
Responsible
Vulnerability
Disclosure in

Cryptocurrencies

What Do Agile,
Lean, and ITIL
Mean in DevOps?

In Memoriam: Fran Allen

A Decade of Social Bot Detection
Strategies for spotting bots that tamper with
political elections and other events

COMMUNICATIONS
OF THE ACMCACM.ACM.ORG 10/2020 VOL.63 NO.10

Association for
Computing Machinery

http://CACM.ACM.ORG

In-depth.
Innovative.
Insightful.
Inspired by the need for high-quality
computer science publishing at the
graduate, faculty, and professional
levels, ACM Books are a� ordable,
current, and comprehensive in scope.

Full Collection I Title List
Now Available
For more information, please visit
http://books.acm.org

Association for Computing Machinery
1601 Broadway, 10th Floor, New York, NY 10019-7434, USA
Phone: +1-212-626-0658 Email: acmbooks-info@acm.org

&CM

ACM_Books_ChoiceAd_V08.indd 1 6/20/19 10:41 AM

http://books.acm.org
mailto:acmbooks-info@acm.org

This text/reference is an in-depth introduction to the systematic, universal software
engineering kernel known as “Essence.” This kernel was envisioned and originally created by
Ivar Jacobson and his colleagues, developed by Software Engineering Method and Theory
(SEMAT) and approved by The Object Management Group (OMG) as a standard in 2014.
Essence is a practice-independent framework for thinking and reasoning about the practices
we have and the practices we need. It establishes a shared and standard understanding
of what is at the heart of software development. Essence is agnostic to any particular
methods, lifecycle independent, programming language independent, concise,
scalable, extensible, and formally specified. Essence frees the practices from their
method prisons.

HIGH PRAISE FOR THE ESSENTIALS OF MODERN SOFTWARE ENGINEERING

“Essence is an important breakthrough in understanding the meaning of software engineering.
It is a key contribution to the development of our discipline and I’m confident that this book
will demonstrate the value of Essence to a wider audience. It too is an idea whose time has
come.” – Ian Somerville, St. Andrews University, Scotland (author of Software Engineering,
10th Edition, Pearson)

“What you hold in your hands (or on your computer
or tablet if you are so inclined) represents
the deep thinking and broad experience of the
authors, information you’ll find approachable,
understandable, and, most importantly, actionable.”
– Grady Booch, IBM Fellow, ACM Fellow, IEEE
Fellow, BCS Ada Lovelace Award, and IEEE
Computer Pioneer

http://books.acm.org
http://store.morganclaypool.com/acm

2 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

COMMUNICATIONS OF THE ACM

I
M

A
G

E
 B

Y
 K

O
S

H
I

R
O

 K
/S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

Departments

5 Cerf’s Up
On Digital Diplomacy
By Vinton G. Cerf

8 BLOG@CACM
Protecting Computers
and People From Viruses
Robin K. Hill considers why
the comparison of organic
viruses and computer viruses
is so compelling.

106 Careers

Last Byte

108 Upstart Puzzles
Privacy-Preserving Polling
Can you answer a poll without
revealing your true preferences
and have the results of the poll
still be accurate?
By Dennis Shasha

News

10 Bouncing Balls and
Quantum Computing
A lighthearted method for
calculating π is analogous
to a fundamental algorithm
for quantum computing.
By Don Monroe

13 Thwarting Side-Channel Attacks
Deep learning challenges
chip security.
By Chris Edwards

15 Who Has Access to
Your Smartphone Data?
ISPs, app developers, and
even the government may know
more about you than you think.
By Keith Kirkpatrick

18 Fran Allen: 1932–2020
By Simson Garfinkel
and Eugene H. Spafford

Viewpoints

20 Technology Strategy and Management
Self-Driving Vehicle Technology:
Progress and Promises
Seeking the answer to the elusive
question, ‘Are we there yet’?
By Michael A. Cusumano

23 Inside Risks
A Holistic View of Future Risks
Almost everything is somehow
interrelated with everything else—
and that should not surprise us.
By Peter G. Neumann

28 Kode Vicious
Sanity vs. Invisible Markings
Tabs vs. spaces
By George V. Neville-Neil

30 Viewpoint
We Need to Automate the
Declaration of Conflicts of Interest
Leveraging existing data sources
to improve the declaration
and management of authorship
conflicts of interest.
By Richard T. Snodgrass
and Marianne Winslett

33 Viewpoint
Using Computer Programs and
Search Problems for Teaching
Theory of Computation
Recognizing the significance of
a cornerstone of computer science.
By John MacCormick

15

Association for Computing Machinery
Advancing Computing as a Science & Profession

http://SHUTTERSTOCK.COM

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 3

10/2020
VOL. 63 NO. 10

I
M

A
G

E
S

 B
Y

:
(L

)
G

I
A

C
O

M
O

 C
A

R
R

A
B

I
N

O
;

(R
)

A
I

L
A

 I
M

A
G

E
S

Practice

36 The History, Status, and Future
of FPGAs
Hitting a nerve with
field-programmable gate arrays.
By Oskar Mencer, Dennis Allison,
Elad Blatt, Mark Cummings,
Michael J. Flynn, Jerry Harris,
Carl Hewitt, Quinn Jacobson,
Maysam Lavasani, Mohsen Moazami,
Hal Murray, Masoud Nikravesh,
Andreas Nowatzyk, Mark Shand,
and Shahram Shirazi

40 Debugging Incidents in
Google’s Distributed Systems
How experts debug
production issues in complex
distributed systems.
By Charisma Chan and Beth Cooper

 Articles’ development led by
 queue.acm.org

Contributed Articles

48 What Do Agile, Lean, and ITIL
Mean to DevOps?
The value of learning skillsets within
a trio of disciplines and the role each
plays in DevOps.
By Stuart Galup, Ronald Dattero,
and Jing Quan

54 Real Time Spent on Real Time
The story of the development
of a sound, static method for
worst-case execution-time analysis.
By Reinhard Wilhelm

Watch the authors discuss
this work in an exclusive
Communications video.
https://cacm.acm.org/
videos/agile-lean-and-itil

Review Articles

62 Responsible Vulnerability
Disclosure in Cryptocurrencies
Software weaknesses in
cryptocurrencies create unique
challenges in responsible revelations.
By Rainer Böhme, Lisa Eckey,
Tyler Moore, Neha Narula,
Tim Ruffing, and Aviv Zohar

72 A Decade of Social Bot Detection
Bots increasingly tamper with
political elections and economic
discussions. Tracing trends in
detection strategies and key
suggestions on how to win the fight.
By Stefano Cresci

Research Highlights

86 Technical Perspective
Analyzing Smart Contracts
with MadMax
By Benjamin Livshits

87 MadMax: Analyzing the Out-of-Gas
World of Smart Contracts
By Neville Grech, Michael Kong,
Anton Jurisevic, Lexi Brent,
Bernhard Scholz,
and Yannis Smaragdakis

96 Technical Perspective
Two for the Price of One
By Paul Beame

97 Lower Bounds for External
Memory Integer Sorting
via Network Coding
By Alireza Farhadi,
Mohammad Taghi Hajiaghayi,
Kasper Green Larsen, and Elaine Shi

Watch the authors discuss
this work in an exclusive
Communications video.
https://cacm.acm.org/
videos/vulnerability-
disclosure

36 48

About the Cover:
Cryptocurrencies are
buggy, with discoveries
often uncovered at
different points in the
transaction process.
Who’s responsible for
reporting those cracks and
weaknesses? This month’s
cover story provides some
answers and strategies.
Cover illustration by
The Image Foundation.

http://queue.acm.org
https://cacm.acm.org/videos/agile-lean-and-itil
https://cacm.acm.org/videos/vulnerability-disclosure
https://cacm.acm.org/videos/vulnerability-disclosure
https://cacm.acm.org/videos/vulnerability-disclosure
https://cacm.acm.org/videos/agile-lean-and-itil

COMMUNICATIONS OF THE ACM
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
Vicki L. Hanson
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Darren Ramdin
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Scott E. Delman

ACM COUNCIL
President
Gabriele Kotsis
Vice-President
Joan Feigenbaum
Secretary/Treasurer
Elisa Bertino
Past President
Cherri M. Pancake
Chair, SGB Board
Jeff Jortner
Co-Chairs, Publications Board
Jack Davidson and Joseph Konstan
Members-at-Large
Nancy M. Amato; Tom Crick;
Susan Dumais; Mehran Sahami;
Alejandro Saucedo
SGB Council Representatives
Sarita Adve and Jeanna Neefe Matthews

BOARD CHAIRS
Education Board
Mehran Sahami and Jane Chu Prey
Practitioners Board
Terry Coatta

REGIONAL COUNCIL CHAIRS
ACM Europe Council
Chris Hankin
ACM India Council
Abhiram Ranade
ACM China Council
Wenguang Chen

PUBLICATIONS BOARD
Co-Chairs
Jack Davidson and Joseph Konstan
Board Members
Jonathan Aldrich; Phoebe Ayers;
Chris Hankin; Mike Heroux; James Larus;
Tulika Mitra; Marc Najork;
Michael L. Nelson; Theo Schlossnagle;
Eugene H. Spafford; Divesh Srivastava;
Bhavani Thuraisin; Robert Walker;
Julie R. Williamson

ACM U.S. Technology Policy Office
Adam Eisgrau
Director of Global Policy and Public Affairs
1701 Pennsylvania Ave NW, Suite 200,
Washington, DC 20006 USA
T (202) 580-6555; acmpo@acm.org

Computer Science Teachers Association
Jake Baskin
Executive Director

STAFF
DIRECTOR OF PUBLICATIONS
Scott E. Delman
cacm-publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Lawrence M. Fisher
Web Editor
David Roman
Editorial Assistant
Danbi Yu

Art Director
Andrij Borys
Associate Art Director
Margaret Gray
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Bernadette Shade
Intellectual Property Rights Coordinator
Barbara Ryan
Advertising Sales Account Manager
Ilia Rodriguez

Columnists
David Anderson; Michael Cusumano;
Peter J. Denning; Mark Guzdial;
Thomas Haigh; Leah Hoffmann; Mari Sako;
Pamela Samuelson; Marshall Van Alstyne

CONTACT POINTS
Copyright permission
permissions@hq.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmhelp@acm.org
Letters to the Editor
letters@cacm.acm.org

WEBSITE
http://cacm.acm.org

WEB BOARD
Chair
James Landay
Board Members
Marti Hearst; Jason I. Hong;
Jeff Johnson; Wendy E. MacKay

AUTHOR GUIDELINES
http://cacm.acm.org/about-
communications/author-center

ACM ADVERTISING DEPARTMENT
1601 Broadway, 10th Floor
New York, NY 10019-7434 USA
T (212) 626-0686
F (212) 869-0481

Advertising Sales Account Manager
Ilia Rodriguez
ilia.rodriguez@hq.acm.org

Media Kit acmmediasales@acm.org

Association for Computing Machinery
(ACM)
1601 Broadway, 10th Floor
New York, NY 10019-7434 USA
T (212) 869-7440; F (212) 869-0481

EDITORIAL BOARD
EDITOR-IN-CHIEF
Andrew A. Chien
eic@cacm.acm.org
Deputy to the Editor-in-Chief
Morgan Denlow
cacm.deputy.to.eic@gmail.com
SENIOR EDITOR
Moshe Y. Vardi

NEWS
Co-Chairs
Marc Snir and Alain Chesnais
Board Members
Tom Conte; Monica Divitini; Mei Kobayashi;
Rajeev Rastogi; François Sillion

VIEWPOINTS
Co-Chairs
Tim Finin; Susanne E. Hambrusch;
John Leslie King
Board Members
Terry Benzel; Michael L. Best; Judith Bishop;
Lorrie Cranor; Boi Falting; James Grimmelmann;
Mark Guzdial; Haym B. Hirsch; Anupam Joshi;
Richard Ladner; Carl Landwehr; Beng Chin Ooi;
Francesca Rossi; Len Shustek; Loren Terveen;
Marshall Van Alstyne; Jeannette Wing;
Susan J. Winter

 PRACTICE
Co-Chairs
Stephen Bourne and Theo Schlossnagle
Board Members
Eric Allman; Samy Bahra; Peter Bailis;
Betsy Beyer; Terry Coatta; Stuart Feldman;
Nicole Forsgren; Camille Fournier;
Jessie Frazelle; Benjamin Fried; Tom Killalea;
Tom Limoncelli; Kate Matsudaira;
Marshall Kirk McKusick; Erik Meijer;
George Neville-Neil; Jim Waldo;
Meredith Whittaker

CONTRIBUTED ARTICLES
Co-Chairs
James Larus and Gail Murphy
Board Members
Robert Austin; Kim Bruce; Alan Bundy;
Peter Buneman; Jeff Chase;
Premkumar T. Devanbu; Jane Cleland-Huang;
Yannis Ioannidis; Trent Jaeger; Somesh Jha;
Gal A. Kaminka; Ben C. Lee; Igor Markov;
Lionel M. Ni; Doina Precup; Shankar Sastry;
m.c. schraefel; Ron Shamir; Hannes Werthner;
Reinhard Wilhelm; Rich Wolski

RESEARCH HIGHLIGHTS
Co-Chairs
Shriram Krishnamurthi
and Orna Kupferman
Board Members
Martin Abadi; Amr El Abbadi;
Animashree Anandkumar; Sanjeev Arora;
Michael Backes; Maria-Florina Balcan;
Azer Bestavros; David Brooks; Stuart K. Card;
Jon Crowcroft; Lieven Eeckhout;
Alexei Efros; Bryan Ford; Alon Halevy;
Gernot Heiser; Takeo Igarashi;
Srinivasan Keshav; Sven Koenig;
Ran Libeskind-Hadas; Karen Liu; Greg Morrisett;
Tim Roughgarden; Guy Steele, Jr.;
Robert Williamson; Margaret H. Wright;
Nicholai Zeldovich; Andreas Zeller

SPECIAL SECTIONS
Co-Chairs
Sriram Rajamani, Jakob Rehof, and Haibo Chen
Board Members
Sue Moon; PJ Narayama; Tao Xie;
Kenjiro Taura; David Padua

ACM Copyright Notice
Copyright © 2020 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@hq.acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $269.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current advertising rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0686.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

COMMUNICATIONS OF THE ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 1601 Broadway, 10th Floor
New York, NY 10019-7434 USA. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
1601 Broadway, 10th Floor
New York, NY 10019-7434 USA

Printed in the USA.

4 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

mailto:acmpo@acm.org
mailto:cacm-publisher@cacm.acm.org
mailto:permissions@hq.acm.org
mailto:calendar@cacm.acm.org
mailto:acmhelp@acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/about-communications/author-center
mailto:ilia.rodriguez@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@hq.acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org
mailto:cacm.deputy.to.eic@gmail.com
http://cacm.acm.org/about-communications/author-center

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 5

cerf’s up

are still largely conducted by fax, post
(including overnight delivery), and tele-
phone as well as venerable F2F com-
munication. Electronic mail is typically
used for internal but not external com-
munication owing to the potential for
misrepresenting the origin of public
email messages (“spoofing”). Even that
is slowly changing as various forms of
strong authentication become available.

The arrival of the World Wide Web
(WWW) in 1991 heralded a new era in in-
formation production and sharing.
From the diplomatic perspective, it of-
fered an open source for intelligence
about events in the world and also an av-
enue to engage in what some call soft di-
plomacy by which is meant pursuit of
diplomatic aims by means of suasion
and public pressure. Concurrent with
the evolution of the WWW, cloud com-
puting has emerged as the natural suc-
cessor to the time-sharing systems of the
1960s. Cloud computing and smart-
phones have contributed to two more
recent dramatic changes in the online
environment that are upending tradi-
tional diplomatic communication. The
first is the arrival of social media, most
notably Facebook, Twitter, Instagram,
Tik-Tok, WeChat, and YouTube, among
others. The second is public and private
videoconferencing. Videoconferencing
is not new. Indeed, its origins lie in the
1960s and experiments with this medi-
um were conducted on the American AR-
PANET in the 1970s. The COVID-19 pan-
demic, however, has launched
videoconferencing over the Internet into
orbit. To account for lockdowns and so-
cial distancing, videoconferencing sys-
tems like Zoom, Teams, Meet, among
others, are now in daily use worldwide.
We are locked in front of our laptop
screens, not only by email, chat, and surf-
ing the Web, but by videoconferences
and webinars going day and night.

On Digital Diplomacy

T
HE TERM DIGITAL DIPLOMACYa
might have two interpreta-
tions. One is the conduct of
diplomacy through digital
means. The other is diploma-

cy concerning digital technologies. Both
interpretations are addressed in this col-
umn. Interestingly, the term protocol in
the computer communication sense was
adopted from its use in diplomatic
terms. Protocols are practices, proce-
dures, and forms in the diplomatic
world. In the world of computing, they
are procedures and formats for informa-
tion exchange. The conduct of diploma-
cy through digital means is, at first
glance, a natural extension of face-to-
face (F2F) and written diplomacy. From
1845 to 1865, telegraphy was a terrestrial
service and quickly put to use in com-
merce, diplomacy, and war.b When the
first, lasting telegraphic trans-Atlantic
cable was laid in 1866,c telegraphy be-
came an important part of rapid diplo-
macy on an intercontinental scale. The
invention of the telephone provided for
real-time interactions, the value of which
became especially apparent in the wake
of the October 1962 “Cuban Missile Cri-
sis” leading to the installation of a “hot-
line” between the White House and the
Kremlin. Facsimile transmission capa-
bility arrived in quantity in the 1980s,
transforming diplomacy once again.

With the arrival of the Internet, elec-
tronic messaging has become wide-
spread and in informal use worldwide.
Formal diplomatic communications

a O.S. Adesina, J. Summers (Reviewing Ed.)
Foreign policy in an era of digital diplomacy.
Cogent Social Sciences 3, 1 (2017). DOI: 10.1080/
23311886.2017.1297175

b President Abraham Lincoln famously and av-
idly read dispatches from the war front during
the Civil War, for example.

c Earlier efforts beginning in 1854 did not suc-
ceed or failed quickly.

On the negative side of the ledger, so-
cial media have become avenues for the
spread of misinformation and disinfor-
mation and have been used to foment
civil unrest. The latter is often triggered
by the distribution of false information
and reinforced by the use of botnetsd and
fake accounts in social media. Indeed,
such abuses highlight the growing rec-
ognition in government and diplomatic
circles that abuse of the Internet is a na-
tional and international problem that
needs attention (See S. Cresci’s article on
p. 72). Hence the second interpretation
of digital diplomacy: diplomatic negotia-
tions about dealing with the abuse of
digital infrastructure. The canvas for this
debate is enormous. There are billions of
digital devices in use today from mobile
smartphones, laptops, desktops, tablets,
and a growing body of devices called col-
lectively the Internet of Things. Hacking
of these devices along with the distribu-
tion of malware (that is, harmful soft-
ware) constitute major hazards in the
online world. These hazards are made all
the more difficult to deal with because
the Internet is global, and perpetrators
may be in one jurisdiction while the vic-
tim is in another.

It is apparent that the world needs
thoughtful and technically credible de-
bate on alternatives for containing the
problem of harmful behavior on the
Internet. Perpetrators must be identi-
fied, and international norms and agree-
ments established for bringing them
to justice. This is a task for diplomacy
about digital technology and its use and
abuse, and computer scientists have a
serious role to play in this discussion.

d A “bot” is a computer that has been hacked to
become part of a large network of machines
that can be used to mount denial of service at-
tacks, spread spam and misinformation and
reinforce tweet storms, among other things. A
“botnet” is a collection of bots.

Vinton G. Cerf is vice president and Chief Internet Evangelist
at Google. He served as ACM president from 2012–2014.

Copyright held by author.

DOI:10.1145/3418557 Vinton G. Cerf

http://dx.doi.org/10.1145/3418557

ACM ON A MISSION TO SOLVE TOMORROW.

Dear Colleague,

Without computing professionals like you, the world might not know
the modern operating system, digital cryptography, or smartphone
technology to name an obvious few.

For over 70 years, ACM has helped computing professionals be their
most creative, connect to peers, and see what’s next, and inspired them
to advance the profession and make a positive impact.

We believe in constantly redefining what computing can and should do.

ACM offers the resources, access and tools to invent the future. No one has a larger global
network of professional peers. No one has more exclusive content. No one presents
more forward-looking events. Or confers more prestigious awards. Or provides a more
comprehensive learning center.

Here are just some of the ways ACM Membership will support your professional growth and
keep you informed of emerging trends and technologies:

 • Subscription to ACM’s flagship publication Communications of the ACM
 • Online books, courses, and videos through the ACM Learning Center
 • Discounts on registration fees to ACM Special Interest Group conferences
 • Subscription savings on specialty magazines and research journals
 • The opportunity to subscribe to the ACM Digital Library, the world’s
 largest and most respected computing resource

Joining ACM means you dare to be the best computing professional you can be. It means you
believe in advancing the computing profession as a force for good. And it means joining your
peers in your commitment to solving tomorrow’s challenges.

Sincerely,

Gabriele Kotsis
President
Association for Computing Machinery

Advancing Computing as a Science & Profession

SHAPE THE FUTURE OF COMPUTING.
JOIN ACM TODAY.

ACM PROFESSIONAL MEMBERSHIP:

q Professional Membership: $99 USD
q Professional Membership plus
 ACM Digital Library: $198 USD
 ($99 dues + $99 DL)

ACM STUDENT MEMBERSHIP:

q Student Membership: $19 USD
q Student Membership plus ACM Digital Library: $42 USD
q Student Membership plus Print CACM Magazine: $42 USD
q Student Membership with ACM Digital Library plus
 Print CACM Magazine: $62 USD

SELECT ONE MEMBERSHIP OPTION

q Join ACM-W: ACM-W supports, celebrates, and advocates internationally for the full engagement of women
 in computing. Membership in ACM-W is open to all ACM members and is free of charge.

Name

Mailing Address

City/State/Province

ZIP/Postal Code/Country

q Please do not release my postal address to third parties

Email Address

q Yes, please send me ACM Announcements via email
q No, please do not send me ACM Announcements via email

q AMEX q VISA/MasterCard q Check/money order

Credit Card #

Exp. Date

Signature

ACM General Post Office
P.O. Box 30777
New York, NY 10087-0777

1-800-342-6626 (US & Canada)
1-212-626-0500 (Global)
Hours: 8:30AM - 4:30PM (US EST)

Fax: 212-944-1318
acmhelp@acm.org
acm.org/join/CAPP

• Abusive action directed at an individual, such as
threats, intimidation, or bullying

• Racism, homophobia, or other behavior that
discriminates against a group or class of people

• Sexual harassment of any kind, such as unwelcome
sexual advances or words/actions of a sexual nature

Purposes of ACM
ACM is dedicated to:

1) Advancing the art, science, engineering, and application
 of information technology

2) Fostering the open interchange of information to serve
 both professionals and the public

3) Promoting the highest professional and ethics standards

By joining ACM, I agree to abide by ACM’s Code of Ethics
(www.acm.org/code-of-ethics) and ACM’s Policy Against
Harassment (www.acm.org/about-acm/policy-against-
harassment).

I acknowledge ACM’s Policy Against Harassment and agree
that behavior such as the following will constitute
grounds for actions against me:

BE CREATIVE. STAY CONNECTED. KEEP INVENTING.

PAYMENT INFORMATION

www.acm.org/join/CAPP

mailto:acmhelp@acm.org
http://acm.org/join/CAPP
http://www.acm.org/code-of-ethics
https://www.acm.org/about-acm/policy-against-harassment
http://www.acm.org/join/CAPP
https://www.acm.org/about-acm/policy-against-harassment

8 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

the first self-replicating computer
programs made the rounds, they were
experiments or pranks;12 for most, the
point was solely reproduction. An early
computer worm was beneficent, but
escaped control.2

We distinguish computer viruses
from computer worms by the profligate
scale of replication, viruses generating a
broadcast of copies rather than a chain
of copies. The obvious points of analogy
across both types of virus include that
viruses are tiny, invading a host much
greater in size and complexity, without
an overt signal, and that viruses disrupt
some process in the host. Neither com-
puter nor biological virus necessarily
does damage. In biology, self-replication
is an end, not a means, making the dam-
age a side-effect. In the modern com-
puter virus, the end is likely to be the ac-
tion of a payload of malicious code. Now
the term “virus,” in both environments,
connotes an intrusive and damaging
force carrying dangerous baggage.

To explore some points of analogy
systematically, consider access: How is
virus entry accomplished? Computer

viruses look for an opening by probing
known vulnerabilities; if one is found,
malificent code is injected. This is
quite like the organic version.

Consider gain: What does the virus
get out of this, and how? The virus gets
more virus, and the means of repro-
duction is the same—self-replication.
Note the correspondence to the Unix
system fork() call, which spawns a
new process by replicating the current
process. The history tells us that this
happened because it was easy: “... it
seems reasonable to suppose that it ex-
ists in Unix mainly because of the ease
with which fork could be implemented
without changing much else.”8 The
heuristic, across both types: To start
a new working structure, just copy the
working structure on hand.

Consider pathology, the means of
damage. A virus damages the host body
by depleting cell resources, consumed
by the virus; bursting the cell walls; or
generating toxic byproducts. Do each
of these have an analogy? Sure—Denial
of Service; breaching buffer boundar-
ies or reverse shell; interference with

Robin K. Hill
The Virus Analogy
and Validation
https://bit.ly/2yTFYCX
May 29, 2020

The COVID-19 pandemic highlights
the virus analogy that gave rise to the
use of the word “virus” from biology,
to label a malicious program that at-
tacks computer systems. The situation
moves us to look into that, as another
way to compare nature and artifact,
and as an excuse to raise more ab-
stract questions. We are moved also to
stipulate that our mastery of both the
biological and computational forms is
shallow, and to invite other, better ob-
servations to follow. See Apvrille and
Guillaume1 for greater depth and in-
triguing crossover speculation, Weis11
for yet more intriguing comparison,
and Wenliang Du’s website for de-
tailed virus examples,3 which consti-
tute dramatic reading for coders.

A virus is generally not regarded as
a living organism, but sometimes de-
scribed as (similar to) software. When

Protecting
Computers and People
From Viruses
Robin K. Hill considers why the comparison of
organic viruses and computer viruses is so compelling.

DOI:10.1145/3415748 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3415748
http://twitter.com/blogCACM
http://cacm.acm.org
https://bit.ly/2yTFYCX
http://cacm.acm.org/blogs/blog-cacm

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 9

blog@cacm

the operating system, degrading its
protection of system resources such as
CPU cycles, files, and ports.2,10

We could consider defense, the host’s
prevention or cure mechanism, that is,
the action taken if the host somehow
notices that something is wrong. That
panoply of fascinating mechanisms
is beyond our expertise, but it is clear
vaccination is one of them, leading to
countermeasures such as mutation.
Both organic and computer viruses can
mutate quickly. But mutation in organ-
ics is a quirk, a random unguided alter-
ation. Mutation in computer programs
is human-directed. The brute-force op-
tions for repair and defense are off lim-
its to humans. We can’t reboot to reset
memory, let alone re-install a clean op-
erating system.

Viruses have been described as
troops in a war game, initiating and
reacting, as they take over cells for the
purpose of replication. But wait—Is
there a purpose? All we can say for sure is
that viruses insert genetic material into
cells, which causes the cells to gener-
ate more viruses. Is there a struggle? Is
control being deliberately wrested from
the cell, or is there actually no agent in-
volved that gives a hoot, no intention at
all? The vocabulary of aggression in cell
science (layperson’s version) reflects our
human phenomenology, projected onto
what we see. It may be fair, or it may be
distorted. It may be way off the mark;
the cells might be “fulfilled”—an odd
thought. But why is it less odd to say
the cells are “defeated”? Why use the
language of attack, when the language
of hospitality (or indifference) might
model the process just as well (the lan-
guage of indifference, even better)? Pre-
viously, we said that in biology, damage
is a “side-effect,” which assumes some
kind of intention. We now question that
assumption. Other natural forces bring
about change; the wind threatens, in-
trudes, and damages, but to speak of its
intention is only poetic.

In computing, similarly, a computer
virus executes in order to create more
copies of its code and then disseminate
them. Does that statement of the analo-
gy, through the phrase “in order to,” lead
us to the attribution of volition to the
computer virus, inaccurately? We claim
it is misleading to speak as if the organic
virus has volition. Imbued by the pro-
grammer, however, a computer virus ex-

hibits hostility. But wait. That means the
computer virus is more like the organic
virus than the organic virus itself!

Of course, the question of volition,
seen here on a small scale, bears on
larger questions in the philosophy of
computing as well, those in artificial
intelligence and cognitive science con-
nected to intentionality and conscious-
ness. That inquiry could be aided by a
new locution for computer virus, which
might even inform a new locution for
organic virus. My earlier article “Ar-
ticulation of Responsibility”7 called for
such locutions.

Programs do not make decisions.
Because it looks like they do, we need a
way to talk about what they actually do
that is not misleading. Viruses do not
“intend” in any meaningful way; they
just behave as if they were intending.
Or perhaps they don’t even “behave”
in any particular way, they just exhibit
actions that intentional beings would
exhibit if they had as a goal the end-
result reached by the virus. We are so
dependent on the vocabulary of inten-
tion and volition that we have no other
non-awkward options.

Analogies between natural and
computation phenomena, tight or
stretched, have formed the subjects of
several pieces in this space.4–6 In the
case before our eyes, we see the anal-
ogy between the biological virus and
the computer virus exhibits strengths
and weaknesses, and may offer further
possibilities. Points of positive similar-
ity may not be due to cause and effect,
but rather to effects of some common
cause, something like the general vul-
nerability of processes that use input

and output. We might even propose the
proper analogue to the biological mi-
crobe is the programmer-code pair, a
self-contained system that lies between
the program and the programmer, en-
joying some kind of collective semi-ani-
mate agency. We can turn to philosophy
to ask—Do agents have to be individual
and human? That’s debatable9 beyond
the scope of this inquiry.

But wait. The really interesting
question is what a strong successful
analogy, matching computer viruses
to organic viruses, would mean. Does
it mean that some common notions—
say, the general vulnerability of input
(as mentioned previously), or entry
through a defined interface, or subver-
sion of a external body’s resources—
are somehow universal? If so, have we
gained anything beyond a pleasant self-
validation? But wait! What does valida-
tion get us, anyway? Are computer sci-
entists to congratulate ourselves when
our artifacts look like nature? What’s
so great about that? Or is there some-
thing great about that? If so, what’s not
so great about artifice?

References
1. Apvrille, A. and Lovet, G., 2012. An Attacker’s Day

into Human Virology. Appendix comprises a table of
vocabulary analogs.

2. Chen, T. and Robert, J.M., 2004. The evolution
of viruses and worms. In Chen, W. (Ed.). (2004).
Statistical Methods in Computer Security. Boca Raton:
CRC Press.

3. Du, W., Undated. Computer & Internet Security:
Videos, Slides, Problems and Labs. Website for the
book Computer & Internet Security: A Hands-on
Approach, Second Edition. 2019.

4. Hill, R.K., 2016. Fiction as Model Theory, BLOG@
CACM. December 30, 2016.

5. Hill, R.K., 2017. Operating Systems as Possible Worlds.
BLOG@CACM. April 29, 2017.

6. Hill, R.K., 2017. Human Acts and Computer Apps.
BLOG@CACM. November 28, 2017.

7. Hill, R.K., 2018. Articulation of Decision Responsibility.
BLOG@CACM. May 21, 2018.

8. Ritchie, D.M. 1980. The evolution of the Unix time-
sharing system. In Proceedings of the Symposium
on Language Design and Programming Methodology.
Springer, 1980. https://bit.ly/3i5Zo8w

9. Schlosser, M. Agency. The Stanford Encyclopedia of
Philosophy, Winter 2019 Edition. E.N. Zalta, Ed.

10. Various experts. When and how did the metaphor
of the computer ‘virus’ arise? Scientific American,
https://bit.ly/31nebos. Article lists answers to the
given question, usually identifying Fred Cohen, student
of Adleman at University of Southern California.
September 2, 1997.

11. Weis, O. What if it was a software bug/virus?
Cyber vs. COVID-19: A thought experiment. Rookout,
https://bit.ly/2ERhiO0

12. Wikipedia contributors. Creeper (program). In
Wikipedia, The Free Encyclopedia. May 29, 2020.

Robin K. Hill is a lecturer in the Department of Computer
Science and an affiliate of both the Department of
Philosophy and Religious Studies and the Wyoming
Institute for Humanities Research at the University of
Wyoming. She has been a member of ACM since 1978.

© 2020 ACM 0001-0782/20/10 $15.00

“The really
interesting question
is what a strong
successful analogy,
matching computer
viruses to
organic viruses,
would mean.”

https://bit.ly/3i5Zo8w
https://bit.ly/31nebos
https://bit.ly/2ERhiO0

10 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

 N
news

I
M

A
G

E
 B

Y
 N

I
R

A
J

 K
E

D
A

R

of qubits can represent and manipu-
late an exponentially larger number
of combinations. Exploiting this pos-
sibility for computing seemed like a
pipe dream, however, until research-
ers devised algorithms to extract use-
ful information from the qubits. The
first such algorithm, described in
1994 by Peter Shor, then at Bell Labs
in New Jersey, efficiently finds the
prime factors of a number, poten-

T
HE HISTORY OF science and
mathematics includes many
examples of surprising paral-
lels between seemingly unre-
lated fields. Sometimes these

similarities drive both fields forward in
profound ways, although often they are
just amusing.

In December, Adam Brown, a phys-
icist at Google, described a surpris-
ingly precise relationship between a
foundational quantum-computing
algorithm and a whimsical method of
calculating the irrational number π.
“It’s just a curiosity at the moment,”
but “the aspiration might be that
if you find new ways to think about
things, that people will use that to lat-
er make connections that they’d not
previously been able to make,” Brown
said. “It’s very useful to have more
than one way to think about a given
phenomenon.”

In a preprint posted online (but
not yet peer-reviewed at press time),
Brown showed a mathematical cor-
respondence between two seemingly
unconnected problems. One is the
well-known Grover search algorithm
proposed for quantum computers,
which should be faster than any classi-
cal equivalent. The other is a surprising

procedure in which counting the num-
ber of collisions between idealized bil-
liard balls produces an arbitrarily pre-
cise value for the π.

Quantum Algorithms
Quantum computing exploits quan-
tum bits, or qubits, such as ions or
superconducting circuits, that can si-
multaneously represent two distinct
states. In principle, a modest number

Bouncing Balls and
Quantum Computing
A lighthearted method for calculating π is analogous
to a fundamental algorithm for quantum computing.

Science | DOI:10.1145/3416076 Don Monroe

http://dx.doi.org/10.1145/3416076

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 11

news

 N tially cracking important cryptogra-
phy schemes. The trick is to frame the
problem as determining the repeti-
tion period of a sequence, essentially
a Fourier transform, which can be
found using global operations on an
entire set of qubits.

The second fundamental algo-
rithm, devised in 1996 by Lov Grover
working independently at Bell Labs,
operates quite differently. “Shor and
Grover are the two most canonical
quantum algorithms,” according
to Scott Aaronson of the University
of Texas at Austin. “Even today, the
vast majority of quantum algorithms
that we know are recognizably either
‘Shor-inspired’ or ‘Grover-inspired’,
or both.”

Grover’s algorithm is often de-
scribed as a database search, exam-
ining a list of N items to find the item
that has a desired property. If the list
is ordered by some label (for example,
alphabetized), any label can be found
by repeatedly dividing the list in suc-
cessive halves, eventually requiring
log2N queries. For an unsorted list,
however, checking each item in turn
requires, on average N/2 steps (and
possibly as many as N).

Like other quantum algorithms,
Grover’s manipulates the entire set
of qubits simultaneously, while pre-
serving the relationships between
them (prematurely querying any qu-
bit to determine its state turns it into
an ordinary bit, squandering any
quantum advantage). However, Gro-
ver showed the desired item can gen-
erally be found with only π4 √

N global

operations.
This improvement is less than that

seen in Shor-style algorithms, which
typically are exponentially faster than
their classical counterparts. The Gro-
ver approach, however, can be ap-
plied to more general, unstructured
problems, Brown notes.

The calculation starts with an
equal admixture of all N qubits. The
algorithm then repeatedly subjects all
the qubits to two alternating manipu-
lations. The first operation embod-
ies the target: it inverts the state of a
specific, but unknown, bit. The task is
to determine which bit is altered, but
not by measuring them all. The sec-
ond operation does not require any
information about the target. Grover

found that each time this sequence
is repeated, the weight of the target
in the admixture increases (although
this cannot be measured). After the
correct number of repetitions, there
is an extremely high chance a mea-
surement will yield the correct result.

Bouncing Billiards
These sophisticated quantum manip-
ulations may seem to have little rela-
tionship to bouncing billiard balls.
Yet Brown, while working on issues
related to Grover’s algorithm, came
across an animation by math popular-
izer Grant Sanderson that made him
notice the similarities. In his paper,
Brown shows there is a precise map-
ping between the two problems.

Sanderson’s animation illustrates
a surprising observation described
in 2003 by Gregory Galperin, a math-
ematician at Eastern Illinois Univer-
sity in Charleston. In the paper “Play-
ing Pool with π,” he imagined two
billiard balls moving without friction
along a horizontal surface, bouncing
off each other and off a wall on the
left side in completely elastic col-
lisions (which preserve their com-
bined kinetic energy).

If the right-hand ball is sent left-
ward toward a second stationary ball
that is much lighter, the smaller ball
will be sent back toward the left-hand
wall without slowing the larger ball
much. The small ball will bounce off
the wall, and then collide with the
large one again, repeating this mul-
tiple times. Eventually the collisions
will turn the large ball around until it
finally escapes to the right faster than
the small ball can pursue it.

The number of collisions needed
before this escape can occur grows

larger with the ratio of the mass of the
large ball compared to the small one. If
the masses are equal, it will take three
bounces: the first transfers all mo-
tion from the right ball to the left one,
which bounces off the wall and then
transfers its momentum back to the
right ball again. If the large ball is 100
times as massive, the process will take
31 bounces. If the mass ratio is 10,000,
there will be 314 bounces. In a spec-
tacularly impractical computation, for
every increase of a factor of 100 in the
mass ratio, the number of collisions
(divided by the square root the mass ra-
tio) includes another digit to the digital
representation of π, 3.141592654 . . .

Brown fortuitously encountered
Sanderson’s animation (which uses
blocks instead of balls) when Grover’s
algorithm was fresh in his mind, and
recognized significant similarities
between the two situations. The two
quantum operations, for example,
correspond respectively to collisions
between the balls and between the
lighter ball and the wall. The mass
ratio corresponds to the size of the
database. Moreover, the final result
was that the number of operations (or
bounces) is proportional to π and to
the square root of this size or mass ra-
tio. (There are also two factors of two
that reflect simple bookkeeping dif-
ferences between the problems.)

Beyond the surprising connection
between such different systems, what
on earth is the number π doing in both
cases? This irrational number is of
course best known as the ratio of the
circumference of a circle to its diame-
ter, although it also appears in the pro-
portions of ellipses, as well as higher-
dimensional objects like spheres. One
way to define a circle is through an
algebraic constraint on the horizontal
and vertical coordinates, x and y: The
points of a circle with radius r are con-
strained to satisfy x2 + y2 = r2.

As it turns out, both the billiard
problem and the Grover algorithm
have constraints of this form. Colli-
sions of the balls or manipulations
of the quantum system correspond to
rotations along the circle defined by
these constraints.

For example, for two billiards
of mass m (with velocity vm) and M
(with velocity vM), an elastic collision
preserves their total kinetic energy,

Grover’s algorithm
manipulates the
entire set of qubits
simultaneously,
while preserving
the relationships
between them.

12 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

news

particle quantum systems and gravi-
tational models incorporating curved
spacetime with one higher dimension.
There is even hope the wormholes in
spacetime can help resolve paradoxes
associated with quantum-mechanical
“entanglement” of distant particles.

Mathematics has frequently ad-
vanced through connections between
disparate fields. For example, Fer-
mat’s “last theorem,” involving inte-
ger solutions of a simple equation,
was only proved centuries later using

½mvm
2 + ½MvM

2. Completely revers-
ing the velocity of the larger ball re-
quires a total “rotation” by 180° (π ra-
dians) in the plane with coordinates
vm and vM.

Similarly, for quantum systems,
the probability of observing a partic-
ular outcome is proportional to the
square of the “wave function” corre-
sponding to that outcome. The sum
of the probability (squared amplitude)
for the target and all other outcomes
must be one.

Historical Examples of Connections
There is still the question, “Is this
profound insight into the nature of
reality, or is it just a sort of curiosity?”
Brown said. “Maybe Grover search is
telling us something profound about
the nature of reality, and maybe the
bouncing-ball thing is more of a curi-
osity, and maybe connecting them is
more in the spirit of the second one
than the first one.”

Still, there have been numerous
cases in physics, and especially in
mathematics, where such connec-
tions have contributed profoundly
to progress. For example, physicists
have spent more than two decades ex-
ploring a surprising correspondence
between strongly interacting multi-

For quantum
systems,
the probability
of seeing a particular
outcome is
proportional to
the square of the
wave function
corresponding
to that outcome.

methods from “elliptic curves.” In an-
other example, in January, computer
scientists proved a theorem relating
entanglement to Alan Turing’s notion
of decidable computations, which
continues to shake up other seem-
ingly unrelated fields.

For his part, Aaronson suspects
the Grover-billiard correspondence,
although “striking in its precision,” is
probably “just a cute metaphor (in the
sense that I don’t know how to use it
to deduce anything about Grover’s al-
gorithm that we didn’t already know).
And that’s fine.”

Further Reading

Galperin, G.,
“Playing Pool with π: The Number π from a
Billiard Point of View),” Regular and Chaotic
Dynamics 8, p. 375 (2003).

Brown, A.R.,
“Playing Pool with |ψ〉: from Bouncing
Billiards to Quantum Search,” arXiv.
org:1912.02207 (2019).

Sanderson, G.,
“How Pi Connects Colliding Blocks to a
Quantum Search Algorithm,” Quanta (2020)

Don Monroe is a science and technology writer based in
Boston, MA, USA.

© 2020 ACM 0001-0782/20/10 $15.00

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 13

news
I

M
A

G
E

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
,

U
S

I
N

G
 S

H
U

T
T

E
R

S
T

O
C

K

not modeled using formal techniques,”
he adds, though improvements in de-
sign tools may lead to simulators that
can perform accurate-enough assess-
ment without having to go to actual
silicon before testing.

The elliptic-curve code known as
Curve25519 benefited from algorith-
mic modeling so it could more easily
resist side-channel analysis. However,
in 2017, a team from the University of
Pennsylvania found smartphone cir-
cuitry that clearly leaked the positions
of zeroes in intermediate calculations
that pointed directly to subkey bytes.

Many countermeasures attempt to
hide the samples that correlate well
with key data. One common approach
is masking, which combines the actual
key bytes with randomly chosen dum-
my values just before the most vulner-
able part of the encryption sequence
that is most often targeted by adversar-
ies: often where the key is first used to
disguise the plaintext data. Dummy
operations make it more difficult for
hackers to align traces and find the cor-
relations embedded in them.

At the International Solid State Cir-
cuits Conference (ISSCC) in February,
researchers from Purdue University
and the Georgia Institute of Technolo-
gy showed how the bulk of electromag-
netic emissions come from the layers
of metal interconnect closest to the top
of an integrated circuit. Disconnecting
a cryptoprocessor from direct access to
the three highest metal layers, the team
cut usable interference significantly in
one experiment.

A second project led by the Purdue
team, presented at the Custom Inte-
grated Circuits Conference (CICC) a
month later, isolated the cryptoproces-
sor behind an on-chip power regulator
that prevents an external observer from
seeing the small changes in current that
reveal circuit behavior. At the same con-
ference, Intel Labs’ director of circuit

T
HE SAME ATTRIBUTES that give
deep learning its ability to
tell images apart are helping
attackers break into the cryp-
toprocessors built into inte-

grated circuits that were meant improve
their security. The same technology may
provide the tools that will let chip de-
signers find effective countermeasures,
but it faces an uphill struggle.

Side-channel attacks have been a
concern for decades, as they have been
used in the hacking of smartcard-
based payment systems and pay-TV
decoders, as well as in espionage. Yet
the rise of Internet of Things (IoT) and
edge systems and their use in large-
scale, commercially sensitive applica-
tions makes such attacks a growing
worry for chipmakers. The innate con-
nectivity of IoT devices means success
in obtaining private encryption keys
from them may open up network ac-
cess on cloud-based systems that rely
on their data.

Although there are side-channel at-
tacks that can be deployed remotely
by measuring the timing of responses
from software running on a server,
many of the most pernicious attacks
rely on physical proximity and can be
performed using low-cost electrical in-
struments (see “Secure-System Design-
ers Strive to Stem Data Leaks,” Commu-
nications, April 2015). The switching of
logic gates creates changes in the elec-
tromagnetic fields around them that
can be detected by probes placed close
to the chip’s surface by an attacker. An-
other side channel stems from rapid
changes in energy consumption that
can be seen by attaching probes to the
device’s power-supply connections.

Though it is not the only approach,
a common technique is to profile the
target using known keys and plain text,
collecting thousands of traces of the
emissions of the process. Careful anal-
ysis of the traces often will show cor-

relations between power or emissions
spikes, and the value of the byte of the
encryption key being processed during
that interval.

Alric Althoff, principal engineer at
secure-hardware tools supplier Tor-
tuga Logic, says, “The majority of the
attacks involve very straightforward
statistics.”

Often, the signals that show a de-
pendency on data are restricted to a few
samples within the traces, which may
cover thousands of samples that are lit-
tle more than noise. One approach the
design community has tried to apply is
to use formal models of computation
to predict how much data-dependen-
cy is present in the switching of logic
gates, and using that information to try
to remove correlated samples from ap-
pearing in the traces.

“Design based on the theoretical
models does mitigate the vast majority
of the leakage. The problem is that, if
you are free to collect millions of traces
and analyze them, correlations are go-
ing to start popping out even if they are
very small,” Althoff says. A second is-
sue is that the layout of transistors on
the silicon die lead often leads to larger
emissions than predicted. “Those are

Thwarting
Side-Channel Attacks
Deep learning challenges chip security.

Technology | DOI:10.1145/3416080 Chris Edwards

http://dx.doi.org/10.1145/3416080

14 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

news

technology research Vivek De described
a number of methods that use on-chip
power converters to inject noise into the
power signals that an attacker would typ-
ically probe at the PCB level. He claimed
the techniques could cut by five orders
of magnitude the signal-to-noise ratio.

Althoff says, “The correlation with
the signal-to-noise is very well under-
stood. For a specific reduction in cor-
relation, you want a certain amount of
noise, and you can compute that.”

The growing question is determin-
ing how much noise you need to in-
ject to maintain secrecy. Attackers are
moving from conventional statisti-
cal tools to deep learning because it
readily combines data from disparate
positions across traces, rather than
focusing attention on a small number
of what they hope are telltale samples.
In doing so, deep learning reverses the
effects of countermeasures. The con-
volutional filters often used in DNNs
to detect features no matter where they
are in images appear to be effective at
filtering out the noise introduced by
masks and dummy operations.

However, deep learning is far from
a reliable tool. Althoff points out that
subtle artifacts in trace captures, such
as a constant offset in the underlying
amplitude, do not cause problems
for statistical models, but can easily
throw off a machine-learning pipeline.
Research has shown if training is not
carefully controlled, deep-learning
models are highly prone to overfitting,
which significantly reduces their abil-
ity to correctly predict keys when tested
on traces they have not seen before.

Guilherme Perin, senior secu-
rity analyst at Riscure, says another
technique that tends to show bet-
ter performance overall is ensem-
ble learning using subtly different
neural-network models and fed with
complementary subsets of the traces
obtained during profiling.

Because deep learning can be highly
unreliable when used in attacks, its use
poses bigger problems for those build-
ing defenses who try to apply it as a
form of penetration testing.

“If you attack something success-
fully, you’ve proven that it’s vulnerable.
If you’re not successful, you’ve proven
nothing,” Althoff notes. “The best
performing attacks in nature are un-
published. Attackers doing nefarious

things are not sharing their approach-
es. An attacker in the business of at-
tacking is going to run many at once
and will have a whole set of scripts set
up to help perform them.”

There is some hope that machine
learning will provide an answer as to
whether designs are vulnerable, and
this is one reason why Riscure is pur-
suing it. However, rather than train-
ing models just to find keys, the Dutch
consultancy’s approach focuses on
looking inside the model that train-
ing creates. Perin says one approach
that has demonstrated some success
is to focus on the neurons that have
the strongest influence on correctly
predicted key bytes and tracing back to
the combinations of samples that ac-
tivate them. Although sifting through
this data is a manually intensive process
today, it may provide the basis for
automated systems that identify which
operations in a long sequence are leak-
ing the most information.

Althoff sees potential in analyzing
the models created by techniques such
as deep learning. “There is a trend in
explainable learning, to really under-
stand why the models are making the
decisions they are making. We want to
look at the weights that correspond to a
certain region and why it weights them
more heavily.”

What makes better analysis of infor-
mation leakage increasingly important
is the cost and energy overhead of many
of the countermeasures. The Purdue
team claims their on-chip regulator
made it impossible for a DNN to dis-
tinguish data operations from noise on
the power rails. Unfortunately, it has a
power overhead of 50% when the cryp-
toprocessor is running. It also adds to
cost through increased silicon area.

