 
at IBM.12 Given deep learning’s reliance on arrays and array-
based operations such as matrix multiply, systems facili-
tating distributed deep learning, such as TensorFlow,3 can 
also be included among such efforts. In the database area, 
there has long been of interest in building array database 
systems.17, 5 A motivating use case for these systems is dis-
tributed linear algebra. Moreover, there have also been sig-
nificant efforts targeted at using dataflow systems such as 
Apache Spark20 to build distributed linear algebra dataflow 
APIs (such as Spark’s mllib.linalg1).

Is a new type of system actually necessary? The hypothe-
sis underlying this paper is that building a new system from 
scratch for distributed linear algebra may not be necessary. 
Instead, we believe that with just a few changes, a classical, 
parallel relational database is actually an excellent platform 
for building a scalable linear algebra system. In practice, 
there is a close correspondence between distributed linear 

The original version of this paper was published in the 
Proceedings of the IEEE 33rd International Conference on 
Data Engineering, 2017, 523–534.

algebra and distributed relational algebra, the foundation 
of modern database systems, meaning that it is easy to use a 
database for scalable linear algebra. Relational database sys-
tems are highly performant, reaping the benefits of decades 
of research and engineering efforts targeted at building effi-
cient systems. Further, relational systems already have soft-
ware components such as a cost-based query optimizer to 
aid in performing efficient computations. In fact, much of 
the work that goes into developing a scalable linear algebra 
system from the ground up7 requires implementing func-
tionality that looks a lot like a database query optimizer.10

Given that much of the world’s data currently sits in rela-
tional databases, and that dataflow systems increasingly 
provide at least some support for relational processing4, 19, 
building linear algebra facility into relational systems would 
mean that much of the world’s data would be sitting in sys-
tems capable of performing scalable linear algebra. This 
would have several obvious benefits:

1. It would eliminate the “extract-transform-reload night-
mare”, particularly if the goal is performing analytics 
on data already stored in a relational system. It is diffi-
cult and expensive (in terms of computing/network 
costs and engineering dollars) to remove data from one 
system and put it in another, and if a database came off-
the-shelf with the necessary functionality, there would 
be no reason to undertake such an often arduous task.

2. It would obviate the need for practitioners to adopt yet 
another type of data processing system in order to per-
form mathematical computations.

3. The design and implementation of high-performance 
distributed and parallel relational systems is well- 
understood. If it is possible to adapt such a system to the 
task of scalable linear algebra, most or all of the science 
performed over decades, aimed at determining how to 
build a distributed relational system, is directly applicable.

Along those lines, in this paper, we ask the question:

can we make a very small set of changes to the relational model 
and an RDBMS software to render them suitable for in-database 
linear algebra?

The approach we examine is simple: we consider adding new 
VECTOR, MATRIX, and LABELED_SCALAR data types to rela-
tional database systems. Technically, this seems to be a rather 
minor change. After all, array has been available as a data type 

http://dx.doi.org/10.1145/3405470
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in most modern DBMSs—arrays can clearly be used to encode 
vectors and matrices—and some database systems (such as 
Oracle Database) offer a form of integration between arrays and 
linear algebra libraries such as BLAS and LAPACK. However, 
these previous ad-hoc approaches do not offer complete inte-
gration with the database system. The query optimizer, for 
example, does not understand the semantics of the linear alge-
bra, and this results in losing opportunities for optimization.

In this paper, we evaluate our ideas, and we believe that 
our results call into question the need to build yet another 
special-purpose data management system for linear-algebra- 
based analytics.

2. LA ON TOP OF RA
In this section of the paper, we discuss why a relational  
database system might make an excellent platform for high-
performance, distributed linear algebra. We then discuss 
the challenges in using a database system for linear algebra, 
as well as our basic approach.

2.1. Linear and relational algebra
Development of distributed algorithms for linear algebra has 
been an active area of scientific investigation for decades. 
Figure 1(a) shows the example of performing a distributed 
multiplication of two large, dense matrices, O ← L × R.

For efficiency and storage considerations, matrices in 
a distributed system are typically “blocked” or “chunked”; 
that is, they are divided into smaller matrices, which can then 
be moved around in bulk to specific processors where high-
performance local computations are performed. Imagine 
that the six blocks making up each of the two input matrices 
L and R are distributed among three nodes as shown at the 
left of Figure 1(b). The blocks from L are hash-partitioned 
randomly, whereas the blocks from R are round-robin- 
partitioned, based upon each block’s row identifier.

As a first step, we would shuffle the blocks from L so that 
all of the blocks from L, column i, are co-located with all  
of the blocks from R, row i. Then, at each node, a local join 

(in this case, a cross product) is performed to iterate through 
all (Lj.i, Ri.k) pairs that can be formed at the node. For each 
pair, a matrix multiply is performed, so that Ii.j.k ← Lj.i×Ri.k. 
Finally, all of the Ii.j.k blocks are again shuffled so that all 
Ii.j.k blocks are co-located based upon their ( j, k) values—
these blocks are then summed, so that the output block is 
computed as Oj.k ← ∑iIi.j.k.

The key observation is that this is really just a relational 
algebra computation over the blocks making up L and R. The 
first two steps of the computation are a distributed join that 
computes all (Lj.i, Ri.k) pairs, followed by a projection that 
performs the matrix multiply. The next two steps—the shuf-
fle and summation—are nothing more than a distributed 
grouping with aggregation.

The matrix multiplication example shows that distrib-
uted linear algebra computations are often nothing more 
than distributed relational algebra computations. This fact 
underlies our assertion that a relational database system 
makes an excellent platform for distributed linear algebra. 
Database researchers have spent decades studying efficient 
algorithms for distributed joins and aggregations, and many 
relational systems are mature and highly performant; there 
is no need to reinvent the wheel.

A further benefit of using a distributed database system 
as a linear algebra engine is that decades of work in query 
optimization are directly applicable. In our example, we 
decided to shuffle L because R was already partitioned 
on the join key. Had L been pre-partitioned and not R, it 
would have been better to shuffle R. This is exactly the sort 
of decision that a modern query optimizer makes with 
total transparency. Using a database as the basis for a lin-
ear algebra engine gives us the benefit of query optimiza-
tion for free.

2.2. The challenges
However, there are two main concerns associated with 
implementing linear algebra directly on top of an exist-
ing relational system, without modification. First is the 
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complexity of writing linear algebra computations on top of 
SQL. Consider a data set consisting of the vectors {x1, x2, …, 
xn}, and imagine that our goal is to compute the distance

for a Riemannian metric16 encoded by the matrix A. We 
might wish to compute this distance between a particular 
data point xi and every other point x′ in the database. This 
would be required in a kNN-based classification in the met-
ric space defined by A.