“Many mitigation techniques come
with major overheads in power perfor-
mance and die area that are impracti-
cal for IoT devices,” De says.

De says one option is to only in-
voke strong countermeasures if the
device detects behavior that indicates
side-channel analysis is under way.
One method is direct; he points to an
idea proposed five years ago by a team
from Tohoku and Kobe universities in
Japan; they placed inductors on the
surface of the IC at strategic points to
pick up the distortion in electric field
caused by a nearby measurement
probe. Another technique might be to
monitor how the cryptoprocessor is
being used, and whether that points
to a large number of operations being
profiled (although this is vulnerable
to false positives).

The game of cat and mouse will con-
tinue until researchers develop better
tools to determine how much informa-
tion circuitry leaks, and what are the
limits of detection.

Further Reading

Das, D., Danial, J., Golder, A., Ghosh, S.,
Raychowdhury, A., and Sen, S.
Deep Learning Side-Channel Attack
Resilient AES-256 using Current Domain
Signature Attenuation in 65nm CMOS
Proceedings of the 2020 IEEE Custom
Integrated Circuits Conference (CICC)

Edwards, C.
Secure-System Designers Strive to STEM
Data Leaks, Communications, April 2015,
18-20, http://bit.ly/38MvW28

Masure, L., Dumas, C., and Prouff, E.
A Comprehensive Study of Deep Learning
for Side-Channel Analysis
IACR Cryptology ePrint Archive (2019),
https://eprint.iacr.org/2019/439

Perin, G., Ege, B., and Chmielewski, L.
Neural Network Model Assessment for
Side-Channel Analysis
IACR Cryptology ePrint Archive (2019),
https://eprint.iacr.org/2019/722

Homma, N., Hayashi, Y., Miura, N., Fujimoto, D.,
Tanaka, D., Nagata, M., and Aoki, T.
EM Attack is Non-Invasive? Design
Methodology and Validity Verification of
EM Attack Sensor, Proceedings of the 2014
Conference on Cryptographic Hardware
and Embedded Systems (CHES 2014),
Lecture Notes in Computer Science, vol
8731.

Chris Edwards is a Surrey, U.K.-based writer who reports
on electronics, IT, and synthetic biology.

© 2020 ACM 0001-0782/20/10 $15.00

“There is a trend in
explainable learning,
to really understand
why the models are
making the decisions
they are making.”

http://bit.ly/38MvW28
https://eprint.iacr.org/2019/439
https://eprint.iacr.org/2019/722

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 15

news
I

M
A

G
E

 B
Y

 K
O

S
H

I
R

O
 K

/S
H

U
T

T
E

R
S

T
O

C
K

.C
O

M

agencies do need to obtain a warrant
after the imminent threat has passed,
to demonstrate the inquiry was made
in good faith.

“It would of course be more efficient
to allow law enforcement officials to de-
cide who to surveil on their own, with-
out oversight by a court, but that would
risk invasive surveillance at the whim
of the government,” says Crocker. “If
there is a true emergency that makes
getting a warrant impractical, such as
an imminent threat to someone’s life,
the Fourth Amendment and these laws
allow for a brief warrantless search, of-
ten requiring the government to come
back to a court after the fact.”

Former law enforcement officials
agree, noting that there will always
be some tension between the desire
to protect personal privacy and the
clear value of information that can
be used to solve crimes or keep the
public safe.

“It’s definitely a challenge, and it’s
a balance between personal freedom
and the ability of law enforcement
to do their job, especially during the
emergency circumstances that are put-
ting others in harm’s way,” says Dan-

I
N A WORLD that is defined by
the generation and collec-
tion of data by technology and
communications companies,
personal information—in-

cluding where people go, with whom
they associate, what they purchase,
and what they read, listen to, and even
eat—it is quite a simple task to cre-
ate a detailed profile of an individual
based solely on the data captured in
his or her phone.

The right to access and use the
cache of personal information stored
in each person’s smartphone has be-
come a major question about balanc-
ing personal privacy rights against
governments’ desire to monitor and
retrieve data about its citizens’ activi-
ties for law enforcement, public safety,
and health issues. While much of the
attention over the past several years
has focused on demands from law en-
forcement to access this data to aid in
criminal investigations, the COVID-19
pandemic of 2020 has refocused the
debate on the government’s right to
access location data during health or
other public safety emergencies.

Within the U.S., the primary com-
munications privacy law that regu-
lates the disclosure of and access to
electronic data held by communica-
tion services providers, including
wireless carriers, Internet Service
Providers (ISPs), social media plat-
forms, and search companies, among
others, is the Electronic Communi-
cations Privacy Act of 1986 (ECPA)
which, along with the Uniting and
Strengthening America by Providing
Appropriate Tools Required to Inter-
cept and Obstruct Terrorism (USA
PATRIOT) Act OF 2001, protects wire,
oral, and electronic communications
while those communications are be-
ing made, are in transit, and when
they are stored on computers. As the

Act explicitly states, “Some informa-
tion can be obtained from providers
with a subpoena; other information
requires a special court order; and
still other information requires a
search warrant.”

Andrew Crocker, senior staff attor-
ney on the Electronic Frontier Foun-
dation’s civil liberties team, says the
ECPA generally “requires the govern-
ment to use legal process to get data
about users,” rather than simply allow-
ing them to request and receive infor-
mation from service providers.

Similarly, the Fourth Amendment
of the U.S. Constitution requires law
enforcement agencies to demonstrate
probable cause when seeking histori-
cal location data from an individual’s
phone. This requirement was affirmed
via a 2018 Supreme Court decision, in
which Chief Justice John Roberts, writ-
ing on behalf of the majority, held that
police are required to obtain a warrant
in ordinary investigations, but could
access such information without a war-
rant in an emergency, such as during a
bomb threat, kidnapping, or other exi-
gent circumstance where time is of the
essence. However, law enforcement

Who Has Access to
Your Smartphone Data?
ISPs, app developers, and even the government
may know more about you than you think.

Society | DOI:10.1145/3416078 Keith Kirkpatrick

http://dx.doi.org/10.1145/3416078

16 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

news

iel Linskey, managing director of the
Security Risk Management practice
of New York-based risk solutions pro-
vider Kroll, and head of the compa-
ny’s Boston office. Linksey, a former
superintendent-in-chief of the Boston
Police Dept., notes that in addition
to the requirement to get a warrant
to obtain information, the business
models of Google and other collectors
of personal data generally are focused
on protecting privacy, rather than
making it easy for law enforcement to
access such data.

“I think there’s a business decision
to not share information with law en-
forcement unless absolutely neces-
sary,” Linskey says. “And even when
necessary, the resources are not in
place to make that a quick or timely
process. The number of requests for
information has overwhelmed Google,
Yahoo, and any of those data providers
to keep up with it and to provide infor-
mation in a timely manner.”

Law enforcement agencies have re-
alized the value of obtaining informa-
tion for use in criminal investigations,
as the contents of email, location data,
and private SMS messages often can
provide the evidence needed to show
intent, direct criminal activity, or il-
lustrate that a suspect was in or near a
specific location.

Also, the practice of obtaining sub-
poenas or warrants to obtain personal
data from cellphones can be abused,
according to George W. Price, a Bos-
ton-based attorney with Casner & Ed-
wards LLP who is a former police offi-
cer, a former senior special agent with
of the U.S. Drug Enforcement Admin-
istration (DEA), and a former special
assistant district attorney for Middle-
sex County, MA. “I can find out more
about someone through 24 hours of
their phone and data use than proba-
bly anything else; it’s really, really valu-
able,” Price says.

 “At the same time, people’s expec-
tations of privacy are different than
they were 10 or 15 years ago on data
devices. You may have a higher ex-
pectation now, because you’re basi-
cally running your whole life through
this digital device, which is not nec-
essarily just used for criminal activ-
ity. So, I think we’re in new territory,
as far as how law enforcement can
better access that.”

Most technology companies realize
the value of protecting personal infor-
mation, at least within the U.S., where
personal privacy is seen as a pillar of
the U.S. Constitution. Says Price, “My
sense is that [holders of personal data]
are not afraid to push back on law en-
forcement when they feel like there is
not enough evidence, or the warrant
doesn’t meet the proper standards.”

Further, there is very little accurate
reporting surrounding the effective-
ness of warrants used to get private in-
formation from users’ data in criminal
cases, says Stephen Smith, a former
federal magistrate judge in Houston,
and now Director of Fourth Amend-
ment & Open Courts at Stanford’s Cen-
ter for Internet and Society.

“If somebody would ask me what
kind of legislation is most urgently
needed right now, I’d say we need a
reporting requirement for all these
things, similar to what we have for
the wiretaps,” Smith says, referring to
reports provided by federal and state
officials on applications for orders for
interception of wire, oral, or electronic
communications. “We [would] have a
complete picture of what’s going on
and could see how often these tech-
niques are used for child predators,
hostage-taking situations, or other re-
ally violent crime, versus how many of
these are for identity theft, drug pos-
session cases, or run-of-the-mill cases
that don’t really require the extraordi-
nary means to get this stuff.”

Protections on the collection of
personal data are far slimmer in juris-
dictions outside the U.S. For example,
in the U.K., the police can download
cellphone data without a warrant,
and news reports indicate that cloud
extraction technologies provided by

companies such as Petah Tikvah, Is-
rael-based Cellebrite and Alexandria,
VA-based Oxygen Forensics can en-
able law enforcement agencies in the
U.K. to continuously track social me-
dia accounts, as well as using facial
recognition to analyze data extracted
from the cloud. U.K. police depart-
ments cite three specific powers un-
der which they derive their authority
to access this information, including
the Police and Criminal Evidence Act
1984 (PACE), the Investigatory Pow-
ers Act 2017, or the Regulation of In-
vestigatory Powers Act 2000.

In Japan, the Ministry of Internal
Affairs and Communications used to
require mobile carriers to obtain the
permission of users before sharing
any location data with government au-
thorities. However, in June 2015, this
requirement was dropped, and news
reports indicated some carriers were
providing location data to the govern-
ment, mostly relating to crime investi-
gations. In response, Japanese mobile
carrier NTT Docomo announced in
May 2016 five smartphone models that
would allow authorities to track their
locations without users knowing.

Japan has asked owners of both
public and private surveillance camer-
as, as well as wireless carriers, to make
user data available to authorities with-
out warrants. This practice, which the
Japanese government believes is help-
ful in solving crimes, as well as track-
ing domestic abuse cases, is seen as
one reason why Japan’s crime rate is
about a quarter that of the U.S.

The coronavirus outbreak earlier
this year has led to even greater shar-
ing of location data between mobile
carriers and data collectors. Mobile
carriers in Italy, Germany, and Aus-
tria shared location tracking info
with authorities, while Taiwan, Sin-
gapore, and Hong Kong used location
monitoring systems to ensure that
people who were carrying COVID-19
were staying at home. Further, the Is-
raeli government in March approved
emergency measures that allowed its
security agencies to track the mobile-
phone data of people suspected to
be infected with the coronavirus, as
well as allowing authorities to enforce
quarantines and warn those who may
have come into contact with people in-
fected with the virus.

“There are very few
legal limits on what
governments can do
with even the most
personal data once
they have it.”

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 17

news

“Realistically, cellphone tracking is
already a pretty widespread practice,”
says Jennifer Fernick, a technology Fel-
low at the National Security Institute at
George Mason University in Virginia,
and the head of research and engineer-
ing with NCC Group, a global cyber se-
curity and risk mitigation firm based in
Manchester, U.K. Fernick notes that in
order for a cellphone to work, it must
be able to connect to various cell tow-
ers, and as the phone connects with
a tower, location information can be
gathered. “So, to some extent that [lo-
cation] data is already out there, as it is
core to how cellphone networks are de-
signed. To defend against that, there’s
not much you can do, other than put
your phone in the fridge, or maybe
throw it in the ocean.”

Beyond simply using carrier data
to track cellphone users, multination-
al technology companies, including
Google, Unacast, Tectonix, X-Mode,
and Facebook, among others, are
now making available user location
data that is captured via apps on us-
ers’ smartphones, to track social-dis-
tancing efforts. While the data is ano-
nymized—and users that have turned
on location tracking have, by default,
consented to this information being
captured by accepting the terms and
conditions of the apps they use—there
is a fear that this information may be
stored forever by authorities, and used
in unrelated matters.

Fred Cate, vice president for re-
search at Indiana University and
founding director of the university’s
Center for Applied Cybersecurity Re-
search, points to the Health Insurance
Portability and Accountability Act of
1996 (HIPAA) and to the laws most U.S.
states have “that give states enormous
authority when addressing public
health issues.

“I don’t doubt for a moment that
states have the authority to use this
data, which in every case I am aware
of they are getting from a third party,
in any event. To my mind, the bigger
challenge isn’t whether they can get it,
but what can they do with it once they
have it?”

Cate says that while the Fourth
Amendment clearly lays out the proper
procedures for obtaining data (gener-
ally requiring the government to show
it has a legitimate reason for needing

the data), once the government has it,
there are no laws covering how long the
government may keep the data, or how
it may be used in unrelated situations.

“There are very few legal limits on
what governments can do with even the
most personal data once they get it,”
Cate says, noting that in cases involv-
ing public safety, security, or health is-
sues, “I suspect almost everyone would
approve of the use. But what if, once
the government has the data, they then
use it for unrelated purposes?”

Cate notes financial information
collected during a criminal investi-
gation on money laundering, for ex-
ample, could be turned over to the In-
ternal Revenue Service if instances of
non-related tax evasion activity were
found, even in the absence of a crimi-
nal charge or conviction. Indeed, given
the dearth of regulation, Cate says,
there are no usage or time limits to
what the U.S. government can do with
that data.

“Some agencies have policies,”
Cates says. The U.S. Federal Bureau of
Investigation (FBI), for example, “used
to delete information about you when
you turned 70 or 75, but that changed
after 9/11. However, that was just an
internal policy, and there was no legal
force to that. In other words, there’s no
time limit on that data.”

Further Reading

The Fourth Amendment to the U.S.
Constitution:
https://constitutioncenter.org/interactive-
constitution/amendment/amendment-iv

Google’s Process for Handling Requests for
User Information: https://bit.ly/3ahEKQh

How the U.S. Government is Tracking
People via their Cell Phones, The Wall
Street Journal, Feb. 10, 2020, https://www.
youtube.com/watch?v=SXAShotdFZo

U.K. Police and Criminal Evidence Act 1984
http://www.legislation.gov.uk/
ukpga/1984/60/contents

U.K. Investigatory Powers Act 2017
http://www.legislation.gov.uk/
ukpga/2016/25/contents/enacted

U.K. Regulation of Investigatory
Powers Act 2000
http://www.legislation.gov.uk/
ukpga/2000/23/contents

Keith Kirkpatrick is principal of 4K Research &
Consulting, LLC , based in New York, USA.

© 2020 ACM 0001-0782/20/10 $15.00

ACM
Member
News
CYBERSECURITY AT
OAK RIDGE NATIONAL
LABORATORY

“My father
brought home a
computer when I
was in high
school, and I
taught myself to
program on one

of the early TRS-80s,” says
Deborah Frincke, associate
laboratory director for the
National Security Sciences
Directorate at the U.S. Department
of Energy’s Oak Ridge National
Laboratory (ORNL).

Frincke’s early computing
experience helped her to discover
her passion. She went on to earn
her undergraduate, master’s, and
doctoral degrees in computer
science, all from the University of
California, Davis.

After obtaining her Ph.D.,
Frincke joined academia as a
professor of computer science
at the University of Idaho. After
that, she moved to the Pacific
Northwest National Laboratory,
where she rose to chief scientist for
cybersecurity before leaving for the
National Security Agency (NSA).

At the NSA, Frincke served in
various roles, most recently as
research director. She was also
the agency’s Science Advisor,
which meant she needed to
understand and advise on a
diverse range of fields including
mathematics, computer science,
cybersecurity, quantum and
high-performance computing,
engineering, and various
physical sciences.

Throughout her career,
Frincke has focused on
cybersecurity, especially
collaborative approaches
to defensive aspects of
cybersecurity, to better
protect systems and identify
vulnerabilities.

At ORNL, Frincke is
assembling a national security
science directorate, which
requires inventorying current
cybersecurity initiatives at the
facility, then determining how
to strengthen them, and set the
overall strategic direction.

“One of the things that
excites me about this job is
increasing my scope beyond
those fields I led at NSA,”
Frincke says.

—John Delaney

https://constitutioncenter.org/interactive-constitution/amendment/amendment-iv
https://bit.ly/3ahEKQh
https://www.youtube.com/watch?v=SXAShotdFZo
http://www.legislation.gov.uk/ukpga/1984/60/contents
http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted
http://www.legislation.gov.uk/ukpga/1984/60/contents
https://www.youtube.com/watch?v=SXAShotdFZo
https://constitutioncenter.org/interactive-constitution/amendment/amendment-iv

18 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

news

Fran Allen:
1932–2020

In Memoriam | DOI:10.1145/3418560 Simson Garfinkel and Eugene H. Spafford

that she stayed 45 years, becoming the
first female IBM Fellow in 1989.

Allen worked on compilers for
IBM’s first transistorized comput-
er, the IBM 7030 (also known as the
Stretch), and the IBM 7950 Harvest,
a one-of-a-kind system designed for
breaking codes at the U.S. National Se-
curity Agency. These were the fastest
systems in the world from their intro-
duction 1961 until 1964; NSA used the
Harvest until 1976 when its mechani-
cal parts wore out.

IBM’s FORTRAN translated human-
readable mathematical formulas and
algorithms into machine code, but the
resulting programs were significantly
larger and slower than what program-
mers fluent in machine code could pro-
duce. Allen created an optimizing com-
piler with John Cocke (1987 ACM A.M.
Turing Award recipient) and the rest
of the IBM team so that the compiled
code would be worthy of the hardware
on which it was running. In addition to
FORTRAN, the finished compiler could
also handle Autocoder, a business lan-
guage, and Alpha, a language created
for code breaking.

Still determined to be a teacher,
Allen became the driving force be-
hind seminal papers in optimizing
compilers. Her first, “Program Opti-
mization,” was distributed internally
at IBM in 1966 and published in the
1969 Annual Review in Automatic Pro-
gramming. Her 1970 paper, “Control
Flow Analysis,” appeared in SIGPLAN
Notices (July 1970). In 1971, she and
Cocke published “A Catalog of Op-
timizing Transformations,” an IBM
technical report that describes “loop
transformations,” “redundant sub-
expression elimination,” “constant
folding,” “dead code elimination,”
“instruction scheduling,” and many
other techniques that are still used in
optimizing compilers.

Allen was also “an enormously kind
and encouraging manager,” recalls
Paula Newman, a retired computer

F
RANCES E. ALLEN, an Ameri-
can computer scientist, ACM
Fellow, and the first female
recipient of the ACM A.M.
Turing Award (2006), passed

away on Aug. 4, 2020—her 88th birth-
day—from complications of Alzheim-
er’s disease.

Allen was raised on a dairy farm in
Peru, NY, without running water or
electricity. She received a BS degree in
mathematics from the New York State
College for Teachers (now the State
University of New York at Albany).
Inspired by a beloved math teacher,
and by the example of her mother,
who had also been a grade-school
teacher, Allen started teaching high
school math. She needed a master’s
degree to be certified, so she enrolled
in a mathematics master’s program
at the University of Michigan. There
she took one of the first courses ever
offered in computer programming.
Fran interviewed with IBM on campus
and took their offered job with the in-
tent of paying off her student loans
before pursuing her intended career
as a teacher.

IBM announced FORTRAN, one of
the first high-level languages, exactly
two months before Allen’s arrival in
July 1957. She was immediately put to
work teaching the language to IBM sci-
entists. To teach herself how the FOR-
TRAN compiler worked, she read its
source code. Thus began her interest in
compilers. Her “throwaway job,” as she
called it at first, proved so compelling

scientist who reported to Allen in the
late 1960s. “When I saw a letter … sug-
gesting a somewhat different method
of program structure analysis, she al-
lowed me to pursue that approach, and
even sent me to an IBM-wide employee
appreciation event in Montreal as re-
ward for my work. I believe she contin-
ued that management style for the rest
of her career.”

These sentiments are echoed by
IBM’s current CEO, Arvind Krishna:
“Fran spent her life working to ad-
vance the field of computing. … Apart
from her technical genius, we remem-
ber Fran for her love of teaching and
her passion to inspire and mentor oth-
ers.” To honor Allen and her efforts,
IBM established the Frances E. Allen
Women in Technology Mentoring
Award in 2000.

Allen took sabbaticals at New York
University in 1970 and at Stanford
University in 1977. “Fran was the only
woman professor I had in graduate
school,” observed Anita Borg (1949–
2003), who founded the Institute for
Women and Technology (renamed
AnitaB.org in 2017).

Among many honors, Allen was
awarded the Computer Society Bab-
bage Award in 1997, the Augusta Ada
Lovelace Award from the Association
for Women in Computing in 2002, and
the IEEE Computer Pioneer Award in
2004. Two years later, she was the first
woman recipient of the ACM A.M. Tur-
ing Award (19 years after her colleague
Cocke), “For pioneering contributions
to the theory and practice of optimiz-
ing compiler techniques that laid the
foundation for modern optimizing
compilers and automatic parallel ex-
ecutions.”

A member of the National Academy
of Engineering and the American Phil-
osophical Society, Allen was also a Fel-
low of the American Academy of Arts
and Sciences, the ACM, the IEEE, and
the Computer History Museum. IEEE
established the Frances E. Allen medal,

“Fran was a lovely
warm person and a
strong feminist.”
BARBARA SIMONS
ACM PRESIDENT, 1998–2000

http://dx.doi.org/10.1145/3418560
http://AnitaB.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 19

news
P

H
O

T
O

 ©
 F

R
A

N
K

 B
E

C
E

C
A

R
R

A
,

J
R

.
–

 U
S

A
 T

O
D

A
Y

 N
E

T
W

O
R

K

to be awarded for the first time in 2022,
to honor her career achievements.

“Fran was not swayed by short-term
recognition, but instead focused on
the significance of the research and
technical problems that she worked on
and encouraged her team to work on,”
notes ACM fellow Vivek Sarkar. She in-
stalled a ‘shoot for the moon’ attitude
in all of us.”

Allen also loved exploring, climb-
ing mountains in Austria and China,
including a 14,000-foot peak in the Hi-
malayas, and traveling across the Arc-
tic without maps or radio contact. She
even established a new route across
Ellesmere Island in the Arctic Archipel-
ago, the most northerly point of land in
Canada.

“Fran was a lovely warm person
and a strong feminist,” recalled ACM
Fellow and past president Barbara Si-
mons. “I had the pleasure of knowing
Fran as a colleague and a friend.”

Simson Garfinkel is the U.S. Census Bureau’s Senior
Computer Scientist for Confidentiality and a part-time
faculty member at George Washington University in
Washington, D.C., USA. He is an ACM Fellow.

Eugene H. Spafford is a professor of computer science
and the founder and executive director emeritus of
the Center for Education and Research in Information
Assurance and Security at Purdue University, W. Lafayette,
IN, USA. He is an ACM Fellow.

Copyright held by authors/owners.

“Apart from her
technical genius,
we remember Fran
for her love
of teaching and her
passion to inspire
and mentor others.”
ARVIND KRISHNA
IBM CEO

20 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

V
viewpoints

email and smartphones, has become a
player in the automotive IoT software
market with its QNX operating system,
which runs on some 150 million vehi-
cles.11 Green Hills Software competes in
this business as well, along with Google.
Automakers, auto parts vendors, and ro-
botics and AI startups, all have been
learning how to design the AI and ma-
chine-learning applications needed to
process data and warn drivers or provide
instructions to the vehicle subsystems.

Electric vehicles rely heavily on com-
puters to control their functions, and this
characteristic makes them especially
suitable for self-driving technology. Not
surprisingly, Tesla vehicles deploying
driver-assist technology have logged
nearly two billion miles and the company
probably leads the industry in data collec-
tion.14 Tesla was able to commercialize
its Autopilot system because it used cam-
eras, radar, and ultrasound, rather than
the more expensive lidar. However, Tesla
vehicles are still somewhere between Lev-
els 2 and 3—far from the goal of autono-
mous driving. They also have been in-

A
UTOMA K E RS HAVE ALREADY

spent at least $16 billion de-
veloping self-driving tech-
nology, with the promise of
someday creating fully au-

tonomous vehicles.2 What has been the
result? Although it seems that we have
more promises than actual progress,
some encouraging experiments are now
under way, and there have been interme-
diate benefits in the form of driver-assist
safety features.

Engineers started on this quest to au-
tomate driving several decades ago, when
passenger vehicles first began deploying
cameras, radar, and limited software
controls. In the 1990s, automakers intro-
duced radar-based adaptive cruise con-
trol and dynamic traction control for
braking. In the 2000s, they introduced
lane-departure warning and driver-assist
parking technology. Since 2017, Waymo,
Uber, Daimler, the U.S. Postal Service,
and several other automakers all have
launched experiments with robo-taxis or
robo-trucks, targeting Level 4 Autonomy
(see the sidebar on the last page of this

column).4,13 If and when this technology
will make its way into your average pas-
senger vehicle is uncertain, but there is
no doubt that companies have been mov-
ing closer toward their goal.

The basic technologies and engineer-
ing skills needed to make self-driving ve-
hicles more widely available already ex-
ist. The most popular camera packages
from Mobileye (purchased by Intel in
2017) and OmniVision are relatively in-
expensive. However, some self-driving
systems deploy much more expensive
lasers (usually referred to as “lidar” for
Light Detection and Ranging) as well as
radar and ultrasound sensors, provided
by firms such as Ibeo, Velodyne, and Au-
toliv. Major auto parts and technology
suppliers, led by Bosch, Denso, Aptiv
(formerly Delphi Automotive, which
also purchased the AI and robotics soft-
ware company NuTonomy in 2017),
TRW, and Continental, assemble com-
ponents into various driver-assist sys-
tems and use microprocessors from In-
tel-Mobileye, Nvidia, and ARM.
Blackberry, formerly a pioneer in secure

Technology Strategy
and Management
Self-Driving Vehicle Technology:
Progress and Promises
Seeking the answer to the elusive question, ‘Are we there yet’?

DOI:10.1145/3417074 Michael A. Cusumano

http://dx.doi.org/10.1145/3417074

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 21

viewpoints

V
I

M
A

G
E

R
Y

 B
Y

 P
E

T
O

V
A

R
G

A

but it has proceeded largely on its own.
Other automakers and ride-sharing

businesses have formed partnerships
that now compete with each other,
though they often rely on the same sup-
pliers.5 For example, some 80% of vehi-
cles with Advanced Driver Assistance Sys-
tems (ADAS) already use Intel-Mobileye
cameras, chips, and software.6 Volkswa-
gen is at the center of one group built
around Argo AI technology, with Ford as a
major investor. This alliance has loose or
indirect ties to Mercedes-Benz (Daimler),
BMW, Toyota, and GM (which bought
Cruise Automation in 2016). Other allies
are Lyft and Didi. In addition to Argo AI,
technology providers include Bosch,
Nvidia, Microsoft, Apple, Huawei, Qual-
comm, Baidu/Apollo, TomTom, Waymo,
and Here (mapping technology). BMW
and Mercedes-Benz have a separate alli-
ance, with loose ties to Renault-Nissan,
Geely in China, and Audi (a Volkswagen
subsidiary). They rely on many of the
same suppliers as well as IBM. Toyota
leads another group, with ties to GM,
Geely, BMW, Mercedes-Benz, and Uber.

volved in several high-profile accidents
when drivers stopped paying attention,
so the company now insists that drivers
keep their hands on the steering wheel
and eyes on the road.

Another key player is Waymo, found-
ed as a Google R&D project in 2009 and
spun off as a fully owned subsidiary in
2016. Waymo does not manufacture cars
but has partnered with Fiat-Chrysler,
Audi, Toyota, and Jaguar to retrofit their
vehicles. It also makes a lot of its own
hardware and software to reduce costs.
Waymo’s technology is more advanced
than Tesla, and is presumed to operate at
Level 4—but with caveats. The vehicles
drive mainly on predefined routes and
rely on an expensive combination of li-
dar, cameras, and radar, as well as hu-
man drivers for backup. Since March
2019, Waymo has been operating 600 au-
tonomous vehicles and claims the lead in
Level 4 data, with approximately 20 mil-
lion miles logged on public roads.16 Since
mid-2019, Waymo also has been operat-
ing a robo-taxi pilot in California, offer-
ing thousands of rides each month.7 Al-

though it has lost billions of dollars,
Waymo’s ultimate goals are to offer ride-
sharing services with tens of thousands
of vehicles (perhaps with Uber and Lyft as
partners) and to license technology to au-
tomakers and service providers. To ex-
pand its ride-sharing business, Waymo
has ordered 62,000 Chrysler Pacifica vans
and another 20,000 Jaguar I-Pace cars.10

Even automakers with modest finan-
cial resources can now buy access to self-
driving technology. Several companies
provide turnkey driver-assist or semi-
autonomous driving systems; others fo-
cus on data and simulation software,
sensor hardware (cameras, lidar, radar,
and ultrasound), mapping and location-
based software, and vehicle communi-
cations systems.5 But there is a problem:
Exactly what combination of hardware
and software works best remains un-
clear, and there is, as yet, no single in-
dustrywide “platform” or common ap-
proach for self-driving vehicle
technology and communications. Tesla
could have been an industry leader by
making its software platform available,

22 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

makers are exploring how to enable own-
ers to share their vehicles when not in use
and earn some revenue from this activity,
rather than relying on Uber or other inter-
mediaries.

Conclusion
In sum, there currently are several exper-
iments with robo-taxis and robo-trucks
on prescribed routes, but still with hu-
man drivers as backups. Full automation
at Level 4 or 5 remains a distant goal for
the average consumer, and it is difficult
to pinpoint a timeframe when this will
become a reality. Meanwhile, all this R&D
is not for naught. Even if automakers
never advance much beyond Level 3 over
the next decade, driver-assist technology
has already made driving safer. Assist-
ing rather than replacing drivers should
perhaps be our end goal, rather than full
automation.

a See M.A. Cusumano, ‘Platformizing’ a bad
business does not make it a good business,
Communications (Jan. 2020).

References
1. Abuelsamid, S. iOnRoad collision alerts? There’s an

app for that. Motor Trend (Feb. 16, 2012).
2. Baldwin, R. Self-driving-car research has cost $16

billion. What do we have to show for it? Car and Driver
(Feb. 20, 2020).

3. Cusumano, M.A., Gawer, A., and Yoffie, D.B. The
Business of Platforms: Strategy in the Age of Digital
Competition, Innovation, and Power. (2019), 223–226.

4. Davies, Alex. Self-driving trucks are now delivering
refrigerators. Wired (Nov. 13, 2017).

5. Firstmile VC, Decoding the autonomous driving
landscape. Medium.com. (July 31, 2019).

6. Gedalyahu, D.B. Intel: Mobileye is our fastest growing
business. En.Globes.Co.Il (Nov. 6, 2019).

7. Korosec, K. Waymo’s robotaxi pilot surpassed 6,200
riders in its first month in California. TechCrunch
(Sept. 16, 2019).

8. Morris, D. Z. Today’s cars are parked 95% of the time.
Fortune. (Mar. 16, 2016).

9. NAV Alliance, NAV alliance picks up speed with new
members. Press release, September 23, 2019.

10. Rushe, D. ‘I’m so done with driving’: is the robot car
revolution finally near? The Guardian, March 10, 2019.

11. St. John, A. BlackBerry CEO talks competitors,
autonomy at CES. Automotive News. (Jan. 8, 2020).

12. Tsyktopr. V. LIDAR vs radar vs sonar: Which is better
for self-driving cars? Cyberpulse (May 28, 2018).

13. TU-Automotive. Robo-trucks are where the self-
driving revolution begins. IoTWorldToday.com (May
28, 2019).

14. Udayan, T. Autonomous vehicle technology companies
to watch out for. IoTforAll (Feb. 4, 2020).

15. Voigt, A. Mercedes-Benz and Nvidia partner on
autonomous driving—numerous thoughts and
questions. CleanTechnica (June 23, 2020).

16. Wiggers, K. Waymos’ autonomous cars have driving 20
million miles. VentureBeat (Jan. 6, 2020).

Michael A. Cusumano (cusumano@mit.edu) is Deputy
Dean and SMR Distinguished Professor at the MIT Sloan
School of Management, and co-author of The Business of
Platforms (2019).

The author thanks Annabelle Gawer and David Yoffie, as
well as the Communications Viewpoints co-chairs, for
their comments.

Copyright held by author.

Mercedes-Benz, which has been working
with BMW, Audi, and Bosch, launched
another partnership in June 2020 with
Nvidia to develop a unique software-de-
fined self-driving architecture by 2024.15
It is not clear how this effort will impact
other Daimler/Mercedes-Benz partner-
ships. Various automakers and technol-
ogy vendors, including Intel-Mobileye,
are also testing self-driving technology in
ride-sharing or ride-hailing ventures
while partnering with Uber, Lyft, and
Didi—and providing competition to
Waymo.

Despite the intensifying competition,
there are good arguments for more coop-
eration. First, the technology remains ex-
pensive to develop, especially as compa-
nies try to move beyond Level 2. Cameras
are necessary to view road signs and traf-
fic lights, but they perform poorly in bad
weather. Radar is cheap and able to de-
tect the range and speed of distant ob-
jects, but radar images are not as precise
as the three-dimensional pictures lidar
generates, albeit at considerable ex-
pense. Ultrasound or land-based sonar,
used extensively in Tesla vehicles, pro-
vides a 360-degree view that compensates
for camera blind spots and aids in park-
ing, but it can only detect nearby objects
and does not replace camera vision.12

Second, autonomous driving requires
massive amounts of data to refine the ve-
hicle control systems. The more frag-
mented the market and variations in sen-
sor combinations and algorithms, the
less usable data available to any one man-
ufacturer or platform provider.

Third, it could be helpful for vehicles
to communicate with each other and
with some traffic control systems, as air-
planes do. This type of communication
does not solve the problem of a pedestri-
an suddenly appearing in front of a mov-
ing car, but it could reduce accidents with
other vehicles, especially if we retrofit
older cars and trucks with inexpensive
communications devices or smartphone
cameras.1 The Networking for Autono-
mous Vehicles Alliance (see https://nav-
alliance.org/), founded by Bosch, Conti-
nental, Marvell, NVIDIA, and Volkswagen
of America, is also working “to provide a
platform for the automotive industry to
develop the next generation of in-vehicle
network infrastructure for autonomous
vehicles,” though it has yet to set any
global standards.9

Ride-sharing and ride-hailing compa-
nies are likely to buy or lease fleets of self-
driving vehicles to get rid of driver costs,
their main expense, and their large-scale
purchases could help reduce costs for the
automakers. However, the ride-sharing
companies are already losing billions of
dollars per year, and they will have to take
on the enormous costs of owning or leas-
ing millions of their own vehicles.a Self-
driving technology might even someday
eliminate demand from companies like
Uber, Lyft, and Didi.3 Most privately
owned automobiles sit idle approximate-
ly 95% of the time.8 Tesla and other auto-

Level 1—Driver Assistance:
The system and the human driver
share control; for example, radar-
based adaptive cruise control operates
the engine and braking, and assists in
lane control while the driver steers.

Level 2—Partial Automation:
The system controls vehicle operations
such as acceleration, braking, and
steering, but drivers must constantly
monitor operations and usually need
to hold the steering wheel for the
autonomous system to operate. Assists
steering, lane changing, traffic-jam
driving (low-speed version of cruise
control), and overtaking.

Level 3—Conditional Automation:
The system controls most vehicle
operations, but driver monitoring and
intervention are still essential. Drivers
may be “hands off” on highways for
short periods. Assists lane changes,
parking, and traffic-jam driving.

Level 4—High Automation:
The system supports self-driving with
no or minimal driver intervention,
but primarily in mapped locations.
Automated lane changing and other
features available.

Level 5—Full Automation:
The system requires no human
intervention, as in a robo-taxi or
robo-truck.

This table is based on various sources,
including: Shuttleworth, J. SAE Standards
news: J3016 automated-driving graphic
update, SAE.org News, January 7, 2019; and
Madhavan, R. How self-driving cars work: a
simple overview. Emerj.com, June 3, 2019.

Levels of
Autonomy in
Self-Driving
Vehicles

http://Medium.com
mailto:cusumano@mit.edu
https://nav-alliance.org/
http://SAE.org
http://emerj.com
http://IoTWorldToday.com
https://nav-alliance.org/

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 23

V V
viewpoints

I
M

A
G

E
 B

Y
 K

E
N

 S
C

H
U

L
Z

E

ourselves.” The same is true of my
quote from the early crypto wars re-
garding export controls: “Pandora’s
Cat Is Out of the Barn, and the Genie
Won’t Go Back in the Closet.” We are
apparently reaching a crossroads at
which we must reconsider potentially
everything, and especially how it af-
fects the future.

Priorities Among Competing Goals
Human civilization does not tend to
agree among issues such as fairness,
equality, safety, security, privacy, and
self-determination (for example). With

T
HIS COLUMN CONSIDERS some
challenges for the future, re-
flecting on what we might
have learned by now—and
what we systemically might

need to do differently. Previous Inside
Risks columns have suggested that
some fundamental changes are ur-
gently needed relating to computer sys-
tem trustworthiness.a Similar conclu-
sions would also seem to apply to
natural and human issues (for exam-
ple, biological pandemics, climate
change, decaying infrastructures, so-
cial inequality), and—more general-
ly—being respectful of science and evi-
dent realities. To a first approximation
here, I suggest almost everything is po-
tentially interconnected with almost
everything else. Thus, we need moral,
ethical, and science-based approaches
that respect the interrelations.

Some commonalities across differ-
ent disciplines, consequent risks, and
what might need improvement are
considered here. In particular, the nov-
el coronavirus (COVID-19) has given us
an opportunity to reconsider many is-
sues relating to human health, eco-
nomic well-being (of individuals, aca-
demia, and businesses), domestic and
international travel, all group activities
(cultural, athletic, and so forth), and
long-term survival of our planet in the

a For example, see “How Might We Increase
System Trustworthiness?” Communications
(Oct. 2019); http://www.csl.sri.com/neumann/
cacm247.pdf

face of natural and technological cri-
ses. However, there are also some use-
ful lessons that might be learned from
computer viruses, malware, and inade-
quate system integrity, some of which
are relevant to the other problems—
such as computer modeling and retro-
spective analysis of disasters, supply-
chain integrity, and protecting
whistle-blowers.

A quote from Jane Goodall in an in-
terview in April 2016 seems more
broadly relevant here than in its origi-
nal context: “If we carry on with busi-
ness as usual, we’re going to destroy

Inside Risks
A Holistic View
of Future Risks
Almost everything is somehow interrelated with
everything else—and that should not surprise us.

DOI:10.1145/3417095 Peter G. Neumann

http://dx.doi.org/10.1145/3417095
http://www.csl.sri.com/neumann/cacm247.pdf
http://www.csl.sri.com/neumann/cacm247.pdf

24 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

pandemics, climate change, and the
planet’s environment—along with
their implications for human health
and well-being, and resource exhaus-
tion of rare elements.

A closely related principle of perva-
sive holism invokes a big-picture view of
the Einstein principle, in which every-
thing is potentially in scope unless ex-
plicitly ruled out—for example, for rea-
sons of impossibility, feasibility, or
perhaps for mistaken decisions about
costs, when the long-term overall ben-
efits would dramatically outweigh the
short-term savings. Pervasive holism
represents the ability to consider all
relevant factors, and the ensuing risks.
It is relevant broadly across many disci-
plines. For example, it is essential in
the design of computer-communica-
tion systems. It encourages systems to
be designed to compensate for a wide
range of threats and adversities, in-
cluding some that might not be antici-
pated a priori. Similarly, climate
change is causatively linked with ex-
treme weather conditions, melting gla-
ciers, more disastrous fires, human ac-
tivities, fossil fuels, changes in
agriculture, and—with nasty feed-
back—greater demands for air condi-
tioning and refrigerants such as hydro-
fluorocarbons that are making the
problems worse. On the positive side,
atmospheric and sea changes have
been observed during the pandemic
shutdown (with reduced fuel consump-
tion and much less travel), reinforcing
arguments that alternatives to fossil fu-
els are urgently needed (especially as
they are becoming increasingly eco-
nomical and competitive).

COVID-19, economical well-being,
health care, climate change, and oth-
er issues (some of which are consid-
ered here), if we cannot agree on the
basic goals, we will never reach what-
ever they might have been—especially
if the goals appear to compete with
each other.

The Importance of
Fundamental Principles
Numerous principles for computer sys-
tem security and integrity have been
known for many years, and occasional-
ly practiced seriously. Some corre-
sponding principles might be consid-
ered more broadly in the combined
context of risks in engineering com-
puter-related systems, but also in natu-
ral systems.

Albert Einstein wrote “It can scarce-
ly be denied that the supreme goal of
all theory is to make the irreducible ba-
sic elements as simple and as few as
possible without having to surrender
the adequate representation of a single
datum of experience.”b This is often
paraphrased as “Everything should be
made as simple as possible, but no sim-
pler.” Although the longer statement
could be thought of as applicable to try-
ing to explain things as they are (for ex-
ample, the universe), the simplified
version (“should be made”) is also fun-
damental to the development of new
computer systems, as well as in plan-
ning proactively for potential catastro-
phes and collapsing infrastructures.

This principle, together with princi-
ples relating to transparency, account-
ability, and scientific integrity, suggest
dealing openly and appropriately with
risks, while being respectful of science
and reality throughout. For example,
we tend to make huge mistakes by
stressing short-term gains (particularly
financial), while ignoring the long-
term risks (including everything else).
Unfortunately, the gains are unevenly
distributed, as the rich get richer, and
the poor tend to get poorer and suffer
much more.

The principles relating to com-
pleteness are particularly critical to
computer system design, implemen-
tation, applications, and human inter-
faces, but also regarding responses to

b See https://quoteinvestigator.com/2011/05/13/
einstein-simple/

Numerous principles
for computer system
security and integrity
have been known
for many years,
and occasionally
practiced seriously.

Advertise with ACM!

Reach the innovators
and thought leaders

working at the
cutting edge
of computing

and information
technology through

ACM’s magazines,
websites

and newsletters.

Request a media kit
with specifications

and pricing:

Ilia Rodriguez
+1 212-626-0686

acmmediasales@acm.org

◊◆◊◆◊

https://quoteinvestigator.com/2011/05/13/einstein-simple/
mailto:acmmediasales@acm.org
https://quoteinvestigator.com/2011/05/13/einstein-simple/

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 25

viewpoints

Many nations have clearly realized
that careful application of scientific
analysis is always desirable, but it can
be misused or misapplied. In confront-
ing pandemics, massive immunization
programs must be preceded by exten-
sive testing, without which they can
have serious consequences (including
organ failures, deaths, iatrogenic ef-
fects, and in some cases allergic reac-
tions such as anaphylaxis). In pharma-
c e u t i c a l s , s o m e e f f e c t s a r e
disingenuously called ‘side-effects’—
whereas in many cases these effects are
well known to have occurred (and are
often extensively enumerated in the la-
beling). However, the effects of defor-
estation, pesticides, toxic environ-
ments (water, air, polluted oceans),
non-recyclable garbage, overuse of an-
tibiotics, and so on should by now all
be well recognized as long-term risks.

In today’s novel coronavirus and its
ongoing mutations, a holistic approach
requires anticipating human physical
and mental health factors, and their in-
teractions with economic factors and
social equality (all persons are suppos-
edly created equal, but usually not
treated accordingly—but what about
other creatures?), along with future im-
plications, globally rather than just lo-
cally. It also requires understanding
potential long-term damage—for ex-
ample, effects on heart, brain, and oth-
er organs are still unknown. Fully an-
ticipating the consequences of
insurance policies that would not allow
existing preconditions is also a major
issue, in light of the huge numbers of
COVID-19 infections worldwide. Equal-
ity in almost everything is desirable, es-
pecially in education when home
schooling is impossible, broadband ac-
cess is spotty or nonexistent, and the
lack of ubiquitous Internet-accessible
devices is a show-stopper for many chil-
dren. Equal opportunity to vote is also
critical, but is being badly abused. Fur-
thermore, spreading disinformation
and other forms of disruption can be
especially damaging in all of the pre-
ceding cases. So, many of these issues
are actually interrelated. As one further
example of the extent of interrelation-
ships and interlocking dependencies,
the realization that arctic glacial melt-
ing is releasing methane and possibly
ancient viruses from earlier pandemics
is also relevant.

Principles involving controllability,
adaptability, and predictability require
better understanding of the impor-
tance of a priori requirements, as well
as the vagaries of models, designs, de-
velopment, implementation, and situ-
ational awareness in real time. These
are vital in computer system develop-
ment. In pandemics, these principles
should help reduce the uncertainties
of taking different approaches to limit-
ing propagation of contagion, severity
of cases, duration of disruption, extent
of acquired immunities, and above all
a willingness to accept reality and sci-
entific knowledge.

A caveat is needed here: The preced-
ing principles can be used effectively
by people who deeply understand the
fields in which they are working—and
who also have a willingness to work
well with colleagues with a better un-
derstanding of other areas. In the ab-
sence of such knowledge and willing-
ness, the principles are likely to be very
poorly misapplied. Humility is a virtue
in this regard.

Legal and Ethical Principles
In the social and economic arena, there
is a similar need for close attention to
the core legal principles driving priva-
cy, antitrust, labor rights, environmen-
tal damage, and so on. There is a small
but growing group of legal scholars
who are revisiting our legal founda-
tions, in an overarching framework
they call an approach to ‘law and politi-
cal economy’, somewhat in reaction to
the very influential ‘law and economics’

Adherence to
ethical principles is
of course also likely
to contribute to
human integrity,
as well as to
transparency,
accountability,
and reality.

approach that originated from the Uni-
versity of Chicago.c

Adherence to ethical principles is of
course also likely to contribute to hu-
man integrity, as well as to transparen-
cy, accountability, and reality.

Models, Predictions, and Planning
Creating realistic models for compu-
tational or other problems consid-
ered here is always an art form. A se-
lected model may itself be
fundamentally divergent from reality.
Assumptions made may be specula-
tive, or in some cases intentionally
biased to enable the model to justify
preconceived goals. (With statistics,
anything can be ‘proven’.) Further-
more, static models are unable to
adapt to changing events, so the
model must be adaptable to evolving
realities and the emergence of better
knowledge. This is true of pandem-
ics, climate change, as well as com-
puter system behavioral modeling.

Having well-designed models that
provide transparency, respect reality,
and are mathematically sound is very
important—in order to be able to rea-
son sensibly. However, because mod-
els inherently represent abstractions
of reality, reasoning about models typi-
cally introduces discrepancies between
the models and reality. Predicting the
future based on erroneous models and
erroneous logic is not a path to suc-
cess. Similar remarks apply to statisti-
cal analysis of inherently multidimen-
sional problems. These issues have
clearly been raised in predicting the
progress of pandemics, climate
change, and the trustworthiness of
computer systems (for example). Al-
though this is a particularly fundamen-
tal area, it deserves much more study.
However, when evidence clearly dem-
onstrates poor results, it is time to reas-
sess failed remediations.

Testing and Verifying
Testing finds problems, but cannot
find the absence of problems. Verifica-
tion can find some of the problems, but
many others are beyond routine analy-
sis—such as side channels, hardware
attacks, and other things that might
not be included in threat models. Thus,

c See https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=3547312

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3547312
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3547312

26 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

points of failure. In addition, due to
the lack of alternatives, product quality
suffers when market power is abused,
due to the lack of alternatives.e

Principles of robust and resilient
system design, both industrial and
computer related, suggest that hav-
ing many distributed and roughly
commensurate producers or proto-
col participants is preferable to high-
ly centralized structures. The latter
might be superficially more efficient,
but could mask dramatic failure
modes. This notion also shows up in
ecology, where diverse and vibrant
farm ecosystems are typically more
resilient than crop monocultures.
Furthermore, concentrated econom-
ical power embodied by monopolies
is easily converted into political
power, leading to contribution-fa-
voring legislation and rising eco-
nomic inequality.

The advantages of having diverse
and widely dispersed (but well coordi-
nated and carefully monitored) actors
seem to be preferable in improving
distributed computer-system resilien-
cy, economies of industrial organiza-
tions, approaches to pandemics, and
thriving ecosystems.

System Integrity
Overall system integrity is also an is-
sue. For example, election integrity is
dependent not just on voting machines
and paper ballots. It also depends on
the trustworthiness of registration da-
tabases, tabulation and auditing pro-
cesses, as well as (for example) the
avoidance or tolerance of distorting ef-
fects such as gerrymandering, selective
disenfranchisement, and rampant use
of disinformation. Some efforts re-
quire effective national leadership,
and in some cases extensive interna-
tional cooperation.

Protecting Protectors
and Truth of Information
Reporting of systemic flaws newly
found by white-hat hackers has gen-
erally become carefully managed in
order to avoid flagrant misuse; how-
ever, the market for zero-day flaws
remains lucrative. Whistle-blowers

e See https://prospect.org/power/monopoly-
misrepresentation-and-malpractice-3m-
earplugs/

even a combination of both may not be
enough, which applies to computer
algorithms, protocols, software, and
hardware, but also to some of the
other areas considered here. For ex-
ample, biological testing and appli-
cations of artificial intelligence and
deep learning need to have a sound-
er basis that could eliminate vastly
too many false positives and false
negatives, as well as other forms of
unrealistic results.