This distance computation can be implemented in SQL 
as follows. Assume the set of vectors is encoded as a table:

data (pointID, dimID, value)

with the matrix A encoded as another table:

matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i AND x1.dimID = x2.dimID

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID AS pointID, a.colID AS 

colID, SUM (a.value * x.value) AS value
  FROM xDiff AS x, matrixA AS a
  WHERE x.dimID = a.rowID
  GROUP BY x.pointID, a.colID)

  AS firstPart, xDiff AS x
WHERE firstPart.colID = x.dimID

 AND firstPart.pointID = x.pointID
GROUP BY x.pointID

Although it is clearly possible to write such a code, it is not 
necessarily a good idea. The first obvious problem is that 
this is a very intricate specification, requiring a nested  
subquery and a view—without the view it is even more  
intricate—and it bears little resemblance to the original, 
simple mathematics.

The second problem is perhaps less obvious from look-
ing at the code, but just as severe: performance. This code 
is likely to be inefficient to execute, requiring three or four 
joins and two groupings. Even more concerning in practice 
is the fact that if the data is dense and the number of data 
dimensions is large (that is, there are a lot of dimID values for 
each pointID), then the execution of this query will move a 
huge number of small tuples through the system, because a 
million, thousand-dimensional vectors are encoded as a bil-
lion tuples. In the classical, iterator-based execution model, 
there is a fixed cost incurred per tuple, which will translate to 
a very high execution cost. Vector-based processing can alle-
viate this somewhat, but the fact remains that satisfactory 
performance is unlikely. This fixed-cost-per-tuple problem 
was often cited as the impetus for designing new systems, 
specifically for vector- and matrix-based processing, or for 
processing of more general-purpose arrays.

2.3. The solution
As a solution, we propose a very small set of changes to a 
typical relational database system that includes adding new 
LABELED_SCALAR, VECTOR, and MATRIX data types to the 
relational model. Because these nonnormalized data types 
cause the contents of vectors and matrices to be manipu-
lated as a single unit during query processing, the simple act 
of adding these new types brings significant performance 
improvements.

Further, we propose a very small number of SQL lan-
guage extensions for manipulating these data types and 
moving between them. This alleviates the complicated-
code problem. In our Riemannian metric example, the two 
input tables data and matrixA become data (pointID, 
val) and matrixA (val), respectively, where data.val 
is a vector, and matrixA.val is a matrix. The SQL code 
to compute the pairwise distances becomes dramatically 
simpler:

SELECT x2.pointID,
 inner_product (
  matrix_vector_multiply (
   a.val, x1.val - x2.val),
   x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

In the next full section of the paper, we describe our pro-
posed extensions in detail.

3. OVERVIEW OF EXTENSIONS
3.1. New types
We propose adding VECTOR, MATRIX, and LABELED_
SCALAR column types to SQL and the relational model, as 
well as implementing a useful set of operations over those 
types (diag to extract the diagonal of a matrix, matrix_
vector_multiply to multiply a matrix and a vector, 
matrix_matrix_multiply to multiply two matrices, 
etc.). Overall, 22 various built-in functions over LABELED_
SCALAR, VECTOR, and MATRIX types are present in our 
implementation. Each element of a VECTOR or a MATRIX is 
a DOUBLE.

In this particular subsection, we focus on introducing the 
VECTOR and MATRIX types; LABELED_SCALAR will be con-
sidered in detail in a subsequent subsection.

For a simple example of the use of VECTOR and MATRIX 
types, consider the following table:

CREATE TABLE m (mat MATRIX[10][10],
   vec VECTOR[100]);

This code specifies a relational table, where each tuple  
in the table has two attributes, mat and vec, of types 
MATRIX and VECTOR, respectively. In our language 
extensions, VECTORs and MATRIXes (as above) can 
have specified sizes, in which case operations such as 
matrix_vector_multiply are automatically type-
checked for size mismatches. For example, the follow-
ing query:
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returns a database table which stores the Hadamard prod-
uct of each matrix in m with itself.

As the standard arithmetic operations are all overloaded 
to work with MATRIX and VECTOR types, it means that the 
standard SQL aggregate operations all work as expected 
automatically. The SUM aggregate over VECTOR type attri-
bute, for example, performs a + (entry-by-entry addition) 
over each VECTOR in a relation. This can be very convenient 
for implementing mathematical computations. For exam-
ple, imagine that we have a matrix stored as a relational table 
of vectors, and we wish to perform a standard Gram matrix 
computation (if the matrix X is stored as a set of columns  
X = {x1, x2, …, xn}, then the Gram matrix of X is ). This 
computation can be implemented using our extensions as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM (outer_product (vec, vec) )
FROM v

Arithmetic between a scalar value and a MATRIX or 
VECTOR type performs the arithmetic operation between 
the scalar and every entry in the MATRIX or VECTOR. In this 
way, it becomes very easy to specify linear algebra compu-
tations of significant complexity using just a few lines of 
code. For example, consider the problem of learning a linear 
regression model. Given a matrix X = {x1, x2, …, xn} and a set 
of outcomes {y1, y2,  …, yn}, the goal is to estimate a vector  
where for each i, . In practice,  is typically computed 
so as to minimize the squared loss . In this case, 
the formula for  is given as:

This can be coded as follows. If we have:

CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute  is:

SELECT matrix_vector_multiply (
 matrix_inverse (

  SUM (outer_product (X.x_i, X.x_i) ) ),
  SUM (X.x_i * y_i) )

FROM X, y
WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector 
X.x_i and the scalar y_i, which multiplies y_i by each 
entry in X.x_i.

3.3. Moving between types
By introducing MATRIX and VECTOR types, we then have 
new, de-normalized alternatives for storing data. For exam-
ple, a matrix can be stored as a traditional relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set 
of column vectors using

SELECT matrix_vector_multiply (m.mat, m.vec)
   AS res

FROM m

will not compile because the number of columns in m.mat 
does not match the number of entries in m.vec. However,  
if the original table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],
   vec VECTOR[10]);

then the aforementioned SQL query would compile and exe-
cute, and the output would be a database table with a single 
attribute (called res) of type VECTOR[10].

Note that in our extensions, there is no distinction 
between row and column vectors; whether or not a vector is 
a row or a column vector is up to the interpretation of each 
individual operation. matrix_vector_multiply inter-
prets a vector as a column vector, for example. To perform 
a matrix-vector multiplication treating the vector as a row 
vector, a programmer would first transform the vector into a  
one-row matrix (this transformation is described in the subse-
quent subsection), and then call matrix_matrix_multiply. 
Or, a programmer could transform the matrix first, and then 
apply the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where 
the sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],
  vec VECTOR[]);

In this case, the aforementioned matrix_vector_ 
multiply SQL query would compile, but there could  
possibly be a runtime error if one or more of the tuples in m 
contained a vec attribute that did not have 10 entries.

It is possible to have a MATRIX declaration where  
only one of the dimensionalities is given; for example, 
MATRIX[10][]. However, it is generally a good idea for a 
programmer to specify the sizes in the table declaration. 
If a dimensionality is given, then the system ensures that 
there can be no runtime failures due to size mismatches. 
During the loading time, data is checked to ensure the cor-
rect dimensionality, and queries are type-checked to ensure 
that proper dimensionalities are used and satisfied. Further, 
if dimensions are known, it can help the optimization pro-
cess; a plan that uses a linear algebra operation that greatly 
reduces the amount of data early on (a multiplication of two 
“skinny” matrices, for example, which results in a small out-
put matrix) may be chosen as being optimal.

3.2. Built-in operations
In addition to a long list of standard linear algebra opera-
tions, the standard arithmetic operations +, −, * and / 
(element-wise) are also defined over MATRIX and VECTOR 
types. For example,

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m



 

AUGUST 2020  |   VOL.  63  |   NO.  8  |   COMMUNICATIONS OF THE ACM     97

DOUBLE y_i. Then the VECTORIZE operation aggre-
gates the resulting values into a vector, adding each 
LABELED_SCALAR value to the vector at the position 
indicated by the label. Any “holes” (or entries in the vec-
tor for which no LABELED_SCALAR were found) in the 
resulting vector are set to zero.

As stated above, VECTOR attributes implicitly have labels, 
but they can be set explicitly, and those labels can be used 
to construct matrices. For example, imagine that we want to 
create a single tuple as a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs (vec, row) AS
SELECT VECTORIZE (label_scalar (val, col) )

AS vec, row
FROM mat
GROUP BY row

followed by:

SELECT ROWMATRIX (label_vector (vec, row) )
FROM vecs

The first bit of code creates one vector for each row and 
the second bit of code aggregates those vectors into a matrix, 
using each vector as a row. It would have been possible to 
create a column matrix by first using a GROUP BY col and 
then SELECT COLMATRIX.

So far, we have discussed how to de-normalize relations 
into vectors and matrices. It is equally easy to normalize 
MATRIX and VECTOR types. Assuming the existence of a 
table label (id) which simply lists the values 1, 2, 3, etc., 
one can move from the vectorized representation (found 
in the vecs view defined above) to a purely-relational rep-
resentation using a join of the form:

SELECT label.id, get_scalar (vecs.vec, label.id)
FROM vecs, label

Code to normalize a matrix is written similarly.

4. IMPLEMENTATION
4.1. Underlying database
We have implemented all of these ideas on top of 
the SimSQL distributed database system.9 SimSQL 
is a prototype database system designed to perform 
scalable numerical and statistical computations over 
large data sets, written mostly in Java, with a C/C++ for-
eign function interface.

In this section, we describe some details regarding our 
implementation. In building linear algebra capabilities into 
SimSQL, our mantra was “incremental, not revolutionary”. 
Our goal was to see whether, with a small set of changes, a 
relational database system could be a reasonable platform 
for distributed linear algebra.

4.2. Distributed matrices?
One of the very first questions that we had to ask ourselves 
when architecting the changes to SimSQL to support vectors 

row_mat (row INTEGER, vec_value VECTOR[])

or

col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple 
having the whole matrix:

mat (value MATRIX [][])

It is of fundamental importance to be able to move 
around between these various representations, for several 
reasons. Most importantly, each representation has its own 
performance characteristics and ease-of-use for various 
tasks; depending upon a particular computation, one may 
be preferred over another.

Reconsider the linear regression example. Had we stored 
the data as:

CREATE TABLE X (mat MATRIX [][]);
CREATE TABLE y (vec VECTOR []);

then the SQL code to compute  would have been:

SELECT matrix_vector_multiply (
 matrix_inverse (
  matrix_matrix_multiply(trans_matrix(mat),mat) ),
 matrix_vector_multiply (
  trans_matrix (mat), vec) )

FROM X, y

Arguably, this is a more straightforward translation of 
the mathematics compared to the code that stores X as a 
set of vectors. However, it may not perform as well because 
it may be more difficult to parallelize on a shared-nothing 
cluster of machines. In comparison to the vector-based 
implementation, the matrix multiply XT X is implicit in the 
relational algebra.

As different representations are going to have their own 
merits, it may be necessary to construct (or deconstruct) 
MATRIX and VECTOR types using SQL. To facilitate this, 
we introduce the notion of a label. In our extension, each 
VECTOR attribute implicitly or explicitly has an integer label 
value attached to it (if the label is never explicitly set for a 
particular vector, then its value is −1 by default). In addition, 
we introduce a new type called LABELED_SCALAR, which 
is essentially a DOUBLE with a label. Using those labels 
along with three special aggregate functions (ROWMATRIX, 
COLMATRIX, and VECTORIZE), it is possible to write SQL 
code that creates MATRIX types and VECTOR types, respec-
tively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE);

Imagine that we want to create a table with a single vector 
tuple from the table y. To do this, we simply write:

SELECT VECTORIZE (label_scalar (y_i, i) )
FROM y

Here, the label_scalar function creates an attribute 
of type LABELED_SCALAR, attaching the label i to the 
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Matrices, on the other hand, are stored as sparse lists of 
vectors, using a run-length encoding scheme (missing vec-
tors are treated as consisting entirely of zeros). As described 
previously, matrices can be stored as lists of column vectors 
or lists of row vectors; the exact storage format is specified 
during matrix construction (via either the ROWMATRIX or 
COLMATRIX aggregate function).

4.4. Algebraic operations
SimSQL is written mostly in Java, which presented some-
thing of a problem for us when implementing linear algebra 
operations: some readers of this paper will no doubt dis-
agree, but after much examination, we felt that Java linear 
algebra packages still lag behind their C/FORTRAN contem-
poraries in terms of raw performance. Although a high- 
performance C implementation is (in theory) available to  
a Java system via JNI, passing through the Java/C barrier 
typically requires a relatively expensive data copy.