Formal methods are increasingly
being applied to software hypervisors
(for example, CertiKOS, seL4, and the
Green Hills Integrity Multivisor) and
to hardware (for example, CHERI,
Centaur). Formal modeling of biologi-
cal pathways, techniques to stimulate
immunities, effects of climate change,
short- versus long-term consequenc-
es, and many other possible approach-
es could be considered using formal
analysis. Of particular interest might
be formal analysis of requirements,
models, and analysis techniques in
other areas considered here.

System and Supply-Chain Integrity
The availability and integrity of deliv-
ered computer-related systems and
medical supplies clearly present enor-
mous problems, which are likely to be
exacerbated in times of crisis. Over re-
cent years, the implementation of
many entities has increasingly been
outsourced and off-shored, including
computer hardware fabrication, just-
in-time delivery of automobile parts,
hospital health-care necessities, and
even food. It should be obvious that
our computer systems, medical sup-
plies, and other resources may be in-
adequately protected from supply-
chain disruptions, tampering, and
even fraud.

The effects of monopolized indus-
trial sectors are notable here. The con-
centration of industrial production of
various types in a few very large play-
ers (most prominently and visibly in
the tech sector, but it is pervasive
across the board with hidden mo-
nopolies galore, for example, in
pharmaceuticals and health-care
management).d It effectively creates
fewer but far more consequential

d See https://prospect.org/health/hidden-mo-
nopolies-raise-drug-prices/

For further information
and to submit your

manuscript,
visit csur.acm.org

ACM Computing Surveys
(CSUR) publishes
comprehensive,
readable tutorials and
survey papers that give
guided tours through
the literature and
explain topics to those
who seek to learn the
basics of areas outside
their specialties. These
carefully planned and
presented introductions
are also an excellent
way for professionals to
develop perspectives on,
and identify trends in,
complex technologies.

2018 JOURNAL IMPACT
FACTOR: 6.131

ACM Computing
Surveys (CSUR)

https://prospect.org/power/monopoly-misrepresentation-and-malpractice-3m-earplugs/
https://prospect.org/health/hidden-monopolies-raise-drug-prices/
http://csur.acm.org
https://prospect.org/health/hidden-monopolies-raise-drug-prices/
https://prospect.org/power/monopoly-misrepresentation-and-malpractice-3m-earplugs/
https://prospect.org/power/monopoly-misrepresentation-and-malpractice-3m-earplugs/

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 27

viewpoints

Conclusion
Willingness to accept and respond to
reality is fundamental to avoiding
risks. The unknown unknowns are al-
ways risky, but can be minimized some-
what by proactively seeking to identify
the potential risks, and reflecting on
Murphy’s Law—rather than ignoring
the emergence of certain presumed
rare disasters that have been emerging
much more often, which deserve a prio-
ri attention (rather than relying on case-
by-case a posteriori remediation).

This clearly applies to infrastruc-
tures, supply chains, and medical pre-
paredness, among other topics con-
sidered here—or further topics that
could have been included here but
were not even mentioned, with the un-
fortunate consequence of making the
discussion too simple, in conflict with
the Einstein principle.

As has been frequently noted, but
which is nevertheless highly relevant
here, We Are All In This Together, and Al-
most Everything Is Increasingly Becom-
ing Interrelated—for better or for worse.
Isolated defensive actions have very lim-
ited value; your own actions can affect
others. Retrogressive governmental ac-
tions are counterproductive. Biological
viruses and computer risks can both
propagate globally with amazing rapidi-
ty. In any event, you must protect your-
self, while also respecting the well-being
of others. Wearing a mask and isolating
yourself are akin to being intensely secu-
rity-aware with respect to computer vi-
ruses and phishing attacks, having back-
ups to defend against ransomware
attacks, and being cognizant of reality.

Ultimately, more altruistic foresight
could help to avoid all sorts of undesirable
events, such as pandemics, climate
change, environmental disasters, global
extinction of species, disparities in educa-
tion and economic well-being, and unnec-
essary losses of human life—as well as
crossover combinations of these (for ex-
ample, as varied as the Deepwater Horizon
fiasco, deforestation of the Amazon, the
demise of honey bees, and wars). And yet,
this brief summary is only a beginning.

Peter G. Neumann (neumann@csl.sri.com) is Chief
Scientist of the SRI International Computer Science
Lab, and has moderated the ACM Risks Forum since its
beginning in 1985. He is grateful to Prashanth Mundkur
and Tom Van Vleck for helping considerably enrich the
holistic perspective in this column.

Copyright held by author.

have often subsequently been victims
of character assassinations, particu-
larly those that are fabricated to dis-
tract from would-be exposure of mis-
deeds. Also, numerous medical
experts who have dealt with legiti-
mate scientific evidence regarding
COVID-19 have been treated as ille-
gitimate purveyors of fake informa-
tion, as if they had been whistle-
blowers spreading false accusations.
The same is true of climate change,
which requires careful consideration
of the underlying science. Conspira-
cy theories continue to appear. The
principles of transparency and ac-
countability are particularly impor-
tant in these contexts.

Privacy and Related Concerns
Respecting personal privacy is a ubiq-
uitous challenge in every computer-
related activity, particularly in the
presence of overreaches in wide-
spread surveillance, the desire for
cryptographic backdoors for law en-
forcement, and detailed statistical re-
porting. In addition, addressing ram-
pant disinformation and hate speech,
as well as attacks on whistle-blowers,
are in conflict while trying to protect
free speech. Some of these and other
issues are particularly relevant to pan-
demics (for example, with the need
for intensive monitoring and large-
scale fine-grained contact tracing)—
as well as almost everything involving
big data.

What Is Missing from This
Conceptual Big-Picture View?
The discussion here may seem some-
what disconnected, and the desire for
holistic approaches overly ambitious.
However, it is becoming ever clearer
that the topics considered here are

interrelated in ways that are some-
times not obvious. For example, man-
made disruptions of nature seem to
be biting back at us in various ways,
including climate change, health,
eco-balance, pollution, and animal-
human crossovers of pandemics.
This column is merely a high-level at-
tempt to find commonality in what
may once have appeared to be dispa-
rate subjects. Putting all the pieces
together with adequate foresight
presents major challenges. Every-
thing along the way needs precise
definitions, descriptions, specifica-
tions, and logical thought, including
the dependencies among the constit-
uent elements. Well-defined realistic
abstractions are important, along
with well-defined refinements that can
be used to determine overall consisten-
cy and predictable results. Only then
can rational conclusions be reached
that have any bearing on reality.

The sense of composing the pieces
with predictable assurance is concep-
tually understood in theory with re-
spect to computer systems, although
not often observed in practice. A goal
here would be to mirror such ap-
proaches with respect to other areas,
such as biological processes, pandem-
ic spreading, environmental prob-
lems, and other socioeconomic is-
sues, to give them a more scientific
and logical basis. Understanding the
legal foundations of markets and so-
cial interactions is also a basic part of
what needs to be included in the holis-
tic view, along with the technological,
engineering, and other scientific prin-
ciples. Identifying any common ab-
stractions and their potential interac-
tions could be very helpful.

In the opposite direction, what
might computer technology learn
from the ongoing natural-world prob-
lems noted here? For example, our
system models and risk models for
trustworthy computer systems gener-
ally fail to consider the risks holisti-
cally—for example, neglecting those
that are external to the technology.
Predicting any consequences on the
basis of questionable models is also a
major risk, especially if the results su-
perficially seem generally believable—
and what one might like to believe.
Thus, we need to learn more from
each other.

Willingness
to accept and
respond to reality
is fundamental
to avoiding risks.

mailto:neumann@csl.sri.com

28 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

V
viewpoints

 Article development led by
 queue.acm.org

no ability to deploy these helpful hints
to improve productivity. Allowing any
two symbols to represent the same con-
cept, for example, is a definite no-no.
Imagine if you could have two types of
braces to delineate blocks of code, just
because two different parts of the pro-
gramming community wanted them, or
if there were multiple syntactic ways to
dereference a variable. The basic idea is
there must be one clear way to do each
thing that a language must do, both for
human understanding and for the sani-
ty of editor developers. Thus, the use of
invisible, or near-invisible, markings in
code, especially tabs and spaces, to indi-
cate structure or syntax.

Invisible and near-invisible mark-
ings bring us to the human part of the
problem—not that code editor au-
thors are not human, but most of us
will not write new editors, though all of
us will use editors. As we all know,

Dear KV,
My team resurrected some old Python
code and brought it up to version 3. The
process was made worse by the new re-
striction of not mixing tabs and spaces
in the source code. An automatic clean-
up that allowed the code to execute by
replacing the tabs with spaces caused a
lot of havoc with the comments at the
ends of lines. Why does anyone make a
language in which white space matters
this much?

White Out

Dear White,
Ever edited a Makefile? Although
there is a long tradition of the signifi-
cant use of white space in program-
ming languages, all traditions need
to change. In Python, many people
have taken issue with the choice to
have white space—and not braces—
to indicate the limits of blocks of
code, but since the developers did
not change their minds on this with
version 3 of Python, I suspect we are
all stuck with it for quite a bit longer,
and I am quite sure that there will be
other languages, big and small, where
white space remains significant.

If I could change one thing in the
minds of all programming language
designers, it would be to impress upon
them—forcefully—the idea that any-
thing that is significant to the syntactic
or structural meaning of a program
must be easily visible to the human

reader, as well as easily understood by
the systems used by developers.

Let’s deal with that last point first.
Making it easy for tools to understand
the structure of software is one of the
keys to having tools that help pro-
grammers prepare proper programs
for computers. Since the earliest days
of software development, program-
mers have tried to build tools that
show them—before the inevitable ed-
it-compile-test-fail-edit endless loop—
where there might be issues in the pro-
gram text. Code editors have added
colorization, syntax highlighting, fold-
ing, and a host of other features in a
desperate, and some might say fruit-
less, attempt to improve the produc-
tivity of programmers.

When a new language comes along,
it is important for these signifiers in
the code to be used consistently; oth-
erwise your editor of choice has little or

Kode Vicious
Sanity vs. Invisible
Markings
Tabs vs. spaces

DOI:10.1145/3417099 George V. Neville-Neil

U+1F4A9

http://dx.doi.org/10.1145/3417099
http://queue.acm.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 29

viewpoints

V once upon a time computers had small
memories and the difference between
a tab, which is a single byte, and a cor-
responding number of spaces (8)
could be a significant difference be-
tween the size of source code stored on
a precious disk, and also transferred,
over whatever primitive and slow bus,
from storage into memory.

Changing the coding standard from
eight spaces to four might improve
things, but let’s face it, none of this has
mattered for several decades. Now, the
only reason for the use of these invisi-
ble markings is to clearly represent the
scope of a piece of code relative to the
pieces of code around it.

In point of fact, it would be better
to pick a single character that is not a
tab and not a space and not normally
used in a program—for example, Uni-
code code point U+1F4A9—and to use
that as the universal indentation char-
acter. Editors would then be free to in-
dent code in any consistent way based
on the user’s preferences. The user
could have any number of blank char-
acters used per indent character—8,
4, 2, some prime number, whatever
they like—and programmers could
choose their very own personal views
of the scope. On disk, this format
would cost only one character (two
bytes) per indent, and if you wanted to
see the indent characters, a common
feature of modern editors, you flip a
switch, and voila, there they all are. Ev-
eryone would be happy, and we would
finally have solved the age-old conun-
drum of tabs vs. spaces.

KV

 Related articles
 on queue.acm.org

File-System Litter
Kode Vicious
https://queue.acm.org/detail.cfm?id=2003323

A Generation Lost in the Bazaar
Poul-Henning Kamp
https://queue.acm.org/detail.cfm?id=2349257

Demo Data as Code
Thomas A. Limoncelli
https://queue.acm.org/detail.cfm?id=3355565

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and co-chair of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

ACM Transactions on Computing for
Healthcare (HEALTH) is the premier journal
for the publication of high-quality original
research papers, survey papers, and
challenge papers that have scienti� c and
technological results pertaining to how
computing is improving healthcare.

For further information and to submit
your manuscript, visit health.acm.org

A multi-disciplinary journal for
high-quality original work on how

computing is improving healthcare

ACM Transactions on
Computing for Healthcare (HEALTH)

https://queue.acm.org/detail.cfm?id=2003323
https://queue.acm.org/detail.cfm?id=2349257
https://queue.acm.org/detail.cfm?id=3355565
mailto:kv@acm.org
http://health.acm.org
http://health.acm.org

30 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

V
viewpoints

I
M

A
G

E
 B

Y
 A

L
E

X
A

N
D

E
R

 S
U

P
E

R
T

R
A

M
P

declaration and management of con-
flicts, as follows.

1. Uniquely identify all authors in
bibliographic data sources, as well
as all authors, reviewers, and meta-
reviewers in manuscript management
systems. (Meta-reviewers are those
who manage the review process, such
as editors-in-chief and program com-
mittee chairs.)

Duplicate names already make it
impossible to unambiguously identify
by name those involved in the review
process, and even make it difficult for
conference organizers to ensure they
are inviting the right people to join

O
VER THE LAST 70 years of com-
puter science research, our
handling of conflicts of
interest has changed very
little. Each paper’s corre-

sponding author must still manually
declare all their co-authors’ conflicts
of interest, even though they probably
know little about their most senior co-
authors’ recent activities. As top-tier
conference program committees in-
crease past 500 members, many with
common, easily confusable names,
PC chairs with thousands of reviews to
assign cannot possibly double-check
corresponding authors’ manual decla-
rations against their paper’s assigned
reviewers. Nor can reviewers reliably
catch unreported conflicts. Audits at
recent top-tier venues across several
areas of computer science each uncov-
ered more than 100 instances where,
at the first venue, a pair of recent co-
authors failed to declare their conflict
of interest; at the second venue, some-
one was assigned to review a recent
co-author’s submission; and at the
third venue, someone reviewed a sub-
mission written by a prior co-author
from any year. Even the concept of a
conflict deserves closer scrutiny: an au-
dit at yet another recent top-tier venue
edition found more than 100 cases in
which prior co-authors from any year
reviewed each other’s submissions.

These are issues of scale. Seven-

ty years of exponential growth have
turned our little village into a metropo-
lis, and our handling of conflicts of in-
terest (conflicts for short) has not kept
pace with our community’s growth. But
we computer scientists are experts at
scaling up! We have already addressed
issues of scale in many other aspects
of our review processes, including en-
hancements such as double-blind re-
view, multiple submission deadlines,
opportunities for revision and rebut-
tal, and online submission and review
management systems.

It is time for our venues to leverage
existing data sources to improve the

Viewpoint
We Need to Automate
the Declaration of
Conflicts of Interest
Leveraging existing data sources to improve the declaration
and management of authorship conflicts of interest.

DOI:10.1145/3414556 Richard T. Snodgrass and Marianne Winslett

http://dx.doi.org/10.1145/3414556

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 31

viewpoints

V uniquely identified, and the otherg re-
quires only reviewers to be uniquely
identified.3 In the longer run, we recom-
mend that outcalls to a conflict service
be directly supported by manuscript
management systems, so that the sys-
tem can automatically invoke the con-
flict service to augment self-reports of
conflicts before reviewers are assigned.
We also recommend that the authors of
reviewer assignment algorithms extend
them to avoid additional more subtle bi-
ases in the review process, by ensuring
diversity of institutions, localities, and
countries of origin. Computer science
research is now a global enterprise, and
we should take advantage of that diver-
sity throughout the review process.

Villagers might not need to lock
their doors, but metropolis dwellers
would be foolish not to. As village life
slowly gave way to the anonymity of the
big city, our community has had to es-
tablish ethics committees and codes
of ethics, policies on plagiarism, au-
thorship, sexual harassment, and so
on. Automated reporting of observable
conflicts will greatly reduce the big-city
crimes of impersonating others and
deliberately underreporting conflicts.
Automated audits will offer a further
deterrent once the conflict service is in-
tegrated into submission systems: the
system can automatically recompute
the observable conflicts some months
after the submission deadline and
compare them to those stored in the
system. At a minimum, missing self-re-
ports should result in a warning letter.

Currently, conflicts are all-or-nothing:
today two recent co-authors absolutely
cannot review each other’s papers, but
maybe tomorrow they absolutely can.
Big-city life demands a more nuanced
definition that recognizes all the shades
of gray, so let us acknowledge that con-
flicts differ in their severity, drop the bi-
nary definition of conflict, and define a
(degree of) conflict as a real number in
[0, 1] computed by a formula specified
by the publication venue (the aforemen-
tioned menu-style specification). Then
we can differentiate between the sever-
ity of a conflict and a venue’s publicized
threshold for automatically disqualify-
ing a reviewer, which will legitimately
differ between venues (for example, a

g See https://www.ntu.edu.sg/home/assourav/re-
search/DARE/closet.html

their program committees. Fortunate-
ly, authenticated ORCIDsa exist for ex-
actly this purpose, and we should re-
quire their use.

2. Disallow changes in the author
list after submission. Conflict declara-
tions are based on the author list at the
time of submission; subsequent chang-
es may introduce new conflicts not con-
sidered during reviewer assignment.

3. Require automated reporting of
all observable conflicts. PC chairs can
use a service that identifies all conflicts
observable in publicly available in-
formation on co-authorships, institu-
tional affiliations, and advisor relation-
ships, as explained here.

4. Require authors to self-report
only non-observable conflicts, such as
new employers, new collaborations,
family members, and friends.

5. Automatically audit self-reports
in retrospect and share the results
with the venue’s sponsor or publisher,
which should have the power to exam-
ine all data they consider relevant and
to impose appropriate sanctions for se-
rious violations.

6. Use an independent and conflict-
of-interest-free committee to select
best papers.

7. Consider the use of a more so-
phisticated definition of conflict of in-
terest, as explained here.

8. Involve the community and our
professional societies as needed, as
discussed here.

To see how an automated conflict re-
porting service for manuscript manage-
ment systems can work, consider the
traditional definition of a conflict: two
people have a conflict if they wrote a pa-
per together in the past two years, are at
the same institution, are close relatives
or friends, were advisor and advisee,
or worked together closely on a proj-
ect in the past two years. Bibliographic
databases such as Google Scholarb and
DBLPc implicitly provide a graph of the
relevant co-authorship relationships,
and can also be mined with high accu-
racy to identify advisor-advisee relation-
ships.2 DBLP already uses data-driven

a The Open Researcher and Contributor ID (OR-
CID) is an international non-profit initiative to
uniquely identify scientific and other academic
authors; see https://orchid.org

b See https://google.scholar.com
c See https://dblp.org

disambiguationd of individuals and
associates authors with ORCIDs and
employers; see, for example, how DBLP
handles its 218 different Wei Wangs.e
Authenticated employer information
(including unique IDs for institutions)
and educational affiliations are also
available directly from the ORCID ser-
vice, and perhaps authenticated advisor
information eventually as well.

The conflict service’s input is: for
each paper, the set of (uniquely identi-
fied) authors; the set of reviewers and
meta-reviewers, also uniquely identi-
fied; and a menu-style specification
of the venue’s conflict policy. For each
paper, the conflict service returns the
paper’s conflicts, that is, all review-
ers and meta-reviewers who have an
observable conflict with an author of
the paper, along with an explanation
of the source of the conflict. These
conflicts must be added to the self-
reports in the submission system, af-
ter which conference organizers can
use any method of assigning papers
to reviewers, for example, manually,
based on bids, or using the Toronto
Paper Matching Service.1 As usual, the
assignment algorithm will automati-
cally avoid all review assignments that
involve a conflict. Note that the con-
flict service need not learn anything
about a venue’s submissions, beyond
the set of all authors.

Two standalone beta versions of
conflict services are already available
to PC chairs, driven by DBLP data; onef
requires authors and reviewers to be

d See https://dblp.uni-trier.de/faq/17334571.html
e See https://dblp.uni-trier.de/pers/hd/w/wang:wei
f See https://github.com/ebina1/conflict-of-

interest

It is time for our
venues to leverage
existing data sources
to improve
the declaration
and management
of conflicts.

https://www.ntu.edu.sg/home/assourav/research/DARE/closet.html
https://orchid.org
https://scholar.google.com
https://dblp.org
https://dblp.uni-trier.de/faq/17334571.html
https://dblp.uni-trier.de/pers/hd/w/wang
https://github.com/ebina1/conflict-of-interest
https://github.com/ebina1/conflict-of-interest
https://www.ntu.edu.sg/home/assourav/research/DARE/closet.html

32 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

even a computing-wide consortium that
includes non-profit societies and for-
profit publishers.

2. To expand the definition of a con-
flict and devise the infrastructure to
support that definition, we may need
input from experts on the social issues
of privacy and security; the technical
issues of data collection, organization,
and maintenance; the policy issues in-
herent in defining conflict broadly yet
specifically; and the administrative is-
sues in long-term maintenance and
evolution of a conflict service.

3. We should encourage research into
relevant topics, including definitions of
conflict, scalable algorithms to identify
conflicts, and sources and methods for
handling suspected false positives.

4. Once they are in place, we should
share our community’s metrics, mecha-
nisms, and infrastructure with the glob-
al research enterprise, including other
scientific disciplines and the National
Academies of interested countries.

Life in the big city poses new threats
and challenges, but we can leverage the
metropolis’s great infrastructure to ad-
dress those problems. By taking advan-
tage of existing datasets, services, and
mining algorithms, we can eliminate
almost all the tedium of declaring and
managing conflicts, with the pleasant
side effect of reducing the metropoli-
tan crime rate. With those measures
in place, we can move on to develop a
more nuanced understanding of what
constitutes a conflict of interest.

References
1. Charlin, L. and Zemel, R.S. The Toronto paper matching

system: An automated paper-reviewer assignment
system. In Proceedings of the International
Conference on Machine Learning (ICML) 2013.

2. Wang, C. et al. Mining advisor-advisee relationships
from research publication networks. In Proceedings of
the 16th ACM Conference on Knowledge Discovery and
Data Mining (KDD), 2010.

3. Wu, S. PISTIS: A conflict of interest declaration
and detection system for peer review management.
In Proceedings of the 2018 ACM SIGMOD/PODS
Conference, 2018.

Richard T. Snodgrass (rts@email.arizona.edu) is a
Professor and Galileo Scholar at the University of Arizona,
Tucson, AZ, USA. He is an ACM Fellow, has served as
editor-in-chief of ACM TODS and as chair of ACM SIGMOD
and the ACM Publications Board, and was founding co-
chair of the ACM History Committee.

Marianne Winslett (winslett@illinois.edu) is a research
professor emerita at the University of Illinois, Urbana IL,
USA. She is an ACM Fellow and has served as a coeditor-
in-chief of ACM TWEB, as an officer of SIGMOD and
SIGART, on the steering committees of ACM CIKM and
ACM CCS, and on the editorial boards of ACM TODS, ACM
TISSEC, ACM TWEB, IEEE TKDE, and the VLDB Journal.

Copyright held by authors.

workshop versus a top-tier conference).
The conflict service described here can
easily support such venue-specific cut-
off scores and real-valued functions for
computing conflicts, making it easy for
venues to define and experiment with
more sophisticated measures.

We also need to recognize that mul-
tiple co-authorships indicate a stronger
tie. A dozen papers co-authored five
years ago may pose as much of a conflict
as does a single paper co-authored last
year, because those dozen papers indi-
cate a very strong tie. Further, conflicts
can have multiple contributing facets,
for example, same institution, same
city, or a highly overlapping set of prior
co-authors. We can weight each type of
tie between researchers according to the
strength of their tie, model the fading
of ties over time as a continuous func-
tion, and devise a method to gracefully
combine multiple weighted and faded
factors into an overall conflict score,
corresponding to our best estimate of
the chance that two people cannot im-
partially review each other’s work.

The prototypes mentioned here
show that one can already build useful
standalone conflict services that rely
on readily available data. But we will
need greater community involvement
to reach the ultimate solution. Beyond
the steps outlined that each venue can
take today, we advocate four steps at
the community level.

1. To reach a solution suitable for all
of computer science, our community
will need to provide coordination and
funding for infrastructure construc-
tion. This could come from the ACM
Publications Board, the SIG Governing
Board, the IEEE Technical Activities
Board, ACM and/or IEEE as a whole, or

The prototypes
mentioned here
show that one can
already build useful
standalone conflict
services that rely on
readily available data.

For further information
and to submit your

manuscript,
visit telo.acm.org

ACM Transactions on
Evolutionary Learning
and Optimization (TELO)
publishes high-quality,
original papers in all
areas of evolutionary
computation and related
areas such as population-
based methods,
Bayesian optimization,
or swarm intelligence.
We welcome papers that
make solid contributions
to theory, method
and applications.
Relevant domains
include continuous,
combinatorial or multi-
objective optimization.

ACM Transactions on
Evolutionary Learning

and Optimization
(TELO)

mailto:rts@email.arizona.edu
mailto:winslett@illinois.edu
http://telo.acm.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 33

V V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

prove the accessibility of the theory
course while maintaining its rigor:
first, emphasizing search problems
rather than decision problems in cer-
tain parts of the course; and second,
employing computer programs written
in a real programming language as
one of the standard computational

T
HE THE ORY OF computation
is one of the crown jewels of
the computer science curric-
ulum. It stretches from the
discovery of mathematical

problems, such as the halting problem,
that cannot be solved by computers, to
the most celebrated open problem in
computer science today: the P vs. NP
question. Since the founding of our
discipline by Church and Turing in the
1930s, the theory of computation has
addressed some of the most fundamen-
tal questions about computers: What
does it mean to compute the solution
to a problem? Which problems can be
solved by computers? Which problems
can be solved efficiently, in theory and
in practice?

Yet computational theory occupies
an ambiguous role in the undergradu-
ate curriculum. It is a required core
course for the computer science major
at many institutions, whereas at many
others it is an upper-level elective. And
whether required or not, the theory
course can have a reputation as an aus-
tere and perhaps even irrelevant niche,
disconnected from the skills and ideas
that comprise computer science. This
is not a new phenomenon, and in re-
cent decades the CS community has
worked diligently to improve the acces-
sibility and perceived relevance of the

theory course. Notable contributions
include the JFLAP software for experi-
mentation with automata,8 and various
efforts to promote “NP-completeness
for all” via visualizations and practical
laboratory exercises.1

This Viewpoint discusses two spe-
cific suggestions for continuing to im-

Viewpoint
Using Computer Programs
and Search Problems
for Teaching Theory
of Computation
Recognizing the significance of a cornerstone of computer science.

DOI:10.1145/3382036 John MacCormick

http://dx.doi.org/10.1145/3382036

34 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

Using Real Computer Programs
to Complement Automata
Another technique for increasing stu-
dent engagement and connections
with other parts of the CS curriculum is
to employ code in a real programming
language. This can provide a beneficial
supplement to the automata and gram-
mars that typically dominate a course
in theory of computation. Formal mod-
els such as Turing machines are of
course essential, especially for provid-
ing a rigorous definition of computa-
tion itself. However, it is possible to
teach a mathematically rigorous theory
course using a programming language
as the primary model of computation.
In this approach, the program model is
layered over Turing machines as an un-
derlying model, and Turing machines
are still employed when required in cer-
tain proofs and definitions. A strong
majority of CS theory textbooks do not
employ a programming language as the
primary computational model, but sev-
eral authors have done so, for example
using Python,6 Ruby,9 and a variant of
LISP.4,7 As an example of the approach,
consider the Python program shown in
the figure here.

This code provides the basis for a
proof by contradiction, demonstrating
that a certain computational problem
is undecidable. Specifically, it proves
the undecidability of the following
question: “Given a Python function
P() and input string I, does P return
the value 'yes' when invoked with in-
put I?” A detailed explanation of the
proof is outside the scope of this View-
point; here, I focus on the potential ad-
vantages for undergraduate students
who are encountering this type of ma-
terial for the first time. Note that, in
practice, the code shown in the figure
would be presented in class only after
exposure to and experimentation with
prerequisite concepts, such as Python
functions that take the source code of
other Python functions as input and
analyze them or transform them in
some way. Nevertheless, for concrete-
ness and compactness in this View-
point, I describe the potential benefits
to students directly as they appear in
this proof.

First, note the undecidability result
itself can be described in terms of Py-
thon programs: “It is impossible to
write a Python program that deter-

models, complementing the use of au-
tomata such as Turing machines. The
suggestions here apply specifically to
an undergraduate course in which
students encounter theory of compu-
tation for the first time. The content of
such courses varies widely, and the
following suggestions are most appli-
cable to introductory courses that in-
corporate both computability and
complexity theory.

Emphasizing Search Problems
The theory of computation is usually
phrased in terms of decision problems:
questions with a single-bit yes/no re-
sponse. In other areas of computer sci-
ence, however, we are usually interest-
ed in search problems, whose solutions
consist of more than a single bit. As an
example, consider the problem of find-
ing a Hamilton cycle in a graph—that
is, a route visiting every vertex exactly
once. Theory courses usually discuss
the decision problem, “Does the graph
G contain a Hamilton cycle?” But if the
answer is yes, we still do not know the
route of a Hamilton cycle in G. It is
more natural and useful to consider the
related search problem, “Find and out-
put a Hamilton cycle of G, if one exists.”

Once they have finished their first
theory course, computer science un-

dergraduates will recognize the con-
nections between search and decision
problems. But search problems are
more familiar and more immediately
applicable, so there are good reasons
to teach the more elementary parts of
the theory course with an emphasis on
search problems. It is worth noting
that Knuth prize winner Oded Gold-
reich is an advocate of this approach2;
his books are among the few modern
textbooks3,6 that adopt search prob-
lems as a primary paradigm. But
search problems can easily be incor-
porated into more traditional ap-
proaches that retain decision prob-
lems as the standard model, and I do
recommend this as a means of con-
necting the theory course more closely
to other parts of the undergraduate CS
curriculum.

The advantages of, and techniques
for, teaching CS theory via search prob-
lems have been discussed in detail
elsewhere.5 One interesting result,
based on a survey of CS undergradu-
ates, is that search problems are per-
ceived as significantly more useful
than decision problems. Because per-
ceived relevance is known to be a factor
in achieving good learning outcomes,
this provides indirect evidence the ap-
proach is beneficial.

Python program example.

yesOnStr(P,I) returns 'yes' if the Python function with

source code P returns 'yes' after receiving input I.

We assume yesOnStr(P,I) exists and works correctly

on all inputs.

from yesOnStr import yesOnStr

Below is a diagonalized and inverted version of

yesOnStr(P,I). What happens when the

parameter P is a string consisting of the

source code of diagYesOnStr?

def diagYesOnStr(P):

 if yesOnStr(P, P)=='yes':

 return 'no'

 else:

 return 'yes'

The source code of Python function diagYesOnStr(). This code provides the core of a proof by

contradiction. When given its own source code as input, the function diagYesOnStr() outputs ‘yes’ if

and only if it outputs ‘no’. This contradiction means our assumption that the function yesOnStr(P,I)

can exist is not valid. Therefore, the problem YesOnStr is undecidable: no Python function can correctly

answer the question “does Python function P output ‘yes’ on input I?” for all inputs.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 35

viewpoints

about polynomial-time verifiers that
can be proved more instructively—for
the target audience of novice under-
graduates—using Turing machines
rather than computer programs.

Every instructor and every group of
students is different; instructors must
adopt a style of teaching that is au-
thentic to themselves, achieves the
goals of the students, and is based re-
alistically on the students’ level of pre-
paredness. I do believe that many the-
ory courses could benefit from making
more explicit connections to other
parts of the computer science curricu-
lum, and it is possible to do this incre-
mentally. If decision problems and
Turing machines are retained as the
central paradigms, search problems
can be still be mentioned when rele-
vant, and snippets of code can be used
to illustrate subtleties.

Whether or not the specific ideas
suggested here are adopted, it seems
important that we continue to strive for
accessibility and engagement in the un-
dergraduate theory course. The theory
of computation is a profound and im-
portant cornerstone of computer sci-
ence; I hope that in the years ahead, an
ever-growing number of students will
appreciate both its beauty and its sig-
nificant connections to the rest of the
computer science curriculum.

References
1. Crescenzi, P., Enstrom, E. and Kann, V. From theory to

practice: NP-completeness for every CS student. In
Proceedings of ITiCSE, 2013.

2. Goldreich, O. On teaching the basics of complexity
theory. Theoretical Computer Science: Essays in
Memory of Shimon Even. (2006), 348–374.

3. Goldreich, O. P, NP, and NP-Completeness: The Basics
of Computational Complexity. Cambridge University
Press, 2010.

4. Jones, N.D. Computability and Complexity: From a
Programming Perspective. MIT Press, 1997.

5. MacCormick, J. Strategies for basing the CS theory
course on non-decision problems. In Proceedings
of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ‘18), 2018.

6. MacCormick, J. What Can Be Computed?: A Practical
Guide to the Theory of Computation. Princeton
University Press, 2018.

7. Reus, B. Limits of Computation: From a Programming
Perspective. Springer, 2016.

8. Rodger, S.H. and Finley, T.W. JFLAP: An Interactive
Formal Languages and Automata Package. Jones &
Bartlett, 2006.

9. Stuart, T. Understanding Computation: From Simple
Machines to Impossible Programs. O’Reilly, 2013.

10. Turing, A.M. On Computable Numbers, With An
Application To The Entscheidungsproblem. In Proc.
London Math Soc., Vol. 2–42, 1, (1937), 230–265.

John MacCormick (jmac@dickinson.edu) is Associate
Professor of Computer Science at Dickinson College,
Carlisle, PA, USA. He is the author of Nine Algorithms
That Changed the Future: The Ingenious Ideas That Drive
Today’s Computers.

Copyright held by author.

mines whether other Python programs
will output 'yes' on a given input.”
From one point of view, this is a purely
cosmetic change from the equivalent
statement in terms of Turing ma-
chines: “there does not exist a Turing
machine that determines whether oth-
er Turing machines will accept a given
input.” After all, students in any theory
course must come to understand the
equivalence between Turing machines
and computer programs. Nevertheless,
the practice of discussing results in
terms of computer programs that have
clear connections to other areas of
computer science provides the instruc-
tor with opportunities for increased
engagement; this has certainly been
my own experience.

Second, there are some steps in the-
ory proofs that are surprisingly subtle
when expressed in terms of Turing ma-
chines, but become obvious and famil-
iar in a programming language. One
example in the figure is the trick in
which a single parameter P is duplicat-
ed and passed on in two separate roles
to the two-parameter function
yesOnStr(P,P). In class, this can be
further explicated by stepping through
the program in a debugger and show-
ing the dual roles of P: as source code
in the first parameter and as a text
string in the second parameter. (Even
Alan Turing recognized the challenges
inherent in proofs based on automata.
In the seminal 1936 paper that intro-
duced Turing machines, he sympa-
thized with readers who might feel
“there must be something wrong” in
his first such proof.10)

Third, students can build an intui-
tive understanding of code-based
proofs by active experimentation with
the code. In the example in the figure,
one can provide an approximate ver-
sion of yesOnStr() that works cor-
rectly on a limited class of inputs. Stu-
dents can then predict the output of
diagYesOnStr() on various inputs,
and check their answers by running the
code. They can construct variants of the
code, discussing which variants pro-
duce the desired contradiction and
which do not. By implementing ye-
sOnStr() via simulation, students
can discover an important extension to
this result: we can in fact write a Python
program that always terminates cor-
rectly on positive instances of this prob-

lem, so the problem is recognizable but
not decidable.

Fourth, some students may find the
programming approach transfers more
easily to novel problems. In recent years
I have taught three different approach-
es for undecidability proofs to all stu-
dents: traditional reductions employ-
ing prose descriptions of Turing
machines; explicit Python programs
(similar to the example in the figure
here) supplemented by a prose explana-
tion of the desired contradiction; and
the application of Rice’s theorem. In
tests and exams, students may choose
which proof method to use, and there is
an approximately even split among
these three proof techniques. In partic-
ular, a significant fraction of students
choose to write out a Python program
as part of their exam answer. This pro-
vides empirical evidence that the pro-
gramming approach is beneficial for
some students, and it is plausible all
students gain improved understanding
from seeing multiple approaches.

Conclusion
Over a period of eight years, I have ex-
perimented with techniques for mak-
ing the undergraduate theory course
more accessible and engaging. This
Viewpoint suggests two possibilities:
emphasizing search problems and em-
ploying real computer programs. I do
not advocate the universal or complete
adoption of these suggestions. I have
backed away from some aspects of the
approach myself. For example, after ex-
perimenting with teaching NP-com-
pleteness based on search problems, I
concluded this part of the course works
better when taught with the traditional
focus on decision problems. Similarly, I
found there are some technical results

Many theory courses
could benefit from
making more explicit
connections to other
parts of the computer
science curriculum.

mailto:jmac@dickinson.edu

36 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

T H I S A R T I C L E I S a summary of a three-hour discussion at
Stanford University in September 2019 among the
authors. It has been written with combined experiences
at and with organizations such as Zilog, Altera, Xilinx,
Achronix, Intel, IBM, Stanford, MIT, Berkeley, University
of Wisconsin, the Technion, Fairchild, Bell Labs,
Bigstream, Google, DIGITAL (DEC), SUN, Nokia, SRI,
Hitachi, Silicom, Maxeler Technologies, VMware, Xerox
PARC, Cisco, and many others. These organizations are
not responsible for the content, but may have inspired
the authors in some ways, to arrive at the colorful ride
through FPGA space described here.

Field-programmable gate arrays (FP-
GAs) have been hitting a nerve in the
ASIC community since their inception.
In the mid-1980s, Ross Freeman and his
colleagues bought the technology from
Zilog and started Xilinx, targeting the
ASIC emulation and education mar-
kets. (Zilog came out of Exxon, since in
the 1970s people were already afraid
that oil would run out in 30 years, which
is still true today). In parallel, Altera was
founded with similar technology at its
core.

An FPGA is a chip that is programmed
by a circuit. It is said to “emulate” that
circuit. This emulation runs slower than
the actual circuit would run if it were
implemented in an ASIC—it has a slow-
er clock frequency and uses more pow-
er, but it can be reprogrammed every
few hundred milliseconds.

People who make ASICs started us-
ing FPGAs to emulate their ASICs before
committing them to a mask and send-
ing them out to the factory to be manu-
factured. Intel, AMD, and many other
companies use FPGAs to emulate their
chips before manufacturing them.

The telecom industry has been a
heavy user of FPGAs. Telecom standards
keep changing and building telecom
equipment is difficult, so the company
that ships telecom solutions first tends
to capture the biggest chunk of the mar-
ket. Since ASICs take a long time to
make, FPGAs offer an opportunity for a
shortcut. FPGAs started to be adopted
for first versions of telecom equipment,
which initiated the FPGA price conflict.
While the price of the FPGA does not
matter to the ASIC emulation market,
the price of a chip for telecom is impor-
tant. Many years ago, AT&T and Lucent
made their own FPGAs, called ORCAs
(optimized reconfigurable cell arrays),
but they were not competitive with
Xilinx or Altera in terms of speed or size
of the silicon.

Today, Huawei is the largest custom-
er for FPGAs. It is possible the recent
tension between the U.S. and China be-
gan with FPGAs from the U.S. giving
Huawei an edge in delivering 5G tele-
com equipment two years before any of

The History,
Status,
and Future
of FPGAs

DOI:10.1145/3410669

 Article development led by
queue.acm.org

Hitting a nerve with field-programmable
gate arrays.

BY OSKAR MENCER, DENNIS ALLISON, ELAD BLATT,
MARK CUMMINGS, MICHAEL J. FLYNN, JERRY HARRIS,
CARL HEWITT, QUINN JACOBSON, MAYSAM LAVASANI,
MOHSEN MOAZAMI, HAL MURRAY, MASOUD NIKRAVESH,
ANDREAS NOWATZYK, MARK SHAND, AND SHAHRAM SHIRAZI

http://dx.doi.org/10.1145/3410669
http://queue.acm.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 37

I
M

A
G

E
 B

Y
 G

I
A

C
O

M
O

 C
A

R
R

A
B

I
N

O

the other vendors around the world got
ready to play.

FPGA price hits a nerve. Early on, FP-
GAs were used for software-defined ra-
dios (SDRs), building radios for com-
munication on many different
standards at the same time, in essence
having a single phone speaking many
languages. This time, FPGAs hit a huge
nerve. There was a split in how SDR
technology was implemented. Com-
mercial vendors developed cost-effec-
tive solutions, and today every base sta-
tion on the planet has SDR technology
in it. In the defense community, on the
other hand, SDRs were built by large de-
fense contractors with profitable legacy
product lines to protect. The result was
that the price of FPGA-based radio prod-
ucts was so high that a part of the U.S.
defense market got a persistent allergic
reaction to their use.

Next, FPGAs tried to grow in the DSP
(digital signal processor) and embed-
ded markets. FPGAs with little hard mi-
croprocessors in the corner started to
appear. The pressure to sell these new
FPGAs was so high that if customers re-
jected the new family of chips, they were
put on a blacklist, and sometimes even
refused service for a few months. Pres-
sure to grow the FPGA market was and

still is immense, as is the magnitude of
the failures of FPGA companies to con-
quer new markets, given the impossibil-
ity of reducing the price of FPGA prod-
ucts because of their enormous surface
area and layers of intellectual property.

Hitting a nerve in HPC and datacen-
ters. For the past few years, FPGAs have
tried to grow in the high-performance
computing (HPC) and datacenter mar-
kets. In 2017, Microsoft announced its
use of Altera FPGAs in the datacenter,
and Intel bought Altera. In 2018, Xilinx
announced its “Datacenter First” strat-
egy, with the Xilinx CEO declaring in
front of an audience of analysts that
Xilinx is not an FPGA company anymore.
This may have been a slight dramatiza-
tion, but historically there is relevance.

In HPC and datacenter usage of FP-
GAs, the main obstacle today is place
and route—the time it takes to run the
proprietary FPGA vendor software that
maps the circuit onto the FPGA ele-
ments. On large FPGAs and on a fast
CPU server, place and route takes up to
three days, and many times even after
three days the software fails to find a
mapping.

Hitting a nerve in oil and gas. In oil
and gas implementations, however,
around 2007 a niche opened up. The

time it took classical computers to sim-
ulate the drilling of holes in the earth to
find oil was longer than the actual build-
ing of a drilling site and the drilling it-
self. The use of FPGA accelerators dra-
matically changed this upside-down
timing. The first FPGAs in the datacen-
ter of an oil company, computing seis-
mic images, were built by Maxeler Tech-
nologies and delivered to Chevron.3

The use of FPGAs in oil and gas ex-
panded for a few years, until pressure
from the ASIC industry led to a return
to standard CPU technology. Today
prediction and simulations in oil and
gas are still important, and seismic im-
aging is mostly done on CPUs and
GPUs, but the FPGA opportunity still
exists. We are reminded that “today’s
new stuff is tomorrow’s legacy,” and, of
course, today’s new stuff is AI and a fo-
cus on data.

Despite all of this, FPGAs remain a
quick way to market, a simple way to
obtain competitive advantage, and an
indispensable technology for many
mission-critical situations—even
though they are expensive on a per-
chip basis compared with ASICs. In
HPC and the datacenter, however, FP-
GAs have significantly lower operation-
al costs compared with running soft-

38 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

lem, but such advanced ideas have not
yet been picked up by industry.

How are FPGAs connected? For HPC
workloads with large flows of data, you
can use PCI Express and deploy com-
munication-hiding techniques. But
how about small workloads, such as
found in network function virtualiza-
tion (NFV), serving a large number of us-
ers at the same time. For NFV and accel-
eration of virtual machines in general,
the FPGA must connect directly to the
CPU, possibly using cache coherency as
a communication mechanism, as inves-
tigated these days by VMware. Of course,
a key feature is the ability to crash the
FPGA without crashing the CPU, and
vice versa. Hyperscalar technology com-
panies are rediscovering requirements
from IBM mainframe days, driving
more and more complexity into stan-
dardized platforms.

There are also opportunities for the
masses. In offering FPGA platforms, or-
ganizations without the budgets for
ASIC development and without knowl-
edge of the latest silicon fabrication
challenges and solutions can develop
circuits and build competitive advan-
tage into their products, such as the
newly emerging opportunities for com-
puting at the edge of the Internet of
Things (IoT) network, close to sensors,
displays, or just in-line at the wire, as
data flows through.

Meanwhile, FPGA companies are
pushing vertically up the stack and into
the CPU socket, where Intel is domi-
nating the market, including, for ex-
ample, special instructions for NFV.
The key barriers to entry for new CPUs
and FPGAs in the datacenter are not
just speed and cost, but also the avail-
ability of software and drivers for all
possible I/O devices.

Key to making FPGAs work in the
datacenter is to make them easier to
use—for example, with automatic
tools that drive the use of FPGAs with-
out place and route difficulties. Micro-
soft pioneered the use of FPGAs in a
hyperscalar datacenter for accelerating
Bing, NFV, and AI algorithms. Micro-
soft also built abstractions, domain-
specific languages, and flexible hard-
ware infrastructures. Commercially,
the main problem with FPGAs is the
go-to-market strategy.

Building new chips and then starting
to think about the software is too late.

ware on CPUs or GPUs. Fewer FPGAs
are needed, requiring much less cool-
ing than both CPUs and GPUs. FPGAs
make for smaller datacenters, hitting a
nerve with operators who fear their
datacenters might shrink.

ASIC vs. FPGA. Another way to use
FPGAs is to complement ASICs. ASICs
are built to hold fixed functionality
while adding FPGAs to provide some
flexibility for last-minute changes or
adaptivity of the products to different
markets.

Modern FPGAs are integrating more
hard functionality and becoming more
and more like ASICs—while ASICs are
sometimes adding a bit of FPGA fabric
into their design for debugging, testing,
in-field fixes, and flexibility in adding
little bits of functionality as needed.

Nevertheless, ASIC teams always
fight the FPGA concept. ASIC designers
ask, “Which functionality do you want?”
and are impatient if the answer is, “I
don’t know yet.”

One such new battleground is the
autonomous car industry. Since algo-
rithms are constantly changing, and
laws could change when cars are in the
field, requiring driver updates, the so-
lution needs to be flexible. FPGAs have
a lower clock frequency, and thus
smaller heat sinks, resulting in a small-
er physical size than CPUs and GPUs.
Lower power consumption and small-
er size makes FPGAs the obvious
choice. Nevertheless, GPUs are easier
to program and do not require a three-
day place and route.

Moreover, it is critical to be able to
run the same code in the car and in the
cloud (primarily for simulation and test-
ing), so FPGAs would have to be avail-
able in the cloud before they could be
used in the car. For these reasons, many
developers prefer GPUs.

Evolution of FPGAS
FPGAs are evolving. Modern interfaces
are trying to make FPGAs easier to pro-
gram, more modular, and more cooper-
ative with other technologies. FPGAs
support Advanced Extensible Interface
(AXI) buses, which make them easier to
program but also introduce enormous
inefficiencies and make FPGAs less per-
formant and ultimately much less com-
petitive. Academic work, such as Eric
Chung’s paper on dynamic networks for
FPGAs,1 helps with the routing prob-

ASIC teams always
fight the FPGA
concept. ASIC
designers ask,
“Which functionality
do you want?” and
are impatient if the
answer is, “I don’t
know yet.”

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 39

practice

How do you extract value from existing
software by adapting the hardware to
serve the software? This also brings an
opportunity to rethink FPGA architec-
ture. A word of warning, however: The
silicon industry devours cash. Building
ASICs is a poker game with minimum
bets rising over the years. It’s a winner-
take-all game, and any threats such as
FPGAs get eliminated early in the race.

FPGAs are creating additional and
undesirable risks for silicon projects.

Niche Technology
While a software designer will always
say, “If it can be done in software, it will
be done in software,” the ASIC designer
will say, “If it can be done in an ASIC, it
will be done in an ASIC.” Most interest-
ingly, “If it can be done in software, you
don’t have to deal with the guy who
thinks like an FPGA.” FPGAs have a tiny
community of many, sometimes eccen-
tric, programmers, compared with the
armies needed to make ASICs and with
the world population of software pro-
grammers. The FPGA companies are
small. The FPGA community is small.

Intel is driving FPGAs for flexibility. It
is the most successful company follow-
ing the principle of building the hard-
ware to run existing software.

FPGAs can be faster than CPUs and
GPUs, but the hard lesson from industry
and the investment community is that
most of the time during a computer’s
existence, speed does not matter, and
real time does not matter. Therefore,
buying a computer for speed alone is
rare. It happens, but it’s more of a ran-
dom event than a market on which to
build a business. In addition, FPGAs
have no standard, open source, enjoy-
able programming model—and, there-
fore, no standard marketplace for FPGA
programs that work on all FPGA chips
or can be easily cross-compiled. Maxel-
er Technologies has a high-level solu-
tion to provide such an interface, but
wide industry adoption requires trust.
To go from early adopters to benefiting
everyone, trust requires alignment and
support from established vendors in the
datacenter space.

Applications people in the real world
say, “I don’t care what it is, just give me a
way to do what I want to do.” What are
the possible application areas for FP-
GAs that have not been widely explored
yet? For real-time computing, there is

manufacturing. For computer vision on
drones, it’s the weight and power advan-
tage of FPGAs. On a satellite it is very ex-
pensive to do hardware upgrades, so
FPGAs provide long-term flexibility that
can be critical. FPGAs need to find a
product that resonates, and they need
to be easy to program. It’s not just the
hardware or software, it’s the ecosys-
tem. It’s the complete solution.