The solution that we implemented is, in the end, a com-
promise. We decided not to use any Java linear algebra 
package. The majority of SimSQL’s built-in linear algebra 
operations (indeed, the majority of any linear algebra sys-
tem’s built-in operations), are simple and easy to implement 
efficiently: extracting/setting the diagonal of a matrix, com-
puting the outer product of two vectors (which is of linear 
cost in the size of the output matrix), scalar/matrix and  
scalar/vector multiplication, etc. All such “simple” operations 
are implemented in Java, directly on top of our in-memory 
representation.

There is, however, another set of operations (matrix 
inverse, matrix-matrix multiply, etc.) that are much more 
challenging to implement in terms of achieving good perfor-
mance and dealing with numerical instabilities. For those 
operations, we use SimSQL’s foreign function interface to 
transform vector- and matrix-valued inputs into C++ objects, 
where we then use BLAS implementations.

4.5. Aggregation
The extensions proposed in this paper require two new types 
of aggregation. First, we must be able to perform standard 
aggregate computations (SUM, AVERAGE, STD_DEV, etc.) 
over vectors and matrices. As, in SimSQL, these standard 
aggregate computations are all written in terms of basic 
arithmetic operations (+, −, *, etc.), the standard aggregate 
computations over vectors and matrices all happen “for 
free” without any additional modifications.

Second, our extensions need a few new aggregate func-
tions with special semantics: VECTORIZE, ROWMATRIX, 
and COLMATRIX. The first constructs a vector out of a set 
of LABELED_SCALAR objects. The latter two construct a 
matrix out of a set of vectors. All are implemented within the 
system via hashing. For example, in the case of VECTORIZE, 
all of the LABELED_SCALAR objects used to build the vec-
tor are collected in a hash table (in the case of a GROUP BY 
clause, there would be many such hash tables). As aggrega-
tion is performed in a distributed manner, hash tables from 
different machines that are being used to create the same 
vector will need to be merged into a single hash table on a 
single machine. Merging may also need to happen if there 

and matrices was: should we allow individual matrices 
stored in an RDBMS to be large enough to exceed the size of 
RAM available on one machine?

After a lot of debate, we decided that, in keeping with 
a traditional RDBMS design, SimSQL would enforce a 
requirement that all vectors and matrices should be small 
enough to fit into the RAM of an individual machine, 
and that individual vectors and matrices would not be 
distributed across multiple machines. As our mantra 
was “incremental, not revolutionary,” we did not want to 
replace database tables with new linear algebra types—
which would effectively give us an array database system. 
Thus, vectors/matrices are stored as attributes in tuples. 
And as distributing individual tuples or attributes across 
machines (or having individual tuples larger than the RAM 
available on a machine) is generally not supported by mod-
ern database systems, it seemed reasonable not to support 
this in our system.

Of course, one might ask, what if one has a matrix that 
is too large to fit into the RAM of an individual machine? This 
might be a reasonably common use case, and it would be 
desirable to support very large matrices. Fortunately, it 
turns out that one can still handle efficient operations over 
very large matrices using an RDBMS with our extensions. 
For example, a large, dense matrix with 100,000 rows and 
100,000 columns that require nearly a terabyte to store in all 
can be stored as one hundred tuples in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
   mat MATRIX[10000][10000])

Efficient, distributed matrix operations are then easily pos-
sible via SQL. For example, to multiply bigMatrix with 
anotherLargeMat:

anotherLargeMat (tileRow INTEGER,
tileCol INTEGER, mat MATRIX[10000][10000])

We would use:

SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_matrix_multiply (lhs.mat, rhs.mat) )

FROM bigMatrix AS lhs, anotherLargeMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

The resulting, very efficient computation is identical to  
what one would expect from a distributed matrix engine.

SELECT *
FROM matrix_matrix_multiply (bigMatrix, anotherLargeMat)

4.3. Storage
Given such considerations, storage for vectors and matri-
ces is quite simple. Vectors are stored in dense fashion, as 
lists of double-precision values, along with an integer label 
(because, as described in the previous section, all vectors are 
labeled with a row or a column number so that they can be 
used to construct matrices). This may sometimes represent 
a waste if vectors are indeed sparse, but if necessary, vectors 
can easily be compressed before being written to secondary 
storage.
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covariance matrices. If we use a matrix X to store the 
input vectors, then the Gram matrix G can be calcu-
lated as G = XT X.

(2)  Least squares linear regression. Given a paired data 
set {yi, xi}, i = 1, …, n, we wish to model each yi as a 
linear combination of the values in xi. Let , 
where β is the vector of regression coefficients. The 
most common estimator for β is the least squares 
estimator: .

(3)  Distance computation. We first compute the dis-
tance between each data point pair xi and 

. Then, for each data point xi, we 
compute the minimum  value over all x′ ≠ xi. 
Lastly, we select the data points which have the max 
value among those minimums.

In our second set of experiments, we use a Wikipedia dump 
of 4.86 million documents to learn how to predict the year 
of the last edit to a Wikipedia article. There are 17 possible 
labels in total. We pre-process the Wikipedia dump, repre-
senting each document as a 60,000-dimensional feature 
vector, where each feature corresponds to the number of 
times a particular unigram or bigram appears in the docu-
ment. This is input into a two-layer feed-forward neural 
network (FFNN). In most of our experiments, we use 10,000 
as the batch size, as recent results indicate that a relatively 
large batch of this size is a reasonable choice for large-scale 
learning.13

Implementation details. A SimSQL programmer uses que-
ries and built-in functions to implement computations. For 
the first set of experiments for SimSQL, we implemented 
each model using three different SQL codes. First, we wrote 
a pure-tuple-based code (as on an existing, standard SQL-
based platform). Second, we wrote an SQL code where each 
data point is stored as an individual vector. Third, we wrote an 
SQL code where data points are grouped together in blocks, 
and are stored as matrices so that they can be manipulated as  
a group. For FFNN learning, we used only blocked matrices.

In SystemML, data is stored and processed as blocks, which 
are square matrices. All code is written using SystemML’s 
Python-like programming language. In Spark mllib.linalg, 
we carefully tuned our implementation to answer questions 
such as: should the input data be stored/processed as vec-
tors, or as matrices? And, if a matrix is used, should it be a 
local matrix, or a distributed one? For example, for the Gram 
matrix computation and linear regression, the vector-based 
implementation is the fastest. Data in SciDB is partitioned 
as chunks. We use 1000 as the chunk size for all arrays.