One way to expand beyond current
market confines is real-time compila-
tion and automatic FPGA program gen-
eration. This is easier said than done,
but the opportunity is growing with AI
tearing up the application space. These
days, everything is done with AI; even
traditional algorithms such as seismic
imaging for oil and gas are incorporat-
ing AI. A science and engineering solu-
tion is needed to deal with AI blocks.
FPGAs might be a good starting point,
maybe initially to connect the AI blocks
and then to incorporate them into the
FPGA fabric such as the next-generation
chips from Xilinx—with AI fabric, CPUs,
100G interfaces, and FPGA cells all in
the same 7-nm chip.

From another perspective, with AI
chips producing and consuming vast
amounts of data, FPGAs will be needed
to feed the beast and move outputs
away swiftly. With all the new ASICs for
AI processing coming out, FPGAs could
provide differentiation to AI chip com-
panies.

Predictions
Could the following developments have
been predicted 10 or 25 years ago?2
While the world changes, the predic-
tions seem to stay the same.

1. There will be successful
CPU+FPGA server chips, or FPGAs with
direct access to the CPU’s cache hierar-
chy. Some say yes, and some say no.

2. System on a chip (SoC) FPGA chips
will grow and expand, driving the medi-
cal, next-generation telecom, and auto-
motive industries, among others.

3. Developers will use FPGAs to do
amazing things and make the world a
better place but will have to hide the fact
that there is an FPGA inside.

4. The FPGA name will remain, and
chips called FPGAs will be built, but ev-
erything inside will be completely dif-
ferent.

5. As we forego (dataflow) optimiza-
tion in order to make FPGAs easier to

program, the performance of FPGAs
will be reduced so they are no longer
competitive with CPUs, which will al-
ways be easier to program.

6. There will be FPGAs with dynamic
routing, evolving interconnect, and run-
time-flexible data movement.

7. Place and route software, as well as
the complete software stack on top of
FPGAs, will be open source. There are
already initial efforts with Yosys and
Lattice FPGAs.

8. All semiconductor architectures
will be combined into single chips with
combinations of TPUs, GPUs, CPUs,
ASICs, and FPGAs. Some may be combi-
nations of the whole of each. Others will
be combinations of parts of each.

9. More chips will be focused on lim-
ited application spaces, and fewer on
general-purpose chips. In a way, every-
thing is becoming an SoC.

Final Comment
How many conflicts are resolved with
this article, and how many new ones
are created? In this sense, a conflict is
a challenge to an existing way of doing
things. Such an existing way of doing
things may have implications for the
way people think, and, therefore, for the
way they act. But maybe more impor-
tantly, there will be implications on how
we developers earn a living.

 Related articles
 on queue.acm.org

FPGA Programming for the Masses
David F. Bacon, Rodric Rabbah, Sunil Shukla
https://queue.acm.org/detail.cfm?id=2443836

FPGAs in Data Centers
Gustavo Alonso
https://queue.acm.org/detail.cfm?id=3231573

Reconfigurable Future
Mark Horowitz
https://queue.acm.org/detail.cfm?id=1388771

References
1. Chung, E. CoRAM: An in-fabric memory architecture

for FPGA-based computing. Ph.D. thesis, 2011.
Carnegie Mellon University, Pittsburgh, PA, USA.

2. Field-programmable Custom Computing Machines.
FCCM predictions, 2012; https://www.fccm.org/
past/2012/Previous.html.

3. Nemeth, T., Stefani, J., Liu, W., Dimond, R., Pell, O., Ergas,
R. An implementation of the acoustic wave equation.
In Proceedings of the 78th Society of Exploration
Geophysicists Meeting, (Las Vegas, NV, 2008).

Contact Oskar Mencer (mencer@maxeler.com) with any
inquiries about this article.

Copyright held by authors/owners.
Publication rights licensed to ACM.

https://queue.acm.org/detail.cfm?id=2443836
https://queue.acm.org/detail.cfm?id=3231573
https://queue.acm.org/detail.cfm?id=1388771
https://www.fccm.org/past/2012/Previous.html
https://www.fccm.org/past/2012/Previous.html
mailto:mencer@maxeler.com

40 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

Apply established
strategies for
common issues

Mitigate
early

Triage
effectively

Establish SLOs
and accurate
monitoring

GOOGLE HAS PUBLISHED two books about Site Reliability
Engineering (SRE) principles, best practices, and
practical applications.1,2 In the heat of the moment
when handling a production incident, however, a
team’s actual response and debugging approaches
often differ from ideal best practices.

This article covers the outcomes of research performed
in 2019 on how engineers at Google debug production
issues, including the types of tools, high-level
strategies, and low-level tasks that engineers use in
varying combinations to debug effectively. It
examines the research approach used to capture data,
summarizing the common engineering journeys for

production investigations and shar-
ing examples of how experts debug
complex distributed systems. Finally,
the article extends the Google specif-
ics of this research to provide some
practical strategies that you can apply
in your organization.

As this study began, its focus was on
developing an empirical understanding
of the debugging process, with the over-
arching goal of creating optimal prod-
uct solutions that met the needs of
Google engineers. We wanted to cap-
ture the data that engineers need when
debugging, when they need it, the com-
munication process among the teams
involved, and the types of mitigations
that are successful. The hypothesis was
that commonalities exist across the
types of questions that engineers are
trying to answer while debugging pro-

Debugging
Incidents
in Google’s
Distributed
Systems

DOI:10.1145/3397880

 Article development led by
queue.acm.org

How experts debug production issues
in complex distributed systems.

BY CHARISMA CHAN AND BETH COOPER

http://dx.doi.org/10.1145/3397880
http://queue.acm.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 41

Apply established
strategies for
common issues

Mitigate
early

Triage
effectively

Establish SLOs
and accurate
monitoring

I
M

A
G

E
R

Y
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

duction incidents, as well as the mitiga-
tion strategies they apply.

To this end, we analyzed postmortem
results over the last year and extracted
time to mitigation, root causes, and cor-
related mitigations for each. We then
selected 20 recent incidents for qualita-
tive user studies. This approach allowed
us to understand and evaluate the pro-
cesses and practices of engineers in a
real-world setting and to deep-dive into
user behavior and patterns that couldn’t
be extracted by analyzing trends in post-
mortem documents.

The first step was trying to under-
stand user behavior: At the highest level,
what did the end-to-end debugging ex-
perience look like at Google? The study
was broken down into the following
phases (which are unpacked in the sec-
tions that follow):

 ˲ Phase 0: Define a way to segment
the incident responder and incident type
populations.

 ˲ Phase 1: Audit the postmortem
documentation from a spread of actual
Google incidents.

 ˲ Phase 2: Conduct in-depth user in-
terviews with first responders who
worked on those incidents.

 ˲ Phase 3: Map the responders’ jour-
neys across those incidents, detailing
common patterns, questions, and
steps taken.

Phase 0: Segment incident responder
and incident type populations. The
preliminary approach to segmenting
the population under study was de-
signed to ensure a sufficiently broad
set of incidents and interviewees was
included, from which we could capture
a comprehensive set of data.

Incident responders. First, the inci-
dent responders (or on-callers) were
segmented into two distinct groups:
SWEs (software engineers), who typi-
cally work with a product team, and
SREs (Site Reliability Engineers), who
are often responsible for the reliabili-
ty of many products. These two groups
were further segmented according to
tenure at Google. We found the fol-
lowing behaviors across the different
user cohorts:

SWE vs. SRE mental models and
tools. SWEs are more likely to consult
logs earlier in their debugging work-
flow, where they look for errors that
could indicate where a failure occurred.

SREs rely on a more generic ap-
proach to debugging: Because SREs are
often on call for multiple services, they
apply a general approach to debugging

42 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

user journey affected, and so on) of the
problem, the more complex the issue.

 ˲ Size of the responding team. As more
people are involved in an investigation,
communication channels among
teams grow, and tighter collaboration
and handoffs between teams become
even more critical.

 ˲ Underlying cause. On-callers are
likely to respond to symptoms that
map to six common underlying issues:
capacity problems; code changes; con-
figuration changes; dependency issues
(a system/service my system/service
depends on is broken); underlying in-
frastructure issues (network or servers
are down); and external traffic issues.
Our investigation intentionally did not
look at security or data-correctness is-
sues since they were outside the scope
of the tools focused on in this work.

 ˲ Detection. On-callers learn about
issues through human or machine
detection that is based on availabili-
ty or performance problems. Some
common mechanisms include alerts
on the following: white-box metrics;
synthetic traffic; SLO (service-level
objective) violations; and user-de-
tected issues.

Phase 1: Postmortem documenta-
tion analysis. Once the different cate-
gories of incidents were determined,
we read the postmortems for the 20 in-
cidents identified for qualitative stud-
ies, mapping the steps responders took
in each case. This approach allowed us
to validate the common factors that af-
fect how responders handled these in-
cidents and the challenges they faced.
We could also ensure that the incidents
selected for deep-dive analysis were
distributed across the dimensions, as
just described.

Google has a strong culture of
blameless postmortems.4 It is com-
mon for teams to look at the history of
their failures to ensure that their ser-
vices are continuing to run reliably.
Because of this, postmortem docu-
ments are readily available internally
and were an invaluable resource for
analyzing debugging behavior. De-
tailed chat transcripts linked to these
postmortems helped form a base un-
derstanding of what happened, when
it happened, and what went wrong.
We could then start mapping a proto-
type of the debugging journey. Future
research could extend this work by ap-

based on known characteristics of
their system(s). They look for common
failure patterns across service health
metrics (for example, errors and laten-
cy for requests) to isolate where the is-
sue is happening, and often dig into
logs only if they’re still uncertain about
the best mitigation strategy.

Experience level of the incident re-
sponder. Newer engineers are more
likely to use recently developed tools,
while engineers with extensive experi-
ence (10 or more years running com-

plex, distributed systems at Google)
tend to use more legacy tools. Intuitive-
ly, this finding makes sense—people
tend to use the tools they are most
comfortable with, particularly in emer-
gency situations.

Incident types. We also examined in-
cidents across the following dimen-
sions, and found some common pat-
terns for each:

 ˲ Scale and complexity. The larger the
blast radius (that is, its location(s), the
affected systems, the importance of the

Figure 1. Building blocks.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 43

practice

plying natural-language processing to
further validate response patterns in
the incident response chats.

Phase 2: In-depth interviews. To
round out this study, in-depth inter-
views were conducted with the first re-
sponders identified in these 20 post-
mortems so any gaps in the postmortem
document could be filled in. These
data sources added significant color to
the debugging journey we were map-
ping, and surfaced a core set of build-
ing blocks that make up the overall de-
bugging process.

Phase 3: Mapping the responders’
journeys. This study allowed us to
generate snapshots of what an actual
incident investigation life cycle looks
like at Google. By mapping out each
responder’s journey and then aggre-
gating those views, we extracted com-
mon patterns, tools, and questions
asked around debugging that apply to
virtually every type of incident. Figure
1 is a sample of the visual mapping of
the steps taken by each of the re-
sponders interviewed.

Common Patterns
around Debugging
A typical canonical debugging journey
consists of the stages and sub-journeys
shown in Figure 2 and described here.
These building blocks are often repeat-
ed as the user investigates the issue, and
each block can happen in a nonsequen-
tial and, sometimes, cyclical order.

During the detection to mitigation
stages, investigations are typically
time sensitive—especially when the
issue affects the end-user experience.
An on-caller will always try to mitigate
the issue or “stop the bleeding” before
uncovering the root cause. After miti-
gation, on-callers and developers of-
ten perform a deeper analysis of the
code and apply measures to prevent a
similar situation from recurring.

Detect. The on-caller discovers the
issue via an alert, a customer escala-
tion, or a proactive investigation by an
engineer on the team. A common ques-
tion would be: What is the severity of
this issue?

Triage loop. The on-caller’s goal is
to assess the situation quickly by exam-
ining the situation’s blast radius (the
severity and impact of the issue) and
determining whether there is a need to
escalate (pull in other teams, inform

Figure 2. User journey.

44 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

Common questions include: What
went wrong? What’s the root cause of
the problem? How can you make your
processes and systems more resilient?

Communication. Throughout the
entire process, incident responders
document their findings, work with
teammates on debugging, and commu-
nicate outside of their team as needed.

Observability Data
In every single interview, on-callers re-
ported that they started working with
time-series metrics that indicate the
health of a given service, performing a
breadth-first search to identify which
components of the system were bro-
ken. The majority of the teams that
were interviewed evaluated the follow-
ing items:

 ˲ RPC (remote procedure call) laten-
cy and error metrics (similar to the
metrics derived from the open source
gRPC libraries).

 ˲ Change in external traffic, includ-
ing QPS (queries per second).

 ˲ Change in production such as
rollouts, configuration pushes, and
experiments.

 ˲ Underlying job metrics such as
memory and CPU consumption.

Both alerts and real-time dash-
boards use these metrics. On-callers
typically used logs and traces only after
they identified a component as broken,
and they then needed to drill down to
the specific issue.

Anecdotes from the Front Line
Some of the interviewees applied
SRE best practices to debug complex
distributed systems, methodically
eliminating their theories on what
could go wrong, applying temporary
mitigations to prevent user pain, and,
finally, successfully resolving and root-
causing the problem that set off the
outage in the first place.

Many other responders hit unex-
pected roadblocks. Some responders
were impacted by a complex set of
changes throughout the stack that oc-
curred simultaneously. Therefore, it
was extremely challenging to isolate
the actual issue and figure out how to
resolve it. Other responders cited pro-
cess and awareness issues: Some did
not fully understand how their produc-
tion tooling worked, or the appropriate
standard course of action to take. Some

internal and external stakeholders).
This stage can happen multiple times
in a single incident as more informa-
tion comes in.

Common questions include: Should
I escalate? Do I need to address this is-
sue immediately, or can this wait? Is
this outage local, regional, or global? If
the outage is local or regional, could it
become global (for example, a rollout
contained by a canary analysis tool
likely won’t trigger a global outage,
whereas a query of death triggered by a
rollout that is now spreading across
your systems might)?

Investigate loop. The on-caller forms
hypotheses about potential issues and
gathers data using a variety of monitor-
ing tools to validate or disprove theo-
ries. The on-caller then attempts to
mitigate or fix the underlying problem.
This stage typically happens multiple
times in a single incident as the on-
caller collects data to validate or dis-
prove any hypotheses about what
caused the issue.

Common questions include: Was
there a spike in errors and latency?
Was there a change in demand? How
unhealthy is this service? (Is this a false
alarm, or are customers still experienc-
ing issues?) What are the problematic
dependencies? Were there production
changes in services or dependencies?

Mitigate loop. The on-caller’s goal
is to determine what mitigation ac-
tion could fix the issue. Sometimes a
mitigation attempt can make the is-
sue worse or cause an adverse ripple
effect on one of its dependent servic-
es. Remediation (or full resolution of
the issue) usually takes the longest of
all the debugging steps. This step can,
and often does, happen multiple
times in a single incident.

Common questions include: What
mitigation should be taken? How con-
fident are you that this is the appropri-
ate mitigation? Did this mitigation fix
the issue?

Resolve/root-cause loop. The on-
caller’s goal is to figure out the under-
lying issue in order to prevent the
problem from occurring again. This
step typically occurs after the issue is
mitigated and is no longer time sen-
sitive, and it may involve significant
code changes. Responders write the
postmortem documentation during
this stage.

Sometimes
a mitigation attempt
can make
the issue worse
or cause
an adverse ripple
effect on one
of its dependent
services.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 45

practice

responders wound up unintentionally
applying bad changes to production.

Following are some (anonymous)
stories to illustrate successful and
problematic debugging sessions.
These anecdotes are intended to show
that even with the most experienced
engineers, great technology, and pow-
erful tooling, things can—and do—go
wrong in unexpected ways.

An exemplary debugging journey.
The following is an example of a suc-
cessful debugging session, where the
SRE follows best practices and miti-
gates a service-critical issue in less
than 20 minutes.

While sitting in a meeting, the SRE
on-caller receives a page informing her
the front-end server is seeing a
500-server error. While she is initially
looking at service health dashboards, a
pager-storm starts, and she sees many
more alerts firing and errors surfacing.
She responds quickly and immediately
identifies that her service isn’t healthy.

She then determines the severity of
the issue, first asking herself how
many users are affected. After looking
at a few error rate charts, she confirms
that a few locations have been hit with
this outage, and she suspects that it
will significantly worsen if not imme-
diately addressed. This line of ques-
tioning is referred to as the triage loop,
similar to triage processes used in
health care (for example, emergency
rooms that sort patients by urgency or
type of service). The SRE needs to de-
termine if the alert is noise, if she
needs to handle it now, and whether
to escalate the issue to other teams
and stakeholders.

Now that she knows this is a real
and relatively severe issue, the SRE
starts pulling in other people from her
team to help with the investigation.
She also sets up communication chan-
nels to inform other teams that may be
affected, and to let them know her
team is addressing the outage.

She then focuses on temporarily
mitigating the issue for end users. She
tasks a teammate with ensuring traffic
isn’t routed to any of the unhealthy lo-
cations and configuring load balanc-
ers to avoid sending traffic to affected
locations. For the moment, this action
stops the issue from propagating,
which leaves her free to conduct a deep-
er investigation using monitoring data.

Next, she asks a series of questions
that help her narrow down the poten-
tial cause and figure out how best to
mitigate the issue permanently. She
largely uses time-series metrics (for ex-
ample, cloud monitoring metrics3) to
help answer these questions quickly:

 ˲ To narrow down the breadth of the
investigation: Which specific parts of
the service are unhealthy? Are the er-
rors coming from the front end or the
back end? Are there “slices” of data
that are problematic? Are there outli-
ers in the data?

 ˲ To identify the severity of the issue
and rule out causes: Is the shape of the
graph a step (something changed
suddenly and remained unchanged),
a spike (something changed, then
stopped), or a slope (a gradual rollout
is happening)? How quickly did the
error rate ramp up?

 ˲ To identify the severity: What is the
blast radius? (If errors occur globally,
this indicates a severe issue that will
most likely have end-user impact.)

 ˲ To rule out underlying causes: When
did the problem start? What produc-
tion events in the service or in its de-
pendencies correlate with this issue?

Once the issue is mitigated, the
SRE drills into logs and traces, con-
firming that a new line of code was
crashing the jobs in the regions with
issues. She decides to roll back to the
last stable version of the service, and
validates that the issue is resolved
when the affected locations are
brought back online.

Debugging journey where the tool-
ing failed to support the on-caller. The
following is an example of a journey
where Google on-callers hit unexpect-
ed hurdles as they debugged, and
where applying best practices could
have reduced the time to mitigation.

The on-caller receives a page that
informs him that the service’s overall
server-side availability SLO (service-
level objective) was down from 99.9%
to 91%, and that specific user actions
failed. He begins his investigation by
looking at graphs of metrics that con-
firm when the error rate started to in-
crease; errors were mostly caused by
timeouts; and, request durations were
about equal to the duration of the
timeout. He then slices the metrics to
the failing user actions identified be-
fore, checks the associated server er-

rors and queries-per-second metrics,
and digs into server logs to find spe-
cific errors. Up to this point, he has
followed common practices for de-
bugging.

At the same time, another on-caller
for a back-end service dependency no-
tices the service is nearing its quota
limitations and suspects that this situ-
ation might have an impact on the in-
vestigation. This on-caller tries to al-
locate some quota through a
configuration change, hoping to alle-
viate the problem. Because of a mis-
understanding in the configuration
push tooling, however, this change ac-
cidentally removes a back-end server
in one location instead of adding quo-
ta, which increases the error rates in
the other locations. Additionally,
since he considered this change to be
safe, the on-caller did not monitor the
rollout of the updated configuration
as closely as best practices recom-
mend, and initially missed indicators
that overall capacity was actually re-
duced by removing that location. At
this point, the on-caller breaks from
best practices by performing a global
push of a nonvalidated configuration
that includes a completely unrelated
change—the action of dropping a
back end should be separate from
adding capacity.

While this is happening, the first on-
caller goes deep in the logs and finds
“permission-denied” errors increased
at the time the back-end server was re-
moved. He does this through a breadth-
first search of a number of the support-
ing back ends and an analysis of their
aggregated logs. Here, he notices that
when one server was removed, more re-
quests were funneling to the servers
that were experiencing issues. Only af-
ter digging into logs and opening a
number of tools is he able to connect
the errors to the configuration change
in the dependency.

Better tooling could have prevented
the user from performing an unantici-
pated change. Tooling could also have
helped validate what the change would
actually do. Additionally, better tooling
to support monitoring the effects of
the changes to the system could have
helped the on-callers draw these con-
clusions earlier.

The on-callers then connect to share
their findings. Once connected, the

46 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

practice

vice architecture. Frequently, the error
may be deeper in the stack than where it
manifested to the on-caller. Similar to
debugging dependencies, it’s helpful
to be able to traverse the stack quickly,
associate production changes, and un-
derstand service architecture.

Conclusion
SREs continuously strive to improve
systems and expose vulnerabilities in
order to limit the probability of fail-
ures, near misses, and inefficiencies in
production. Even under the most ideal
conditions, things inevitably go wrong.
By surfacing, preserving, and dissemi-
nating the commonalities—both posi-
tive and negative—in the debugging
workflow, the aim is to prevent the
same class of problem from recurring,
or, when prevention isn’t possible, to
minimize the duration or impact of
unavoidable outages. Hopefully, other
organizations can apply these findings
in practice too.

 Related articles
 on queue.acm.org

The Calculus of Service Availability
Ben Treynor, Mike Dahlin,
Vivek Rau, Betsy Beyer
https://queue.acm.org/detail.cfm?id=3096459

Why SRE Documents Matter
Shylaja Nukala and Vivek Rau
https://queue.acm.org/detail.cfm?id=3283589

Weathering the Unexpected
Kripa Krishnan
https://queue.acm.org/detail.cfm?id=2371516

References
1. Beyer, B., Jones, C., Petoff, J., and Murphy, N.R., Eds.

Building Secure and Reliable Systems. O’Reilly Media,
2016; https://landing.google.com/sre/books/.

2. Beyer, B., Murphy, N.R., Rensin, D.K., Kawahara, K.,
and Thorne, S., Eds. The Site Reliability Workbook:
Practical Ways to Implement SRE. O’Reilly Media,
2018; https://landing.google.com/sre/books/.

3. Google Cloud. Metric list, 2020; https://cloud.google.
com/monitoring/api/metrics.

4. Lunney, J. and Lueder, S. Postmortem Culture: Learning
From Failure. O’Reilly Media, 2017; https://landing.
google.com/sre/sre-book/chapters/postmortem-culture/.

5. Mace, J. Spotlight on Cloud: Reducing the Impact of
Service Outages with Generic Mitigations with Jennifer
Mace. O’Reilly Media, 2019; https://www.oreilly.com/
library/view/spotlight-on-cloud/0636920347927/.

Charisma Chan is a user experience design researcher
at Google U.K. in London. Prior to joining Google, she led
design research and strategy for consumer and enterprise
products in the financial services and media sectors.

Beth Cooper is a product manager at Google in New York
City. She focuses on building Google scale monitoring
for both site reliability and software engineers. Prior
to Google, she worked on Microsoft Azure building
products for cloud and datacenter automation.

Copyright held by authors/owners.
Publication rights licensed to ACM.

first on-caller rolls back the configura-
tion push that reduced capacity, identi-
fies the back-end dependency that
changed the permission errors, and
works with the back-end team to get
bad changes rolled back.

Translating Insights
into Concrete Action
If you are responsible for running a
distributed service, you might find
yourself dealing with scenarios simi-
lar to what the teams we interviewed
experienced. Our study revealed
teams that apply the following prin-
ciples are typically able to mitigate
service problems faster.

Establish SLOs and accurate moni-
toring. You need to have SLOs and/or
metrics that you can alert and option-
ally report on. These should accurately
reflect user pain and allow for slicing
by failure domains. These should also
be associated with alerts that have
clear next steps and links to the most
important information.

Triage effectively. Once you have
the prerequisites of SLOs and accu-
rate monitoring in place, you need to
be able to quickly determine both the
severity of user pain and the total
blast radius. You should also know
how to set up the proper communica-
tion channels based on the severity of
the issue.

Mitigate early. Documenting a set
of mitigation strategies that are safe
for your service can help on-callers
temporarily fix user-facing issues and
buy your team critical time to identify
the root cause. For more information
on implementing generic mitiga-
tions (see Mace.5) The ability to easily
identify what changed in your ser-
vice—either in its critical dependen-
cies or in your user traffic—is also
helpful in determining what mitiga-
tion attempt to move forward with. As
mentioned in the exemplary debug-
ging case, asking a series of common
questions and having metrics, logs,
and traces can help speed up the pro-
cess of validating your theories about
what went wrong.

Apply established mitigation strate-
gies for common issues. Although ev-
ery service is different, the following
patterns emerged in the underlying is-
sues we examined and the mitigations
associated with them. When you are

dealing with a problem that you have
never seen before, it can be helpful to
think about what type of issue your ser-
vice is facing, the questions you should
ask, and the associated mitigations
based on the answers.

 ˲ Service errors. This was the most
common cause for an alert firing in our
study. As such, it also had the largest
variety of mitigations. Some factors to
consider in determining mitigation
strategies include: Are the errors oc-
curring globally? Check for correlated
rollouts, configuration/data changes,
and experiments. Are the incoming
QPS spiking? Add capacity and/or start
load shedding to drop traffic that your
service can’t handle. Is a bad actor
causing a change in QPS? If so, block
the user.

 ˲ Performance. Latency can make
for a bad user experience and degrade
into errors over time. These issues
can be difficult to debug if there is no
obvious correlated capacity or pro-
duction change. Typically, respond-
ers look through traces to identify
which components in the stack are af-
fected and try to determine a solution
from there.

 ˲ Capacity. Capacity issues are some
of the easiest to spot, especially if you
have capacity-specific alerts. Like er-
rors and performance issues, these
can manifest as both fast and slow
burns. If a service is going to run out
of capacity immediately, teams typi-
cally ask for more capacity in an
“emergency loan” to scale up their ser-
vice (or they may attempt to scale out).
For a slow burn, responders perform
additional analyses and planning to
determine if there are other underly-
ing issues. These types of alerts sur-
face only when automated capacity
systems hit their authorized maxi-
mum, and acquiring more resources
requires human intervention.

 ˲ Dependency issues. A critical de-
pendency—even if it is deep within the
service stack—can contribute to the
failure of the entire service. Knowing
your hard dependencies (those in the
critical path of your code) and being
able to view the health of these depen-
dencies can be helpful in ruling out
whether the problem actually lies with
another service.

 ˲ Debugging microservices. Most of the
teams we interviewed have a microser-

https://queue.acm.org/detail.cfm?id=3096459
https://queue.acm.org/detail.cfm?id=3283589
https://queue.acm.org/detail.cfm?id=2371516
https://landing.google.com/sre/books/
https://landing.google.com/sre/books/
https://landing.google.com/sre/sre-book/chapters/postmortem-culture/
https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/
https://cloud.google.com/monitoring/api/metrics
https://cloud.google.com/monitoring/api/metrics
https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/
https://landing.google.com/sre/sre-book/chapters/postmortem-culture/

General Chairs
Valerie Issarny (INRIA, France)
Haiying Shen (U. Virginia, USA)
Program Chairs
Tao Gu (RMIT, Australia)
Christopher Stewart (Ohio State U., USA)
Steering Committee Chairs
Tarek Abdelzaher (UIUC, USA)
Hui Lei (Futurewei Technologies, USA)
Poster & Demo Chairs
Kang Chen (Southern Illinois U. USA)
Amy Murphy (FBK, Italy)
Publicity Chairs
Jinwei Liu (Florida A&M U., USA)
Georgios Bouloukakis (UC Irvine, USA)
Yuan He (Tsinghua U., China)
Social Media Chair
Lei Yu (IBM Watson Research Center, USA)
Web Chair
Chenxi Qiu (Rowan U., USA)
Publication Chairs
Jia Rao (U. Texas at Arlington, USA)
Li Yan (MIT)

Important Dates

Abstracts due: October 19, 2020
Full papers due: October 26, 2020
Author notification: January 19, 2021

ACM/IEEE IoTDI is the premier venue for all topics related to the
Internet of Things. The conference is an interdisciplinary forum to
discuss challenges, technologies and emerging directions in
system design and implementation that pertain to IoT.

Papers are solicited on a range of topics, including but not limited to:
• Analytic foundations and theory of IoT
• Reliability, security, timeliness, and robustness in IoT systems
• Novel protocols and network abstractions
• Data streaming architectures and data analytics for IoT
• AI/ML for IoT & embedded systems
• IoT-motivated cyber-physical and Industrial IoT (IIoT) systems
• Novel quality requirements and their enforcement mechanisms
• Cloud back-ends and resource management for IoT applications
• Edge and fog computing
• Personal, wearable, and other embedded networked front-ends
• Social computing and human-in-the-loop issues
• Applications for specific domains (smart cities, health, ITS, …)
• Deployment experiences, case studies & lessons learned
• Evaluation and testbeds
• Energy/power management & harvesting for IoT platforms

https://conferences.computer.org/iotDI/2021/

48 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

I
M

A
G

E
 B

Y
 A

I
L

A
 I

M
A

G
E

S

THE METAPHOR OF development teams throwing
applications over a wall to the operations group for
deployment is often used to vividly illustrate that
development and operations operate as silos. The
DevOps movement was started in 200817 to try and
break down these barriers between the development
and operations groups. The DevOps movement relies
on a culture that strives to understand the capabilities
and constraints of the other group (development or
operations): “Delivering value to the business through
software requires processes and coordination that
often span multiple teams across complex systems
and involves developing and delivering software with
both quality and resiliency.”11

Automation is a major enabler of DevOps as it is
highly desirable to automate provisioning, release
management, and anything else that is possible.

Continuous build, integration, and de-
livery are also enablers of DevOps.17 But
DevOps is not just about tools that fa-
cilitate development and deployment.
In The DevOps Handbook,19 the follow-
ing myths are debunked.

1. DevOps replaces Agile.
2. DevOps is incompatible with ITIL.
3. DevOps means eliminating IT

operations.
4. DevOps is just “infrastructure as

code” or automation.
DevOps is about good development

practices that continually deliver prod-
uct features (Agile) effectively with
minimal wasted efforts (Lean) which
are overseen by good governance con-
trols (Information Technology Service
Management, or ITSM).2 To that end,
a growing consensus within the infor-
mation technology community is that
DevOps = Agile + Lean + ITSM. We be-
lieve the integration of Agile, Lean, and
ITSM can provide a strong foundation
for DevOps.

Adopting DevOps is not an ad hoc
or routine operational change, it is
transformative in nature and requires
a fundamental shift in the traditional
ways of working. DevOps is not just a
new technology adoption initiative.
Rather DevOps adoption should be
people-centric, including defining
clear roles and providing appropriate
training.14 But the lack of a common

What Do
Agile, Lean,
and ITIL Mean
to DevOps?

DOI:10.1145/3372114

The value of learning skillsets within a trio of
disciplines and the role each plays in DevOps.

BY STUART GALUP, RONALD DATTERO, AND JING QUAN

 key insights
 ˽ The consensus within the DevOps

community is DevOps = Agile + Lean + ITIL.

 ˽ The DevOps goal is to enable cross-
functional relationships between the
development and operations groups
thereby enabling them to work together to
ensure IT services are transitioned to the
live environment successfully.

 ˽ The integration of ITIL with Agile and
Lean as part of ITIL 4 is a positive step
in establishing a practical framework to
enable the implementation of DevOps.

 ˽ Our data analysis provides significant
evidence that there is value gained by
IT professionals if they possess Agile
(salary premium 26%), Lean (salary
premium 9%) and ITIL skills and
knowledge (salary premium 16%).

http://dx.doi.org/10.1145/3372114

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 49

50 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

loops that ultimately improve custom-
er value by developing software in a
collaborative, iterative, and incremen-
tal manner. The main elements of The
Manifesto10 are:

 ˲ Work is done by self-organizing
teams, networks, and ecosystems that
mobilize the full talents of those doing
the work.

 ˲ Work is focused directly on meet-
ing customers’ needs and interaction
with the customer is paramount.

 ˲ A “lens” focuses attention on the
customers’ needs (when the lens is
a person, as in Scrum, the person is
known as a “product owner”).

 ˲ Work proceeds in an iterative
fashion and progress toward fulfilling
the needs of customers is assessed at
every stage.

There are a wide range of Agile soft-
ware development methods including
eXtreme Programming, Adaptive Soft-
ware Development, Scrum, Agile Proj-
ect Management, Crystal Methods,
Feature-Driven Development, Lean De-
velopment, and Rational Unified Pro-
cess.1 As a result, agility could be con-
sidered more of a mindset rather than
a specific set of techniques.

Lean
Manufacturing took many concepts
from leadership practices and learned
how to remove constraints along the
flow of work using a variety of short
feedback loops.25 “The core idea be-
hind lean is maximizing customer
value while minimizing waste,” states
The Lean Enterprise Institute.20 The In-
stitute goes on to state that “Simply
put, lean means creating more value
for customers with fewer resources.”

There has been a long-time connec-
tion between Agile and Lean in the IT
field. In 2003, Poppendieck and Pop-
pendieck23 published their book, Lean
Software Development: An Agile Toolkit.
This book was part of Addison-Wes-
ley’s The Agile Software Development
Series. In their book, Poppendieck and
Poppendieck illustrate how 22 differ-
ent Lean tools, such as seeing waste
and value stream mapping, could be
applied to the (Agile) software develop-
ment process.

In 2010, Bell and Orzen6 published
their book Lean IT: Enabling and Sus-
taining Your Lean Transformation.
They applied Lean to the entire IT

DevOps set of skills and knowledge
negatively affects the implementa-
tion and training of DevOps roles for
organizations and educational insti-
tutions.18 We believe that understand-
ing the value of each discipline (Agile,
Lean, and ITSM) will assist organiza-
tions and educational institutions to
better appreciate the value of the spe-
cific skills and knowledge for a Dev-
Ops role. Specifically, both IT profes-
sionals and organizations can select
the best course of action to maximize
their investment and time when pur-
suing and acquiring DevOps skills and
talents based on the relative value of
each discipline.

In a prior study focusing on the val-
ue of Agile skills, Agile skills produced
a 22.6% increase in average salary.9 In
another study focusing on ITIL (the
leading ITSM framework6), ITIL skills
produced an overall salary premium of
10.0% with ITIL certification producing
an even greater 14.5% salary premium.13

This article begins with an over-
view of Agile, Lean, and ITSM, em-
phasizing the areas of overlap, and
then addresses the following research
questions: (RQ1) Are there compensa-
tion benefits for IT professionals that
possess Agile, Lean, and ITSM skills?
With the logical follow-up question, if
there are benefits: (RQ2) What are the
estimated benefits?

Agile
After many years of using the water-
fall software development methodol-
ogy (and other less than successful
approaches),17 software developers met
to discuss alternative software develop-
ment methods in 2001. The “Manifesto
for Agile Software Development” was the
result of this meeting. The Manifesto23
is a set of four values that are supported
by 12 principles. In a 2010 study of Agile
practices,8 the most widely valued Agile
principle was related to business people
and developers working together. The
2010 study8 found 84% of respondents
rated this of high importance. The (tied
for) second most valued Agile princi-
ple related to achieving customer sat-
isfaction through early and continu-
ous delivery of valuable software.
Some 60% of respondents rated this
of high importance.

Essentially, the Agile approach is
designed to drive shorter feedback

A growing
consensus within
the information
technology
community is
that DevOps =
Agile + Lean + ITSM.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 51

contributed articles

ities in DevOps performed in the pro-
cesses that make up these two ITIL life
cycle stages. Service Design includes
processes for Service-Level Manage-
ment, Availability Management, Ca-
pacity Management, IT Service Conti-
nuity Management, and Information
Security Management. Service Opera-
tion consists of five processes: Event
Management, Incident Management,
Request Fulfillment, Problem Manage-
ment, and Access Management. ITIL
also suggests four generic functions
(employee groups): Service Desk, Tech-
nical Management, Application Man-
agement, and IT Operations Manage-
ment.15

The updated ITIL framework, ITIL
4, was released in 2019:3

 This name reflects the role
ITIL will play in supporting
individuals and organizations to
navigate the Fourth Industrial
Revolution. IT is at the core of
every modern business in the
global economy. The update will
allow ITIL to reflect the fast-paced
and complex environment we live
in, and new ways of working and
emerging practices, all of which
are essential not only for ITSM
professionals, but also for a wider
range of professionals working
in the digital transformation
world. The purpose of ITIL 4 is
to provide organizations with
comprehensive guidance for the
management of information
technology in the modern service
economy. ITIL 4 will evolve to
provide an end-to-end IT/Digital
Operating Model, covering the
full delivery (and sustaining)
of tech-enabled products
and services, guiding how IT
interfaces with, and even leads,
the wider business strategy.24

ITIL 4 expands on the previous ver-
sions by providing a practical and flex-
ible basis to support organizations on
their journey to the new world of digital
transformation.5 It provides an operat-
ing model for the delivery and opera-
tion of the IT components that fosters
team integration. “ITIL 4 also provides
a holistic end-to-end picture that inte-
grates frameworks such as Lean, Agile,
and DevOps.”22

organization. In their Lean IT pyra-
mid, the top of their pyramid is cul-
ture. The starting building blocks
are: consistency of purpose, respect
for people, and pursuit of perfection.
Intermediate layers include: Voice of
the Customer (originally a market-
ing term widely adopted in business
to describe the in-depth process of
capturing customer’s expectations,
preferences, and aversions); quality
at the source (a Lean manufacturing
principle defines that quality output
is not only measured at the end of the
production line but at every step of
the production process; at each step,
the responsibility for quality are the
individuals working on the step rath-
er than quality inspectors); systems
thinking (a holistic approach to analy-
sis that focuses on the entire system
and the relationships between each
of the system’s constituent parts over
time); and flow/pull/Just-in-Time (an
approach in which materials, goods,
and labor are scheduled to arrive or be
replenished only when needed in the
process—that is, just in time).

The DevOps Handbook was highly
influenced by prior work on Lean and
Agile applied to IT. A major theme of
this book is the three ways described
as: “the values and philosophies that
frame the processes, procedures,
practices of DevOps, as well as the pre-
scriptive steps:”19

 The First Way emphasizes
the performance of the entire
system, as opposed to the
performance of a specific silo
of work or department—this
can be as large as a division
(for example, Development or
IT Operations) or as small as
an individual contributor (for
example, a developer, system
administrator).19

 The Second Way is about creating
responsive feedback loops.
The goal of almost any process
improvement initiative is to
shorten and amplify feedback
loops so necessary corrections
can be continually made.19

 The Third Way is about creating
a culture that fosters two things:
continual experimentation—

taking risks and learning from
failure; and understanding that
repetition and practice is the
prerequisite to mastery.19

Information Technology
Infrastructure Library (ITIL)
Information Technology Service Man-
agement (ITSM) is a quality manage-
ment approach for managing IT ser-
vices that meet the needs of the
business7 by focusing on the effective
and efficient operation of the IT service
provider’s internal processes.12 ITSM is
defined as the implementation and
management of quality IT services that
meet the needs of the business and is
performed by IT service providers
through an appropriate mix of people,
processes, and information technology.12
There are several ITSM frameworks,
but the most widely known framework
is the Information Technology Infra-
structure Library (ITIL). In our data
analysis, we use ITIL knowledge to rep-
resent ITSM knowledge.

There are five life cycle stages in
ITIL v3: Service Strategy; Service De-
sign; Service Transition; Service Oper-
ation; and, Continual Service Improve-
ment (CSI). CSI has many similarities
to the Lean concept of kaizen. CSI uses
methods from quality management
such as the Deming PDCA (Plan-Do-
Check-Act) Cycle.16

Like The Agile Manifesto, ITIL
explicitly states some essential prin-
ciples and values. In ITIL v3, each of
the five life cycle books begin with a
chapter on services and value. In IT-
IL’s definition of a service, it provides
an essential core principle—a service
is a means of delivering value to cus-
tomers by facilitating outcomes cus-
tomers want to achieve without the
ownership of specific costs and risks.
ITIL further expounds on this princi-
ple as IT service value is composed of
two parts: utility and warranty. Utility
is a service’s fitness for purpose while
warranty is a service’s fitness for use.
Utility is simply a service’s function-
al requirements. Warranty includes
availability, capacity, continuity, and
security.

In terms of DevOps, Service Design
(Development) and Service Operation
(Operations) have considerable rele-
vance because of the overlapping activ-

52 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

criteria (www.DICE.com).
The original dataset contains a

certain number of outliers and omis-
sions related to salary. We cleansed
the data by setting the minimum wage
of $10.00 per hour or $20,000 per year
(40 hours per week and 50 weeks per
year). The records with less than a
$20,000 annual salary were eliminat-
ed (most of these eliminated records
did not provide a salary figure). We
further limited the respondents to
only full-time employees in order to
obtain a sample of 5,081.

Based on the DICE data, the salaries
for IT professionals that possess Agile,
Lean, and ITIL skills and knowledge
are shown in Table 1. The table pro-
vides the salary for all respondents,
comparing the salary medians of IT
professionals that possess Agile, Lean,
or ITIL skills and knowledge to the sal-
ary for all respondents.

The results clearly indicate a signifi-
cant salary premium for possessing Ag-
ile, Lean, or ITIL skills and knowledge
because the median salaries for indi-
vidual skills are substantially higher
than the overall (all respondents) me-
dian. Furthermore, the combination of

two skills is even greater and individu-
als possessing all three skills being the
highest. Over half of the respondents
did not possess any of the three skills
and had substantially lower salaries
than their more skilled peers.

Human capital. The dominant eco-
nomic theory of wage determination is
the Human Capital Theory,3 which pre-
dicts that differences in wages arise be-
cause of differences in human capital
which can be accumulated in two main
ways—education and experience.19
Specifically, investments made in one’s
occupation are directly correlated to
the compensation earned over time
that is received for the execution of job
tasks. Therefore, educational spending
can be considered to be an investment
in human capital.27 The more educa-
tion workers have, the more productive
they will be when compared to their
less educated counterparts. As a result,
the educated worker is more likely to
command higher wages. In addition
to formal education (indicated by the
acquiring of a high school diploma,
college degree, and so on), on-the-
job training is a very important factor
for many IT jobs. Rather than formal
education, we factor in whether an IT
professional has (self-reported) Agile,
Lean, or ITIL skills/knowledge.

As stated earlier, two research ques-
tions will be addressed: (RQ1) Are there
compensation benefits for IT profes-
sionals that possess Agile, Lean, and
ITSM skills? With the logical follow-up
question, if there are benefits: (RQ2)
What are the estimated benefits? Rath-
er than using salary (given in U.S. dol-
lars in the survey) as the dependent vari-
able in a regression model, we employ
the natural logarithm of salary because
Roy26 showed the natural logarithm of

Data Collection and Results
A voluntary Web-based survey on salary
and skills of IT professionals conducted
by Dice (http://www.dice.com) was
used for this article. The Dice 2018 Tech
Salary Report states the survey was ad-
ministered online by Dice.com, with
10,705 employed technology profes-
sionals from the U.S. responding be-
tween Oct. 18, 2017 and Dec. 13, 2017.
Respondents were invited to participate
in the survey in several ways: via an
email invitation to Dice’s registered
database members, through a notifica-
tion on the Dice.com home page and/
or via site intercept invitations within
the site to visitors, and via banner ads
on external sites. Additionally, technol-
ogy professionals who were registered
users of eFinancialCareers.com were
invited to participate in the survey via an
email invitation. A cookie methodology
was used to ensure that there was no du-
plication of responses between or with-
in the various sample groups, and dupli-
cate responses from a single email
address were removed. Technology pro-
fessionals earning salaries of $350,000
and above were not automatically elimi-
nated from the survey if they met other

Table 1. Median salary for respondents.

Salary: skills and knowledge n (%) Median

All respondents 5,081 (100%) $85,000

Agile 1933 (38%) $100,000

Lean 445 (9%) $103,000

ITIL 778 (15%) $100,600

Agile and ITIL 375 (7%) $111,200

Agile and Lean 290 (6%) $112,600

Lean and ITIL 129 (3%) $120,000

Agile and Lean and ITIL 99 (2%) $124,800

None of the three 2,620 (52%) $72,000

Table 2. Human capital model with Agile,
Lean, and ITIL (* denotes significant at
the .001 level).

Coefficient

Intercept 11.001*

X 0.026*

X2 –0.0006*

Agile 0.257*

Lean 0.087*

ITIL 0.158*

F-statistic 192.5*

Regression model.

where Yi is the yearly income for each worker,
β₀ is the intercept term in the regression model that determines the base rate,
β₁ and β₂ are coefficients that assess the rate of return on experience,
Agilei is an indicator variable defined to be 1 if the individual possesses Agile skills and 0 if the
individual does not possess Agile skills,
Leani is an indicator variable defined to be 1 if the individual possesses Lean skills and 0 if the
individual does not possess Lean skills,
ITILi is an indicator variable defined to be 1 if the individual possesses ITIL skills
and 0 if the individual does not possess ITIL skills,
β₃, β₄,and β₅ are coefficients that assess the rate of return on Agile, Lean, and ITIL knowledge,
respectively, and i is the random disturbance associated with the i-th worker.

http://www.DICE.com
http://www.dice.com
http://Dice.com
http://eFinancialCareers.com

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 53

contributed articles

Classic and contemporary. Can. J. Econ. 26, 3 (1993), 750.
5. Beadle, A. Getting Ready for ITIL 4, The Next

Evolution of ITIL. Learning Tree International, 2018;
www.learningtree.com

6. Bell, S.C. and Orzen, M.A. Lean IT: Enabling and
Sustaining Your Lean Transformation. CRC Press, 2016.

7. van Bon, J., Kemmerling, G. and Pondman, D. IT
Service Management: An Introduction, 2002.

8. de Cesare, S., Lycett, M., Macredie, R.D., Patel, C. and
Paul, R. Examining perceptions of agility in software
development practice. Commun. ACM 53, 6 (June
2010), 126.

9. Dattero, R., Galup, S.D., Kan, A. and Quan, J. It pays
to be agile. J. Computer Information Systems 57, 3
(2016), 252–257.

10. Denning, S. Agile: It’s time to put it to use to manage
business complexity. Strategy & Leadership 43, 5
(2015), 10–17.

11. Forsgren, N. and Kersten, M. DevOps metrics.
Commun. ACM 61, 4 (Apr. 2018), 44–48.

12. Galup, S.D., Dattero, R., Quan, J.J. and Conger, S. An
overview of IT service management. Commun. ACM
52, 5 (May 2009), 124.

13. Galup, S.D., Dattero, R. and Quan, J.J. The compensation
benefit of ITIL® skills and certifications. Intern.
J. Service Science, Management, Engineering, and
Technology 7, 2 (2016), 1–15.

14. Gill, A.Q., Loumish, A., Riyat, I. and Han, S. DevOps
for information management systems. VINE J. Info.
Knowledge Management Systems 48 (2018), 122–139;
https://doi.org/10.1108/ vjikms-02-2017-0007

15. Great Britain. Cabinet Office and Great Britain.
Stationery Office. ITIL Service Operation. Stationery
Office/Tso, 2011.

16. Great Britain. Cabinet Office and Stationery Office.
ITIL Continual Service Improvement. Stationery
Office/Tso, 2011.

17. Haddad, C. DevOps = DevOps Principles + DevOps
Practices - DZone DevOps, 2014, dzone.com; https://
dzone.com/articles/ devops-devops-principles

18. Kerzazi, N. and Adams, B. 2016. Who needs release
and devops engineers, and why? In Proceedings
of the Intern. Workshop on Continuous Software
Evolution and Delivery, 2016; DOI:https://doi.
org/10.1145/2896941.2896957

19. Kim, G., Debois, P., Willis, J. and Humble, J. The
DevOps Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations.
IT Revolution 2016.

20. Lean Enterprise Institute | Lean Production | Lean
Manufacturing | LEI | Lean Services; https://www.
lean.org

21. Mincer, J. Schooling, Experience, and Earnings. 1974.
22. Pink Elephant; https://www.pinkelephant.com/en.us/
23. Poppendieck, M. and Poppendieck, T. Lean Software

Development: An Agile Toolkit: An Agile Toolkit.
Addison-Wesley, Reading, PA, 2003.

24. Quint Wellington Redwood. ITIL4 FAQs | Quint Group;
https://www.quintgroup.com/en-us/ insights/itil4-
frequently-asked-questions/

25. Ranger. Ranger4 | DevOps Evolution Experts; https://
www.ranger4.com

26. Roy, A.D. The distribution of earnings and of individual
output. Econ. J. Nepal 60, 239 (1950), 489.

27. Schultz, T.W. Capital formation by education. J. Polit.
Econ. 68, 6 (1960), 571–583.

Stuart Galup (sgalup@fau.edu) is an associate professor in
the Information Technology and Operations Management
Department at Florida Atlantic University, Boca Raton, FL, USA.

Ronald Dattero (RonDattero@Missouristate.edu)
is professor emeritus at Missouri State University,
Springfield, MO, USA.

Jing Quan (jxquan@salisbury.edu) is a professor and chair
of the Department of Information and Decision Sciences
at Salisbury University, Salisbury, MD, USA.

© 2020 ACM 0001-0782/20/10 $15.00

salary rather than salary produced a
much better model fit. As stated earlier,
experience is often incorporated in hu-
man capital models so it will also be one
of our independent variables. Mincer21
showed that experience should be mod-
eled as concave because as experience
reaches a certain point, salary cannot
increase indefinitely. Therefore, experi-
ence squared will be another indepen-
dent variable. In addition, three dummy
or indicator independent variables will
be used to model whether each respon-
dent indicated whether they possess Ag-
ile, Lean, or ITIL skills. This set of vari-
ables produce the the regression model
depicted in the accompanying figure.
We fitted the regression equation us-
ing the 5,081 respondents from the
cleansed DICE sample with the results
given in Table 2.