Experiment setup. We ran the first set of experiments on 
10 Amazon EC2 r5d.2xlarge machines, each having eight 
CPU cores, 64 GB of RAM, and a 300GB SSD drive. For Gram 
matrix computation and linear regression, the number of 
data points per machine was 105. For the distance compu-
tation, the number of data points per machine was 104. All 
data sets were dense, and all the data was synthetic—as we 
are only interested in running time; there is likely no prac-
tical difference between synthetic and real data. For each 
computational task, we considered three data dimension-
alities: 10, 100, and 1000. We ran the FFNN experiments  

are enough groups during aggregation so that memory is 
exhausted; in this case, a partially-complete hash table may 
need to be flushed to disk.

Once all of the LABELED_SCALAR objects for a vector 
have been collected into a single hash table, the objects are 
sorted based on the position labels, and are then converted 
into a vector. Any missing entries are treated as zero, and 
the length of the resulting vector is equal to the largest label 
used to construct the vector.

Matrices are constructed similarly, with one change 
being that the objects hashed to construct the matrix are 
VECTOR objects, rather than LABELED_SCALAR objects. 
Note that by definition, all VECTOR objects are labeled, and 
it is those labels that are used to perform the aggregation.

5. EXPERIMENTS
In this section, we experimentally test whether these exten-
sions can, in fact, result in a performant distributed linear 
algebra system. In the first set of experiments, we compare 
the efficiency of our SimSQL linear algebra implementa-
tion with several alternative platforms, on a set of relatively 
straightforward compilations. In the second set of experi-
ments, we evaluate the utility of our extensions for imple-
menting very large-scale deep learning.1

We stress that this is not a “which system is faster?” com-
parison. SimSQL is implemented in Java and runs on top  
of Hadoop MapReduce, with the high latency that implies.  
A commercial system would be much faster. Rather, our goal 
is simply to ask: is an RDBMS a viable platform for running 
distributed linear algebra?

Platforms tested. The platforms we evaluated are:

(1)  SimSQL. We tested several different SimSQL imple-
mentations: Without vector/matrix support (the origi-
nal SimSQL implementation without our extensions), 
with data stored as vectors, and with data stored as 
vectors, then converted into blocks.

(2)  SystemML. This is SystemML V1.2.0, which runs on 
Spark-Batch mode. All computations are written in 
SystemML’s DML programming language.

(3)  SciDB. This is SciDB V18.1. All computations are writ-
ten in SciDB’s AQL language which is similar to SQL.

(4)  Spark mllib.linalg. This is run on Spark V2.4 in 
standalone mode. All computations are written in 
Scala.

(5)  TensorFlow. This is TensorFlow V0.12.0. All computa-
tions are written in Python.

Computations performed. In our first set of experiments, 
we performed three different representative computations.

(1)  Gram matrix computation. A Gram matrix is the  
inner products of a set of vectors. It is a common  
computational pattern in machine learning, and  
is often used to compute the kernel functions and 

1 Using RDBMS-based linear algebra for deep learning is considered in  
detail in Jankov et al.15; the experimental results given here are taken from 
that paper.
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matrix, the latter being considerably faster for the distance 
computation). SimSQL was slower for the lower-dimensional 
problems because as a prototype system, it is not engi-
neered for high throughput. Spark mllib and SciDB were 
not competitive on the higher-dimensional data.

For FFNN learning (Figure 5), SimSQL was slower than 
TensorFlow in most cases, but it scaled well, whereas 
TensorFlow crashed (due to memory problems) on a 
problem size of larger than 40,000 hidden neurons. In 
TensorFlow, there is no automatic way to distribute matri-
ces across machines, and for the bigger problem sizes, the 
weight matrices are very large (the problem with 160,000 
hidden neurons uses 102 GB weight matrices). Although a 
distributed database can easily handle data of this size by 
distributing it across machines or using the local disk to 
buffer data, TensorFlow lacks such capability.

Micro-benchmarks showed that for the 40,000-hidden-
neuron problem, all of the matrix operations required for 
an iteration of FFNN learning took 6 min, 17 s (6:17) on a 
single machine. Assuming a perfect speedup, the learning 
should take just 1:15 per iteration on a five-machine cluster. 
However, SimSQL took 8:30 and TensorFlow took 9:02. This 
shows that both systems incur significant overhead, at least 
at such a large model size. SimSQL, in particular, requires 
a total of 61 s per FFNN iteration just starting up and tear-
ing down Hadoop jobs. Also in Hadoop, each intermediate 
result that cannot be pipelined must be written to disk, and 
it causes a significant amount of I/O. A faster database could 
likely lower this overhead significantly.

One may wonder: how would TensorFlow have worked 
were GPUs were used instead? Using a similar dollars-
per-hour budget, we ran TensorFlow on several AWS GPU 
clusters (using a combination of p3.2xlarge and r5.4xlarge 
machines). At the same cost-per-hour as the five-worker 
CPU cluster, TensorFlow ran an iteration in 24 s for 10,000 

on 5, 10, and 20 Amazon EC2 r5d.2xlarge machines, and 
tested the neural network with different number of neurons 
in the hidden layer.

Experiment results and discussion. The results of the first 
set of experiments are shown in Figures 2–4, and the results 
of the FFNN experiments are shown in Figure 5.

In the first set of experiments, we see that vector- and 
block-based SimSQL clearly dominate the tuple-based 
implementation for each of the three computations. The 
results show that it is simply not possible to move enough 
tuples through a database system to fulfill large-scale linear 
algebra operations using only tuples.

For linear regression and Gram matrix, we see that the 
vector-based computation was faster than block-based for 
10- and 100-dimensional computations. This is because 
our experiments counted the time of grouping vectors into 
blocked matrices. This additional computation was not 
worthwhile for less computationally expensive problems. 
But for the 1000-dimensional computations, additional 
time savings could be realized via blocking.

For the higher-dimensional problems, there was no clear 
winner among block-based SystemML and SimSQL (the for-
mer being a tiny bit faster for linear regression and Gram 

Gram Matrix Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:48 02:25 Fail
Vector SimSQL 00:18 00:23 02:48
Block SimSQL 00:39 00:41 01:13

SystemML 00:01 00:02 01:03
Spark mllib 00:15 00:44 15:00

SciDB 00:02 00:08 03:46

Figure 2. Gram matrix results. Format is MM:SS.

Linear Regression
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 02:11 03:48 Fail
Vector SimSQL 00:28 00:33 02:55
Block SimSQL 00:41 00:44 01:06

SystemML 00:01 00:02 01:04
Spark mllib 00:22 00:47 15:10

SciDB 00:06 00:16 04:41

Figure 3. Linear regression results. Format is MM:SS.