All coefficients and the overall mod-
el are highly significant. Therefore, the
answers to the research questions are
clearly affirmative based on the Hu-
man Capital Model. The fact that the
coefficients of Agile, Lean, and ITSM
skills in the estimated regression equa-
tion are positive provides the answer
to RQ1 about compensation benefits
for IT professionals that possess these
skills. The salary premium is comput-
ed by taking each coefficient’s inverse
of the natural logarithm function—
that is, each coefficient is plugged into
the exponential function. Agile skills,
by far, produce the greatest salary pre-
mium (26%) with ITIL (16%) and Lean
(9%) skills and knowledge producing
significant overall salary premiums.
Given the logarithmic nature of the re-
gression model, one can multiply these
numbers to get the premiums for pairs
of skills and all three skills. The largest
salary premium would be produced by
the combination of all three skills. This
answers RQ2 about the estimated ben-
efits of these skills.

Conclusion
The goal of DevOps is to enable cross-
functional relationships between the
development and operations groups
thereby enabling the two groups to
work together to ensure IT services are
transitioned to the live environment
without problems. The specific skills
and knowledge needed for a DevOps
implementation will vary based on the
infrastructure and business focus. This

adds to the challenge of implementing
DevOps because there is a clear lack of
universally accepted skills and knowl-
edge requirements. The growing con-
sensus within the DevOps community
is that DevOps = Agile + Lean + ITIL
helps to establish a common set of base
skills and knowledge that transcend
business environments and toolchains.
As reflected by the salary premiums,
our data analysis provides significant
evidence that there is value gained by IT
professionals if they possess Agile (sal-
ary premium 26%), Lean (salary premi-
um 9%) , and ITIL skills and knowledge
(salary premium 16%). Organizations
and educational institutions that focus
on cultivating these skills and knowl-
edge will enhance the IT professional’s
ability to build cross-functional pro-
cesses and also use appropriate technol-
ogy to enhance an overall collaborative
automated DevOps environment.14

ITIL’s Service Design and Service
Operation processes can clearly be
adapted for DevOps as these processes
and the generic functions will still be
necessary. Similarly, Agile can adapt
ITIL Service Transition processes that
help monitor and control service de-
livery, such as Change Management,
Service Asset and Configuration Man-
agement, and Release and Deployment
Management. In addition, Lean work-
flow concepts can better improve most
(if not all) ITIL processes.

The integration of ITIL with Agile
and Lean as part of ITIL 4 is a positive
step in the direction of establishing
a practical framework to enable the
implementation of DevOps. Kim bet-
ter summarizes our opinion as follows:
“For many years, I’ve felt I’ve been the
official ITIL® apologist in the DevOps
community, because I’ve always be-
lieved that DevOps and ITIL should
be able to peacefully coexist. But these
days, I feel that a more activist role in
the DevOps community is necessary—
we must reach out and form effective
bridges with the ITIL community, be-
cause ITIL is the most powerful and en-
trenched orthodoxy in large, complex
IT organizations.”19

References
1. Abrahamsson, P., Oza, N. and Siponen, M.T. Agile

software development methods: A comparative
review. Agile Software Development (2010), 31–59.

2. Anand, A. AXELOS Lean Enterprise Podcast (2017).
3. AXELOS.com; https://www.axelos.com
4. Beach, C. and Berndt, E.R. The practice of econometrics:

Watch the authors discuss
this work in an exclusive
Communications video.
https://cacm.acm.org/videos/
agile-lean-and-itil

http://www.learningtree.com
http://dzone.com
https://dzone.com/articles/devops-devops-principles
https://www.lean.org
https://www.pinkelephant.com/en.us/
https://www.quintgroup.com/en-us/insights/itil4-frequently-asked-questions/
https://www.ranger4.com
mailto:sgalup@fau.edu
mailto:RonDattero@Missouristate.edu
mailto:jxquan@salisbury.edu
https://www.axelos.com
https://cacm.acm.org/videos/agile-lean-and-itil
https://doi.org/10.1108/ vjikms-02-2017-0007
https://dzone.com/articles/devops-devops-principles
https://doi.org/10.1145/2896941.2896957
https://doi.org/10.1145/2896941.2896957
https://www.lean.org
https://www.quintgroup.com/en-us/insights/itil4-frequently-asked-questions/
https://www.ranger4.com
https://cacm.acm.org/videos/agile-lean-and-itil

54 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

THE GENERAL SETTING for worst-case execution time
(WCET) analysis is that a set of hard real-time tasks
is to be executed on a given hardware platform. Hard
real-time tasks have associated deadlines within
which they must finish their execution. The deadlines
may be given by periods. Timing verification must verify
these timing constraints are satisfied. Traditionally,
timing verification is split into a WCET analysis, which
determines upper bounds on the execution times of
all tasks, and a schedulability analysis, which takes
these upper bounds and attempts to verify the given
set of tasks when executed on the given platform will
all respect their deadlines.

The problem to determine upper (and potentially
also) lower bounds on execution times underwent a
transition in the 1990s:

 ˲ In the old days, textbooks about
the realization of real-time systems
would strongly argue against the use
of execution platforms with caches,
pipelines, and such. For previously
used architectures with instructions
that had constant execution times,
WCET analysis methods using timing
schemata23 were the method of
choice. Timing schemata describe
how (bounds on) the execution times
of a programming-language construct
were composed from the (bounds on)
the execution times of its compo-
nents. These methods would thus do
structural induction over the struc-
ture of a program and determine
bounds for ever bigger parts of the
program. Worse yet, industry’s “best
practice” was, and unfortunately part-
ly still is, to do some end-to-end mea-
surements, ignore some unwelcome
outliers, if optimism prevailed, or add
some safety margin, if more problem-
awareness dominated.

 ˲ The introduction of performance-
enhancing architectural components
and features such as caches, pipelines,
and speculation made methods based
on timing schemata obsolete. Execu-
tion times did not compose any longer
because instruction execution times
were now dependent on the execution
state in which they were executed. In
the composition A;B, the execution
time of statement B depended on the
execution state produced by statement
A. The variability of execution times

Real Time
Spent on
Real Time

DOI:10.1145/3375545

The story of the development of a sound, static
method for worst-case execution-time analysis.

BY REINHARD WILHELM

 key insights
 ˽ WCET searches a huge state space for

a longest path. Adequate abstraction
of the execution platform is key to cope
with the complexity of the analysis, and
Abstract Interpretation provides the
theoretical foundation for a sound and
efficient WCET analysis.

 ˽ The Timing Predictability of an
architecture determines the efficiency
of WCET analysis and the precision
of its results.

 ˽ Some performance-enhancing features
ruin timing predictability and at the same
time open the door to hardware security-
attacks like Spectre and Meltdown.

http://dx.doi.org/10.1145/3375545

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 55

I
M

A
G

E
 B

Y
 M

A
R

Y
N

O
V

A

grew with several architectural param-
eters, for example, the cache-miss pen-
alty and the costs for pipeline stalls
and for control-flow mispredictions.

The introduction of multicore exe-
cution platforms into the embedded
real-time domain made the problem
still more difficult. These platforms
typically have shared resources, and
the interference on these shared re-
sources complicates the determina-
tion of upper execution-time bounds
for tasks executed on such a platform.
A few words about terminology. From
the beginning we aimed at sound
WCET-analysis methods. The results
of a sound WCET analysis are conserva-
tive, that is, they will never be exceeded
by an execution. We consider being

conservative as a Boolean property. Of-
ten conservative is used as a metric, be-
ing more conservative meaning being
less accurate. For an unsound method,
however, it does not make sense to
speak about being more or less conser-
vative. It is not even clear whether be-
ing “more conservative” means mov-
ing toward the real WCET from below
or moving further away from the real
WCET by increasing overestimation.
The second, quite important property,
referred to when mentioning conserva-
tism, is accuracy of the results of a
WCET analysis.

WCET analysis can be seen as the
search for a longest path in the state
space spanned by the program under
analysis and by the architectural plat-

form. The analysis is based on the as-
sumption that the analyzed programs
terminate, that is, all recursions and it-
erations are bounded. We are not con-
fronted with the undecidability of the
halting problem. In trying to determine
bounds on recursion or iteration in a
program, our tool might discover that it
cannot determine all of the bounds and
will ask the user for annotations. All
WCET bounds are then valid with re-
spect to the given annotations.

This state space is thus finite, but
too large to be exhaustively explored.
Therefore, (safe) overapproximation is
used in several places. In particular, an
abstraction of the execution platform
is employed by the WCET analysis.
We will in the following cover static

56 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

access sequence of cached memory
blocks, extended by some way to indi-
cate not cashed. The associativity of a
fully associative cache is equal to its
capacity. For a set associative cache it
is the size of a cache set, that is, the
number of memory blocks fitting into
each set. It was (for us) easy to see our
analysis should perform a kind of in-
tersection and associate with the ele-
ments in the resulting set their maxi-
mal age from the incoming must
caches, whenever control flow merges.
Abstract must caches can be used to
predict cache hits.

An abstract may cache at a program
point indicates which memory blocks
may be in a concrete cache whenever
execution reaches this program point.
In analogy, our analysis uses union at
control-flow merge points and associ-
ates the minimal incoming age with
the elements in the union. Taking the
complement of a may cache gives the
information which memory blocks
will be in no concrete cache arriving at
this program point. It thus allows to
predict cache misses. In Lv,18 we called
such analyses classifying analyses as
their results allow to classify some
memory accesses as either definite
hits or definite misses.

In contrast, persistence analyses are
called bounding analyses. They aim at
bounding the number of cache re-
loads of memory blocks. Intuitively, a
memory block is called persistent if it
suffers at most one cache miss during
program execution. We defined such a
persistence analysis, which was too
beautiful to be correct. The tempting
idea was to add another cache line
with age associativity in which all
memory blocks were collected that
had been replaced in the cache at least
once and to compute the maximal po-
sition (relative age) for all memory
blocks that may be in the cache. The
analysis would thus use union and
maximal age at control-flow merge
points. Our mistake was that we ig-
nored the capacity constraints of the
caches. Our analysis could collect
more memory blocks in an abstract
cache than would fit into the concrete
cache and thereby underestimate the
age. Luckily, this cache-persistence
analysis was never implemented in
AbsInt’s tools. The error was later
corrected by Cullmann and Huynh.4,15

Let me jump out of the story to some
later developments: Jan Reineke has
clarified the semantic foundations of
persistence analysis.21 All types of per-
sistence are identified by the occur-
rence of certain patterns in memory-
access traces, while categorizing cache
analyses, that is, must and may analy-
ses only abstract from the last state in a
trace. Reineke also identified a whole
zoo of different persistence analyses.
End of excursion.

Understanding Our Approach
We developed the cache analysis with
the goal of classifying memory access-
es as either definite cache hits or defi-
nite cache misses. The difference to
competing approaches was that we
could describe our cache analyses as
abstract interpretations.3 This meant
we defined the following:

 ˲ domains of abstract cache states
with a partial order representing which
domain elements contained better in-
formation than other elements,

 ˲ corresponding to this partial or-
der, a join function, used to combine
incoming abstract domain elements at
control-flow merge points, for exam-
ple, some kind of intersection for the
must-cache analysis, and,

 ˲ abstract cache effects for each
memory access, describing the update
of abstract cache states corresponding
to this memory access.

This stood in stark contrast to the
state of the art in cache analysis,
which would typically give a page of
pseudo-C code and claim that this
code would implement a sound cache
analysis, of course without any cor-
rectness arguments!

Now, that we had solved one sub-
problem of WCET analysis, it was time
to reflect more deeply what the essence
of our method was, and we identified
the following central idea behind our
WCET-analysis method:

 ˲ Consider any architectural effect
that lets an instruction execute longer
than its fastest execution time as a tim-
ing accident. Typically such timing ac-
cidents are cache misses, pipeline
stalls, bus-access conflicts, and
branch mis-predictions. Each such
timing accident had to be paid for, in
terms of execution-time cycles, by an
associated timing penalty. The size of
a timing penalty can be constant but

analyses of the behavior of several ar-
chitectural components.

Cache Analysis
Our engagement in timing analysis
started with the dissertation work of
Christian Ferdinand at around 1995. I
had proposed several thesis topics,
which he all rejected with the argu-
ment, “This is of no interest to any-
body,” meaning irrelevant for industri-
al practice. When I proposed to develop
an analysis of the cache behavior he
answered, “This may actually be of in-
terest to somebody.” He was able to
convince himself (and me) very quickly
that an idea we had would work. He
used the program-analysis generator
PAG, conceived by Martin Alt and real-
ized by Florian Martin in his Ph.D. the-
sis,19 to implement a prototype cache
analysis for caches with a least-recently
used (LRU) replacement strategy. This
was, and still is, WCET researcher’s
dearest replacement policy. Our first
submitted article on cache analysis1
confirmed Ferdinand’s appreciation
for the subject. It received enthusiastic
reviews as for the relevance of the prob-
lem we had solved and for the elegance
of the solution.

Unlike existing methods, Ferdinand
designed two different abstract do-
mains for cache analysis, a must and a
may domain.1,6,8 An abstract must
cache at a program point indicates
which memory blocks will be in all
concrete caches whenever execution
reaches this program point. There is
an underlying assumption that pro-
gram execution is not disturbed by in-
terrupts or preemption. Otherwise, the
impact of interrupts or preemptions
must be taken into account by analyz-
ing the maximal cache impact through
a CRPD analysis.2

An abstract must cache state com-
puted at a program point represents
an over-approximation of the set of
concrete cache states that may reach
this program point. All the concrete
cache states in this overapproximation
have as common contents the memory
blocks that are sure to be in the con-
crete cache when execution reaches
this program point. In LRU caches,
memory blocks logically have an age.
The age is between 0 and the associa-
tivity—1 of the cache (set) and corre-
sponds to the relative position in the

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 57

contributed articles

proach.7 This processor had a four-
way set-associative cache with a rath-
er strange cache-replacement strategy
using one global round-robin replace-
ment counter keeping track of where
the next replacement should take
place. It meant our cache analysis
could essentially only keep track of
the last loaded cache line in each
cache set. This strange beast of a
cache triggered the concept of timing
predictability, which turned out to be
a very fruitful research area, to be dis-
cussed later.

There was a second assumption
that turned out to be false. It is intui-
tively clear the accuracy of the cache
analysis has a strong impact on the ac-
curacy of the WCET-analysis results.
This led us to believe that cache analy-
sis was the difficult part of WCET anal-
ysis, that the rest would be easy. It
turned out that caches were relatively
easy to analyze, although good solu-
tions for Non-LRU caches had yet to be
found. Much later, between 2008–
2011, Daniel Grund developed an effi-
cient analysis for FIFO caches and ap-
proached a solution for the analysis
problem for PLRU caches.9–11

Pipelines were much more difficult
to analyze and also appeared in more
variations and were mostly badly docu-
mented. And then Airbus informed us
about the existence of peripheries and
system controllers, architectural com-
ponents that serious WCET research-
ers had never heard of. Their analyses
can have a very strong influence on the
accuracy of timing analyses.

Control-Flow Reconstruction
But first we needed to get programs to
analyze. WCET analysis has to be done
on the executable level because the
compiler influences the execution
time by its memory allocation and
code generation. So, we needed a re-
construction of the control flow from
binary programs. This was part of
Henrik Theiling’s Ph.D. thesis.24 De-
coding individual instructions is rela-
tively easy, but identifying the control
flow, in particular switch tables is a
non-trivial task.

Pipeline Analysis
At the end of the 1990s, Stephan Thesing
started to develop the framework for
modeling pipeline architectures.16,25

may also depend on the execution
state. We consider the property that a
particular instruction will not cause a
particular timing accident as a safety
property. The occurrence of a timing
accident thus violates a correspond-
ing safety property.

 ˲ Use an appropriate method for the
verification of safety properties to
prove that for individual instructions
in the program some of the potential
timing accidents will never happen.
Reduce the worst-case execution-time
bound for an instruction, which a
sound WCET analysis would have to as-
sume, by the penalties for the excluded
timing accidents.

 ˲ Abstract interpretation3 is a pow-
erful method to prove safety proper-
ties. Use it to compute certain invari-
ants at each program point, namely an
upper approximation of the set of exe-
cution states that are possible when
execution reaches this program point.
Derive safety properties, that certain
timing accidents will not happen,
from these invariants.

This method for the micro-architec-
tural analysis was the central innova-
tion that made our WCET analysis
work and scale.

Our First Illusions
Christian Ferdinand had finished his
very fine dissertation on cache analy-
sis in 1997. It still represents the state
of the art in cache analysis for LRU
caches.6 Since everybody else working
in the area had tried to solve this
problem first, and we were convinced
that our solution was the best, we felt
that we had essentially solved the
WCET-analysis problem. Very opti-
mistically we founded AbsInta early in
1998, “we,” being five former or actual
Ph.D. students and me.

This optimism turned out as wrong
in several aspects. Firstly, more or
less nobody uses LRU caches in their
processors since the logic is consid-
ered too complex. Frequently used re-
placement policies are PLRU, FIFO,
random replacement, or even strange
looking approximations of random
replacement like in the Motorola
Coldfire, which is flying in the Airbus
A340, and which Airbus selected as a
real-life processor to test our ap-

a www.absint.com

All types of
persistence are
identified by the
occurrence of
certain patterns
in memory access
traces, while
categorizing cache
analyses, that
is, must or may
analyses only
abstract from the
last state in a trace.

http://www.absint.com

58 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

and 7%,12 but the analysis efficiency
increased by an order of magnitude.

The Breakthrough
The European project Daedalus, Valida-
tion of critical software by static analysis
and abstract testing, which ran from
2000 to 2002, associated us with an ex-
tremely valuable partner, Airbus. Pat-
rick Cousot had organized an industry
seminar on abstract interpretation.
One of the participants was an Airbus
engineer, Famantanantsoa Randim-
bivololona, in charge of identifying
new, usable and helpful methods and
tools for software development at Air-
bus. Randim had listed the most severe
of Airbus’ problems, and Cousot com-
posed a consortium for a European
project targeted at solving these prob-
lems. Saarbrücken was listed with
WCET Analysis. My admiration of the
problem-awareness of the software de-
velopers at Airbus grew during my first
visit to the Airbus headquarters and de-
velopment labs in Toulouse, France.
Everybody greeted me, expressing their
concern that they had no viable solu-
tion for the verification of their real-
time requirements and their hope that
we would provide a solution.

This is a good point to describe pre-
vious funding. In DFG Collaborative Re-
search Center 124, DFG (our National
Science Foundation) had funded the
development of the foundations of
WCET analysis, including Florian Mar-
tin’s Program Analyzer Generator
(PAG). When this DFG Collaborative
Research Center, which has run 15
years (from 1983 to 1998) approached
its end, DFG had just initiated a new
type of grant, a Transfer Center, meant
to support transfer of results of suc-
cessful Research Centers to practice.
This was a perfect fit for our situation.
We applied and were granted solid
funding for further development. At
about this time, Airbus was searching
for a solution for their WCET-analysis
problem. Cousot formed the consor-
tium, and the EU Commission granted
us the Daedalus project. In hindsight,
this sequence of funded projects ap-
pears like a miracle, each at exactly the
right time!

Back to our contacts with Airbus
and their search for some one to solve
the WCET problem: They knew their
previously used measurement-based

He also did, as far as I know, the first
modeling of a system controller for
WCET analysis.26 Doing this precisely
was highly important because an impre-
cise, too abstract model of a systems
controller can easily cost an order of
magnitude more accuracy than an im-
precise pipeline model.

Pipeline analysis is a highly com-
plex part of the overall analysis be-
cause, unlike caches, most pipelines
do not have compact, efficiently up-
datable abstract domains. Cache
analysis is efficient because the sets
of concrete cache states that may oc-
cur at a program point can be com-
pactly represented by one abstract
cache state, and abstract cache states
can be efficiently updated when a
memory access is analyzed. Essential-
ly, pipeline analysis uses an expensive
powerset domain, that is, it collects
sets of pipeline states instead of com-
puting an abstract pipeline state rep-
resenting sets of pipeline states. This
characteristic would, in principle,
make it amenable to model checking.
Stephan Wilhelm tried this around
2009 and encountered severe prob-
lems in the application of model
checking to pipeline analysis.28,29 In
particular, interfacing symbolic rep-
resentations of pipelines with ab-
stract representations of caches,
while preserving accuracy, is difficult.
Daniel Kaestner’s Astrée group made
a similar experience when attempting
to interface Astrée with some model
checkers.b It appeared that model
checking and abstract interpretation
were communicating badly and thus
seemed to replicate the behavior of
their inventors.

Another excursion into the future:
Hahn et al.13 describes a strictly in-or-
der pipeline providing for compact
abstract domains. Strictly in-order
pipelines avoid all downstream de-
pendences between consecutive in-
structions, such as the one of an oper-
and load of an earlier instruction on
the instruction fetch of a consecutive
instruction. In case of a contention,
the operand load is always guaran-
teed to be executed first. The loss in
(average-case) performance com-
pared to a traditional in-order pipe-
line was measured to be between 6%

b https://www.absint.com/astree/index.htm

Pipeline analysis is
a highly complex
part of the overall
analysis because,
unlike caches,
most pipelines
do not have
compact, efficiently
updatable abstract
domains.

https://www.absint.com/astree/index.htm

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 59

contributed articles

years later hardware security-attacks
like Meltdown and Spectre showed
that architectural features with low
predictability were also the basis for
these security attacks. A combination
of timing unpredictability and vulner-
ability to security attacks might have
discredited the architectural compo-
nents more effectively.

AbsInt
WCET analysis for single-core architec-
tures had been essentially solved by a
sequence of Ph.D. theses in my group.
The only import was the Implicit Path
Enumeration Technique (IPET) of Li
and Malik.17 Li and Malik had managed
to model the timing behavior of pro-
grams and the entire architecture as an
integer linear program, which was far
from efficiently solvable. The IPET
technique was adopted to our setting
by Henrik Theiling in his Ph.D. thesis.24

It may be valuable information for
many readers to estimate the neces-
sary effort to develop a sound formal
method for an industrially relevant
non-trivial problem more or less from
scratch. At the core of our work leading
to the first usable tool, as described in
Ferdinand et al.,7 were three Ph.D. the-
ses, those of Christian Ferdinand,
Stephan Thesing, and Henrik Theil-
ing. Their joint development effort
would amount to approximately 11
person years, ignoring the effort re-
quired to write up the theses, publish
results, and satisfy project require-
ments. Another three years went into
the implementation of static cache
analysis for some non-LRU caches and
into the value analysis of the timing-
analysis tool. The latter was based on
existing theory developed in Cousot
and Cousot3 but had to be adapted to
the analysis of binary executables and
to all the peculiarities of a machine se-
mantics. Altogether the effort invested
in the first usable tool would add up to
roughly 14 person years. However, one
should not underestimate the acceler-
ating effect that PAG19 had on the im-
plementation of and experimentation
with several abstract interpretations
within the timing-analysis tool. This
development effort was followed by
work to improve efficiency of the analy-
ses and accuracy of the results, by re-
search into the predictability of archi-
tectural features and, based on the

method, also used in certification, did
not work any longer for the execution
platform selected for the Airbus A380,
namely the Motorola MPC755.

The Airbus people provided us with
benchmark software, a set of 12 dena-
tured tasks, each consisting of several
million instructions, as they were fly-
ing them in the A340. The platform
there was the Motorola Coldfire pro-
cessor, mentioned earlier. The tool we
developed until 2001 was able to ana-
lyze the benchmark provided by Airbus
in decent time and with quite precise
results. The upper bounds our tool
computed made the Airbus people
quite happy because they were apporxi-
mately in the middle between the worst
observed execution times and the up-
per bound determined by Airbus with a
measurement-based method using
safety margins. More precisely, our
analysis results were overestimating
the worst observed execution times by
roughly 15%. This breakthrough was
reported in Ferdinand et al.7 Some-
thing surprising, at least for me, hap-
pened when I described our approach
and reported our results at EMSOFT
2001. Highly appreciated colleagues
like Hermann Kopetz and Gérard Berry
were storming the stage and congratu-
lated me as if I had just won an Oscar.
Indeed, this paper received the EM-
SOFT Test-of-Time Award 2019.

Some words about our long-time co-
operation partner, Airbus, in Toulouse.
We have experienced the group in
charge of developing safety-critical
software as problem-aware, highly
competent, and extremely cooperative.
They wanted to have this problem
solved and they trusted us to solve it,
and they kept us focused on the real
problems, and thus prevented us from
solving simplified, self-posed prob-
lems, a tendency academic researchers
often are inclined to follow.

As a result of our successful devel-
opment, Airbus offered our tools to the
certification authorities for the certifi-
cation of several Airbus plane genera-
tions, starting with the Airbus A380.
The European Union Aviation Safety
Agency (EASA) has accepted the AbsInt
WCET analysis tool as validated tool
for several time-critical subsystems of
these plane types. We were less suc-
cessful with Airbus’ competitor, who
partly certifies their planes themselves,

as it recently turned out, and with the
certification authority in charge, who
doesn’t seem to require the use of a
sound verification technology for real-
time requirements.

Predictability
When modeling the Motorola Coldfire
cache we noticed that only one-fourth
of its cache capacity could be predict-
ed. This quickly led us to consider the
problem of timing-predictability of ar-
chitectures.14 In his Ph.D. thesis, Jan
Reineke developed the first formally
founded notion of predictability,
namely that of cache predictability.20,22
The concept behind this notion is that
a cache architecture, more precisely
its cache-replacement policy is more
predictable than another one if it re-
covers from uncertainty about cache
contents faster, that is, needs fewer
memory accesses to remove uncer-
tainty from the abstract cache. Among
all the considered cache-replacement
strategies LRU fares provably best.

Reineke also compared how sensi-
tive caches are to changes to the initial
cache state. He could show that all
non-LRU cache replacement strategies
he considered were quite sensitive to
such changes. This means the differ-
ence in the cache-miss rate is only
bounded by the length of the memory-
access sequence. Thus, missing an ini-
tial cache state when measuring execu-
tion time may mean to miss a
memory-access sequence with a high
cache-miss rate.

In Wilhelm et al,27 we collected our
wisdom concerning timing predict-
ability of several types of architectural
components. It heavily influenced the
design of the Kalray MPPA.5

One could at this point remark that
a future automatically driven car will
employ a GPU executing learned-pat-
tern recognition, which is controlled
by an 8-core-ARM architecture whose
design contradicts under almost all as-
pects this collected wisdom of ours. It
employs random-replacement caches,
a cache coherence protocol, a shared
bus, and all DRAM memory.

Another remark is in place here. Our
efforts to push the predictability issue
had limited effect. In retrospect, it
looks like we came up too early with
our complaints and the ideas to reme-
dy the corresponding problems. A few

60 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

contributed articles

namely how to determine reliable
and precise upper bounds on execu-
tion times of programs. We were not
the only ones to attempt this. Why
were we more successful than other
groups? Essentially the answer is,
we had a firm background in formal
methods, particularly in abstract in-
terpretation, and abstraction of the
execution platform played the deci-
sive role in our approach. Without
the right abstraction of the architec-
ture, the search space is just too large.
However, there is more to it! WCET
analysis consists of many phases.
A practically usable WCET-analysis
method requires strong solutions
to all the subproblems and their ad-
equate interaction. Otherwise, either
the effort is too high, or the accuracy
is too low. The people at AbsInt did an
excellent engineering job to come up
with WCET-analysis tools and later
also other tools that were usable on
an industrial scale.

References
1. Alt, M., Ferdinand, C., Martin, F., and Wilhelm, R.

Cache behavior prediction by abstract interpretation.
R. Cousot and D.A. Schmidt, Eds. In Proceedings of
Static Analysis, 3rd Intern. Symp. (Aachen, Germany,
Sept. 24–26, 1996). LNCS 1145, 52–66; https://doi.
org/10.1007/3-540-61739-6_33

2. Altmeyer, S., Maiza, C., and Reineke, J. Resilience
analysis: Tightening the CRPD bound for set-
associative caches. J. Lee and B.R. Childers, Eds. In
Proceedings of the ACM SIGPLAN/SIGBED 2010
Conf. Languages, Compilers, and Tools for Embedded
Systems, (Stockholm, Sweden, Apr. 13–15, 2010),
153–162; doi:10.1145/1755888.1755911.

3. Cousot, P. and Cousot, R. Abstract interpretation: A
unified lattice model for static analysis of programs
by construction or approximation of fixpoints.
R.M. Graham, M.A. Harrison, and R. Sethi, Eds. In
Proceedings of the 4th ACM Symp. on Principles of
Programming Languages, (Los Angeles, CA, USA, Jan.
1977), A8–252; doi:10.1145/512950.512973.

4. Cullmann, C. Cache persistence analysis: Theory and
practice. ACM Trans. Embedded Comput. Syst. 12, 1
(2013), 40:1–40:25; doi:10.1145/2435227.2435236.

5. de Dinechin, B.D., van Amstel, D., Poulhiès, M., and
Lager, G. Time-critical computing on a single-chip
massively parallel processor. G.P. Fettweis and W.N.,
Eds. Design, Automation & Test in Europe Conf. &
Exhibition (Dresden, Germany, Mar. 24–28, 2014), 1–6:
doi: 10.7873/DATE.2014.110.

6. Ferdinand, C. Cache Behavior Prediction for Real-Time
Systems. Pirrot, 1997; http://d-nb.info/953983706.

7. Ferdinand, C., Heckmann, R., Langenbach, M., Martin,
F., Schmidt, M., Theiling, H., Thesing, S., and Wilhelm,
R. Reliable and precise WCET determination for a real-
life processor. EMSOFT LNCS, 2211 (2001), 469–485.

8. Ferdinand, C. and Wilhelm, R. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Systems 17, 2–3 (1999), 131–181.

9. Grund, D. Static Cache Analysis for Real-Time
Systems: LRU, FIFO, PLRU. Ph.D. thesis, Saarland
University, 2011.

10. Grund, D. and Reineke, J. Abstract interpretation of
FIFO replacement. J. Palsberg and Z. Su, Eds. In
Proceedings of the 16th Intern. Symp. Statis Analysis
(Los Angeles, CA, USA, Aug. 9–11, 2009). LNCS 5673;
doi:10.1007/978-3-642-03237-0_10.

11. Grund, D. and Reineke, J. Toward precise PLRU cache
analysis. B. Lisper, Ed. In Proceedings of the 10th
Intern. Workshop on Worst-Case Execution Time
Analysis, (Brussels, Belgium, July 8, 2010).
OASICS 15 (2010) 23–35. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, Germany; doi:10.4230/
OASIcs.WCET.2010.23.

12. Hahn, S. On Static Execution-Time Analysis -
Compositionality, Pipeline Abstraction, and Predictable
Hardware. Ph.D. thesis, Saarland University, 2019.

13. Hahn, S., Reineke, J., and Wilhelm, R. Toward compact
abstractions for processor pipelines. R. Meyer, A.
Platzer, and H. Wehrheim, Eds. In Proceedings of
Correct System Design—Symp. Honor of Ernst-Rüdiger
Olderog (Oldenburg, Germany, Sept. 8–9, 2015). LNCS
9360, 205–220; doi:10.1007/978-3-319-23506-6_14.

14. Heckmann, R., Langenbach, M., Thesing, S., and
Wilhelm, R. The influence of processor architecture
on the design and the results of WCET tools. In IEEE
Proceedings on Real-Time Systems 91, 7 (2003),
1038–1054.

15. Huynh, B.K., Ju, L., and Roychoudhury, A. Scope-
aware data cache analysis for WCET estimation.
In Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symp,
(Chicago, IL, USA, Apr. 11–14, 2011) 203–212;
doi:10.1109/RTAS.2011.27.

16. Langenbach, M., Thesing, S., and Heckmann, R. Pipeline
modeling for timing analysis. M.V. Hermenegildo and
G. Puebla, Eds. In Proceedings of the 9th Intern. Symp.
on Static Analysis (Madrid, Spain, Sept. 17–20, 2002),
LNCS 2477, 294–309; doi:10.1007/3-540-45789-5_22.

17. Li, Y.S. and Malik, S. Performance analysis of
embedded software using implicit path enumeration.
In Proceedings of the 32nd ACM/IEEE Design
Automation Conf. (June 1995), 456–461.

18. Lv, M., Guan, N., Reineke, J., Wilhelm, R., and Yi, W. A
survey on static cache analysis for real-time systems.
LITES 3, 1 (2016), 05:1–05:48; doi:10.4230/LITES-
v003-i001-a005.

19. Martin, F. Generating Program Analyzers. Ph.D. thesis.
Saarland University, Saarbrücken, Germany, 1999;
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/
index.html.

20. Reineke, J. Caches in WCET Analysis: Predictability –
Competitiveness – Sensitivity. Ph.D. thesis. Saarland
University, 2009; https://bit.ly/3enUrXr

21. Reineke, J. The semantic foundations and a landscape
of cache-persistence analyses. LITES 5, 1 (2018),
03:1–03:52; doi:10.4230/LITES-v005-i001-a003.

22. Reineke, J., Grund, D., Berg, C., and Wilhelm, R. Timing
predictability of cache replacement policies. Real-
Time Systems 37, 2 (2007), 99–122.

23. Shaw, A.C. Deterministic timing schema for parallel
programs. V.K. Prasanna Kumar, Ed. In Proceedings
of the 5th Intern. Parallel Processing Symp. (Anaheim,
CA, USA, Apr. 30–May 2, 1991), 56–63. IEEE
Computer Society; doi:10.1109/IPPS.1991.153757.

24. Theiling, H. Control Flow Graphs for Real-Time
Systems Analysis: Reconstruction from Binary
Executables and Usage in ILP-based Path Analysis.
Ph.D. thesis, Saarland University, Saarbrücken,
Germany, 2003; http://scidok.sulb.uni-saarland.de/
volltexte/2004/297/index.html.

25. Thesing, S. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. Ph.D.
thesis, Saarland University, 2004.

26. Thesing, S. Modeling a system controller for timing
analysis. S.L. Min and W. Yi, Eds. In Proceedings of
the 6th ACM & IEEE Intern. Conference on Embedded
Software (Seoul, Korea, Oct. 22–25, 2006), 292–300;
doi:10.1145/1176887.1176929.

27. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M.,
Pister, M., and Ferdinand, C. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Trans. on
CAD of Integrated Circuits and Systems 28, 7 (2009);
doi:10.1109/TCAD.2009.2013287.

28. Wilhelm, S. Symbolic Representations in WCET
Analysis. Ph.D. thesis, Saarland University, 2012;
http://scidok.sulb.uni-saarland.de/volltexte/2012/4914/.

29. Wilhelm, S. and Wachter, B. Symbolic state traversal
for WCET analysis. S. Chakraborty and N. Halbwachs,
Eds. In Proceedings of the 9th ACM & IEEE Intern.
Conf. Embedded Software. (Grenoble, France, Oct.
12–16, 2009), 137–146; doi:10.1145/1629335.1629354.

Reinhard Wilhelm (wilhelm@cs.uni-saarland.de)
is Professor Emeritus at Saarland University in
Saarbrücken, Germany.

Copyright held by author/owner.

results, into ways to exploit the con-
figurability of processor architectures.

We had founded AbsInt to industri-
alize our WCET technology. Well, we
solved the problem, we had instantia-
tions for some processor architectures,
basically for those that Airbus and their
suppliers needed. However, we had to
learn that hardly any two potential cus-
tomers employed the same architec-
ture configuration. The decision for a
new platform was taken without consid-
ering whether a WCET-analysis existed
for this platform. Instantiating our
technology for a new, complex platform
took a lot of effort, and platforms were
not getting simpler! In consequence,
such an instantiation was very expen-
sive, which did not raise the motivation
of potential customers to buy our
WCET tools or order the development
of a new instance for their platform. In
addition, there existed some competi-
tors, who marketed their measure-
ment-based, unsound timing analysis
and often forgot to mention the un-
soundness of their tool. When compa-
nies that developed or integrated hard
real-time systems were obliged to show
“that they did something about this
nasty problem” this unsound, inexpen-
sive solution was sometimes preferred
to show “that we do something” (and
didn’t pay too much for it). So, industri-
alizing and marketing a sound WCET
technology, that inherently needed to
be expensive, was no promising way to
get rich.

However, our development of a
sound method that actually solved a
real problem of real industry was con-
sidered a major success story for the
often disputed formal-methods do-
main. AbsInt became the favorite
partner for the industrialization of ac-
ademic prototypes. First, Patrick Cou-
sot and his team offered their proto-
type of Astrée, a static analysis for
run-time errors, which in cooperation
with some of the developers has been
largely extended by AbsInt. Then,
Xavier Leroy offered the result of his
much-acclaimed research project,
CompCert, the first verified optimiz-
ing C compiler. Both Astrée and
CompCert are now AbsInt products.

Conclusion
My former Ph.D. students and I have
solved a relevant, non-trivial problem,

http://d-nb.info/953983706
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/index.html
https://bit.ly/3enUrXr
http://scidok.sulb.uni-saarland.de/volltexte/2004/297/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/297/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2012/4914/
mailto:wilhelm@cs.uni-saarland.de
https://doi.org/10.1007/3-540-61739-6_33
https://doi.org/10.1007/3-540-61739-6_33

CALL FOR PAPERS
The 21st IEEE/ACM international Symposium on Cluster, Cloud
and Internet Computing (CCGrid 2021) is a leading forum to
disseminate and discuss research activities and results on a broad
range of topics in distributed systems, ranging from computing
Clusters to widely distributed Clouds and emerging Internet
computing paradigms such as Fog/Edge Computing for Internet
of Things (IoT)/Big Data applications. The conference features
keynotes, technical presentations, posters, workshops, tutorials,
as well as the SCALE challenge featuring live demonstrations
and the ICFEC 2021 conference.

In 2021, IEEE/ACM CCGrid 2021 will be ‘self-colocated’ with
its postponed 2020 edition, in Melbourne, Australia. We will
jointly celebrate the 20th and 21st anniversary of the conference!
We solicit original contributions on all aspects of distributed
systems and applications in the context of Cluster, Cloud, and
Internet computing environments. Specific topics of interest
include but are not limited to the following:
• Internet Computing Frontiers: Edge, Fog, Serverless,

Lambda, Streaming - Highly decentralized approaches to
cloud computing. Edge/Fog computing, sensor data
streaming and computation on the edges of the network.
Function as a Service (Faas), Backend as a Service (BaaS),
serverless computing, lambda computing.

• Architecture, Networking, Data Centers: Service oriented
architectures. Utility computing models. IaaS, PaaS, SaaS,
*aaS paradigms. Service composition and orchestration.
Software-Defined Network-enabled Systems. Micro-
datacenter, cloudlet, edge, or fog computing infrastructure.
Virtualized hardware: GPUs, tensor processing units,
FPGAs.

• Storage and I/O Systems: Distributed storage, cloud
storage, Storage as a Service, data locality techniques for in-
memory processing, storage in the edge.

• Programming Models and Runtime Systems:
Programming models, languages, systems and
tools/environments. Virtualization, containers, and
middleware technologies. Actors, agents, programming
decentralized computing systems.

• Resource Management and Scheduling: Resource
allocation algorithms, profiling, modeling. Cluster, cloud,
and internet computing scheduling and meta-scheduling
techniques.

• Performance Modelling and Evaluation: Performance
models. Monitoring and evaluation tools. Analysis of
system/application performance.

• Cyber-Security, Privacy and Resilient Distributed
Systems: Distributed Systems security and trust. Access

control. Data privacy and integrity. Regulation. Resiliency
of service attacks.

• Sustainable and Green Computing: Environment friendly
computing ecosystems. Hardware/software/application
energy efficiency. Power, cooling and thermal awareness.

• Applications: Data Science, Artificial Intelligence, Machine
Learning, Cyber-Physical Systems, e-Health, Internet of
Things (IoT)-enabled Smart Systems and Applications.

PAPER SUBMISSION
Authors are invited to submit papers electronically. Submitted
manuscripts should be structured as technical papers and may not
exceed 10 letter size (8.5 x 11) pages including figures, tables
and references using the IEEE format for conference
proceedings. All manuscripts will be reviewed and will be judged
on correctness, originality, technical strength, significance,
quality of presentation, and relevance to the conference attendees.

Submitted papers must represent original unpublished research
that is not currently under review for any other conference or
journal. Papers not following these guidelines will be rejected
without review and further action may be taken, including (but
not limited to) notifications sent to the heads of the institutions of
the authors and sponsors of the conference. Submissions received
after the due date, exceeding length limit, or not appropriately
structured may also not be considered. Authors may contact the
conference chairs for more information. The proceedings will be
published through the IEEE Press, USA and will be made online
through the IEEE and ACM Digital Libraries.

CHAIRS & COMMITTEES
General Chair
 Rajkumar Buyya, University of Melbourne, Australia
 Gul Agha, University of Illinois at Urbana-Champaign, USA

 Program Committee Co-Chairs
 Laurent Lefevre, INRIA, France
 Stacy Patterson, RPI, USA
 Young Choon Lee, Macquarie University, Australia

Workshops Co-Chairs
 George Pallis, University of Cyprus, Cyprus
 Haiying Shen, University of Virginia, USA

IMPORTANT DATES (TENTATIVE)
Papers Due: December 8, 2020
Notification of Acceptance: February 8, 2021
Camera Ready Papers Due: March 3, 2021

May 10-13, 2021, Melbourne, Australia
http://www.cloudbus.org/ccgrid2021

21th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

http://www.cloudbus.org/ccgrid2021

62 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 T
H

E
 I

M
A

G
E

 F
O

U
N

D
A

T
I

O
N

DESPITE THE FOCUS on operating in adversarial
environments, cryptocurrencies have suffered a litany
of security and privacy problems. Sometimes, these
issues are resolved without much fanfare following
a disclosure by the individual who found the hole. In
other cases, they result in costly losses due to theft,
exploits, unauthorized coin creation, and destruction.
These experiences provide regular fodder for
outrageous news headlines. In this article, we focus on
the disclosure process itself, which presents unique
challenges compared to other software projects.15 To
illustrate, we examine some recent disclosures and
discuss difficulties that have arisen.

While Bitcoin is the best known, more than 2,000
cryptocurrencies are in circulation, collectively
valued at $350 billion as of August 2020.6 Figure 1
conceptualizes the landscape as a stack. While the
details differ, at the lowest level, each cryptocurrency

system is designed to achieve common
security goals: transaction integrity and
availability in a highly distributed sys-
tem whose participants are incentiv-
ized to cooperate.38 Users interact with
the cryptocurrency system via software
“wallets” that manage the cryptograph-
ic keys associated with the coins of the
user. These wallets can reside on a local
client machine or be managed by an
online service provider. In these appli-
cations, authenticating users and
maintaining confidentiality of crypto-
graphic key material are the central se-
curity goals. Exchanges facilitate trade
between cryptocurrencies and between
cryptocurrencies and traditional forms
of money. Wallets broadcast cryptocur-
rency transactions to a network of
nodes, which then relay transactions to
miners, who in turn validate and group
them together into blocks that are ap-
pended to the blockchain.

Not all cryptocurrency applications
revolve around payments. Some crypto-
currencies, most notably Ethereum,
support “smart contracts” in which
general-purpose code can be executed
with integrity assurances and recorded
on the distributed ledger. An explosion
of token systems has appeared, in
which particular functionality is ex-
pressed and run on top of a cryptocur-
rency.12 Here, the promise is that busi-
ness logic can be specified in the smart
contract and confidently executed in a
distributed fashion.

The emergence of a vibrant ecosys-
tem of decentralized cryptocurrencies
has prompted proposals that leverage
the underlying technology to construct
new central bank currency2 and corpo-

Responsible
Vulnerability
Disclosure in
Cryptocurrencies

DOI:10.1145/3372115

Software weaknesses in cryptocurrencies
create unique challenges in responsible
revelations.

BY RAINER BÖHME, LISA ECKEY, TYLER MOORE,
NEHA NARULA, TIM RUFFING, AND AVIV ZOHAR

 key insights
 ˽ Cryptocurrency software is complex

and vulnerabilities can be readily, and
anonymously, monetized.

 ˽ Responsible vulnerability disclosure
in cryptocurrencies is hard because
decentralized systems, by design,
give no single party authority to push
code updates.

 ˽ This review of case studies informs
recommendations for preventing
catastrophic cryptocurrency failures.

http://dx.doi.org/10.1145/3372115

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 63

64 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

ventions adopted for general software
products in several ways. Two funda-
mental differences arise from the very
nature of cryptocurrencies.

First, the decentralized nature of
cryptocurrencies, which must continu-
ously reach system-wide consensus on a
single history of valid transactions, de-
mands coordination among a large ma-
jority of the ecosystem. While an indi-
vidual can unilaterally decide whether
and how to apply patches to her client
software, the safe activation of a patch
that changes the rules for validating
transactions requires the participation
of a large majority of system clients. Ab-
sent coordination, users who apply
patches risk having their transactions
ignored by the unpatched majority.

Consequently, design decisions
such as which protocol to implement or
how to fix a vulnerability must get sup-
port from most stakeholders to take ef-
fect. Yet no developer or maintainer
naturally holds the role of coordinating
bug fixing, let alone commands the au-
thority to roll out updates against the
will of other participants. Instead,
loosely defined groups of maintainers
usually assume this role informally.

This coordination challenge is ag-
gravated by the fact that unlike “cre-
ative” competition often observed in
the open source community (for exam-
ple, Emacs versus vi), competition be-
tween cryptocurrency projects is often
hostile. Presumably, this can be ex-
plained by the direct and measurable
connection to the supporters’ financial
wealth and the often minor technical
differences between coins. The latter is
a result of widespread code reuse,28
which puts disclosers into the delicate
position of deciding which among
many competing projects to inform re-
sponsibly. Due to the lack of formally
defined roles and responsibilities, it is
moreover often difficult to identify who
to notify within each project. Further-
more, even once a disclosure is made,
one cannot assume the receiving side
will act responsibly: information about
vulnerabilities has reportedly been
used to attack competing projects,18 in-
fluence investors, and can even be used
by maintainers against their own users.

The second fundamental difference
emerges from the widespread design
goal of “code is law,” that is, making
code the final authority over the shared

rate electronic money, such as Face-
book’s asset-linked Libra. This article
focuses on existing decentralized cryp-
tocurrencies. Some lessons discussed
here could also inform the design and
operation of these prospective forms of
digital money issued by public or pri-
vate legal entities.

Bugs in cryptocurrencies. The crypto-
currency realm itself is a virtual “wild
west,” giving rise to myriad protocols
each facing a high risk of bugs. Projects
rely on complex distributed systems
with deep cryptographic tools, often
adopting protocols from the research
frontier that have not been widely vet-
ted. They are developed by individuals
with varying level of competence (from
enthusiastic amateurs to credentialed
experts), some of whom have not devel-
oped or managed production-quality
software before. Fierce competition be-
tween projects and companies in this
area spurs rapid development, which
often pushes developers to skip impor-
tant steps necessary to secure their co-
debase. Applications are complex as
they require the interaction between
multiple software components (for ex-
ample, wallets, exchanges, mining
pools). The high prevalence of bugs is
exacerbated by them being so readily
monetizable. With market capitaliza-
tions often measured in the billions of
dollars, exploits that steal coins are si-
multaneously lucrative to cybercrimi-
nals and damaging to users and other
stakeholders. Another dimension of
importance in cryptocurrencies is the
privacy of users, whose transaction data

is potentially viewable on shared led-
gers in the blockchain systems on
which they transact. Some cryptocur-
rencies employ advanced cryptograph-
ic techniques to protect user privacy,
but their added complexity often intro-
duces new flaws that threaten such pro-
tections.

Disclosures. Disclosures in crypto-
currencies have occurred in varying cir-
cumstances, from accidental discover-
ies, through analysis by expert
developers and academics, to observ-
ing successful exploits in the wild. In
the rest of this article, we highlight the
difficulties and subtleties that arise in
each case. The root causes of most of
the difficulties lie in the special nature
of cryptocurrencies: they are based on
distributed systems that were designed
to be difficult to change in order to pro-
vide strong guarantees on their future
behavior. In order to change these
rules, the consent of many participants
is needed—participants who are often
anonymous, and who are organized
loosely in communities without gov-
erning bodies or regulatory oversight.

Here, we briefly highlight the differ-
ences between conventional software
development and cryptocurrencies
with regard to vulnerability disclosure,
we identify key issues in the disclosure
process for cryptocurrency systems,
and we formulate recommendations
and pose open questions.

How Is Disclosure Different?
Responsible vulnerability disclosure in
cryptocurrencies differs from the con-

Figure 1. Components of the cryptocurrency architecture covered in this article.