Distance Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL 03:19 03:56 11:31
Block SimSQL 01:09 01:09 01:21

SystemML 01:01 01:05 03:39
Spark mllib 01:43 02:00 05:51

SciDB 19:20 19:34 23:13

Figure 4. Distance computation results. Format is MM:SS.

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail

160000 Fail Fail
Cluster with 10 workers

10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail

160000 44:21 Fail
Cluster with 20 workers

10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail

160000 25:00 Fail

Figure 5. Average iteration time for FFNN learning, using various 
CPU cluster and hidden layer sizes.
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neurons, and failed at all other sizes. At the same cost as 
the 10-worker cluster, it ran an iteration in 15 s for 10,000 
neurons, again failing at all other sizes. And at the same 
cost as the 20-worker cluster, the time was 12 s, failing for 
all other sizes. The reason for TensorFlow’s failure to run at 
more than 10,000 neurons is the limited memory available 
on a modern GPU. Again, TensorFlow does not page data 
on and off of a GPU, and so it cannot easily be used to learn 
larger models.

6. RELATED WORK
There has been recent interest in the construction of special 
purpose data management systems for scalable linear alge-
bra. SystemML12 was evaluated in this paper. Another good 
example is the Cumulon system14, which has the notable 
capability of optimizing its own hardware settings in the 
cloud. MadLINQ18, built on top of Microsoft’s LINQ frame-
work, can also be seen as an example of this. Other work 
aims at scaling statistical/numerical programming lan-
guages such as R. Ricardo11 aims to support R programming 
on top of Hadoop. Riot21 attempts to plug an I/O efficient 
backend into R to bring scalability.

The idea of moving past relations onto arrays as a data-
base data model, particularly for scientific and/or numeri-
cal applications, has been around for a long time. One of 
the most notable efforts is Baumann and his colleague’s 
work on Rasdaman.5 In this paper, we have compared with 
SciDB8, an array database for which linear algebra is a pri-
mary use case.

There is some support for linear algebra in modern, 
commercial relational database systems (such as Oracle 
Database). But that support is not well-integrated into the 
declarative (SELECT-FROM-WHERE) interface of SQL, and is 
generally challenging to use. For example, Oracle provides 
the UTL_NLA2 package to support BLAS and LAPACK opera-
tions. To multiply two matrices using this package, and 
assuming two input matrices m1 and m2 declared as type 
utl_nla_array_dbl (and an output matrix res defined 
similarly), a programmer would write:

utl_nla.blas_gemm(
transa => ’N’, transb => ’N’, m => 3, n => 3,
k =>    3, alpha => 1.0, a => m1, lda => 3,
b => m2, ldb => 2, beta => 0.0, c => res,
ldc => 3, pack => R);

This code specifies details about the input matrices, as  
well as details about the invocation of the BLAS library.

7. CONCLUSION
We conclude the paper by asking the question: have we 
affirmed the hypothesis at the core of the paper, that a rela-
tional engine can be used with little modification to sup-
port efficient linear algebra processing? We feel that our 
experimental evaluation did in fact confirm the hypoth-
esis. SimSQL was not exactly fast, but it was competitive 
compared to all of the evaluated systems, at least for larger 
and more complicated problems, even compared with 
TensorFlow. And given the baked-in efficiencies associ-
ated with SimSQL—it is, after all, a Hadoop-based system, 

written mostly in Java—the fact that SimSQL did reasonably 
well argues that a high-performance RDBMS could be a very 
effective engine for distributed linear algebra processing.

Acknowledgments
Material in this paper has been supported by the NSF 
under grant nos. 1355998 and 1409543 and by the DARPA 
MUSE program. 

References
 1. Apache spark mllib: http://spark.

apache.org/docs/latest/mllib-data-
types.html.

 2. Oracle corporation: https://docs.oracle.
com/cd/B1930–6_01/index.htm.

 3. Abadi, M., Barham, P., Chen, J.,  
Chen, Z., Davis, A., Dean, J., Devin, M.,  
Ghemawat, S., Irving, G., Isard, M.,  
et al. Tensorflow: A system for 
large-scale machine learning. In 
Proceedings of the 12th {USENIX} 
Symposium on Operating Systems 
Design and Implementation ({OSDI} 
16, 2016), 265–283.

 4. Armbrust, M., Xin, R.S., Lian, C.,  
Huai, Y., Liu, D., Bradley, J.K., Meng, X.,  
Kaftan, T., Franklin, M.J., Ghodsi, A.,  
et al. Spark sql: Relational data 
processing in spark. In SIGMOD 
(2015), ACM, 1383–1394.

 5. Baumann, P., Dehmel, A., Furtado, P.,  
Ritsch, R., Widmann, N. The 
multidimensional database system 
rasdaman. In SIGMOD Record 
(Volume 27, 1998), ACM, 575–577.

 6. Blackford, L.S., Choi, J., Cleary, A., 
D’Azevedo, E., Demmel, J., Dhillon, I., 
Dongarra, J., Hammarling, S., Henry, G.,  
Petitet, A., et al. ScaLAPACK Users’ 
Guide, Volume 4. SIAM, 1997.

 7. Boehm, M., Burdick, D.R.,  
Evfimievski, A.V., Reinwald, B., 
Reiss, F.R., Sen, P., Tatikonda, S., 
Tian, Y. Systemml’s optimizer: Plan 
generation for large-scale machine 
learning programs. IEEE Data Eng. 
Bull. 3, 37 (2014), 52–62.

 8. Brown, P.G. Overview of SciDB: Large 
scale array storage, processing and 
analysis. In SIGMOD, 2010, 963–968.

 9. Cai, Z., Vagena, Z., Perez, L.L., 
Arumugam, S., Haas, P.J.,  
Jermaine, C. Simulation of database-
valued Markov chains using SimSQL. 
In SIGMOD, 2013, 637–648.

 10. Chaudhuri, S. An overview of query 
optimization in relational systems. In 
PODS (1998), ACM, 34–43.

 11. Das, S., Sismanis, Y., Beyer, K.S., 
Gemulla, R., Haas, P.J., McPherson, J. 

Ricardo: integrating R and Hadoop.  
In SIGMOD, 2010, 987–998.

 12. Ghoting, A., Krishnamurthy, R.,  
Pednault, E., Reinwald, B.,  
Sindhwani, V., Tatikonda, S., Tian, Y.,  
Vaithyanathan, S. SystemML: 
Declarative machine learning 
on mapreduce. In ICDE, 2011, 
231–242.