User

Developer

MinerMiner Miner

Cryptocurrency systems

Smart contracts
e.g., Token systems

Client software
e.g., Wallets

Online wallets
And exchanges

Main security goals:

Key management
•
• Authentication

Business logic

• Integrity
• Authorization

• Integrity (Safety)
• Availability (Liveness)
• Incentives (Fairness)

Confidentiality

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 65

review articles

system state in order to avoid (presum-
ably fallible) human intervention. To
proponents, this approach should
eliminate ambiguity about intention,
but it inherently assumes bug-free
code. When bugs are inevitably found,
fixing them (or not) almost guarantees
at least someone will be unhappy with
the resolution. This is perhaps best ex-
emplified by the controversy around
the DAO, an Ethereum smart contract
with a reentrance bug that was exploit-
ed to steal coins worth around $50 mil-
lion. After a community vote, the Ethe-
reum developers rolled out a patch to
reverse the heist, which (maybe surpris-
ingly) turned out to be controversial.
While the patch was accepted by large
parts of the ecosystem, it was strongly
opposed by a minority of Ethereum us-
ers arguing that it is a direct violation of
the code-is-law principle, and the con-
troversy ultimately led to a split of the
Ethereum system into two distinct
cryptocurrencies Ethereum and Ethe-
reum Classic.1 Moreover, situations
may arise where it is impossible to fix a
bug without losing system state, possi-
bly resulting in the loss of users’ ac-
count balances and consequently their
coins. For example, if a weakness is dis-
covered that allows anybody to effi-
ciently compute private keys from data
published on the blockchain,16 recovery
becomes a race to move to new keys be-
cause the system can no longer tell au-
thorized users and attackers apart. This
is a particularly harmful consequence
of building a system on cryptography
without any safety net. The safer ap-
proach, taken by most commercial ap-
plications of cryptography but rejected
in cryptocurrencies, places a third party
in charge of resetting credentials or
suspending the use of known weak cre-
dentials.

Ironically, these fundamental differ-
ences stem from design decisions in-
tended to enhance security. Decentral-
ization is prized for eliminating single
points of control, which could turn out
to be single points of failure. Giving
code the final say is intended to pre-
serve the integrity of operations. How-
ever, what may benefit security at de-
sign time becomes a significant liability
after deployment once vulnerabilities
are found.

Besides these fundamental differ-
ences, responsible disclosure for cryp-

tocurrencies is characterized by specif-
ic features of the domain. The
interpretation of system state as mon-
ey, with many exchanges linking it me-
chanically to the conventional financial
system, makes it easier and faster to
monetize bugs than for conventional
software, where vulnerability markets
may exist but are known to be friction-
prone.23 Moreover, the cryptocurrency
ecosystem reflects conflicting world-
views, which prevent the establishment
of basic norms of acceptable behavior.
For example, invalidating ransomware
payments via blacklisting has reignited
the debate over censorship and the rule
of law.26

Finally, we note a difference in em-
phasis over certain aspects of disclo-
sure. The conventional responsible dis-
closure discussion has focused on
balancing users’ interests in defensive-
ly patching versus national security in-
terests of weaponizing vulnerabili-
ties,25,31 without regard to whether the
affected software is open or closed
source. By contrast, open source soft-
ware and code reuse are central to dis-
closure issues in cryptocurrencies,
whereas balancing national and indi-
vidual security considerations has so
far not been widely discussed.

Throughout the rest of the article,
we illustrate these differences with real
cases before we derive recommenda-
tions and point to open problems.

Case Studies
We now review selected case studies of
cryptocurrency vulnerability disclo-
sures, highlighting aspects that teach
us about the difficulties in response.
We employ a multi-perspective method
in selecting and researching these cas-
es, ranging from the authors’ direct ex-
perience as disclosers, interviews with
developers and cryptocurrency design-
ers, and through public reports. Inter-
views with open-ended questions were
conducted by telephone, in-person or
by email. Attribution is given unless the
subject requested anonymity. The nov-
elty and heterogeneity of the problem
precluded a more systematic approach,
though we hope that those informed by
our findings can do so in future investi-
gations. We investigate coins both
small and large, because even the top
coins have experienced severe bugs.
While the software development pro-

The decentralized
nature of
cryptocurrencies,
which must
continuously reach
system-wide
consensus on a
single history of
valid transactions,
demands
coordination among
a large majority
of the ecosystem.

66 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

Later in 2017, a team of researchers
including author Ruffing found anoth-
er vulnerability in Zcoin that allowed an
attacker to “burn” money in transit,
that is, ensure no one, including the
sender, recipient, and attacker, can fur-
ther spend the coins.30 Remarkably, the
root cause of this vulnerability was an
overlooked attack vector in the design
and security analysis of the underlying
Zerocoin protocol. While money burn-
ing does not serve the attacker directly,
the attacker could profit indirectly, for
example, by betting on falling prices of
the affected cryptocurrency (short sell-
ing) and then publishing or exploiting
the vulnerability. We have no evidence
that such short-selling activity did in-
deed take place.

Having no cryptographer on its
team, Zcoin hired Ruffing to provide
advice and develop a patch. During the
work, he identified two more vulnera-
bilities,29 one enabling illegitimate coin
generation and one allowing theft of
money in transit. Both vulnerabilities
stemmed from bugs in libzerocoin, a
prototype library written by the inven-
tors of the Zerocoin protocol for the
purpose of validating their research.
The Zcoin project had used that library
as-is, despite the code’s prominent
warning that the authors “are releasing
this dev version for the community to
examine, test and (probably) break”
and that there are things that they have
“inevitably done wrong.”21

Code reuse complicated the disclo-
sure process of the three vulnerabili-
ties.29 Months after the initial notifica-
tion, the discoverers found that more
than 1,600 public GitHub repositories
included verbatim copies of libze-
rocoin. Responsible and confidential
disclosure to so many recipients is in-
feasible. Instead, the discoverers nar-
rowed down the recipient set to less
than 10 actual cryptocurrency projects,
four of which they deemed trustworthy
enough to be informed additionally.
None of the projects had a clearly de-
fined contact point or process for han-
dling vulnerabilities.

Competition between projects pre-
vented a coordinated response. For ex-
ample, the notified project did not re-
veal to the reporters which of their
competitors were also vulnerable. Co-
ordination is essential because the first
project to patch reveals the vulnerabili-

cesses for prominent coins are more
robust, the cases will show that all coins
experience challenges to disclosure not
seen in traditional software projects.
Figure 2 presents a stylized timeline of
the cases presented.

Cryptocurrency systems. Zcoin. We
start with Zcoin, a relatively little
known cryptocurrency that has suf-
fered from repeated disclosures. Zcoin
was the first to implement the Zerocoin
protocol,22 which uses zero-knowledge
proofs to enable untraceable transac-
tions. In February 2017, an attacker ex-
ploited a typo in C++ code17 (using the
equality operator ‘==’ instead of the as-
signment operator ‘=’) to generate
403,050 coins out of thin air. The new
coins had a market value of $750,000
and inflated the currency supply in cir-

culation by 37%. In principle, such at-
tacks can remain unnoticed due to the
zero-knowledge veil, but the sheer
number of coins created combined
with the attacker’s impatience eventu-
ally led to its discovery. Within hours,
the Zcoin team demanded that trading
halt at big exchanges, published a blog
post, and asked mining pools to sus-
pend processing zero-knowledge
transactions. A patch was released
within a day, but the zero-knowledge
feature remained disabled, thereby
temporarily freezing all untraceable
funds. This issue was resolved after
four days when a “fork” altering the
fundamental transaction validation
rules was adopted by a majority of the
miners. Even so, the attacker was able
to abscond with the loot.

Figure 2. Visualization of the vulnerabilities discussed in this article.

The blue bars represent the underlying coins and
their widths are proportional to their marketcap (for
example, Coinmarketcap.org). The red bars visualize
the discussed incidents from their introduction (flag) to
their disclosure (wide bar) to their public announcement
(bell). The additional symbol is used whenever money
was stolen, burnt or printed.

Money printed B Money stolen B Money burned Public notification

2013 2014 2015 2016 2017 2018 2019 2020

network split

Bitcoin Cash

theft theft
shut

down

B B

IOTA

money burning (paper)

money printing and theft (libzerocoin)

2nd printing 3rd printing

Zcoin

Zcash

money printing (paper)

Ethereum

Smart contracts
The DAO

B

Parity wallet

B B

money printing

money burning* *
Monero

Bitcoin

network split introduced

discovered fixed

money printing

2013 2014 2015 2016 2017 2018 2019 2020

http://Coinmarketcap.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 67

review articles

ty, leaving the others unprotected. One
currency was actually exploited in this
way, and ironically, Zcoin itself was tar-
geted because the patch was not adopt-
ed quickly enough. Dealing with the
entire situation required tact and judg-
ment by the discoverers, and the poten-
tial for every mistake to be catastrophic
furthers the discoverers’ burden.

As a result of the coin creation bugs,
Zcoin improved continuous monitor-
ing of aggregated balances, which led
to the discovery of another creation
bug in April 2019. The project repeated
the notification process described ear-
lier, disabled the zero-knowledge fea-
tures via an emergency fork, and in-
formed three potentially affected
competitors. It took 10 days of investi-
gation before a project developer iden-
tified the root cause in the design of the
Zerocoin protocol. Unlike a simple im-
plementation bug, there was no obvi-
ous way to fix the problem. The proj-
ect’s response was to migrate to an
entirely different zero-knowledge pro-
tocol, suspending untraceable transac-
tions in the meantime and freezing the
affected funds until the new protocol
was deployed in July 2019.37

Zcash. Zcash, the commercial imple-
mentation of the Zerocash protocol,3
improves on Zerocoin’s model for un-
traceable transactions. It too has suf-
fered from similar issues.32 The propos-
al for the used algorithm for generating
cryptographic material allowed a pa-
rameter to be published that should
have remained secret. (Incidentally, a
security proof was omitted because the
scheme was similar to a previous one
known to be secure.) The published
value could have been used to undetect-
ably generate coins out of thin air. The
problem was discovered internally in
March 2018 and fixed after 240 days in
conjunction with a scheduled upgrade
of the zero-knowledge protocol. Before
and during the events the Zcash team
had entered mutual disclosure agree-
ments with the two largest competitors
who reuse Zcash code. These competi-
tors were notified two weeks after the
fix with a schedule for public disclosure
within a maximum of 90 days, which
then took place in February 2019, al-
most one year after the discovery.32 Ob-
scurity played a key role in this event:
not only was the fix hidden in a larger
update, the critical parameter was also

removed from websites and a cover sto-
ry spun around the “loss” of this piece
of information. The intention of this
obscurity was to protect Zcash’s own in-
terests and its users, as well as those of
competing cryptocurrencies. On the
downside, such long periods of obscu-
rity may cast doubt on the trustworthi-
ness of security claims in the future,
and it remains unclear whether and to
what extent the bug has been exploited.

Monero. The opposite of internal
discovery is accidental public disclo-
sure. This happened to Monero, the
most popular implementation of the
CryptoNote protocol.35 In September
2018, an interested user posted a
seemingly innocuous question to an
online forum: “What happens if some-
body uses a one-time account twice?”
(paraphrased by the authors).7 Sur-
prisingly, there was no protection
against this action in the protocol.
The revealed vulnerability allowed at-
tackers to burn other people’s funds.
The problem was fixed within 10 days
without known incidents and publicly
announced thereafter.

A more serious vulnerability in the
CryptoNote protocol affected all crypto-
currencies based on it. A post on a spe-
cialized cryptography mailing list in
February 2017 revealed an issue, which
implied a coin generation vulnerability
in CryptoNote’s basic cryptographic
scheme.20 The Monero team took note
and developed a patch within three
days and shared it privately with pre-
ferred parties, such as mining pools
and exchanges. The true purpose of the
patch was disguised in order to protect
the rest of the users who were running
vulnerable clients. After a fork to the
validation rules that completely re-
solved the issue in Monero in April
2017, the Monero team informed other
CryptoNote coins privately. One such
coin, Bytecoin, was exploited immedi-
ately afterward, resulting in the illegiti-
mate generation of 693 million coins.18
In a public disclosure that took place 15
days later, the Monero team described
the aforementioned process and
named unpatched competitors, includ-
ing Bytecoin20 (though Bytecoin claims
that a patch had been issued to miners
immediately after the exploit18). Per-
versely, the public disclosure attracted
other investors to bid up the Bytecoin
price. Its market capitalization grew

Unlike bugs
in which
coins are created,
IOTA suffered
a vulnerability
that might have
placed user funds
at risk of theft.

68 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

ther bug could be exploited before
making the disclosure public on the
bitcoin-dev mailing list. They did not
notify anyone of the inflation bug until
the network had been upgraded. Third,
the disclosure involved deliberate de-
ception of users: the Bitcoin developers
published a patch describing it as only
fixing the denial-of-service issue. This
downplayed the severity of the bug,
while at the same time motivating a
prompt upgrade. This gave Bitcoin us-
ers and other affected cryptocurrencies
time to adopt the fix, albeit with grum-
bling about the sudden public release.
This highlights both a benefit and a
downside to employing white lies in the
disclosure process.

Silence is an alternative to white lies.
The Bitcoin team took this option after
an internal discovery in 2014. Bitcoin
suffered from an inconsistency be-
tween different versions of the OpenS-
SL library. The 32-bit version was more
tolerant in accepting variants of digital
signatures than the 64-bit version,
which could cause a loss of consistency
if a signature is accepted only by the
subset of nodes running on 32-bit. The
mitigation turned into a year-long or-
deal. Fixing OpenSSL was not an op-
tion, hence the stricter signature for-
mat had to be enforced in the Bitcoin
codebase. Changes were made subtly
and gradually in order to avoid drawing
attention on the relevant piece of code.
Users upgraded organically over a peri-
od of 10 months. The bug was made
public when more than 95% of the min-
ers had patched.36

Smart contracts. Some cryptocur-
rencies, most prominently Ethereum,
support “smart contracts.” These are
computer programs anyone can store
on a shared blockchain, which then
purports to guarantee correct execu-
tion. Contracts can receive, store, and
send coins to users or other contracts
according to their programmed logic.
Smart contracts pose two further chal-
lenges to disclosure and patching.
First, there is no club of miners whose
incentives are aligned with the func-
tioning of a specific contract. There-
fore, relying on miners as allies to sup-
port smooth disclosure is usually not
an option (though we will discuss an
exception). Second, the code is not up-
dateable by design to demonstrate
commitment to the rules of operation,

five-fold, briefly jumping into the top 10
cryptocurrencies by value. It remains
unclear who exploited the bug, but By-
tecoin holders certainly benefited from
the price rise.

IOTA. Unlike bugs in which coins are
created, IOTA suffered a vulnerability
that might have placed user funds at
risk of theft. Contrary to the best prac-
tice of using standardized cryptograph-
ic primitives, IOTA relied on a custom
hash function that had a collision
weakness.14 Author Narula and col-
leagues disclosed the vulnerability to
the developers in July 2017. The vulner-
ability was patched by IOTA in August
2017 and made public by the disclosers
in September 2017,13 offering several
lessons about the disclosure process.

First, the vulnerability was fixed and
deployed to the network quite quickly.
On one hand, this is good because the
potential vulnerability window is small-
er. On the other hand, the speedy re-
sponse was made possible due to the
project’s high level of control over the
network, which runs contrary to the de-
sign goals of decentralized cryptocur-
rencies. Such control further allowed
the operators to shut down its network
to prevent theft from a vulnerable wal-
let for several weeks in early 2020.

The second lesson is that organiza-
tions may not respond favorably to a
disclosure. Here, communications
were tense, the existence and risk of the
vulnerability was denied and down-
played, and the discoverers were threat-
ened with lawsuits. The response
echoes industry reactions to vulnerabil-
ity disclosures related to digital rights
management decades before.19 In the
cryptocurrency case, there is a clear po-
tential incentive conflict when the orga-
nization holds a large share of the coins
and reasonably worries that the news
could devalue holdings or prevent part-
nerships that might increase the value
of holdings. Moreover, information
about the bug could be exploited for
profit by those possessing inside infor-
mation about its existence prior to pub-
lic disclosure.

Bitcoin Cash. Not to be confused
with Bitcoin, “Bitcoin Cash” is derived
from Bitcoin’s codebase and was creat-
ed due to disagreements within the eco-
system. Cory Fields, a contributor to the
predominant implementation of Bit-
coin, Bitcoin Core, was examining

change-logs of Bitcoin Cash’s main im-
plementation in April 2018.10 There he
noticed that a sensitive piece of code
dealing with transaction validation had
been improperly refactored, causing a
vulnerability. It would allow an attacker
to split the Bitcoin Cash network, there-
by compromising the consistency re-
quired for a cryptocurrency to operate.

As Fields noted, bugs like this cause
systemic risk: if exploited, they could
sink a cryptocurrency. The large
amounts of money at risk prompt dis-
closers to take precautions. In this case,
to protect his own safety, Fields chose to
remain anonymous.10 The patching
went smoothly, but we do not know if it
would have been more contentious had
he revealed his identity. Moreover, dis-
coverers may want to demonstrate they
behaved ethically, for example, that
they sent a report to the developers. One
possible mechanism is to encrypt the
report with the developers’ public key
and publish the ciphertext and draw the
developer’s attention to it. This would
require developers to provide public
keys along with their security contact
and have internal processes to handle
incoming messages. Surprisingly, at the
time Bitcoin Cash, a top-10 cryptocur-
rency worth billions of dollars, did not
(though now they do). In our interview,
Fields stressed he found it difficult to
figure out what was the right thing to do.
What helped him was to imagine the
situation with swapped roles.

Bitcoin. A few months later, a devel-
oper from Bitcoin Cash disclosed a bug
to Bitcoin (and other projects) anony-
mously. Prior to the Bitcoin Cash
schism, an efficiency optimization in
the Bitcoin codebase mistakenly
dropped a necessary check. There were
actually two issues: a denial-of-service
bug and potential money creation.8 It
was propagated into numerous crypto-
currencies and resided there for al-
most two years but was never exploited
in Bitcoin.

This case teaches us three lessons:
First, even the most watched cryptocur-
rencies are not exempt from critical
bugs. Second, not all cases should be
communicated to everyone in the net-
work at the same time. The Bitcoin de-
velopers notified the miners control-
ling the majority of Bitcoin’s hashrate
of the denial-of-service bug first, mak-
ing sure they had upgraded so that nei-

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 69

review articles

hence the contract analogy. This may
turn disastrous if the code contains
bugs because machines, unlike arbitra-
tors of real contracts, have no room for
interpretation.

The DAO. The most famous example
of a buggy contract is the DAO (short for
Decentralized Autonomous Organiza-
tion), the first code-controlled venture
fund. Widely endorsed by an enthusias-
tic Ethereum community, in spring
2016 the DAO project collected user
funds and stored them in a smart con-
tract. Its visible balance of $250 million
(15% of all available coins at the time)
made it a highly attractive target. It
prompted scrutiny from security re-
searchers who raised concerns,9 the
closest activity to disclosure in the
smart contract space we have seen.
Three weeks later, an anonymous at-
tacker managed to withdraw more than
3.5 million coins (about $50 million) il-
legitimately from the DAO smart con-
tract.1 The attacker’s trick involved
making a small investment in the DAO,
then withdrawing and thereby exploit-
ing a re-entrance vulnerability in the
refund mechanism. (The contract’s
bug was to not decrease the balance be-
fore sending coins, which in Ethereum
passes control to the receiving party.)
This exploit set off a vigorous debate
over whether or not this behavior was
abusive, since the code technically al-
lowed the interaction.

The DAO incident could have been
an example of an irreversible change of
system state. However, the exceptional
scale of the project and the involvement
of the Ethereum community triggered a
historic vote between miners to sup-
port a fork of the underlying cryptocur-
rency in order to “restore” the invest-
ments in the DAO contract. This
intervention was highly controversial
as it thwarted the very idea of immuta-
ble transactions, causing a group of
purists to create a parallel instance,
called Ethereum Classic, that was not
rolled back. In hindsight, the incident
raised the alarm to the smart contract
community about the looming security
issues. Today’s contracts cannot hope
for miner-enforced rollbacks because
the uptake of the platform has diversi-
fied interests.

Parity wallet. Another example of a
fund recovery, albeit partially success-
ful, followed the Parity exploit in July

2017. The vulnerable contract imple-
mented a multi-signature wallet, a
mechanism that promises superior
protection against theft compared to
standard wallets. Intended uses in-
clude “corporate” accounts storing
high value, such as the proceeds from
initial coin offerings (ICOs). An anony-
mous attacker observed a discrepancy
between the published and reviewed
source code and the binary code, which
was deployed for each of 573 wallets
and omitted an essential access control
step. This enabled a theft of coins worth
$30 million from three accounts. Parity
discovered the attack as it was ongoing
and published an alert. This would
have enabled attentive users to rescue
their funds (exploiting the same vulner-
ability) in a race against the attacker
and imitators. At this point, a total of
another $150 million was essentially
free to be picked up by anyone.33 As ex-
pected, many users reacted slowly and
found their funds missing. It turned
out that a group of civic-minded indi-
viduals has taken the funds in custody
in order to protect users and return
them in a safe way. This example raises
the question if protective appropriation
of funds is legal or should even be ex-
pected from discoverers.

Users who nevertheless continued
to trust the Parity wallet software were
less lucky following a second incident.
The Ethereum platform has a fuse
mechanism that irrevocably disables
code at a given address. In November
2017, a user (allegedly) inadvertently in-
voked this mechanism on a library ref-
erenced in 584 intentionally non-up-
datable contracts of the next-generation
Parity wallet. A total of $152 million was
burned.34 This time, no one intervened,
presumably because the loss concerned
only 0.5% of all coins.

We close by noting that as of this
writing, we are not aware of any major

cases of responsible disclosures of vul-
nerabilities in smart contracts.

Recommendations
and Open Questions
While best practices in secure software
engineering and responsible disclo-
sure15 are increasingly adopted in the
cryptocurrency space, there always re-
mains a residual risk of damaging vul-
nerabilities. Therefore, norms and
eventually laws for responsible disclo-
sure must emerge. What follows is a
first step toward that end. Our synthesis
of what can be learned from the cases is
structured along three central issues of
responsible disclosure: how to protect
users, who to contact, when and how;
and, how to reward the discoverer. The
accompanying table sums up the rec-
ommendations outlined in this section.

How to protect users. Discoverer
safety. If the vulnerability can make
parties who may operate beyond the
law substantially richer or poorer, the
discoverer’s personal safety should be
considered.10 Death threats are not un-
heard of. Confidentially sharing the
vulnerability with others the discoverer
trusts (professional colleagues, nota-
ries or the police) might reduce this
risk. Sealed envelopes, or their digital
variants such as time-locked encryp-
tion or secret sharing schemes, lessen
the risk of unintended leakage. In addi-
tion, anonymous reporting may also
reduce stress and tension. However,
note that if the vulnerability is exploit-
ed, any proof the discloser knew of the
vulnerability before its exploit could be
used as evidence the discloser was the
attacker.

Addressing vulnerable funds. If a vul-
nerability means that anyone can steal
money from an account, should civic-
minded defenders proactively steal to
protect funds, like in the Parity wallet
case? This touches on unresolved legal

Synthesis of recommendations.

Dos Provide point of contact including public key
Liaise with competitors who share code

Don'ts Single out vulnerable competitors
Bug bounties in your own coin

Depends
Use obscurity and white lies during disclosure
Notify all affected projects unless there is conflict
Built-in notification and feature “kill” switches

Need for action Clarify right or obligation to preventively move vulnerable funds
Establish clearinghouse and coordinator

70 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

transport of stolen funds. In other in-
stances, wallet developers must be noti-
fied first, in order to deploy patches to
their software. It is good practice to
publish an advisory detailing the course
of events and clarify any obfuscation or
lies after the risk is mitigated. This
transparency could mitigate the ero-
sion of trust resulting from deception.

Coordination among multiple re-
sponders. As illustrated in the cases ex-
plored here, vulnerabilities often affect
multiple projects. It is up to the discov-
erer to decide where to send the report.
The reporter should be transparent
about who has been informed. The dis-
coverer can work with the responders
to ensure that everyone affected has
been notified. Coordination among re-
sponders is essential. Patches should
be deployed as simultaneously as pos-
sible across affected projects, since the
patching and publication of vulnerabil-
ity information would leave others ex-
posed if no precautions were taken. In
some circumstances, the responders
are competitors, and their attitudes to-
ward one another range from suspicion
to hostility.

Dealing with untrustworthy respond-
ers. While in the traditional security
world, it is considered not only com-
mon courtesy but professionally and
ethically required to inform other proj-
ects about vulnerabilities before dis-
closing their existence publicly. In the
cryptocurrency world, one must adopt a
more adversarial mindset. If the discov-
erer does not find a trustworthy re-
sponder, she can take on that responsi-
bility. While one might not expect the
discoverer to fix the bug, she could
nonetheless take steps to protect users.

The situation is further complicated
when multiple projects share a prob-
lem, and some are not trustworthy or
are hostile toward each other. It is un-
reasonably burdensome for a discover-
er to adjudicate such conflicts. Re-
sponders can make a best effort to
identify affected parties (for example,
searching for coins sharing common
codebases) and notify accordingly. This
points to the need for developing a
clearinghouse, à la CERT/CC.

External authorities. Banks, payment
processors, and other key financial in-
stitutions are often required to report
vulnerabilities to banking regulators,
who can coordinate the response if

questions. If “code is law” is the guid-
ing principle, moving vulnerable funds
must be legal. But courts are bound to
real-world norms which differ across
jurisdictions and circumstances. For
example, in many places only law en-
forcement can legally expropriate prop-
erty, including crypto coins. Elsewhere,
disclosers could be obligated to inter-
vene rather than stand by and allow a
crime to take place. To give the discov-
erer legal certainty, it is essential to set-
tle the basic question whether the dis-
coverer could face legal consequences
if she takes such precautions or break
the law if she has the power and does
not. If opting to leave the matter to law
enforcement, other complications
arise: Which law enforcement agency
has jurisdiction and sufficient authori-
ty and is allowed to act? Do all law en-
forcement agencies possess the techni-
cal capability to intervene in time?

Preparing the system for disclosure.
Given the inevitability of vulnerabili-
ties, one strategy is to implement fea-
tures in the cryptocurrency itself to au-
tomatically notify affected users of
significant problems. In fact, Bitcoin
used to have such an alert system,
which enabled trusted actors to dis-
seminate messages to all users and
even suspend transactions. Such alert
systems prompt difficult questions of
their own, like who can be trusted with
that authority in a decentralized sys-
tem? Also, the alert system itself could
become the target of attack, in much
the same way that an Internet “kill
switch” could create more security
problems than it solves. Incidentally,
Bitcoin itself abandoned the alert sys-
tem over such concerns.4 A similar idea
is to incorporate a mechanism to turn
off particular features if significant vul-
nerabilities are later found. Dash utiliz-
es such a system that lets the holder of a
secret key turn features on and off at
will.27 PIVX supports a similar mecha-
nism to disable zero-knowledge trans-
actions, which proved useful during the
Zerocoin disasters.

Despite the benefits such features
bring, they contradict the design phi-
losophy of decentralization and might
expose the privileged party to law en-
forcement requests. Supposing a cryp-
tocurrency could overcome these chal-
lenges and develop mechanisms for
disseminating protective instructions,

the question of how to contact the
trusted party who takes the precaution
remains.

Who to contact, when, and how. Pro-
vide clear points of contact. Many crypto-
currencies are designed to avoid relying
on privileged parties with substantial
control. Yet this is in effect required to
support responsible disclosure. It can
be difficult to determine who is “in
charge” (assuming anyone is) and who
can fix the bug. Best practices recom-
mend that developers provide clear
points of contact for reporting security
bugs, including long-term public keys.11
Developers who reuse code are advised
to publish alongside their own contact
information that of the original code to
aid the search for affected projects.

Identifying the responder. All commu-
nication by the discoverer should serve
the end of fixing the bug. This means
the discoverer must notify the party
who is in the best position to solve the
problem. For example, if the vulnerabil-
ity affects the cryptocurrency’s core im-
plementation, then the developers are
the natural responders. There is a long
history of bugs in exchanges,24 in which
case they would respond. It is impor-
tant to note that once the responder
has taken responsibility, the discoverer
should adopt a “need-to-know” prac-
tice until the risk is mitigated. Some-
times the natural choice for responder
is missing or untrustworthy. In this
case, the discoverer can also serve as re-
sponder, or delegate the responsibility
to a third party.

Responder communication with stake-
holders. Given the decentralized nature
of cryptocurrencies, the responder is
usually not in a position to unilaterally
act to fix the bug. Instead, the respond-
er must seek stakeholders’ support.
This means communicating the right
messages at the right time. It could be
dangerous to tell the full truth right
away, so the message may justifiably in-
clude obfuscation or even white lies.
Different stakeholders might require
varying levels of detail at particular
points in time. For bugs that require
certain transactions to be mined for
successful exploitation, the responder
might encourage miners to upgrade
first in order to deploy a fix as fast as
possible. Exchanges can suspend trad-
ing in order to limit price shocks as bad
news breaks, or aid in blocking the

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 71

review articles

needed. There is no current equivalent
for cryptocurrencies, and it is unclear
under which jurisdiction such a thing
would reside. Should some global re-
porting agency of this nature be
formed? If so, how might it successfully
operate given a community whose com-
mon ground is removing the need for
central parties? An external body mod-
eled on CERT/CC might serve as a use-
ful starting point. A less formal and
more decentralized example to consid-
er is iamthecalvary.org, an initiative
bringing together security researchers
with medical device manufacturers to
promote responsible vulnerability dis-
closure and remediation.

How to reward the discoverer. The
article has shown that disclosing a cryp-
tocurrency vulnerability and reacting
responsibly is very burdensome. Inter-
viewees have reported sleepless nights
and fears for their safety, which in turn
has altered their professional collabo-
rations and friendships. The alterna-
tive to profit from the vulnerability, po-
tentially anonymously, is tempting.
This is why cryptocurrencies specifical-
ly cannot expect altruistic behavior and
must instead incentivize responsible
disclosure.11

Bug bounties offer an established
way to reward those who find bugs.5 It
stands to reason they would be a natu-
ral fit for cryptocurrencies, given they
have a built-in payment mechanism.
However, denominating the reward in
its own currency is problematic, since
its value might diminish as a result of
disclosing the vulnerability, and you
are effectively rewarding the discloser
in a currency which she just found to be
buggy. Other approaches are possible—
for example, Augur (a smart contract
market platform) is experimenting
with exploit derivatives. It is not unrea-
sonable to think that the cryptocurren-
cy community might innovate a solu-
tion that could be a model for the
broader software community. Never-
theless, monetary rewards must com-
plement and cannot substitute for
healthy norms and a culture that wel-
comes vulnerability disclosure.

Acknowledgments. This article is a
result of a breakout group at the Dag-
stuhl Seminar 18461, “Blockchain Se-
curity at Scale.” The authors thank C.
Fields, M. Fröwis, P. van Oorschot, and
their interview partners.

This work is partially funded by: Ar-
chimedes Privatstiftung, Innsbruck,
U.S. National Science Foundation
Award No.~ 1714291, ISF grant 1504/17,
HUJI Cyber Security Research Center
Grant, DFG grants FA 1320/1-1 (Emmy
Noether Program) and SFB 1119—
236615297 (Crossing), and BMBF grant
16KIS0902 (iBlockchain).

References
1. Atzei, N., Bartoletti, M. and Cimoli, T. A survey of

attacks on Ethereum smart contracts. In Proceedings
of the Principles of Security and Trust. M. Maffei and M.
Ryan, Eds. LNCS 10204 (2017), Springer, 164–186.

2. Bech, M. and Garratt, R. Central bank
cryptocurrencies. BIS Quarterly Rev. 9 (2017), 55–70.

3. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M.,
Miers, I. and Virza, M. Zerocash: Decentralized
anonymous payments from Bitcoin. In Proceedings of
the IEEE Symp. on Security and Privacy, 2014.

4. Bishop, B. Alert key disclosure. Bitcoin development
mailing list; https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-July/ 016189.html.

5. Böhme, R. A comparison of market approaches to
software vulnerability disclosure. Emerging Trends
in Information and Communication Security. G.
Müller, Ed. LNCS 3995 (2006). Springer, Berlin
Heidelberg, 298–311.

6. CoinMarketCap. Global charts, 2019;
https://coinmarketcap.com/charts/.

7. dEBRUYNE. A post mortem of the Burning Bug,
2018; https://web.getmonero.org/2018/09/25/a-post-
mortum-of-the-burning-bug.html.

8. Bitcoin Core Developers. CVE-2018-17144 Full
Disclosure; https://bitcoincore.org/en/2018/09/20/
notice/.

9. Dino, M., Zamfir, V. and Sirer, G.E. A call for a
temporary moratorium on the DAO. Blog post;
http://hackingdistributed.com/ 2016/05/27/
dao-call-for-moratorium/.

10. Fields, C. Responsible disclosure in the era of
cryptocurrencies. Blog post, 2018; https://bit.ly/3cgSdYs

11. Fields, C. and Narula, N. Reducing the risk of
catastrophic cryptocurrency bugs. Blog post, 2018;
https://bit.ly/2SKbd9Y.

12. Fröwis, M., Fuchs, A. and Böhme, R. Detecting token
systems on Ethereum. In Proceedings of the Financial
Cryptography and Data Security. I. Goldberg and T.
Moore, Eds. 2019.

13. Heilman, E., Narula, N., Dryja, T. and Virza, M.
IOTA vulnerability report: Cryptanalysis of the curl
hash function enabling practical signature forgery
attacks on the IOTA cryptocurrency, 2017; https://
github.com/mit-dci/tangled-curl/blob/master/
vuln-iota.md.

14. Heilman, E., Narula, N., Tanzer, G., Lovejoy, J., Colavita,
M., Virza, M. and Dryja, T. Cryptanalysis of curl-p and
other attacks on the IOTA cryptocurrency. IACR
Cryptology ePrint archive report 2019/344; https://
eprint.iacr.org/2019/344.

15. Householder, A., Wassermann, G., Manion, A. and
King, C. The CERT Guide to Coordinated Vulnerability
Disclosure. Special Report CMU/SEI-2017-SR-022.

16. Hutchinson, L. All Android-created Bitcoin wallets
vulnerable to theft. Ars Technica, 2018; https://bit.
ly/2SMHiy5 /.

17. Insom, P. Zcoin’s Zerocoin bug explained in detail.
Blog post, 2017; https://zcoin.io/zcoins-zerocoin-bug-
explained-in-detail/.

18. Juarez, A.M. Fraudulent transactions allowed by the
CryptoNote key image bug remain valid. Archived
version of Bytecoin GitHub; https://bit.ly/2WbYkrn.

19. Lok, C. Dispute over digital music muzzles academic.
Nature 411, 6833 (2001), 5.

20. luigi1111 and Riccardo “fluffypony” Spagni. Disclosure
of a major bug in CryptoNote based currencies. Blog
post, 2017; https://bit.ly/2xHiTmb.

21. Miers, I. README of libzerocoin, 2013; https://bit.
ly/2L94ORJ.

22. Miers, I., Garman, C., Green, M. and Rubin, A.
Zerocoin: Anonymous distributed e-cash from
Bitcoin. In Proceedings of the 2013 IEEE Symp. on
Security and Privacy.

23. Miller, D. The legitimate vulnerability market:
Inside the secretive world of 0-day exploit sales. In

Proceedings of the Workshop on the Economics of
Information Security. Carnegie Mellon University,
Pittsburgh, PA, 2007.

24. Moore, T., Christin, N. and Szurdi, J. Revisiting
the risks of Bitcoin currency exchange closure.
ACM Trans. Internet Technology 18, 4 (2018),
50:1–50:18.

25. Moore, T., Friedman, A. and Procaccia, A. Would
a ’cyber warrior’ protect us: Exploring trade-offs
between attack and defense of information systems.
In Proceedings of the New Security Paradigms
Workshop. A.D. Keromytis, S. Peisert, R. Ford and C.
Gates, Eds. ACM, 2010, 85–94; https://tylermoore.
utulsa.edu/nspw10.pdf

26. Möser, M. and Narayanan, A. Effective cryptocurrency
regulation through blacklisting, 2019; https://
maltemoeser.de/paper/blacklisting-regulation.pdf.

27. Multi-Phased Fork. Glossary item in developer
documentation. Dash project, 2017; https://dash-docs.
github.io/en/glossary/spork.

28. Reibel, P., Yousaf, H. and Meiklejohn, S. An exploration
of code diversity in the cryptocurrency landscape. In
Proceedings of the 2019 Financial Cryptography and
Data Security Conf. I. Goldberg and T. Moore, eds.

29. Ruffing, T., Thyagarajan, S., Ronge, V. and Schröder,
D. A cryptographic flaw in Zerocoin (and two critical
coding issues). Blog post, 2018; https://bit.ly/2WAib2B

30. Ruffing, T., Thyagarajan, S., Ronge, V. and Schröder,
D. (Short Paper) Burning Zerocoins for fun and for
profit—A cryptographic denial-of-spending attack
on the Zerocoin protocol. In Proceedings of the
Crypto Valley Conf. on Blockchain Technology, (Zug,
Switzerland, June 20–22, 2018). IEEE, 116–119;
https://doi.org/10.1109/CVCBT.2018.00023

31. Schwartz, A. and Knake, R. Government’s Role in
Vulnerability Disclosure. Harvard Kennedy School
discussion paper, 2016.

32. Swihart, J., Winston, B., and Bowe, S. Zcash
counterfeiting vulnerability successfully remediated.
Blog post, 2019; https://bit.ly/2YDO790/.

33. Parity Technologies. The multi-sig hack: A
postmortem, 2017; https://www.parity.io/the-multi-
sig-hack-a-postmortem/.

34. Parity Technologies. A postmortem on the parity
multi-sig library self-destruct, 2017; https://www.
parity.io/ a-postmortem-on-the-parity-multi-sig-
library-self-destruct/.

35. van Saberhagen, N. CryptoNote v 2.0. White Paper,
2013; https://cryptonote.org/whitepaper.pdf.

36. Wuille, P. Disclosure: Consensus bug indirectly solved
by BIP66. Bitcoin development mailing list, 2015;
https://bit.ly/2zeC5rX.

37. Yap, R. Further disclosure on Zerocoin vulnerability.
Blog post, 2019; https://zcoin.io/further-disclosure-on-
zerocoin-vulnerability/.

38. Zohar, A. Bitcoin: Under the hood. Commun. ACM 58, 9
(Sept. 2015), 104–113.

Rainer Böhme (rainer.boehme@uibk.ac.at) is a professor
of computer science at Universität Innsbruck, Austria.

Lisa Eckey (lisa.eckey@tu-darmstadt.de) is a
cryptographer at TU Darmstadt, Germany.

Tyler Moore (tyler-moore@utulsa.edu) is the Tandy
Professor of Cyber Security and Information Assurance at
The University of Tulsa, OK, USA.

Neha Narula (narula@mit.edu) is Director, Digital
Currency Initiative, MIT, Cambridge, MA, USA.

Tim Ruffing (crypto@timruffing.de) is a cryptographer at
Blockstream.

Aviv Zohar (avivz@cs.huji.ac.il) is an associate professor
of computer science at Hebrew University Jerusalem,
Israel.

Copyright held by authors/owners.
Publications rights licensed to ACM.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
vulnerability-disclosure

https://iamthecavalry.org/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016189.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016189.html
https://coinmarketcap.com/charts/
https://web.getmonero.org/2018/09/25/a-post-mortum-of-the-burning-bug.html
https://web.getmonero.org/2018/09/25/a-post-mortum-of-the-burning-bug.html
https://bitcoincore.org/en/2018/09/20/notice/
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
https://www.media.mit.edu/articles/responsible-disclosure-in-the-era-of-cryptocurrencies/
https://bit.ly/2SKbd9Y
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://eprint.iacr.org/2019/344
https://zcoin.io/zcoins-zerocoin-bug-explained-in-detail/
https://bit.ly/2Wbykm
https://tylermoore.utulsa.edu/nspw10.pdf
https://maltemoeser.de/paper/blacklisting-regulation.pdf
https://dash-docs.github.io/en/glossary/spork
https://bit.ly/2WAib2B
https://doi.org/10.1109/CVCBT.2018.00023
https://bit.ly/2YDO790/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://cryptonote.org/whitepaper.pdf
https://bit.ly/2zeC5rX
https://zcoin.io/further-disclosure-on-zerocoin-vulnerability/
mailto:rainer.boehme@uibk.ac.at
mailto:lisa.eckey@tu-darmstadt.de
mailto:tyler-moore@utulsa.edu
mailto:narula@mit.edu
mailto:crypto@timruffing.de
mailto:avivz@cs.huji.ac.il
https://cacm.acm.org/videos/vulnerability-disclosure
https://bitcoincore.org/en/2018/09/20/notice/
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://eprint.iacr.org/2019/344
https://arstechnica.com/information-technology/2013/08/all-android-created-bitcoin-wallets-vulnerable-to-theft/
https://arstechnica.com/information-technology/2013/08/all-android-created-bitcoin-wallets-vulnerable-to-theft/
https://bit.ly/2xHiTmb
https://bit.ly/2L94ORJ
https://bit.ly/2L94ORJ
https://cacm.acm.org/videos/vulnerability-disclosure
https://zcoin.io/zcoins-zerocoin-bug-explained-in-detail/
https://zcoin.io/further-disclosure-on-zerocoin-vulnerability/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://dash-docs.github.io/en/glossary/spork
https://maltemoeser.de/paper/blacklisting-regulation.pdf
https://tylermoore.utulsa.edu/nspw10.pdf

72 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

ON THE MORNING of November 9, 2016, the world woke
up to the shocking outcome of the U.S. Presidential
election: Donald Trump was the 45th President of
the United States of America. An unexpected event
that still has tremendous consequences all over
the world. Today, we know that a minority of social
bots—automated social media accounts mimicking
humans—played a central role in spreading divisive
messages and disinformation, possibly contributing
to Trump’s victory.16,19

In the aftermath of the 2016 U.S. elections, the world
started to realize the gravity of widespread deception in
social media. Following Trump’s exploit, we witnessed
to the emergence of a strident dissonance between
the multitude of efforts for detecting and removing
bots, and the increasing effects these malicious actors
seem to have on our societies.27,29 This paradox opens a
burning question: What strategies should we enforce in
order to stop this social bot pandemic?

In these times—during the run-up to the
2020 U.S. elections—the question ap-
pears as more crucial than ever. Particu-
larly so, also in light of the recent report-
ed tampering of the electoral debate by
thousands of AI-powered accounts.a

What struck social, political, and
economic analysts after 2016—decep-
tion and automation—has been a mat-
ter of study for computer scientists
since at least 2010. In this work, we
briefly survey the first decade of re-
search in social bot detection. Via a
longitudinal analysis, we discuss the
main trends of research in the fight
against bots, the major results that
were achieved, and the factors that
make this never-ending battle so chal-
lenging. Capitalizing on lessons
learned from our extensive analysis, we
suggest possible innovations that
could give us the upper hand against
deception and manipulation. Studying
a decade of endeavors in social bot de-
tection can also inform strategies for
detecting and mitigating the effects of
other—more recent—forms of online
deception, such as strategic informa-
tion operations and political trolls.

The Social Bot Pandemic
Social bots coexist with humans since
the early days of online social net-
works. Yet, we still lack a precise and

a https://bit.ly/2BogSgE

 key insights
 ˽ Social bots are a long studied, yet

unsolved, problem in our online social
ecosystems and several detection
trends appeared through time. The
latest and most-promising advance is
represented by group-based detectors.

 ˽ Deception detection is intrinsically
adversarial. The application of
adversarial machine learning can give
us an edge in the fight against all forms
of online manipulation and automation.

 ˽ Recent advances in computing and
AI (for example, deepfakes) make
individual bots indistinguishable
from legitimate users. Future efforts
should focus on measuring the extent
of inauthentic coordination rather
than on trying to classify the nature of
individual accounts.

A Decade
of Social
Bot Detection

DOI:10.1145/3409116

Bots increasingly tamper with political
elections and economic discussions.
Tracing trends in detection strategies and
key suggestions on how to win the fight.

BY STEFANO CRESCI

http://dx.doi.org/10.1145/3409116
https://bit.ly/2BogSgE

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 73

P
H

O
T

O
 B

Y
 D

A
V

I
D

 P
A

U
L

 M
O

R
R

I
S

/B
L

O
O

M
B

E
R

G
 V

I
A

 G
E

T
T

Y
 I

M
A

G
E

S

well-agreed definition of what a social
bot is. This is partly due to the multi-
ple communities studying them and
to the multifaceted and dynamic be-
havior of these entities, resulting in
diverse definitions each focusing on
different characteristics. Computer
scientists and engineers tend to de-
fine bots from a technical perspective,
focusing on features such as activity
levels, complete or partial automa-
tion, use of algorithms and AI. The ex-
istence of accounts that are simulta-
neously driven by algorithms and by
human intervention led to even more
fine-grained definitions and cyborgs
were introduced as either bot-assisted
humans or human-assisted bots.3 In-
stead, social scientists are typically
more interested in the social or politi-
cal implications of the use of bots and
define them accordingly.

Social bots are actively used for both
beneficial and nefarious purposes.13

Regarding the detection of benign or
malicious social bots, the majority of
existing works focused on detecting
the latter. The reason is straightfor-
ward if we take into account the catego-
rization proposed by Stieglitz et al.30
Bots were categorized according to
their intent and to their capacity of imi-
tating humans, with the majority of ex-
isting specimen being either benign
bots that do not aim to imitate humans
(for example, news and recruitment
bots, bots used in emergencies) or ma-
licious ones relentlessly trying to ap-
pear as human-operated. The detec-
tion of the former category of bots does
not represent a challenge, and scholars
devoted the majority of efforts to spot
the latter, also because of their tamper-
ing with our online ecosystems. In-
deed, the wide array of actions that so-
cial bots perform and the negligible
cost for creating and managing them
en masse, open up the possibility to de-

ploy armies of bots for information
warfare, for artificially inflating the
popularity of public characters and for
manipulating opinions.

On the onset of the sudden surge of
interest around automation and de-
ception, several studies measured the
extent of the social bot pandemic. Re-
sults are nothing less than worrying.
The average presence of bots was esti-
mated to be in the region of 15% of all
active Twitter accounts in 2017,31 and
11% of all Facebook accounts in
201938—a considerable share indeed.
Even more worrisome, when strong po-
litical or economic interests are at
stake, the presence of bots dramatical-
ly increases. A 2019 study reported that
71% of Twitter users mentioning trend-
ing U.S. stocks, are likely to be bots.8

Similar results were obtained about
the presence of bots in online crypto-
currency discussions24 and as part of
the “infodemics” about the COVID-19

Facebook’s War Room in Menlo Park, CA, on Oct. 17, 2018, ahead of Brazil’s runoff election. The company has worked to assuage public
concern about the fake accounts, misinformation, and foreign interference that cloud discussion about elections on its site.

74 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

Figure 1. The social bot pandemic.

World view of 39 countries for which scientific literature
documented political manipulation by social bots. Each
country is linked to one or more papers that documented
the tampering. Although the list of papers is illustrative and
not exhaustive, it nonetheless allows to map the worldwide
spread of the social bot pandemic.

M
ustafaraj et al. "From

 obscurity to pr..." Proc. W
ebSci.

R
atkiew

icz et al. "D
etecting and tracki..." Proc. IC

W
SM

.

D
ickerson et al. "U

sing sentim
ent to..." Proc. ASO

N
AM

.

A
bokhodair et al. "D

issecting a s..." Proc. AC
M

 C
SC

W
.

C
erón-G

uzm
án et al. "D

etecting social ..." Proc. M
IC

AI.

Forelle et al. "Political bots a..." O
II C

O
M

PR
O

P R
eport.

B
astos et al. "The Brexit b..." Soc Sci C

om
p R

ev 37(1).

H
egelich et al. "Are social bots on Tw

i..." Proc. IC
W

SM
.

G
orw

a "C
om

putational propa..." O
II C

O
M

PR
O

P R
eport.

K
eller et al. "H

ow
 to m

anipulate social..." Proc. IC
W

SM
.

M
cK

elvey et al. "C
om

putatio..." O
II C

O
M

PR
O

P R
eport.

N
eudert et al. "Junk new

s an..." O
II C

O
M

PR
O

P R
eport.

Schäfer et al. "Japan’s 2014 G
eneral ..." Big D

ata 5(4).
Stukal et al. "D

etecting bots on R
ussia..." Big D

ata 5(4).

Fernquist et al. "Political bots and th..." Proc. IEEE ISI.

Schuchard et al. "Bots in n..." Proc. C
om

plex N
etw

orks.

B
olsover et al. "C

hinese co..." Inf, C
om

m
 & Soc 22(14).

Luceri et al. "R
ed bots do it bette..." Proc. W

W
W

 C
om

p.

N
eyazi "D

igital propaganda, ..." Asian J of C
om

m
 30(1).

2011 2012 2013 2014 2015 2016 2017 2018 2019 20202010

W
augh et al. "The influence and decepti..."Proc. AIW

C
.

Suárez-Serrato "O
n the influence of so..."Proc. SocInfo.

M
orstatter et al. "A new

 approach to..."Proc. ASO
N

AM
.

A
rnaudo "C

om
putational prop..."O

II C
O

M
PR

O
P R

eport.
C

resci et al. "The paradigm
-shift ..."Proc. W

W
W

 C
om

p.
Ferrara "D

isinform
ation and socia..."First M

onday 22(8).
Filer et al. "Popular ..."Int J of Pol, C

ult, and Soc 30(3).
Jones "H

acking, bots and inform
atio..."The Q

atar C
risis.

R
athnayake et al. "Inci..."Bull of Sci, Tech & Soc 37(1).

Stella et al. "Bots increase exposure t..."PN
AS 115(49).

C
astillo et al. "D

etection of bots and cybor..."Proc. H
C

I.

U
yheng et al. "C

haracterizing bot ..."Proc. SBP-BR
iM

S.

N
dlela "Social m

ed..."Soc M
ed and Elec in Africa, Vol 1.

R
ossi et al. "D

etecting political bots on ..."Proc. H
IC

SS.

2011 2012 2013 2014 2015 2016 2017 2018 2019 20202010

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 75

review articles

pandemic.14 Other studies specifically
focused on political activity, conclud-
ing that bots played a role in strategic
information operations orchestrated
ahead of numerous worldwide events,
as shown in Figure 1. Despite taking
part in political discussions about all
countries highlighted in figure, bots
did not always have a real impact. In
fact, scholars still lack a widespread
consensus on the impact of social
bots, with some studies reporting on
their pivotal role for increasing disin-
formation’s spread, polarization, and
hateful speech,27,29 and competing re-
sults claiming that bots do not play a
significant role in these processes.32
The ubiquity of social bots is also partly
fueled by the availability of open source
code, for which Bence Kollanyi report-
ed an exponential growth that led in
2016 to more than 4,000 GitHub reposi-
tories containing code for deploying
Twitter bots.22 Other investigations
demonstrated this trend has not halted
yet. In fact, by 2018, scholars found more
than 40,000 public bot repositories.1
The looming picture is one where social
bots are among the weapons of choice
for deceiving and manipulating crowds.
These results are backed by the same
platforms where information opera-
tions took place—namely, Facebook,b
Twitterc and Redditd—that banned
tens of thousands accounts involved in
coordinated activities since 2016.

Given the reported role of bots in
several of the ailments that affect our
online ecosystems, many techniques
were proposed for their detection and
removal—adding to the great coverage
from news outlets—contributing to
the formation of a steeply rising publi-
cation trend. Today, new studies on the
characterization, detection, and im-
pact estimation of bots are published
at an impressive rate, as shown in Fig-
ure 2. Should this skyrocketing trend
continue, by 2021 there will be more
than one new paper published per day,
which poses a heavy burden on those
trying to keep pace with the evolution
of this thriving field. Perhaps even
more importantly, the rate at which
new papers are published implies that

b https://bit.ly/31wtDAk
c https://about.twitter.com/en_us/values/elec-

tions-integrity.html
d https://bit.ly/38eEgJl

Figure 2. Publications per year on the characterization, detection, and impact estimation of
social bots.

Since 2014, the number of publications on the topic sky-
rocketed. We forecast that from 2021 there will be more
than one new paper published per day on social bots, which
poses a heavy burden on those trying to keep pace with the
evolution of this thriving field. Efforts aimed at reviewing and
organizing this growing body of work are needed in order to
capitalize on previous results.

P
u

b
li

ca
ti

on
s

350

300

250

200

150

100

50

0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

first works on
social bot detection

DARPA Twitter
bot challenge

worldwide attention on
deception and automation

rise of deepfakes

focus on coordinated
inauthentic behavior

evidence of
social bot evolution

Scopus

dimensions.ai

Web of Science

milestone

data

trend

Figure 3. Differences between early and group approaches to social bot detection.

In early approaches (panel A), a supervised detector is sepa-
rately applied to each account under investigation. If a bot
does not appear as markedly different from a human-operated
account, as in the case of recent evolved bots, it is likely to
evade detection. In more recent approaches (B), a detector
analyzes a group of accounts, looking for traces of coordinated
and synchronized behaviors. Large groups of coordinated
accounts are more likely to be detected than sophisticated in-
dividual bots. Nonetheless, prediction errors can still occur for
small groups of loosely coordinated bots that might provide
insufficient information for detecting them, or for groups of
highly coordinated humans that might appear as automated
(https://bit.ly/3gfZucW). These issues currently represent
unsolved challenges in the field.

bot detector

old bot

human

evolved bot

bot detector’s target

account(s) labeled as bot

https://bit.ly/31wtDAk
https://about.twitter.com/en_us/values/elections-integrity.html
https://about.twitter.com/en_us/values/elections-integrity.html
https://bit.ly/38eEgJl
http://dimensions.ai
https://bit.ly/3gfZucw

76 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

machine learning features to spot social
bots. By leveraging more than 1,200 fea-
tures of an account, Botometer evalu-
ates possible bots based on their profile
characteristics, social network struc-
ture, the content they produce, their
sentiment expressions, and the timings
of their actions.35 Instead of focusing
on a specific type of bots, as Cresci et al.
did, Botometer represents a “general
purpose” bot detector. The generality
and ease of deployment of this detector
are however counterbalanced by a re-
duced bot detection accuracy.5,17 The
two previous detectors simultaneous-
ly analyze multiple dimensions of sus-
picious accounts in order to spot pos-
sible bots. Instead, other systems
solely focus on network characteris-
tics, textual content of shared mes-
sages, or profile information. These
systems are typically easier to game,
since they only analyze a single facet of
the complex behavior of bots.

Despite achieving promising initial
results, these early approaches have a
number of drawbacks. The first chal-
lenge in developing a supervised detec-
tor is related to the availability of a
ground truth dataset to use in the train-
ing phase of the classifier. In most cases,
a real ground truth is lacking, and the
labels are simply given by human oper-
ators that manually analyze the data.
Critical issues arise as a consequence of
the diverse definitions of social bots, re-
sulting in different labeling schemes.18
Moreover, humans have been proven to
suffer from several annotation biases
and to largely fail at spotting recent so-
phisticated bots, with only 24% bots cor-
rectly labeled as such by humans in a
recent experiment.5 Furthermore, these
approaches typically output binary clas-
sifications. In many cases however,
malicious accounts feature a mixture
of automated and human-driven be-
haviors that cannot be accounted for
with simple binary labels. To make
matters worse, another major draw-
back of individual detectors is caused
by the evolutionary nature of social bots.

The Issue of Bot Evolution
Initial success at social bot detection
forced bot developers to put in place
sophisticated countermeasures. Be-
cause of this, newer bots often feature
advanced characteristics that make
them much more difficult to detect

a huge worldwide effort is taking place
in order to stop the spread of the social
bot pandemic. But where is all this effort
leading? To answer this question, we
first take a step back at the early days of
social bot detection.

The Dawn of Social Bot Detection
The first work that specifically ad-
dressed the detection of automated ac-
counts in online social networks dates
back to January 2010.37 In the early
days, the vast majority of attempts at
bot detection featured two distinctive
characteristics: they were based on su-
pervised machine learning, and on the
analysis of individual accounts. In oth-
er words, given a group of accounts to
analyze, detectors were separately ap-
plied to each account of the group, to
which they assigned a binary label (ei-
ther bot or legitimate). This approach
to bot detection is schematized in pan-
el A of Figure 3. Here, the key assump-
tion is that bots and humans are clear-
ly separable and that each malicious
account has individual features that
make it distinguishable from legiti-
mate ones. This approach to the task
of social bot detection also revolves
around the application of off-the-
shelf, general-purpose classification
algorithms on the accounts under in-
vestigation and on designing effective
machine learning features for separat-
ing bots from legitimate accounts.

For example, Cresci et al. developed
a set of supervised machine learning
classifiers for detecting so-called fake
followers, a type of automated ac-
counts commonly used to artificially
boost the popularity of the public char-
acters that buy them.4 Fake followers
can be bought for as low as $12 per
1,000 followers in the surface Web. As a
result, they are fairly common.e The au-
thors analyzed some 3,000 fake follow-
ers obtained from different vendors
and revealed that the simplistic nature
of these accounts renders their detec-
tion rather easy, even when leveraging
only 19 data- and computation-inex-
pensive features.4 After all, fake follow-
ers need not perform complex tasks
such as producing content or engag-
ing in conversations. Other detection
systems make use of large numbers of

e https://www.nytimes.com/interactive/2018/
01/27/technology/social-media-bots.html

Newer bots often
feature advanced
characteristics that
make them much
more difficult to
detect with respect
to older ones.

https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 77

review articles

with respect to older ones. This vi-
cious circle leads to the development
of always more sophisticated social
bots and is commonly referred to as
bot evolution.

Noteworthy works published by
Chao Yang et al. between 2011 and
2013 provided the first evidence and
the theoretical foundations to study so-
cial bot evolution.34 The first wave of
social bots that populated OSNs until
around 2011 was made of rather sim-
plistic bots. Accounts with very low
reputation due to few social connec-
tions and posted messages and featur-
ing clear signs of automation as shown
in panel A of Figure 4. Conversely, the
social bots studied by Chao Yang et al.
appeared as more popular and credi-
ble, given the relatively large number of
their social connections. In addition,
they were no longer spamming the
same messages over and over again.
Leveraging these findings, authors de-
veloped a supervised classifier that was
specifically designed for detecting
evolving bots. Initially, the classifier
proved capable of accurately detecting
this second wave of bots. Time went by
and new studies acknowledged the rise
of a third wave of bots that spread
through online social networks from
2016 onward,5,13 as shown in panel C of
Figure 4. Unfortunately, Yang’s classi-
fier for detecting evolving bots was no
longer successful at spotting the third
wave of malicious accounts.6 The previ-
ous example serves as anecdotal evi-
dence of bot evolution and of the detri-
mental effect it has on detectors.
Additional quantitative evidence is re-
ported in other studies that evaluated
the survivability of different bots—that
is, their capability of continually evad-
ing detection and avoiding being re-
moved from social platforms—and the
ability of humans in spotting bots in-
the-wild. Results showed that only 5%
of newer bots are removed from social
platforms, whereas older ones are re-
moved 60% of the times.5 Moreover,
hundreds of tech-savvy social media
users that participated in a crowd-
sourcing experiment were able to tell
apart newer bots from legitimate users
only 24% of the times. The same users
were instead able of spotting older bots
91% of the times.5

The previous anecdotal and quan-
titative results tell us that current

sophisticated bots are hardly distin-
guishable from legitimate accounts if
analyzed one at a time, as supervised
classifiers and crowdsourcing partici-
pants did. In fact, newer bots are more
similar to legitimate human-operated
accounts than to other older bots.
Among the reasons for the human-
like appearance of many bots is an in-
creased hybridization between auto-
mated and human-driven behaviors.
These cyborgs exist and operate half-
way between the traditional concepts
of bots and humans, resulting in
weakened distinctions and overlap-
ping behaviors between the two.
Moreover, they are now using the
same technological weapons as their
hunters, such as powerful AI tech-
niques for generating credible texts
(for example, via the GPT-2 and 3 deep
learning models)f and profile pictures
(for example, via StyleGANs deep
learning models).g Indeed, the possi-
bility for malicious accounts to lever-
age deepfake texts, profile pictures,

f https://openai.com/blog/better-language-
models/

g https://www.wired.com/story/facebook-
removes-accounts-ai-generated-photos/

and videos is worrying, and worthy of
increased attention.10 Kate Starbird
recently discussed a related issue in
an inspiring piece on Nature.28 Simi-
lar to the hazy duality between “bots”
and “humans,” she posits that the
boundaries between what is “fake”
and what is “real,” are blurring. To
this end, human-like bots and cy-
borgs are just the tip of the iceberg,
with other newer forms of decep-
tion—such as political trolls and “un-
witting humans”—that are bound to
make the online information land-
scape an even grimmer place. Figure
4 provides some examples of Twitter
profiles that demonstrate how real-
world bots evolved over the course of
the years. As one form of “social Web
virus,” bots mutated thus becoming
more resistant to our antibodies. The
social bot pandemic gradually became
much more difficult to stop. Within
this global picture, dichotomous clas-
sifications—such as human vs bot,
fake vs real, coordinated vs not coordi-
nated—might represent oversimplifi-
cations, unable to grasp the complexity
of these phenomena and unlikely to
yield accurate and actionable results.

Ultimately, the findings about the

Figure 4. Example Twitter profiles showing the issue of bot evolution.

Bots of the first wave (panel A) were very simplistic, with few personal
information and social connections. As such, they could be easily distin-
guished from human-operated legitimate accounts. The second wave
consisted of more sophisticated accounts (panel B), featuring detailed
personal information. To increase their credibility, these bots often fol-
lowed one another thus creating clearly identifiable botnets. Nowadays,
social bots (panel C) are so carefully engineered as to be more similar
to human-operated accounts (panel D) than to other bots. They have
large numbers of real friends and followers, they use stolen names
and profile pictures, and they intersperse few malicious messages with
many neutral ones.

years

https://openai.com/blog/better-language-models/
https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/
https://openai.com/blog/better-language-models/
https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/

78 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

learning algorithms such as support
vector machines and decision trees, to
ad-hoc algorithms that are specifically
designed for detecting bots, in an effort
to boost detection performance. Final-
ly, many group detectors are also based
on unsupervised or semi-supervised
approaches. Here the idea is to over-
come the generalization deficiencies of
supervised detectors that are severely
limited by the availability of exhaustive
and reliable training datasets.11

To quantitatively demonstrate the
rise of group approaches to bot detec-
tion, Figure 5 illustrates the results of
an extensive longitudinal classifica-
tion. We surveyed more than 230 pa-
pers that proposed a bot detection
technique and we manually classified
each detector along two orthogonal
dimensions. The first dimension
(panel A) highlights whether detectors
target individual accounts or groups
of accounts. Then in panel B, we clas-
sify detectors according to their high-
level approach to the task. In particu-
lar, we classified detectors as either
based on: heuristics—that is, based
on simple rules; crowdsourcing—that
is, relying on the judgement of ex-
perts; supervised machine learning—
such as those based on classification
and requiring a labeled training data-
set; unsupervised machine learn-
ing—such as those based on cluster-
ing that do not necessitate of labeled
training data; or adversarial ap-
proaches—including adversarial ma-
chine learning. To better explain our
methodology, we provide a couple of
examples showing how well-known
bot detectors were classified. The sys-
tem proposed in Ruan et al.26 is de-
signed for detecting compromised
accounts—originally legitimate ac-
counts that have been taken over by an
attacker. It initially builds a behavior-
al profile for each investigated ac-
count. Then, the system is able to de-
tect compromised accounts via
anomaly detection when a behavior
diverges significantly with respect to
its associated profile. This system is
classified as an individual detector
(since the behavioral profile of an ac-
count depends solely on its own ac-
tions) and as an unsupervised detec-
tor (since it leverages an anomaly
detection technique). Conversely, an-
other system looks for suspiciously

evolution of online automation and de-
ception tell us the naïve assumption of
early, supervised bot detection ap-
proaches—according to which bots are
clearly separable from legitimate ac-
counts—is no longer valid.

The Rise of Group Approaches
The difficulties at detecting sophisti-
cated bots with early approaches rap-
idly gave rise to a new research trend.
Since 2012–2013, several different
teams independently proposed new
systems that, despite being based on
different techniques and implementa-
tions, shared the same concepts and
philosophy. As schematized in Figure 3
(panel B), the primary characteristic of
these new systems, is that of targeting
groups of accounts as a whole, rather
than individual accounts. The rationale
for this design choice is that bots act in
coordination with other bots, forming
botnets to amplify their effects.40 The
existence of botnets does not necessar-
ily imply that accounts are explicitly
connected in the social network, but
rather that they are maneuvered by a

single entity and that they share com-
mon goals. As such, botnets leave be-
hind more traces of their automation
and coordination than those left be-
hind by sophisticated single bots.5

Devising techniques for spotting
suspiciously coordinated and synchro-
nized behaviors is thus likely to yield
better results than analyzing individual
accounts. In addition, by analyzing
large groups of accounts, detectors also
have access to more data for fueling
powerful—yet data-hungry—AI algo-
rithms. In 2018, approximately five af-
ter the emergence of the group ap-
proach to bot detection, also Facebookh
and Twitteri acknowledged the impor-
tance of focusing on coordinated and in-
authentic behaviors. The second com-
mon feature to the majority of group
detectors is the proposal of important
algorithmic contributions, thus shift-
ing from general-purpose machine

h https://newsroom.fb.com/news/2018/12/in-
side-feed-coordinated-inauthentic-behavior/

i https://help.twitter.com/en/rules-and-poli-
cies/platform-manipulation

Figure 5. Longitudinal categorization of 236 bot detectors published since 2010.

Data points indicate the number of new detectors per type published
in a given year. In panel A, detectors are classified as either focusing
on the analysis of individual accounts, or on the analysis of groups of
accounts. In panel B, the same detectors are classified based on their
high-level approach to the task. Both panels clearly document the rise
of a new approach to bot detection, characterized by group-analyses
and many unsupervised detectors. Interestingly, the plateau reached by
unsupervised approaches since 2017 occurred in conjunction with the
recent rise of the adversarial ones.

30

25

20

15

10

5

0

group

individual

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019+

crowdsourcing

adversarial

heuristics

supervised

unsupervised

N
u

m
b

er
 o

f
N

ew
 B

ot
 D

et
ec

to
rs

35

30

25

20

15

10

5

0

N
u

m
b

er
 o

f
N

ew
 B

ot
 D

et
ec

to
rs

Time

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019+

Time

https://newsroom.fb.com/news/2018/12/inside-feed-coordinated-inauthentic-behavior/
https://help.twitter.com/en/rules-and-policies/platform-manipulation
https://newsroom.fb.com/news/2018/12/inside-feed-coordinated-inauthentic-behavior/
https://help.twitter.com/en/rules-and-policies/platform-manipulation

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 79

review articles

large similarities between the se-
quence of activities of vast groups of
accounts.6 The activity of each account
is encoded as a character’s string and
similarities between account activities
are computed by applying the longest
common subsequence metric to such
strings. Suspiciously long subsequenc-
es between activity strings are identi-
fied via peak detection, and all those
accounts that share the long activity
subsequence are labeled as bots. Giv-
en these characteristics, this work con-
tributes to group-based bot detectors
(since it analyzes a group of accounts
looking for similar activity sequences)
as well as to unsupervised machine
learning approaches (since it leverages
an unsupervised peak detection algo-
rithm). Generalizing the two previous
examples, we note a few interesting
patterns that derive from our classifi-
cation. The vast majority of techniques
that perform network analyses, for in-
stance by considering the social or in-
teractions graph of the accounts, are
naturally classified as group based.
More often than not, they also propose
unsupervised approaches. Contrarily,
all techniques based on the analysis of
the textual content of posted messag-
es, such as those works that exclusively
employ natural language processing
techniques, are supervised detectors
that analyze individual accounts.

By leveraging classification results
reported in Figure 5, we can also derive
a number of additional insights. First of
all, the rising publication trend of bot
detectors follows the general trend of
interest around social bots, previously
shown in Figure 2. Indeed, since 2015
there has been a steadily increasing
number of bot detectors published ev-
ery year. From the trends shown in pan-
el A it is also strikingly evident that
group-based approaches, revolving
around the analysis of collective behav-
iors, are increasingly frequent. In fact,
in 2018 the number of newly proposed
group-based detectors surpassed for
the first time that of detectors based on
the analysis of individual accounts.
From panel B we note that bot detec-
tion approaches based on heuristics
and crowdsourcing received very little at-
tention. This is probably due to the many
challenges involved in the development
of these systems, which ultimately lim-
it their applicability, scalability and

detection performance. Instead, the
number of new supervised detectors
has been constantly increasing since
2012, despite their severe generaliza-
tion issues.11 The adoption of unsuper-
vised machine learning started in 2013
with the rise of group approaches, and
now appears to be stationary. Interest-
ingly, the plateau hit by unsupervised
approaches co-occurred with the rise of
adversarial ones, which might take their
place in the coming years. Although the
exact number of new bot detectors per
type can slightly vary by analyzing a dif-
ferent set of papers, the big picture that
emerges from Figure 5—documenting
the trends of individual, group and ad-
versarial approaches—is clear, reliable,
and insightful.

As a consequence of this paradigm-
shift, group-based detectors are partic-
ularly effective at identifying evolving,
coordinated, and synchronized ac-
counts. For instance, several group de-
tectors implement graph-based ap-
proaches and aim at spotting suspicious
account connectivity patterns.20,24
These techniques are suitable for
studying both users interacting with
content (for example, retweets to some-
one else’s tweets) or with other users
(for example, becoming followers of
other users). Coordinated and syn-
chronized behaviors appear as near-
fully connected communities in
graphs, dense blocks in adjacency ma-
trices, or peculiar patterns in spectral
subspaces.21 Other techniques adopt-
ed unsupervised approaches for spot-
ting anomalous patterns in the tempo-
ral tweeting and retweeting behaviors
of groups of accounts.2,23 One way to
spot accounts featuring suspiciously
synchronized behaviors is by comput-
ing metrics of distance out of the ac-
counts time series, and by subsequent-
ly clustering the accounts. The
rationale behind this approach is
based on evidence suggesting that hu-
man behaviors are intrinsically more
heterogeneous than automated ones.7
Consequently, a large cluster of ac-
counts with highly similar behaviors
might indicate the presence of a bot-
net, even in the absence of explicit con-
nections between the accounts. Dis-
tance between accounts time series
was computed as a warp-correlation
coefficient based on dynamic time
warping,2 or as the Euclidean distance

Devising techniques
for spotting
suspiciously
coordinated and
synchronized
behaviors is likely to
yield better results
than analyzing
individual accounts.

80 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

versarial examples—that is, input in-
stances specifically created to induce
errors in machine learning systems.

All tasks related to the detection of on-
line deception, manipulation and auto-
mation are intrinsically adversarial. As
such, they represent favorable applica-
tion domains for adversarial machine
learning. This intuition resulted in the
first papers published in 2018–2019
that initiated the development of an
adversarial approach to bot detection,
as shown in panel B of Figure 5. In the
so-called adversarial bot detection,
scholars experiment with meaningful
adversarial examples with which they
extensively test the capabilities of cur-
rent bot detectors.9 Within this con-
text, adversarial examples might be so-
phisticated types of existing bots and
trolls that manage to evade detection
by current techniques; or even bots
that do not exist yet, but whose behav-
iors and characteristics are simulated,
as done by Cresci et al.;9 or bots devel-
oped ad-hoc for the sake of experimen-
tation, as done by Grimme et al.17 Find-
ing good adversarial examples can help
scholars understand the weaknesses of
existing bot detection systems. As a re-
sult, bot hunters need not wait any-
more for new bot mischiefs in order to
adapt their techniques, but instead
they can proactively (instead of reac-
tively) test them, in an effort that could
quickly make them more robust. In
addition, this paradigm accounts for
adversaries by design, thus providing
higher guarantees for deception de-
tection, which violates the stationari-
ty and neutrality assumptions.

The previous analysis highlights
that initial efforts toward adversarial
bot detection were driven by the cre-
ativity of some researchers and only
covered few cases with limited applica-
bility.9,17 In the near future they could
instead be powered by the latest devel-
opments in AI. Generative adversarial
networks (GANs) are a powerful ma-
chine learning framework where two
competing deep learning networks are
jointly trained in a game-theoretic set-
ting.15 In particular, a GAN is composed
of a generator network that creates data
instances and a discriminator network
that classifies data instances, com-
bined as shown in Figure 6 where a
GAN is instantiated for a generic task
of deception detection. The goal of

between the feature vectors computed
by an LSTM autoencoder,23 a type of
deep neural network that is particularly
suitable for extracting latent features
from sequential data.

As the switch from individual to
group detectors demonstrates, the
overall approach to the task of bot de-
tection can have serious repercussions
on detection performance. At the same
time, some scientific communities
tend to favor and stick to a specific ap-
proach. For instance, works published
within the natural language processing
community, quite naturally focus on
textual content, thus resulting in a
multitude of supervised classifiers
that analyze accounts individually and
that yield binary labels. In contrast,
the complex networks community fa-
vors graph-based approaches. As a
consequence, some combinations of
approaches—above all, text-based de-
tectors that perform unsupervised,
group analyses—are almost unex-
plored and definitely underrepresent-
ed in the landscape of existing bot de-
tectors. In the future, it would be
advisable for multiply efforts to follow
the directions that have been mostly
overlooked until now.

A Glimpse into the Future
of Deception Detection
So far, we highlighted that a shift took
place from individual to group detec-
tors in an effort to contrast social bot
evolution. Now, we review the latest ad-
vances in the field for gaining possible
insights into the future of deception
detection. We ground this analysis on
two observations:

Firstly, we observe that both the in-
dividual and the group-based ap-
proaches to social bot detection follow
a reactive schema. In practice, when
scholars and OSN administrators iden-
tify a new group of accounts that mis-
behave and that cannot be effectively
detected with existing techniques, they
react and begin the development of a
new detection system. Hence, the driv-
ing factor for the development of new
and better detectors have always been
bot mischiefs. A major implication of
this approach is that improvements in
the detection of bad actors typically
occur only sometime after having col-
lected evidence of new mischiefs. Bad
actors such as bots, cyborgs, and trolls

thus benefit from a long time span—
the time needed to design, develop,
and deploy a new effective detector—
during which they are essentially free
to tamper with our online environ-
ments. In other words, scholars and
OSN administrators are constantly one
step behind of malicious account devel-
opers. This lag between observations
and countermeasures possibly ex-
plains the current situation with our
online social ecosystems: Despite the
increasing number of existing detec-
tion techniques, the influence of bots
and other bad actors on our online dis-
cussions did not seem to decrease.

Our second observation is related to
the use of machine learning for the
task of social bot detection. The vast
majority of machine learning algo-
rithms are designed for operating with-
in environments that are stationary
and neutral, if not even benign. When
the stationarity and neutrality assump-
tions are violated, algorithms yield un-
reliable predictions that result in dra-
matically decreased performances.15
Notably, the task of social bot detection
is neither stationary nor neutral. The
stationarity assumption is violated by
the mechanism of bot evolution that
results in accounts exhibiting different
behaviors and characteristics over
time. Also, the neutrality assumption is
clearly violated, since bot developers
are actively trying to fool detectors. As a
consequence, the very same algorithms
that we have been relying upon for a de-
cade, and for which we reported excel-
lent detection results in our studies,
are actually seeing their chances to de-
tect bots in-the-wild severely limited.

Recent developments in machine
learning may however come to our res-
cue and may possibly mitigate both is-
sues emerging from the previous obser-
vations. Adversarial machine learning is
a paradigm specifically devised for ap-
plication in those scenarios presenting
adversaries motivated in fooling learned
models.15 Its high-level goal is to study
vulnerabilities of existing systems and
possible attacks to exploit them, before
such vulnerabilities are effectively ex-
ploited by the adversaries. Early detec-
tion of vulnerabilities can in turn con-
tribute to the development of more
robust detection systems. One practi-
cal way to implement this vision is by
generating and experimenting with ad-

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 81

review articles

the generator is that of creating syn-
thetic data instances that resemble
the properties of real organic data,
while the typical goal of the discrimina-
tor is to classify input data instances as
either synthetic or organic. The dis-
criminator is evaluated based on its bi-
nary classification performance, while
the generator is evaluated in terms of
its capacity to induce errors in the dis-
criminator, hence the competition be-
tween the two networks.

Originally, GANs were proposed as a
form of generative model—that is, the
focus was posed on the generator net-
work. A notable example of this kind is
represented by the GAN trained in Wu
et al.33 for creating adversarial exam-
ples of social bots that improved the
training of downstream detectors.
However, with the end-goal of provid-
ing even larger improvements on de-
ception detection, we could envision
the adoption of GANs for training better
discriminator networks. In particular,
the generator of a GAN could be used as
a generative model for creating many
plausible adversarial examples, thus
overcoming the previously mentioned
limitations in this task and the scarcity
of labeled datasets. Then, the whole
GAN could be used to test the discrimi-
nator against the adversarial examples
and to improve its detection perfor-
mances. This paradigm has never been
applied to the task of social bot detec-
tion, but it was tested with promising
results for related tasks, such as that of
fake news generation/detection.39 The
adversarial framework sketched in Fig-
ure 6 is general enough to be applied to
a wide set of deception detection tasks,
comprising the detection of social
bots, cyborgs, trolls and mis/disinfor-
mation. Furthermore, in contrast with
existing adversarial approaches for bot
detection, it is grounded on an estab-
lished and successful machine learn-
ing framework, rather than on ad-hoc
solutions lacking broad applicability.

Despite the high hopes placed on
adversarial approaches for detecting
deception and automation, this re-
search direction is still in its infancy
and, probably due to its recency, is still
lagging behind more traditional ap-
proaches. As such, efforts at adversari-
al detection can only be successful if
the scientific community decides to
rise to the many open challenges.

Among them is the development of
techniques for creating many different
kinds of adversarial examples and to
evaluate whether these examples are
realistic and representative of future
malicious accounts. In spite of these
challenges, our analysis and the prom-
ising results obtained so far strongly
motivate future endeavors in this direc-
tion, as also testified by the sparking
adversarial trend in Figure 5.

Open Challenges
and the Way Ahead
The exponentially growing body of
work on social bot detection shown in
Figure 2, somehow reassures us that
much effort is bound to be devoted in
the coming years to the fight of this
crucial issue. However, at the same

time it also poses some new challeng-
es. Firstly, it is becoming increasingly
important to organize this huge body
of work. Doing so would not only con-
tribute to a better exploitation of this
knowledge but would also allow re-
searchers to more efficiently provide
new solutions by avoiding exploring
paths that already proved unsuccess-
ful. To this end, this survey aims to pro-
vide a contribution to the critical re-
view and analysis of the vast literature
on and beyond this topic.

Secondly, the foreseen increase in
publications inevitably implies that
more bot detectors will be proposed.
With the growing number of disparate
detection techniques, it is becoming in-
creasingly important to have standard
means, such as benchmarks, frame-

Figure 6. Adversarial deception detection based on generative adversarial networks (GANs).

The generator network is employed for creating a large number of
adversarial examples resembling the properties of real malicious
examples. The discriminator network is trained to distinguish between
malicious (either real or generated) and legitimate examples. By jointly
training the two networks, the generator learns to produce more chal-
lenging malicious examples while the discriminator improves its overall
classification performances since it trains on the challenging examples.
This conceptual framework can be applied to many tasks, comprising
the detection of disinformation, social bots, and trolls.

Generated
Malicious
Examples

Real
Malicious
Examples

Generator

Discriminator

Labels
(malicious/legitimate)

Evaluation

Real
Legitimate
Examples

82 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

extremely welcome as they can enable
the next wave of research on these is-
sues. Then, we should also devise ad-
ditional ways for creating a broad array
of diverse adversarial examples. Doing
so would also require quantitative
means to estimate the contributions
brought by the different adversarial ex-
amples, for instance in terms of their
novelty and diversity with respect to ex-
isting malicious accounts. These chal-
lenges currently stand as largely un-
solved and call for the highest effort of
our scientific community.

Our longitudinal analysis of the
first decade of research in social bot
detection revealed some interesting
trends. Early days were characterized
by simple supervised detectors ana-
lyzing accounts individually. Unsu-
pervised detectors emerged in 2012–
2013 and shifted the target to groups
of misbehaving accounts. Finally, we
highlighted the new rising trend of ad-
versarial approaches. Our analysis re-
vealed that for more than a decade we
fought each of the menaces posed by
sophisticated social bots, cyborgs,
trolls, and collusive humans, separate-
ly. Now, thanks to the rise of AI-enabled
deception techniques such as deep-
fakes, the most sophisticated of these
malicious actors are bound to be-
come indistinguishable from one an-
other, and likely also from legitimate
accounts. It is thus becoming increas-
ingly necessary to focus on spotting
the techniques used to deceive and to
manipulate, rather than trying to clas-
sify individual accounts by their na-
ture. Inauthentic coordination is an
important piece of the deception
puzzle, since it is exploited by bad ac-
tors for obtaining visibility and im-
pact. Moreover, it is oblivious to the
different types of bad actors. In other
words, both our findings and recent
reflections17,28 suggest that we should
keep on moving away from simple
supervised approaches focusing on
individual accounts and producing
binary labels. We should instead take
on the challenging task of embracing
the complexity of deception, manip-
ulation and automation by devising
unsupervised techniques for spot-
ting suspicious coordination. In ad-
dition, future techniques should not
provide oversimplistic binary labels
as often done and just as often

works and reference datasets, with
which to evaluate and compare them.
The present situation is one where we
have a suitcase filled with all kinds of
tools. Unfortunately, we do not really
know how to use them profitably, what
the differences are between them, and
ultimately, what they are really worth!
Buying us yet another tool would not
help much. Instead, a few targeted in-
vestments aimed at extensively evaluat-
ing and comparing our current tools
would tremendously increase the use-
fulness of all our suitcase.

One aspect often overlooked when
evaluating bot detectors is their gener-
alizability, that is, their capacity of
achieving good detection results also
for types of bots that have not been orig-
inally considered. To this regard, our
analysis lays the foundations of a bi-di-
mensional generalizability space,
sketched in Figure 7. A desirable sce-
nario for the near future would involve
the possibility to evaluate any new bot
detector against many different types of
social bots, thus moving along the y-ax-
is of Figure 7, following the promising
approaches recently developed in
Echieverria et al.11 and Yang et al.36 It
would also be profitable to evaluate de-
tectors against different versions of cur-
rent bots, thus somehow simulating

the evolving characteristics of bots.
This could be achieved by applying the
adversarial approach previously de-
scribed for creating many adversarial
examples, opening up experimentation
along the x-axis of the generalizability
space. Combining these two evaluation
dimensions, thus extensively exploring
the generalizability space, would allow
a much more reliable assessment of the
detection capabilities of present and
future techniques, thus avoiding over-
estimates of detection performance. In
order to reach this ambitious goal, we
must first create reference datasets that
comprise several different kinds of ma-
licious accounts, including social bots,
cyborgs and political trolls, thus signifi-
cantly adding to the sparse resources
existing as of today.j Here, challenges
include the limited availability of data
itself, missing or ambiguous ground
truth and the obsolescence of existing
datasets that hardly cope with the rapid
evolution of malicious accounts. To this
regard, continuous data-sharing initia-
tives such as that of Twitter for accounts
involved in information operations,k are

j One of the few publicly available bot reposi-
tories is hosted at: https://botometer.iuni.
iu.edu/bot-repository/datasets.html

k https://transparency.twitter.com/en/informa-
tion-operations.html

Figure 7. The bi-dimensional generalizability space.

Axes represent dimensions along which to test generalization capabilities of detectors.
The majority of existing detectors are evaluated under favorable conditions—that is,
only against a specific type of bots (b0) and with data collected at a specific point in time
(t0)—thus possibly overestimating their capabilities. The actual detection performance
for b ≠ b0 and for t > t0 are unknown. More realistic estimations could be obtained by
evaluating detectors under more general conditions. Generalization along the y-axis can be
achieved by adopting evaluation methodologies such as that proposed by Echeverría et al.11
Generalization along the x-axis can be obtained by applying adversarial approaches aimed
at creating variations of currently existing bots.

T
yp

es
 o

f
S

oc
ia

l B
ot

s
(b

)

Time (t)

t > t0t0

b ≠ b0

b0

Generalize on:

bot
evaluations

types
pf bots both

Difficulty of Detection:

easy harder

Evaluation:

provided missing

hardest

https://botometer.iuni.iu.edu/bot-repository/datasets.html
https://transparency.twitter.com/en/information-operations.html
https://transparency.twitter.com/en/information-operations.html
https://botometer.iuni.iu.edu/bot-repository/datasets.html

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 83

review articles

criticized,l but should instead pro-
duce multifaceted measures of the ex-
tent of suspicious coordination.

Our in-depth analysis revealed the
emergence of group-based approach-
es several years before “coordinated
inauthentic behavior” was acknowl-
edged as the main threat to our online
social ecosystems by the general pub-
lic and by the social platforms them-
selves. Among the most pressing chal-
lenges along this line of research is
the problem of scalability of group-
based detectors and the intrinsic
fuzziness of “inauthentic coordina-
ton.” In fact, the scalable and general-
izable detection of coordination is
still a largely open challenge, with
only few contributions proposed so
far.12,25 Similarly, computational
means to discriminate between au-
thentic and inauthentic coordination
are yet to be proposed and evaluated.
Interestingly, the same analysis that
anticipated worldwide interest in in-
authentic coordination, is now sug-
gesting that adversarial approaches
might give us an edge in the long-last-
ing fight against online deception.

Summarizing the main sugges-
tions stemming for our extensive anal-
ysis, future deception detection tech-
niques should: focus on identifying
suspicious coordination indepen-
dently of the nature of individual ac-
counts; avoid providing binary labels
in favor of fuzzier and multifaceted
indicators; favor unsupervised/semi
supervised approaches over super-
vised ones; and account for adversar-
ies by design. In addition, part of the
massive efforts we dedicated to the
task of detection should also be real-
located to measure (human) exposure
to these phenomena and to quantify
the impact they possibly have. Only
through enacting these changes we
will be able to develop tools that better
represent the existing reality, thus
providing actionable results to the
many scientific communities and
stakeholders looking at AI and Big
Data tools as a compass to adventure
in the perilous landscape of online in-
formation. These guiding lights stand
in front of us as an exciting and rare
opportunity, one that we did not have
in the past. Acting upon and capitaliz-

l https://bit.ly/2BrJAxd

ing on this opportunity is now exclu-
sively on our shoulders.

Acknowledgments. This research
is supported in part by the EU H2020 Program
under the scheme INFRAIA-01-2018-2019:
Research and Innovation action grant
agreement #871042 SoBigData++:
European Integrated Infrastructure for
Social Mining and Big Data Analytics.

References
1. Assenmacher, D., Clever, L., Frischlich, L., Quandt, T.,

Trautmann, H. and Grimme, C. Demystifying Social
Bots: On the Intelligence of Automated Social Media
Actors. Social Media + Society. SAGE, 2020.

2. Chavoshi, N., Hamooni, H., and Mueen, A. DeBot:
Twitter bot detection via warped correlation. In The
16th International Conference on Data Mining (2016).
IEEE, 817–822.

3. Chu, Z., Gianvecchio, S., Wang, H., and Jajodia, S.
Detecting automation of Twitter accounts: Are you a
human, bot, or cyborg? IEEE Trans. Dependable and
Secure Computing 9, 6 (2012), 811–824.

4. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A.,
and Tesconi, M. Fame for sale: Efficient detection of
fake Twitter followers. Decision Support Systems 80
(2015), 56–71.

5. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi,
A., and Tesconi, M. The paradigm-shift of social
spambots: Evidence, theories, and tools for the arms
race. In Proceedings of the 26th Intern. World Wide
Web Conf. Companion (2017). IW3C2.

6. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A.,
and Tesconi, M. Social fingerprinting: detection of
spambot groups through DNA-inspired behavioral
modeling. IEEE Transactions on Dependable and
Secure Computing 15, 4 (2017), 561–576.

7. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A.,
and Tesconi, M. Emergent properties, models, and
laws of behavioral similarities within groups of Twitter
users. Computer Communications 150 (2020), 47–61.

8. Cresci, S., Lillo, F., Regoli, D., Tardelli, S., and Tesconi,
M. Cashtag piggybacking: Uncovering spam and bot
activity in stock microblogs on Twitter. ACM Trans. the
Web 13, 2 (2019), 11.

9. Cresci, S., Petrocchi, M., Spognardi, A., and Tognazzi,
S. Better Safe Than Sorry: An Adversarial Approach to
Improve Social Bot Detection. In Proceedings of the
11th Intern. Conf. Web Science (2019). ACM.

10. Da San Martino, G., Cresci, S., Barrón-Cedeño, A.,
Yu, S., Di Pietro, R., and Nakov, P. 2020. A survey on
computational propaganda detection. In Proceedings
of the 29th Intern. Joint Conf. Artificial Intelligence
(2020).

11. Echeverrìa, J., De Cristofaro, E., Kourtellis, N.,
Leontiadis, I., Stringhini, G., and Zhou, S. LOBO:
Evaluation of generalization deficiencies in Twitter
bot classifiers. In Proceedings of the 34th Annual
Computer Security Applications Conf. ACM, 137–146.

12. Fazil, M. and Abulaish, M. A socialbots analysis-driven
graph-based approach for identifying coordinated
campaigns in Twitter. J. Intelligent & Fuzzy Systems
38 (2020), 2961–2977.

13. Ferrara, E., Varol, O., Davis, C., Menczer, F., and
Flammini, A. The rise of social bots. Commun. ACM
59, 7 (July 2016), 96–104.

14. Gallotti, R., Valle, F., Castaldo, N., Sacco, P., and De
Domenico, M. Assessing the risks of “infodemics”
in response to COVID-19 epidemics, 2020;
arXiv:2004.03997 (2020).

15. Goodfellow, I., McDaniel, P., and Papernot, N. Making
machine learning robust against adversarial inputs.
Commun. ACM 61, 7 (July 2018).

16. Gorodnichenko, Y., Pham, T., and Talavera, O. 2018.
Social Media, Sentiment and Public Opinions: Evidence
from #Brexit and #USElection. Working Paper 24631.
National Bureau of Economic Research, 2018.

17. Grimme, C., Assenmacher, D., and Adam, L. Changing
perspectives: Is it sufficient to detect social bots? In
Proceedings of the 10th Intern. Conf. Social Computing
and Social Media (2018).

18. Grimme, C., Preuss, M., Adam, L., and Trautmann, H.
Social bots: Human-like by means of human control?
Big Data 5, 4 (2017).

19. Grinberg, N., Joseph, K., Friedland, L., Swire-
Thompson, B., and Lazer, D. Fake news on Twitter

during the 2016 US presidential election. Science 363,
6425 (2019), 374–378.

20. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., and Yang,
S. Catching synchronized behaviors in large networks:
A graph mining approach. ACM Trans. Knowledge
Discovery from Data 10, 4 (2016).

21. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., and Yang, S.
Inferring lockstep behavior from connectivity pattern
in large graphs. Knowledge and Information Systems
48, 2 (2016), 399–428.

22. Kollanyi, B. Where do bots come from? An analysis of
bot codes shared on GitHub. Intern. J. Communication
10 (2016), 20.

23. Mazza, M., Cresci, S., Avvenuti, M., Quattrociocchi, W.,
and Tesconi, M. RTbust: Exploiting temporal patterns
for botnet detection on Twitter. In Proceedings of the
11th Intern. Conf. Web Science (2019). ACM.

24. Nizzoli, L., Tardelli, S., Avvenuti, M., Cresci, S., Tesconi,
M., and Ferrara, E. Charting the landscape of online
cryptocurrency manipulation. IEEE Access 8 (2020),
113230–113245.

25. Pacheco, D., Hui, P., Torres-Lugo, C., Tran Truong,
B., Flammini, A., and Menczer, F. 2020. Uncovering
coordinated networks on social media, 2020;
arXiv:2001.05658.

26. Ruan, X., Wu, Z., Wang, H., and Jajodia, S. Profiling
online social behaviors for compromised account
detection. IEEE Trans. Information Forensics and
Security 11, 1 (2015), 176–187.

27. Shao, C., Luca Ciampaglia, G., Varol, O., Yang, K.,
Flammini, A., and Menczer, F. The spread of low-
credibility content by social bots. Nature commun. 9,
1 (2018), 4787.

28. Starbird, K. Disinformation’s spread: Bots, trolls and
all of us. Nature 571, 7766 (2019), 449–449.

29. Stella, M., Ferrara, E., and De Domenico, M. Bots
increase exposure to negative and inflammatory
content in online social systems. In Proceedings of
the National Academy of Sciences 115, 49 (2018),
12435–12440.

30. Stieglitz, S., Brachten, F., Ross, B., and Jung, A. Do
social bots dream of electric sheep? A categorization
of social media bot accounts. In Proceedings of the
17th Australasian Conf. Information Systems (2017).

31. Varol, O., Ferrara, E., Davis, C., Menczer, F., and
Flammini, A. Online human-bot interactions: Detection,
estimation, and characterization. In Proceedings of the
11th Intern. Conf. Web and Social Media. AAAI, 2017.

32. Vosoughi, S., Roy, D., and Aral, S. The spread of true
and false news online. Science 359, 6380 (2018),
1146–1151.

33. Wu, B., Liu, L., Yang, Y., Zheng, K., and Wang, X. Using
improved conditional generative adversarial networks
to detect social bots on Twitter. IEEE Access 8 (2020),
36664–36680.

34. Yang, C., Harkreader, R., and Gu, G. Empirical
evaluation and new design for fighting evolving twitter
spammers. IEEE Trans. Information Forensics and
Security 8, 8 (2013), 1280–1293.

35. Yang, K., Varol, O., Davis, C., Ferrara, E., Flammini,
A., and Menczer, F. Arming the public with artificial
intelligence to counter social bots. Human Behavior
and Emerging Technologies 1, 1 (2019), 48–61.

36. Yang, K., Varol, O., Hui, P., and Menczer, F. Scalable
and generalizable social bot detection through data
selection. In Proceedings of the 34th AAAI Conf.
Artificial Intelligence (2020).

37. Yardi, S. Detecting spam in a Twitter network. First
Monday 15, 1 (2010).

38. Zago, M., Nespoli, P., Papamartzivanos, D., Gil Perez,
M., Gomez Marmol, F., Kambourakis, G., and Martinez
Perez, G. Screening out social bots interference: Are
there any silver bullets? IEEE Communications Mag.
57, 8 (2019), 98–104.

39. Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi,
A., Roesner, F., and Choi, Y. Defending against neural
fake news. In Proceedings of the 33rd Conf. Neural
Information Processing Systems (2019). 9051–9062.

40. Zhang, J., Zhang, R., Zhang, Y., and Yan, G. The rise
of social botnets: Attacks and countermeasures.
IEEE Trans. Dependable and Secure Computing 15, 6
(2016), 1068–1082.

Stefano Cresci (s.cresci@iit.cnr.it) is a researcher at the
Institute of Informatics and Telematics of the Italian
National Research Council in Pisa, Italy.

Copyright held by author/owner.
Publication rights licensed to ACM.

https://bit.ly/2BrJAxd
mailto:s.cresci@iit.cnr.it

Publish Your Work Open Access With ACM!

ACM offers a variety of Open Access publishing options
to ensure that your work is disseminated to the widest possible

readership of computer scientists around the world.

Please visit ACM’s website to learn more about
ACM’s innovative approach to Open Access at:

 https://www.acm.org/openaccess

https://www.acm.org/openaccess

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 85

research highlights

P. 87

MadMax: Analyzing
the Out-of-Gas World
of Smart Contracts
By Neville Grech, Michael Kong, Anton Jurisevic,
Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis

P. 86

Technical
Perspective
Analyzing
Smart Contracts
with MadMax
By Benjamin Livshits

P. 97

Lower Bounds for External
Memory Integer Sorting
via Network Coding
By Alireza Farhadi, Mohammad Taghi Hajiaghayi,
Kasper Green Larsen, and Elaine Shi

P. 96

Technical
Perspective
Two for
the Price of One
By Paul Beame

86 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

Technical
Perspective
Analyzing Smart Contracts
With MadMax
By Benjamin Livshits

S M A R T C O N T R AC T S P ROV I D E a way to
bring computational integrity to ex-
ecuting more or less general-purpose
programs. While proposed a long time
ago, they have only become popular
with the advent of newer blockchain-
based systems such as Ethereum with
its associated Ethereum Virtual Ma-
chine (EVM), and several other simi-
lar systems. Smart contracts give the
hope of being able to capture complex
financial interactions and relation-
ships with the help of executing code.
As a result, we have seen a multitude
of projects in areas as diverse as law
and what is frequently referred to as
decentralized finance (DeFi) based on
smart contracts.

Somewhat notoriously, smart con-
tracts, because they often directly
manage financial transactions, wal-
lets, and transfers, have been subject
to vulnerability discovery, with many
high-profile vulnerabilities, such as
the DAO hack, a highly impactful ex-
ploit from mid-2016, where a hacker
found a loophole in a smart contract
that has led to the theft of about $70
million. This attack and some of the
others have generated a great deal of
interest in using static analysis and
verification techniques to find bugs
and vulnerabilities in contracts be-
fore they are allowed to be deployed
onto a blockchain (since, after all,
contracts are generally immutable as
well, making bugs fairly difficult to fix
after the fact).

MadMax focuses on a fairly spe-
cific aspect of smart contracts, that of
metering. Metering is an approach to
charge for contract execution, which
plays the dual role of compensat-
ing blockchain participants and of
preventing denial-of-service attacks.
How to do metering properly is actu-
ally quite a hard problem. The EVM
proposes a specific way to charge for
contact execution, as specified in the

Ethereum yellow paper. Gas is pro-
vided for the purpose of contract ex-
ecution but if not enough gas is pro-
visioned, contract state can be rolled
back.

MadMax tackles gas-related vul-
nerabilities, which permit an attacker
to force key contract functionality to
run out of gas—effectively perform-
ing a permanent denial-of-service
attack on the contract. As such, the
following paper first effectively dis-
covers a new vulnerability. Second, it
proposes a detection approach based
on a static analysis (defined with the
help of Datalog). MadMax analyses
the entirety of smart contracts in the
Ethereum blockchain at the time of
this writing in just 10 hours and flags
vulnerabilities in contracts that hold
billions of dollars. The analysis Mad-
Max proposes is fairly precise: man-
ual inspection of a sample of flagged
contracts shows that 81% of the sam-
pled warnings do indeed lead to vul-
nerabilities.

The impact of this work is long-
ranging and has some implications
for the blockchain industry as a whole.
Specifically, the metering approach
that is based on gas measurements
is a highly imperfect design. Funda-
mentally, assigning fixed weights to
individual instructions is bound to
create a mismatch with the specifics
of individual hardware architectures.

However, given that blockchain is
experiencing rapid adoption, the fo-
cus on meeting and out-of-gas attacks
of the following paper is well-warrant-
ed and more research is needed in
this space to both propose new ways
to do metering and to fix existing at-
tacks.

Benjamin Livshits is Chief Scientist of Brave Software
and an associate professor at Imperial College London,
U.K.