 13. Goyal, P., Dollár, P., Girshick, R.B., 
Noordhuis, P., Wesolowski, L.,  
Kyrola, A., Tulloch, A., Jia, Y.,  
He, K. Accurate, large minibatch sgd: 
Training imagenet in 1 hour. CoRR, 
2017, abs/1706.02677.

 14. Huang, B., Babu, S., Yang, J. Cumulon: 
Optimizing statistical data analysis in 
the cloud. In SIGMOD, 2013, 1–12.

 15. Jankov, D., Luo, S., Yuan, B.,  
Cai, Z., Zou, J., Jermaine, C., Gao, Z.J. 
Declarative recursive computation 
on an rdbms, or, why you should use 
a database for distributed machine 
learning. PVLDB, 2019, 12.

 16. Lebanon, G. Metric learning for text 
documents. IEEE PAMI 4, 28 (2006), 
497–508

 17. Libkin, L., Machlin, R., Wong, L.  
A query language for multidimensional 
arrays: Design, implementation, and 
optimization techniques. In SIGMOD 
(1996), 228–239.

 18. Qian, Z., Chen, X., Kang, N., Chen, M.,  
Yu, Y., Moscibroda, T., Zhang, Z. 
Madlinq: large-scale distributed 
matrix computation for the cloud. In 
EuroSys (2012), ACM, 197–210

 19. Thusoo, A., Sarma, J.S., Jain, N.,  
Shao, Z., Chakka, P., Anthony, S., Liu, H.,  
Wyckoff, P., Murthy, R. Hive: A 
warehousing solution over a map-
reduce framework. VLDB 2, 2 (2009), 
1626–1629.

 20. Zaharia, M., Chowdhury, M.,  
Franklin M.J., Shenker, S., Stoica, I.  
Spark: Cluster computing with 
working sets. In USENIX HotCloud, 
2010, 1–10.

 21. Zhang, Y., Zhang, W., Yang, J.  
I/o-efficient statistical computing 
with riot. In ICDE, 2010, 1157–1160.

Shangyu Luo, Zekai J. Gao, Luis L.  
Perez, Dimitrije Jankov, and 
Christopher Jermaine (sl45@rice.edu, 
{jacobgao, lperezp, dimitrijejankov}@
gmail.com, cmj4@rice.edu)
Rice University, Houston, TX, USA.

Michael Gubanov {gubanov@cs.fsu.edu}
Florida State University, Tallahassee,  
FL, USA.

© 2020 ACM 0001-0782/20/8 $15.00 

http://apache.org/docs/latest/mllib-data-
http://types.ht
https://docs.oracle.com/cd/B1930%E2%80%936_01/index.htm
mailto:sl45@rice.edu
mailto:dimitrijejankov@gmail.com
mailto:cmj4@rice.edu
mailto:gubanov@cs.fsu.edu
http://spark.apache.org/docs/latest/mllib-data-types.html
https://docs.oracle.com/cd/B1930%E2%80%936_01/index.htm
mailto:dimitrijejankov@gmail.com


It’s hard to put the ACM Student Research Competition experience into words, but we’ll try…

Attention: Undergraduate and Graduate 
Computing Students

There’s an ACM Student Research Competition (SRC)
at a SIG Conference of interest to you! 

“Attending ACM SRC was a transformative experience for me. It 
was an opportunity to take my research to a new level, beyond 
the network of my home university. Most important, it was a 
chance to make new connections and encounter new ideas that 
had a lasting impact on my academic life. I can’t recommend ACM 
SRC enough to any student who is looking to expand the horizons 
of their research endeavors.”

David Mueller
North Carolina State University  |  SIGDOC 2018  

“The SRC was a great chance to present early results of my work 
to an international audience. Especially the feedback during 
the poster session helped me to steer my work in the right 
direction and gave me a huge motivation boost. Together with 
the connections and friendships I made, I found the SRC to be a 
positive experience.”

Matthias Springer
Tokyo Institute of Technology  |  SPLASH 2018

“At the ACM SRC, I got to learn about the work done in a variety 
of di� erent research areas and experience the energy and 
enthusiasm of everyone involved. I was extremely inspired by 
my fellow competitors and was happy to discover better ways 
of explaining my own work to others. I would like to speci� cally 
encourage undergraduate students to not hesitate and apply!  
Thank you to all those who make this competition possible for 
students like me.”

Elizaveta Tremsina
UC Berkeley  |  TAPIA 2018

“Joining the Student Research Competition of ACM gave me the 
opportunity to measure my skills as a researcher and to carry out 
a preliminary study by myself. Moreover, I believe that “healthy 
competition” is always challenging in order to improve yourself. 
I suggest that every Ph.D. student try this experience.” 
Gemma Catolino
University of Salerno  |  MobileSoft 2018

“Participating in the ACM SRC was a unique opportunity for 
practicing my presentation skills, getting feedback on my work, 
and networking with both leading researchers and fellow SRC 
participants. Winning the competition was a great honor, a 
motivation to continue working in research, and a useful boost for 
my career. I highly recommend any aspiring student researcher to 
participate in the SRC.”

Manuel Rigger
Johannes Kepler University Linz, Austria  |  Programming 2018

“I have been a part of many conferences before both as an author 
and as a volunteer but I found SRC to be an incredible conference 
experience. It gave me the opportunity to have the most immersive 
experience, improving my skills as a presenter, researcher, and 
scientist. Over the several phases of ACM SRC, I had the opportunity 
to present my work both formally (as a research talk and research 
paper) and informally (in poster or demonstration session). Having 
talked to a diverse range of researchers, I believe my work has 
much broader visibility now and I was able to get deep insights and 
feedback on my future projects. ACM SRC played a critical role in 
facilitating my research, giving me the most productive conference 
experience.“

Muhammad Ali Gulzar
University of California, Los Angeles  |  ICSE 2018 

“The ACM SRC was an incredible opportunity for me to present 
my research to a wide audience of experts. I received invaluable, 
supportive feedback about my research and presentation style, and I 
am sure that the lessons I learned from the experience will stay with 
me for the rest of my career as a researcher. Participating in the SRC 
has also made me feel much more comfortable speaking to other 
researchers in my � eld, both about my work as well as projects I am 
not involved in. I would strongly recommend students interested in 
research to apply to an ACM SRC—there’s really no reason not to!”

Justin Lubin
University of Chicago  |  SPLASH 2018

Check the SRC Submission Dates:   https://src.acm.org/submissions

◆  Participants receive: $500 (USD) travel expenses
◆  All Winners receive a medal and monetary award.  First place winners advance to the SRC Grand Finals
◆  Grand Finals Winners receive a handsome certifi cate and monetary award at the ACM Awards Banquet

Questions?  Contact Nanette Hernandez, ACM’s SRC Coordinator:  hernandez@hq.acm.org
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have worked for many years on the area 
of data fusion, where you combine dif-
ferent sources of data to cross-validate 
and detect errors. So I think that, in a 
way, we have the technical means to 
solve many of these problems, but of 
course that may not be enough. In the 
end, the companies that collect all that 
data and make it available must be will-
ing to enforce data quality.

Are you still involved with IoT security 
research?

Yes, we do a lot of work in that area. 
Right now, we are focusing on the use of 
a machine learning technique known as 
reinforcement learning, which allows a 
device to learn through reward func-
tions. So the device will take an action, 
and then it will evaluate a certain reward 
function to see if this action is benefi-
cial, for example, in saving energy. It will 
learn by itself. This is a very interesting 
area, and a lot of people in machine 
learning and AI are working on it. On 
the other hand, some of these devices 
can also make changes to the physical 
world—for example, they can open a 
door or a window. And already, some 
studies have shown that when you com-
bine multiple devices together, their 
combined actions may lead to some un-
safe situations. So we are looking into 
that issue, and specifically, how to con-
trol the autonomous learning of the de-
vices to make sure what they learn does 
not lead to unsafe situations.

We are also looking into some of the 
IoT communication protocols to as-
sess their vulnerabilities, and then 
we’ll apply our methodologies based 
on formal methods.

Has working in cybersecurity made you 
more pessimistic?

To be honest, I’m not pessimistic. 
Attacks can be very sophisticated, but a 
lot of data breaches are due to the lack 
of even basic security measures. If 
you’re the manager of a very sensitive 
facility like a nuclear power plant, then 
you must be extra careful. But in most 
cases, if you follow best practices like 
access control, authentication, anoma-
ly detection, and so on, you will have a 
reasonable level of protection.

Leah Hoffmann is a technology writer based in Piermont, 
NY, USA.

© 2020 ACM 0001-0782/20/8 $15.00

are com-
plex, it can be quite challenging to 
make sure there are no vulnerabilities.

Your research group has been work-
ing on some systematic approaches to 
identifying vulnerabilities in cellular 
networks based on formal methods.

We use a combination of formal 
methods and well-known tools like 
model checkers and cryptographic ver-
ifiers. But it requires a lot of domain 
knowledge, and I am lucky to have 
some good students who really under-
stand cellular networks. We are also 
trying to come up with defenses for 
some of the vulnerabilities, which isn’t 
always trivial—not because of the lack 
of techniques, but because the cellular 
network ecosystem is so complex. 
Then also there are a lot of technical 
constraints, like, for example, back-
wards compatibility. But because of 
that, it’s also interesting.

Increasingly, people aren’t just con-
cerned with data security, but with data 
trustworthiness and accuracy, an area 
you began looking into more than a de-
cade ago.

The problem of data quality has 
been around forever, because organi-
zations that have a lot of data need to 
be able to ensure it is up to date, free of 
errors, consistent, clean, and so forth. 
In cybersecurity, we have techniques 
for digitally signing information, so 
that when you get the data, you can 
check whether or not someone has 
tampered with it. But the real problem 
is that somebody can feed you wrong 
data from the beginning.

We cast our work in the area of sen-
sor networks. When you have a lot of 
sensors acquiring data, it may not be 
practical to verify that each piece of 
data is correct. But you can assign a 
trust score, that is, an indicator of 
trustworthiness, by cross-checking the 
values obtained from all different 
sources, and use that score to deter-
mine which piece of data you want to 
use. We did a lot of work along those 
lines with various technical approach-
es. Another area we’ve been working on 
is provenance, because understanding 
where data was acquired can help you 
evaluate its trustworthiness.

Finally, in the era of big data, there 
is a lot of redundancy in data. People 
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Today’s systems are much more 
open than they were in the past. Com-
panies need to be able to collaborate 
and share data with other companies, 
and users expect to have direct access 
to these resources. Because of that, our 
systems are very complex. When you 
add mobile systems and IoT devices 
and robots into the mix, the complexity 
is even greater. This is a challenge for 
security, because you’ve got to deal 
with complex protocols involving mul-
tiple parties.

One very good example is repre-
sented by the protocol for cellular 
networks, where we have recently 
been doing a lot of work. The stan-
dards that are specified for cellular 
networks are very complex, because 
they have to deal with many different 
operations and situations and parties. 
Ensuring that protocols are correct is 
easy if the protocols are simple, but 
when they 

System R. System R had an access con-
trol system to make sure that users 
could only access the data they were 
authorized to access, so I learned how 
these concepts work from inside an 
actual system.

Later, you began to explore how to in-
corporate temporal and locational 
constraints into access control.

With the rise of the Internet and 
mobile systems, it occurred to me that 
whether you can access an item may 
also depend on your location or on the 
time of day. That motivated my work on 
time- and space-based access control 
systems. I knew it would be useful one 
day, and of course location-based ac-
cess control is now increasingly impor-
tant because everything is mobile.

Mobility brings both opportunities 
and challenges when it comes to cy-
bersecurity.

ACM AT HE N A  AWA R D  recipient Elisa Ber-
tino, a professor at Purdue University 
and research director of the Cyber Space 
Security Lab of Purdue’s Department of 
Computer Science, has spent her career 
trying to ensure the security and integ-
rity of the information that is stored in 
databases and transmitted over mobile, 
social, cloud, Internet of Things (IoT), 
and sensor networks. Here, she talks 
about how her research interests have 
evolved and why she’s not pessimistic 
about the future of cybersecurity.

You began your research career in the 
field of databases, first at the Italian Na-
tional Research Council, and later as a 
post-doc at IBM’s San Jose Research 
Laboratory. What drew you to security?

My original interest in security began 
at IBM, where I was looking into how to 
protect the data stored in databases. 
From there, I moved from conventional 
databases to multilevel security data-
bases and began to collaborate with 
people in cybersecurity. In a way, it was  
a continuous movement. What really 
changed was when I moved to Purdue, 
where there is a big cybersecurity center 
and a lot of faculty and students work-
ing in cybersecurity. That broadened my 
research perspective quite a lot.

How did you get interested in access 
control?

When I was at IBM, I was lucky to 
work in the group that prototyped a lot 
of fundamental ideas in the area of re-
lational databases. One prototype—
the first prototype of SQL—was called 

Q&A  
Seeing Light at the End  
Of the Cybersecurity Tunnel 
After decades of cybersecurity research,  
Elisa Bertino remains optimistic. 
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