Copyright held by author/owner.

research highlights

DOI:10.1145/3416259

To view the accompanying paper,
visit doi.acm.org/10.1145/3416262 rh

speakers.acm.org

Students and faculty
can take advantage of
ACM’s Distinguished
Speakers Program
to invite renowned
thought leaders in
academia, industry
and government to
deliver compelling and
insightful talks on the
most important topics
in computing and IT
today. ACM covers the
cost of transportation
for the speaker to
travel to your event.

A great speaker
can make the

difference between
a good event and

a WOW event!

Distinguished
Speakers
Program

http://dx.doi.org/10.1145/3416259
http://doi.acm.org/10.1145/3416262
http://speakers.acm.org

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 87

MadMax: Analyzing
the Out-of-Gas World
of Smart Contracts
By Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis

DOI:10.1145/3416262

Abstract
Ethereum is a distributed blockchain platform, serving as
an ecosystem for smart contracts: full-fledged intercom-
municating programs that capture the transaction logic of
an account. A gas limit caps the execution of an Ethereum
smart contract: instructions, when executed, consume gas,
and the execution proceeds as long as gas is available.

Gas-focused vulnerabilities permit an attacker to force
key contract functionality to run out of gas—effectively
performing a permanent denial-of-service attack on the
contract. Such vulnerabilities are among the hardest for
programmers to protect against, as out-of-gas behavior may
be uncommon in nonattack scenarios and reasoning about
these vulnerabilities is nontrivial.

In this paper, we identify gas-focused vulnerabilities
and present MadMax: a static program analysis technique
that automatically detects gas-focused vulnerabilities with
very high confidence. MadMax combines a smart con-
tract decompiler and semantic queries in Datalog. Our
approach captures high-level program modeling concepts
(such as “dynamic data structure storage” and “safely
resumable loops”) and delivers high precision and scal-
ability. MadMax analyzes the entirety of smart contracts in
the Ethereum blockchain in just 10 hours and flags vulner-
abilities in contracts with a monetary value in billions of
dollars. Manual inspection of a sample of flagged contracts
shows that 81% of the sampled warnings do indeed lead to
vulnerabilities.

1. INTRODUCTION
Ethereum is a decentralized blockchain platform that can
execute arbitrarily-expressive computational smart contracts.
A smart contract can capture virtually any complex inter-
action, such as responding to communication from other
accounts and dispensing or accepting funds. The possibili-
ties for such programmable logic are endless. It may encode
a payoff schedule, investment assumptions, interest policy,
conditional trading directives, trade or payment agreements,
and complex pricing. Virtually any transactional multiparty
interaction is expressible without a need for intermediaries
or third-party trust.

Smart contracts typically handle transactions in Ether,
which is the native cryptocurrency of the Ethereum block-
chain with a current market capitalization in tens of billions
of dollars. Smart contracts (as opposed to noncomputa-
tional “wallets”) hold a considerable portion of the total
Ether available in circulation, which makes them ripe targets

The original version of this paper appeared in Proceedings of the ACM
Programming Languages 2 (OOPSLA) (Nov. 2018).

for attackers. Hence, developers and auditors have a strong
incentive to make extensive use of various tools and pro-
gramming techniques that minimize the risk of their con-
tract being attacked.

Analysis and verification of smart contracts are, therefore,
high-value tasks, possibly more so than in any other applica-
tion domain. The combination of monetary value and pub-
lic availability makes the early detection of vulnerabilities a
task of paramount importance.

A broad family of contract vulnerabilities concerns out-of-
gas behavior. Gas is the fuel of computation in Ethereum. Due
to the massively replicated execution platform, wasting the
resources of others is prevented by charging users for running
a contract. Each executed instruction costs gas, which is traded
with the Ether cryptocurrency. As a user pays gas upfront, a
transaction’s computation may exceed its allotted amount of
gas. In that case, the Ethereum Virtual Machine (EVM), which is
the runtime environment for compiled smart contracts, raises
an out-of-gas exception and aborts the transaction. A contract
is at risk for a gas-focused vulnerability if it has not anticipated
(or otherwise does not correctly handle) the possible abortion of a
transaction due to out-of-gas conditions. A vulnerable smart con-
tract may be blocked forever due to the incorrect handling of
out-of-gas conditions: re-executing the contract’s function will
fail to make progress, re-yielding out-of-gas exceptions, indefi-
nitely. Thus, although an attacker cannot directly appropriate
funds, they can cause damage to the contract, locking its bal-
ance away in what is, effectively, a denial-of-service attack.
Such attacks may benefit an attacker in indirect ways—for
example, harming competitors or the ecosystem, amassing
fame in a black-hat community, or blackmailing.

In this work, we present MadMax:1 a static program anal-
ysis framework for detecting gas-focused vulnerabilities in
smart contracts. MadMax is a static analysis pipeline con-
sisting of a decompiler (from low-level EVM bytecode to a
structured intermediate language) and a logic-based analy-
sis specification. MadMax is highly efficient and effective:
it analyzes the whole Ethereum blockchain in just 10 hours
and reports numerous vulnerable contracts holding a total
value exceeding $2.8B, with high precision, as determined
from a random sample.

1 Available at: https://github.com/nevillegrech/MadMax.

http://dx.doi.org/10.1145/3416262
https://github.com/nevillegrech/MadMax

research highlights

88 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

MadMax is unique in the landscape of smart contract ana-
lyzers and verifiers. It is an approach employing cutting-edge
declarative static analysis techniques (e.g., context-sensitive
flow analysis and memory layout modeling for data struc-
tures), whereas past analyzers have primarily focused on
lightweight static analysis, on symbolic execution, or on full-
fledged verification for functional correctness. As MadMax
demonstrates, static program analysis offers a unique com-
bination of advantages: very high scalability (applying to the
entire blockchain) and high coverage of potential vulnerabil-
ities. Additionally, MadMax is raising the level of abstraction
of automated security analysis, by encoding complex prop-
erties (such as “safely resumable loop” or “storage whose
increase is caused by public calls”), which, in turn, allow
detecting vulnerabilities that span multiple transactions.

2. BACKGROUND
A blockchain is a shared, transparent distributed ledger
of transactions that is secured using cryptography. One
can think of a blockchain as a long and ever-growing list
of blocks, each encoding a sequence of individual transac-
tions, always available for inspection and safe from tam-
pering. Each block contains a cryptographic signature of
its previous block. Thus, no previous block can be changed
or rejected without also rejecting all its successors. Peers/
miners run a mining client for separately maintaining the
current version of the blockchain. Each of the peers con-
siders the longest valid chain starting from a genesis block
to be the accepted version of the blockchain. To encour-
age transaction validation by all peers and discourage
wasted or misleading work, a blockchain protocol typi-
cally combines two factors: an incentive that is given as a
reward to peers successfully performing validation, and a
proof-of-work, requiring costly computation to produce a
block. To see how distributed consensus and permanent
record-keeping arise, consider a malicious client who tries
to double-spend a certain amount. The client may propa-
gate conflicting transactions (e.g., paying sellers A and B)
to different parts of the network. As different peers become
aware of the two versions of the truth, a majority will arise,
because the peers will build further blocks over the version
they perceived as current. Thus, a majority will soon accept
one of the two spending transactions as authoritative and
will reject the other. The minority has to follow suit, or its
further participation in growing the blockchain will also be
invalidated: the rest of the peers will disregard any of the
blocks not resulting in the longest chain.

Using this approach, a blockchain can serve to coordi-
nate all multiparty interactions with trust arising from the
majority of peers, instead of being given to an authority by
default.

The original blockchain, at least in its popular form, is
due to the Bitcoin platform.11 Bitcoin is explicitly a special-
purpose cryptocurrency platform. Therefore, the data regis-
tered on the Bitcoin ledger can be seen as transaction parties
and amounts (with minor logic permitted for cryptographic
authentication). In contrast, the blockchain formulation we
are interested in is the one popularized by the Ethereum plat-
form4, 21: registered accounts may contain smart contracts,

that is, full-fledged programs that can perform arbitrary com-
putations, enabling the encoding of complex logic.

Ethereum smart contract programming is most com-
monly done in the Solidity language.18 Solidity is a JavaScript-
like language, enhanced with static types, contracts as a
class-like encapsulation construct, contract inheritance, and
numerous other features.

The Solidity (or other high-level language) level of abstrac-
tion is significantly removed from that of the code that directly
runs on the Ethereum blockchain. Instead, Ethereum natively
supports a low-level bytecode language—the Ethereum plat-
form is essentially a distributed, replicated virtual machine,
called the Ethereum VM (EVM). The EVM is a low-level stack-
machine with an instruction set such as standard arithmetic
instructions, basic cryptography primitives (mainly crypto-
graphic hashing), primitives for identifying contracts and
calling out to different contracts (based on cryptographic
signatures), exception-related instructions, and primitives
for gas computation. Data is stored either on the blockchain
(a memory area called storage), in the form of persistent data
structures, or in contract-local transient memory.

In our work, we focus on analyzing smart contracts at the
bytecode level. This is a high-cost design decision (due to the
low-level nature of the bytecode). At the same time, the EVM
bytecode level of abstraction yields a high payoff for analy-
ses that target it. A bytecode-level analysis does not require
a contract’s source, allowing the analysis of both new and
deployed contracts, originally written in any language. At the
bytecode level, the input code is normalized, with all control
flow being explicit, uniform, and simplified. Furthermore,
the impedance mismatch between a high-level language
and the EVM bytecode is often a source of confusion and
error. For instance, consider the code pattern here:

creditorAddresses = new address [](size);

This code RESULTS in iteration over all locations of an
array, to set them to zero. This iteration can well run out of gas.
(Such code was behind a vulnerability1 in the GovernMental16
smart contract, for example.) The iteration is implicit at the
Solidity level but immediately apparent at the bytecode level.

3. GAS-FOCUSED VULNERABILITIES
We next identify some of the most common patterns of gas-
focused vulnerabilities. We employ Solidity for illustration
purposes, even though our entire analysis work is at the EVM
bytecode level.

The Ethereum execution model incentivizes users to
minimize the number of instructions executed, by making
them pay up front for the gas required to execute a transac-
tion. Running out of gas is common, but, in most cases, this
is not catastrophic: the transaction is reverted and the end
user reruns it with a higher gas budget.

However, Ethereum smart contracts can relatively easily
reach a state such that there will never be enough gas to run
their code. The most common reason is the block gas limit of
the Ethereum network—currently at 9M units of gas, which is
enough for a mere few hundred writes to storage (i.e., to the
blockchain).

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 89

3.1. Unbounded mass operations
The most standard form of a gas-focused vulnerability is
that of unbounded mass operations. Loops whose behavior
is determined by user input could iterate too many times,
exceeding the block gas limit, or becoming too economi-
cally expensive to perform. The code may not have predicted
this possibility, thus failing to ensure that the contract can
continue to operate as desired under these conditions. This
will commonly lead to a denial of service for all transactions
that must attempt to iterate the loop. Consider the contract:

contract NaiveBank {
 struct Account {
 address addr;
 uint balance;
 }
 Account accounts [];

 function applyInterest () returns (uint) {
 for (uint i=0; i < accounts . length; i++) {
 // apply 5 percent interest
 accounts [i] . balance =
 accounts [i] . balance * 105 / 100;
 }
 return accounts. length;
 }
}

As the number of accounts is increased, the gas require-
ments for executing applyInterest will rise. Very quickly
(after a mere few hundred entries are added to accounts),
the function will be impossible to execute without raising
an out-of-gas exception: the cost of the loop’s instructions
exceeds the Ethereum block gas limit.

Ethereum programming safety recommendations17 sug-
gest that programs should avoid having to perform opera-
tions for an unbounded number of clients (instead merely
enabling the clients to “pull” from the contract). However, it
is easy for contracts to violate this practice, without realizing
that a loop’s iterations are bounded only by user-controlled
quantities.

An alternative recommendation is that when loops do need
to perform operations for an unbounded number of clients,
the amount of gas should be checked at every iteration and the
contract should “keep track of how far [it has] gone, and be able
to resume from that point”.17 This pattern is complex, error-
prone, and (as we determine) very uncommon in practice.

3.2. Nonisolated calls (wallet griefing)
An additional way for a contract to run into out-of-gas trou-
ble involves invoking external functionality that may itself
throw an out-of-gas exception. The first element of the prob-
lem is a call that the programmer may not have considered
extensively. Such calls are typically implicit, as part of Ether
transfer. Sending Ether involves calling a fallback function
on the recipient’s side.

It is illustrative to see the issue based on the Solidity primi-
tives and recommended practices. In Solidity, sending Ether
is performed via either the send or the transfer primitive.

These have different ways to handle transfer errors. For
instance, send returns false if sending Ether fails:

< address >. send (uint256) returns (bool)

On the other hand, transfer raises an error (i.e., throws
an exception) if sending Ether fails.

Importantly, both the send and the transfer Solidity
primitives are designed with failure in mind. Both are
translated into regular calls at the EVM bytecode level, but
with a limited gas budget of 2300 given to the callee. This
is barely enough to allow executing some logging code on
the recipient’s side. Therefore, the emphasis is placed on
the error handling.

A good practice locally (and also used in recommended
Ethereum security code patterns17) is using the send primi-
tive always with a check of the result and aborting the
transaction by throwing an exception, if a send fails. This
effectively turns a send into a transfer plus any other
code the user wants.

The problem arises when that exception is thrown in
the middle of a loop, which is also handling other external
accounts. The contract programmer or auditor may easily
miss the potential threat. For instance, the loop may iter-
ate only a bounded number of times (e.g., a contest may
award money to the three leaders of a scoreboard) tricking
the programmer into thinking that its gas consumption is
fixed. Furthermore, it is counter-intuitive to consider that an
external party will purposely abort the very transaction that
gives it money. Finally, the usually-conservative naïve error
handling of eagerly aborting the transaction conspires to
cause the problem.

We can see the issue in example code for a vulnerability20
appealingly termed wallet griefing.2 Consider a simple loop
that tries to reward the three winners of a contest:

for (uint i = 0; i < 3; i++)
 if (!(winners [i]. send (reward))) throw;

The problem is that the send command will also result
in the callback function of the winner being executed. All
it takes for the contract to be vulnerable is for attackers
to make themselves a winner and then provide a callback
function that runs out of gas. The sender contract may
never be able to recover from such conditions—for exam-
ple, code clearing the winners may only appear after the
end of the above loop.

3.3. Integer overflows
A programming error that commonly expresses itself as a
gas-focused vulnerability results from possible integer over-
flows, often (but not exclusively) arising due to the Solidity-
type inference approach. This is a separate pattern from the
general attack of Section 3.1, as the iteration is not merely
unbounded but literally nonterminating.

2 The slang term “griefing” comes from the gaming community, where it is
used to denote targeted destructive behavior meant to harass.

research highlights

90 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

 destinations, per the above point). All functions of a
contract are fused in one, with low-level jumps as the
means to transfer control.

To call an intracontract function, the code pushes a
return address to the stack, pushes arguments, pushes the
destination block’s identifier (a hash), and performs a jump
(which pops the top stack element, to use it as a jump des-
tination). To return, the code pops the caller basic block’s
identifier from the stack and jumps to it.

4.2. Decompilation approach
MadMax was originally based on the Vandal decompiler.3, 19
Subsequently, the same analysis logic has been ported to our
Gigahorse decompiler framework.6

Our decompilation step accepts EVM bytecode as input
and produces output in a standard structured intermediate
representation: a control-flow graph (of basic blocks and the
edges connecting them); three-address code for all opera-
tions (instead of operations acting on the stack); and recog-
nized (likely) function boundaries. This representation is
encoded as relations (i.e., tables) and queried, recursively, to
formulate higher-level program analyses.

We observe that the EVM bytecode input is much like a
functional language in continuation-passing-style (CPS)
form: all calls and returns are forward calls (jumps), where
calls add the continuation (return-to instruction) as one of
the arguments. This equivalence of CPS and low-level jumps
has been observed before—most explicitly by Thielecke.15

The technical setting of having CPS input and needing to
detect value and control flow is precisely that of control-flow
analysis (CFA).12, 13 Control-flow analysis is also one of the
original proposals for a context-sensitive (call-site sensitive)
static analysis of value flow: for a k-CFA analysis, every call
target gets analyzed separately for each caller (i.e., calling
instruction), caller’s caller, etc., up to a maximum depth, k.

Decompilation, therefore, adopts the standard form of
a control-flow analysis,13 formulated as an abstract-interpreta-
tion. Context sensitivity adapts to the complexity of the input
contract, often resulting in analyses with deep context
(e.g., k = 12). The end result is a three-address code using
the schema listed in Figure 1. Syntax sugar and minor detail
elision are employed for presentation purposes. Language
syntax is quoted using [and] and implicitly unquoted for
meta-variables. For instance, s:[to:= BinOp(x, y)] indicates
that statement s is some binary operation on x and y with its
result in to, where x, y, and to are the meta-variables refer-
ring to the bytecode variables. The distinction between vari-
ables in the analyzed program and meta-variables in the
analysis is clear from context; therefore, we simply refer to
“variables,” henceforth. We omit the statement identifier, s,
when it does not affect a rule. We also use * as a wildcard,
that is, it denotes any variable, which is ignored.

The schema captures all elements of EVM bytecode in
a slightly abstracted fashion, using a standard, structured
intermediate language. For example, JUMPI instructions
have statements, and not arbitrary values, as targets. All
binary operations are treated equivalently, as we currently
do not attempt to analyze arithmetic expressions. We do not

Consider the following contract:

contract Overflow {
Payee payees [];

function goOverAll () {
 for (var i = 0; i < payees . length; i++)
 { ... }
 } ...
 }

The use of var induces a type inference problem. (Newer
versions of Solidity statically detect this issue.) The inferred
type of variable i is uint8 (i.e., a byte), as the variable is
initialized to 0 and uint8 is the most precise type that can
hold 0 while being compatible with all operations on i.
Unfortunately, this means that a mere addition of 256 mem-
bers to payees is enough to cause the loop to not terminate,
quickly resulting in gas exhaustion. An attacker can exploit
this vulnerability by adding fake payees using appropriate
public functions (not shown) until the overflow is triggered.

4. DECOMPILING EVM BYTECODE
The first step of our gas-focused vulnerability analysis is a
decompilation step, raising the level of abstraction from that
of EVM bytecode to a structured intermediate language (IR):
control-flow graphs (CFGs) over the three-address code. The
decompilation step is itself a static analysis, as EVM bytecode
is low-level: much closer to machine-specific assembly than
to structured IRs (e.g., Java bytecode or.NET IL).

4.1. Challenges for EVM bytecode analysis
The EVM is a stack-based low-level IR with minimal struc-
tured language characteristics. In the bytecode form of a
smart contract, symbolic information has been replaced by
numeric constants, functions have been fused together, and
control flow is hard to reconstruct. To illustrate, compare
the EVM bytecode language to the best-known bytecode
language: Java (JVM) bytecode—a much higher-level IR. The
design differences include the following:

• Unlike JVM bytecode, EVM does not have structs, classes,
or objects, nor does it have a concept of methods.

• Java bytecode is a typed bytecode, whereas EVM bytecode
is not.

• In JVM bytecode, the stack depth is fixed under different
control flow paths: execution cannot get to the same
program point with different stack sizes. In EVM byte-
code, no such guarantee exists.

• All control-flow edges (i.e., jumps) in EVM bytecode are
to variables, not constants. The destination of a jump is
a value that is read from the stack. Therefore, a value-
flow analysis is necessary even to determine the con-
nectivity of basic blocks. In contrast, JVM bytecode has
a clearly-defined set of targets of every jump, indepen-
dent of value flow (i.e., independent of stack contents).

• JVM bytecode has defined method invocation and return
instructions. In EVM bytecode, although calls to outside
a smart contract are identifiable, function calls inside
a contract get translated to just jumps (to variable

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 91

5. CORE MADMAX ANALYSIS
The main MadMax analysis operates on the output of decom-
pilation using logic-based specifications. The analysis is
implemented in the Datalog language: a logic-based language,
equivalent to first-order logic with recursion.8 The analysis
consists of several layers that progressively infer higher-
level concepts about the analyzed smart contract. Starting
from the three-address-code representation of Figure 1, con-
cepts such as loops, induction variables, and data flow are
first recognized. Then, an analysis of memory and dynamic
data structures is performed, inferring concepts such as
dynamic data structures, contracts whose storage increases
upon reentry, nested arrays, etc. Finally, concepts at the
level of analysis for gas-focused vulnerabilities (e.g., loop with
unbounded mass storage) are inferred.

5.1. Flow and loop analyses
Ethereum gas-focused vulnerabilities tend to require a high-
level semantic understanding of the underlying contract.
There are various initial low-level analyses that need to hap-
pen before expressing deeper semantics. Thus, the first
step of a MadMax analysis is the derivation of loop and data
flow information. This yields several relations, on which
further analysis steps are built. The relations, together with
some extra domain and input context definitions, are given
in Figure 2. We do not provide the Datalog rules for any of
these relations—their implementation, although not always
straightforward, is standard. For instance, it resembles the
flow computation in standard Datalog analysis formula-
tions14 or frameworks for Java bytecode, such as JChord9, 10
and Doop.2

The first three computed relations in Figure 2 (InLoop,
InductionVar, and LoopExitCond) encode useful con-
cepts in structured loops. Note that loops in low-level pro-
grams do not have to be structured; for example, there may
not be a loop head that dominates all loop statements.
However, Solidity and other EVM languages often produce
structured loops as part of their compilation process. The
loop analysis finds induction variables, that is, variables that
are incremented by a predictable (but not necessarily stati-
cally known) amount in each iteration.

The next four relations capture a data-flow analysis. Relation
Flows expresses a data-flow dependency between variables.
In its simplest form, Flows is just the reflexive transitive clo-
sure of the BinOp input relation; that is, it ignores storage and

include unary operations or direct assignment between vari-
ables in Figure 1, although we do so in the implementation,
because these can be treated as special cases of binary oper-
ations. Rtvalue gives a uniform treatment of instructions
that return the cost of gas, transaction id, code size, caller,
and other run-time quantities.

Figure 1. Domains and decompiler output (i.e., input relations for
main analysis).

V is a set of program variables
C is a set of constants, C ⊆
S is a set of statement identifiers
N is the set of natural numbers, Z is the set of integers

s:[to := CONST(c)] s : S, to : V, c : C

load from storage
s:[to := SLOAD (index)] s : S, index : V, to : V

store to storage
s:[SSTORE(from, index)] s : S, index : V, from : V

load from (volatile) memory
s:[to := MLOAD(index)] s : S, index : V, to : V

store to (volatile) memory
s:[MSTORE(from, index)] s : S, index : V, from : V

conditional jump
s:[JUMPI(cond, label)] s : S, cond : V, label : S

conditional throw
s:[THROWI(cond)] s : S, cond : V

keccak 256 hash
s:[to := SHA3(ind, len)] s : S, ind : V, len : V, to : V

call external contract
s:[to := CALL(addr, gas...)] s : S, addr : V, gas : V, to : V

get remaining gas
s:[to := GAS()] to : V

get run-time value (e.g. current block size)
s:[to := RTVALUE()] to : V

CAST integer to a number of bits
s:[to := CASTN(from)] to : V, from : V, n : N

binary operator e.g. φ, ADD, AND, etc.
s:[to := BINOP(a, b)] y s : S, a : V, b : V, to : V

constant assignment

Figure 2. Extra domains, input, and output schema for baseline loop and data flow analyses.

INLOOP(s : S, l : L) Statement s is part of loop l
Statement s is part of function f

INDUCTIONVAR(v : V, l : L) v is an induction variable of loop l
LOOPEXITCOND(condVar : V, l : L) Loop condition of l is captured by condVar
HASCONSTANTVALUE(v : V, c : C) Constant c may propagate to variable v
FLOWS(from : V, to : V) Data flow analysis: the value of from flows to to
VARALIAS(v : V, u : V) Local alias analysis: v,u may be aliased via direct assignment
MEMCONTENTS(s : S, p : V, v : V) At statement s, contents at memory location p may be v

F is a set of function hashes
L is a set of structured loops

INPUBLICFUNCTION(s : S, f : F)

research highlights

92 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

However, the existence of all three conditions is a very strong
indication that the programmer has considered the possi-
bility of an out-of-gas exception and has taken precautions
to make the loop resumable on a re-execution of the con-
tract function.

5.2. Analysis of memory layout
A faithful modeling of the Ethereum VM memory layout for
dynamic data structures is a key part of MadMax. This mod-
eling is necessary for reducing the false-positive rate of the
analysis. An intuitive but naïve approach to find gas vulner-
abilities may be to flag any contract that contains loops that
are “dynamically bound,” or loops where the number of iter-
ations depends on some value stored in storage or passed
as external input. However, a precise analysis requires more
sophistication. We find experimentally that around half of
the currently deployed contracts have dynamically bound
loops—but it would be entirely unrealistic to expect that
half of smart contracts currently deployed are vulnerable.
Instead, for loops that iterate over unbounded data (i.e.,
data structures), we need to determine whether the data
structure could have been populated by an attacker.

The Ethereum virtual machine does not have notions of
high-level data structures. Instead, operations on high-level
data structures are compiled down to low-level operations on
addressable storage. Solidity offers two main kinds of dynam-
ically-sized data structures: dynamically-sized arrays and asso-
ciative arrays, that is, maps. Although both arrays and maps
can be dynamically resized, no mechanism exists for iterating
over maps. Therefore, arrays are the primary data structure to
model, in order to capture loops that iterate without bounds.

The Ethereum memory layout is highly unconventional
from a traditional programming language standpoint,
although perfectly reasonable if one considers the specif-
ics of the execution environment (i.e., a segregated, 256-bit

memory load and store instructions. However, one can give
more sophisticated Flows definitions without affecting the
rest of the analysis. VarAlias is a similar relation but more
restrictive, for variables directly assigned to each other with no
further arithmetic. Accordingly, HasConstantValue does
a simple constant propagation: it is just the composition of
VarAlias with the input CONST relation.

Finally, MemContents does a simple analysis of Mstore
operations given the results of VarAlias and propagates the
results to every statement reachable from an Mstore in the
control-flow graph.

There are two points worth mentioning about the above
relations:

• The data-flow analysis (i.e., relations HasConstant-
Value, Flows, VarAlias, and MemContents) is
best-effort, that is, neither sound nor complete. This
means that, first, not all possible flows, aliases, etc.
are guaranteed to be found: two variables may hold
the same value as a result of complex arithmetic, run-
time operations, memory load and stores, etc., with-
out the analysis computing this. Second, not all
inferences are guaranteed to hold. For example, an
inference that is known to hold in one control-flow
path but not in another will be optimistically propa-
gated when paths are merged.

The property of being neither sound nor complete
carries over to our overall analysis results. MadMax nei-
ther guarantees to detect all gas vulnerabilities nor guar-
antees that every gas vulnerability reported is a real bug.
This design choice is well-aligned with the intended pur-
pose of a bug-detecting static analysis—the value of the
analysis is not based on its guarantees but on its real-
world usefulness.5

• Relations Flows and VarAlias are pervasive in the
MadMax analysis. Most other relations we shall see
henceforth are transitively closed with respect to either
Flows or (the weaker) VarAlias. We elide such transi-
tive-closure Datalog rules from our exposition and only
focus on the seed logic of each interesting concept.

Armed with the above basic loop and data-flow analy-
ses, we can establish higher-level concepts, such as a loop’s
bound. This is defined as LoopBoundBy in Figure 3. If
both an induction variable i and a noninduction variable c
flow to a loop exit condition, then we infer that the loop may
be bound by the contents of c. A further refinement of this
relation is DynamicallyBound, which infers which loops
are bound by either storage or some other value that is only
known at run-time.

Finally, we define predicate PossiblyResumableLoop,
to match loops that appear to implement the Ethereum
secure coding recommendations,17 by checking the amount
of remaining gas, saving to (permanent) storage an induc-
tion variable, and loading the same induction variable from
storage. Note that this is not an entirely precise detection of
resumable loops—it may well be finding instances of code
that just happen to match these abstract conditions, for
example, gas check, store, and load of induction variable.

Figure 3. Inferring bound loops and resumable loops.

LOOPBOUNDBY(loop, var) ←
INDUCTIONVAR(i, loop),
!INDUCTIONVAR(var, loop),
FLOWS(var, condVar),
FLOWS(i, condVar),
LOOPEXITCOND(condVar, loop).

DYNAMICALLYBOUND(loop) ←
[dynVar := SLOAD(*)],
LOOPBOUNDBY(loop, dynVar).

DYNAMICALLYBOUND(loop) ←
[dynVar := RTVALUE()],
LOOPBOUNDBY(loop, dynVar).

POSSIBLYRESUMABLELOOP(loop) ←
[gas := GAS()],
LOOPBOUNDBY(loop, gas).
INDUCTIONVAR(i, loop),
FLOWS(loaded, i),
[loaded := SLOAD(*)],
FLOWS(i, stored),
[SSTORE(*, stored)],

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 93

affects the address loaded.
Finally, loop overflows are conservatively asserted to be

likely if the induction variable is cast to a short integer or
ideally one byte. The loop has to be “dynamically bound”
to be vulnerable, that is, the number of iterations is deter-
mined by some run-time value.

6. IMPACT
Our original MadMax experiments consider all smart con-
tracts available on the Ethereum blockchain on April 9,
2018. We ran MadMax on an idle machine with an Intel Xeon
E5–2687W v4 3.00 GHz and 512 GB of RAM. Due to time con-
straints, we set a cutoff of 20 s for decompilation—beyond
that time, contracts are considered to time-out.

The contracts flagged for vulnerabilities, combined, con-
tain 7.07 million ETH, or roughly $2.8 billion.3 In total, there
were 6.33 million contract instances deployed at the time of
our blockchain scraping, produced from 91.8k unique pro-
grams. 4.1% of the contracts are flagged by MadMax as being
susceptible to unbounded iteration, 0.12% to wallet griefing,
and 1.2% to overflows of loop induction variables.

To estimate a false-positive rate, we manually inspected a
subset of the contracts flagged. Our unbiased sampling pro-
cess involves taking unique bytecode programs and selecting
the first and last few contracts by block-hash order. However,
a bias factor is introduced by the need to have source code
available online—contracts without source code were not
considered, as manual inspection of low-level bytecode is
highly time-consuming and unreliable.

We select the first 13 contracts, and manual inspection
reveals that 11 of these contracts indeed exhibit 13 distinct
vulnerabilities, of 16 flagged, for a precision of 13/16 = 81%.
The exact number is hardly important—a larger sample
could have it move a few percentage points up or down.
What is important is that the analysis is precise enough to
yield a wealth of true vulnerability warnings. By manually
inspecting the sampled contracts, we have gained impor-
tant insights about the effectiveness of MadMax—presented
in detail in the MadMax conference publication.7

The entire MadMax analysis of the 91.8k contracts took less
than 10 hours, running 45 concurrent processes. Subsequent
advances of the Gigahorse decompiler have brought this num-
ber down by at least a factor of 2. Decompilation currently
exhibits time-outs for around 4% of the contracts, depending
on the exact settings.

Note that a confirmed vulnerability in a contract does not
mean that: (1) exploiting the vulnerabilities is easy or cheap
or (2) the vulnerability blocks all Ether in a contract. For
instance, the gas required to exploit an unbounded mass

memory space per contract, cryptographic hashing as a
primitive). The main idea is that a key represents an array.
The key is the address of the memory location holding the
array’s size. At the same time, the key is hashed to yield the
address of the memory location that holds the array’s
contents.

Figure 4 depicts an example of storage allocation for a
simple contract with two scalar variables and a two-dimen-
sional dynamic array. Fixed-sized data structures in Solidity
are stored consecutively in storage as these appear in pro-
gram order, starting from offset 0. The individual elements in
arrays are also stored consecutively in storage; however, the
starting offset of the elements requires some calculations to
be determined. Due to their unpredictable size, dynamically-
sized array types use a keccak256 hash function (sha3) to
find the starting position of the array data. The dynamic
array value itself occupies an empty slot in storage at some
position p. For a dynamic array, this slot stores the number
of elements in the array. The array data, however, is located
at keccak256(p). The implementation of arrays is extended
to arbitrarily-nested dynamic data structures, by recursively
mapping the above implementation, necessitating a recur-
sive analysis.

MadMax performs an analysis (elided) for modeling the
memory layout and identifying dynamic data structures in
smart contracts. The outputs of this analysis are shown in
Figure 5. Based on these relations, we define key concepts for
gas-focused analyses, as shown in Figure 6. An important con-
cept is IncreasedStorageOnPublicFunction. Storage
variables that are increased and stored in their corresponding
storage slot imply that a contract’s array size is increased when
some public function is invoked. Moreover, we can find loops
that iterate over arrays. We define ArrayIterator as a loop
that iterates over an array.

5.3. Top level vulnerability queries
The analysis concepts of the previous sections set up the
final queries for gas-focused vulnerabilities. These are
made precise by combining several distinct concepts. Figure
7 shows the final output relations of the MadMax analysis in
slightly simplified (and inlined to single rule) form.

Consider, for instance, the UnboundedMassOp logic: it
examines whether an array that can grow in size as the result
of a public function has contents that are loaded or stored
(the Flows(storeOffsetVar, index) allows dereferencing from
the beginning of the contents), inside a loop whose bound is
based on the array size and that contains an induction vari-
able that affects the address loaded or stored.

The WalletGriefing query is even more precise,
requiring a load from the dynamic array, flow of the
loaded value to a call whose result is the condition of a
throw statement. The call and the throw need to be in the
same loop, which also has an induction variable that

Figure 4. Outputs of data structure analysis.

VARINDEXESSTORAGE(s : S, v : V) Variable v reads or writes to storage at statement s
ARRAYSIZEVARIABLE(sv : V, arrId : C, kv : V) Array arrId has its length and address read in sv and kv, respectively
ARRAYIDTOSTORAGEINDEX(arrId : C, v : V) v holds a storage address that is part of (outermost) array arrId

3 The price of ETH/USD and contract balances are both volatile quantities.
To fix a reference point, all numbers given are as of April 9th, 2018 (with ETH/
USD at $400.72).

research highlights

94 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

operation vulnerability may be costly, deterring attackers.
However, this does not affect the vulnerable nature of the
contract against motivated malicious actors.

7. CONCLUDING DISCUSSION
We presented MadMax, a tool for finding gas-focused vulner-
abilities in Ethereum smart contracts. We identify new vul-
nerabilities for Ethereum smart contracts and demonstrate
the first successful design of a static analysis tool at the EVM
bytecode level that painstakingly decompiles and recon-
structs the program’s higher-level semantics. The MadMax
approach utilizes best-of-breed techniques and technolo-
gies: from abstract-interpretation-based low-level analysis for
decompilation to declarative program analysis techniques
for higher-level analysis. Our approach is validated using all
deployed smart contracts on the blockchain and demon-
strates scalability and concrete effectiveness. The threat to
some of these smart contracts presented by our tools is over-
whelming in financial terms, especially considering the high
precision of warnings in a manually-inspected sample.

Gas-focused vulnerabilities are likely to become more

relevant in the foreseeable future. Gas (or a quantity like it) is
fundamental in blockchain computation and is, for example,
included in the design of the upcoming Facebook Libra.
Computation under gas constraints requires different coding
styles than in traditional programming domains—a simple
linear loop over a data structure may render a contract vulner-
able! This year, Ethereum’s Istanbul update makes SLOAD four
times more expensive, whereas making SSTORE cheaper.
Exploiting the unbounded operation vulnerability involves
many state changing operations to cause the victim to per-
form more state reading operations. The cost to the attacker
is therefore relative to the ratio of the cost of storing against
the cost of reading. Hence, this vulnerability will become
cheaper to exploit. Moreover, Libra’s virtual machine will
have state reading operations such as ImmBorrowField
and ReadRef. These will be as expensive as state writing
operations MutBorrowField and WriteRef, which would
make the unbounded operations’ vulnerability cheaper to
exploit in Libra than in Ethereum.

MadMax is the first published analysis to detect threats
that require coordination across multiple transactions. This
is representative of the future trends for automated security
analyses: the analysis will need to account for state changes by
independent transactions, long before the final attack can be
perpetrated. Furthermore, future threats are likely to involve
multicontract or whole-app attacks—for example, with coor-
dination between the off-blockchain part of a decentralized
application and its on-blockchain (smart contract) part. This

Figure 7. Top-level query for unbounded mass operations, wallet
griefing, and overflow vulnerabilities.

UNBOUNDEDMASSOP(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
VARINDEXESSTORAGE(storeOrLoadStmt, index),
INLOOP(storeOrLoadStmt, loop),
ARRAYITERATOR(loop, arrayId),
INDUCTIONVAR(i, loop),
FLOWS(i, index),
!POSSIBLYRESUMABLELOOP(loop).

WALLETGRIEFING(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
[loadVar := SLOAD(index)],
FLOWS(loadVar, target),
INLOOP([resVar := CALL(target, **)], loop),
INLoop([THROWI(condVar)], loop),
FLOWS(resVar, condVar),
INDUCTIONVAR(i, loop),
FLOWS(i, index).

LOOPOVERFLOW(loop) ←
DYNAMICALLYBOUND(loop),
[to := CASTN(from, n)], n ≤ 16,
INDUCTIONVAR(to, loop),
INDUCTIONVAR(from, loop),
FLOWS(to, condVar),
LOOPEXITCOND(condVar, loop).

Figure 5. Storage structure and contents (bottom) for given contract
(top). sha3 is the keccak256 hash function.

contract Foo {
uint i0;
uint i1;

uint [][]a;
..

}

address contents
0 i0
1 i1
2 a.length

SHA3(2) a[0].length
SHA3(2) + 1 a[1].length

SHA3(SHA3(2)) a[0][0]
SHA3(SHA3(2)) + 1 a[0][1]

SHA3(SHA3(2) + 1) a[1][0]
SHA3(SHA3(2) + 1) + 1 a[1][1]

Figure 6. Datalog rules for identifying storage requirements increase
in public functions.

INCREASEDSTORAGEONPUBLICFUNCTION(arrayId) ←
ARRAYSIZEVARIABLE(sizeVar, arrayId, keyVar),
INPUBLICFUNCTION([sizeVar’ := ADD(sizeVar, *)], f),
INPUBLICFUNCTION([SSTORE(keyVar, sizeVar’)], f).

ARRAYITERATOR(loop, arrayId) ←
LOOPBOUNDBY(loop, sizeVar),
ARRAYSIZEVARIABLE(sizeVar, arrayId, *).

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 95

 5. Flanagan, C., Leino, K.R.M., Lillibridge, M.,
Nelson, G., Saxe, J.B., Stata, R. Extended
static checking for Java. In Proceedings
of Programming Language Design and
Implementation. (2002).

 6. Grech, N., Brent, L., Scholz, B.,
Smaragdakis, Y. Gigahorse: Thorough,
declarative decompilation of smart
contracts. In Proceedings of
International Conference on Software
Engineering (ICSE), 2019.

 7. Grech, N., Kong, M., Jurisevic, A., Brent, L.,
Scholz, B., Smaragdakis, Y. Madmax:
Surviving out-of-gas conditions in
ethereum smart contracts. In
Proceedings of the ACM Programming
Languages, 2 (OOPSLA) (Nov. 2018).

 8. Immerman, N. Graduate texts in
computer science. Descriptive
Complexity. Springer, 1999.

 9. Naik, M. Chord: A versatile platform
for program analysis. In
Programming Language Design and
Implementation, 2011. Tutorial.

 10. Naik, M., Park, C., Sen, K., Gay, D.
Effective static deadlock detection. In
Proceedings of International
Conference on Software
Engineering, 2009.

 11. Nakamoto, S. Bitcoin: A peer-to-peer
electronic cash system, 2009. https://
www.bitcoin.org/bitcoin.pdf

 12. Shivers, O. Control-flow analysis of
higher-order languages. PhD thesis,

Carnegie Mellon University (May 1991).
 13. Shivers, O. Higher-order control-flow

analysis in retrospect: lessons
learned, lessons abandoned. In Best
of PLDI 1988. K.S. McKinley, ed.
Volume 39, 2004, 257–269

 14. Smaragdakis, Y., Balatsouras, G.
Pointer analysis. Found. Trends
Program. Lang. 1, 2 (2015), 1–69.

 15. Thielecke, H. Continuations, functions
and jumps. ACM SIGACT News, 30
(Jan. 1999), 33–42.

 16. Various. GovernMental page. http://
governmental.github.io/GovernMental/.

 17. Various. Safety-ethereum wiki. https://
github.com/ethereum/wiki/wiki/Safety.
Accessed: 2018–04–15.

 18. Various. GitHub-ethereum/solidity:
The solidity contract-oriented
programming language, 2018. https://
github.com/ethereum/solidity

 19. Various. Vandal–A static analysis
framework for ethereum bytecode,
2018. https://github.com/
usyd-blockchain/vandal/.

 20. Vessenes, P. Ethereum griefing
wallets: Send w/throw is dangerous,
2016. http://vessenes.com/
ethereum-griefing-wallets-send-w-
throw-considered-harmful

 21. Wood, G. Ethereum: A secure decentralised
generalised transaction ledger, 2014.
http://gavwood.com/Paper.pdf

References
 1. Atzei, N., Bartoletti, M., Cimoli, T. A

Survey of Attacks on Ethereum Smart
Contracts. Technical Report.
Cryptology ePrint Archive: Report
2016/1007, https://eprint.iacr.
org/2016/1007, 2016.

 2. Bravenboer, M., Smaragdakis, Y.
Strictly declarative specification
of sophisticated points-to analyses.
In Proceedings of Object Oriented

Programming, Systems, Languages,
and Applications, 2009.

 3. Brent, L., Jurisevic, A., Kong, M.,
Liu, E., Gauthier, F., Gramoli, V., Holz, R.,
Scholz, B. Vandal: A scalable security
analysis framework for smart
contracts. CoRR, 2018. abs/1802.08660

 4. Buterin, V. A next-generation smart
contract and decentralized application
platform, 2013. https://github.com/
ethereum/wiki/wiki/White-Paper Copyright held by authors/owners. Publication rights licensed to ACM.

Neville Grech (me@nevillegrech.com),
University of Athens, Greece.

Michael Kong and Anton Jurisevic
({mkon1090, ajur4521}@uni.sydney.edu.
au), The University of Sydney, Australia.

Lexi Brent and Bernhard Scholz ({lexi.
brent, bernhard.scholz@sydney.edu.au}),
The University of Sydney, Australia.

Yannis Smaragdakis (smaragd@di.uoa.gr),
University of Athens, Greece.

is a challenging next frontier for security analysis tools. In
the case of MadMax, multitransaction reasoning is enabled
by positing high-level properties, such as “safely resumable
loop.” In turn, this is made possible by the declarative nature
of the analysis, which allows a concise, logical specification of
complex properties. The same declarative approach may well
play an important role in future scaling of analyses to multi-
contract, whole-application reasoning.

Acknowledgments
This research was supported partially by the Australian Government
through the Australian Research Council’s Discovery Projects fund-
ing scheme (project ARC DP180104030). We gratefully acknowl-
edge funding by the European Research Council, grants
307334 and 790340. In addition, the research work disclosed
is partially funded by the REACH HIGH Scholars Programme
– Post-Doctoral Grants. The grant is part-financed by the European
Union, Operational Program II, Cohesion Policy 2014–2020
(Investing in human capital to create more opportunities and
promote the well-being of society – European Social Fund).

https://www.bitcoin.org/bitcoin.pdf
http://governmental.github.io/GovernMental/
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/solidity
https://github.com/usyd-blockchain/vandal/
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful
http://gavwood.com/Paper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
mailto:me@nevillegrech.com
mailto:bernhard.scholz@sydney.edu.au
mailto:smaragd@di.uoa.gr
https://github.com/ethereum/wiki/wiki/White-Paper
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://www.bitcoin.org/bitcoin.pdf
http://governmental.github.io/GovernMental/
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/solidity
https://github.com/usyd-blockchain/vandal/
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful
http://books.acm.org
http://store.morganclaypool.com/acm
mailto:ajur4521@uni.sydney.edu.au
mailto:mkon1090@uni.sydney.edu.au

96 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

To view the accompanying paper,
visit doi.acm.org/10.1145/3416268 rh

the network on the left below: s1 and
s2 can simultaneously send streams of
messages to t1 and t2 respectively if each
in-degree 1 node sends its input along
both output edges, node u passes on
the XOR of its input messages to v, and
nodes t1 and t2, in turn, compute the
XOR of their input streams.

s1 t2

u v

s2 t1

s1 t2

u v

s2 t1

On the other hand, if the links are
undirected, as in the network on the
right, one can achieve the same rate
without coding (or even using the (u,v)
link): each si simply uses half the band-
width of each of the other links to send
xi to ti. (In this example, the links could
be used by alternate message streams in
consecutive time steps.) This solution is
an example of a (fractional) multi-com-
modity flow on the network with send-
er-receiver pairs (s1, t1), (s2, t2), unit de-
mands, and unit capacities. Such a flow
reserves a fraction of the capacities on
each edge for each sender-receiver pair.
The undirected k-pairs conjecture, which
originated in a 2004 paper of Li and Li,
is that such a multi-commodity flow so-
lution is always optimal, so there would
never be an advantage to network cod-
ing in undirected networks. The surpris-
ing result is that if (a weak form of) this
network coding conjecture is true, then
multiway Merge Sort is asymptotically
optimal for external-memory sorting!

Alternatively, it follows from the
paper that a better algorithm than
Merge Sort would have a second ben-
efit: It could be used to design di-
rected networks for which the rates
achievable using network coding are
arbitrarily higher than the rates pos-
sible without network coding, even
with the direction restrictions on the
network removed.

Paul Beame is a professor in the Paul G. Allen School
for Computer Science & Engineering at the University of
Washington, Seattle, WA, USA.

Copyright held by author.

S O R T I N G A N D T R A N S M I T T I N G data are
two of the most fundamental tasks for
which we have employed digital com-
puters. The following paper proves a
remarkable connection between how
efficiently computers can perform
these two tasks, connecting a long-
standing question about the optimal-
ity of Merge Sort and another, very dif-
ferent, open problem in the study of
network coding for data transmission.

Merge Sort was one of the first pro-
grams written for digital computers.
Though, as a comparison-based in-
memory algorithm, it has since been
superseded by other sorting algorithms
with better memory usage and by algo-
rithms, such as radix sort, that are faster
than any comparison-based algorithm,
Merge Sort has remained important
for sorting large amounts of data that
require external storage. It can be modi-
fied to merge multiple streams at once
and only requires the sequential access
common for many storage media. A
natural question to ask is: Is (multiway)
Merge Sort an optimal choice for an
external-memory sorting algorithm, or
can we do much better? With the ubiq-
uity of large datasets, this could have
many practical applications.

To answer this question, one needs
a suitable cost measure. Computers
now have many levels of storage hier-
archy and hence many levels of “ex-
ternal” memory; data is transfered
between levels in blocks rather than in-
dividual data items. The cost of those
transfers often dominates the cost of
operations in “internal” memory. So,
a suitable cost measure for external-
memory algorithms is the number of
transfers of blocks of size B into an in-
ternal memory of size M. In 1988, Ag-
garwal and Vitter, who developed the
cost measure, showed that M/2B-way
Merge Sort, which has transfers that
mimic comparisons of an in-memory
algorithm for input size n/B, is asymp-
totically optimal for comparison-based
sorting algorithms, even for sorting
instances that merely convert a matrix
from row-major order to column-ma-

jor order. The challenge they left is to
determine whether this also holds for
general external-memory sorting algo-
rithms.

For in-memory algorithms, the gulf
between the O(n log n) time for com-
parison-based algorithms and that for
general algorithms is quite large: Radix
sort, which uses indirect addressing,
runs in O(n) time when the bit-length
w of keys is O(log n). Also, as the paper
notes, other in-memory algorithm that
make of use of hashing operations on
w-bit words can achieve nearly this
level of performance for all values of w.
It is plausible that a general O(n) time
sorting algorithm is achievable for all
w (an open question not considered
here). However, the operations of in-
direct addressing and hashing seem to
have no analogue for external-memory
algorithms, which makes the optimal-
ity of Merge Sort plausible.

Though the theory of coding for a
single sender and receiver dates back to
the earliest days of computing, network
coding is a more recent invention that
arises in the context of many sender-re-
ceiver pairs in a shared communication
network. Ahlswede et al. showed that,
in a directed network, it is possible to
send data at a higher rate if nodes in
the network actively combine the con-
tents of the data they receive, rather
than simply forwarding it as indivisible
units. Their classic example is given in

Technical Perspective
Two for the Price of One
By Paul Beame

research highlights

DOI:10.1145/3416264

The following paper
proves a remarkable
connection between
how efficiently
computers can
sort data and how
efficiently they can
transmit it.

http://doi.acm.org/10.1145/3416268
http://dx.doi.org/10.1145/3416264
http://doi.acm.org/10.1145/3416268

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 97

Lower Bounds for External
Memory Integer Sorting via
Network Coding
By Alireza Farhadi, Mohammad Taghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi

DOI:10.1145/3416268

Abstract
Sorting extremely large datasets is a frequently occurring
task in practice. These datasets are usually much larger than
the computer’s main memory; thus, external memory sort-
ing algorithms, first introduced by Aggarwal and Vitter, are
often used. The complexity of comparison-based external
memory sorting has been understood for decades by now;
however, the situation remains elusive if we assume the
keys to be sorted are integers. In internal memory, one can
sort a set of n integer keys of Θ(lg n) bits each in O(n) time
using the classic Radix Sort algorithm; however, in exter-
nal memory, there are no faster integer sorting algorithms
known than the simple comparison-based ones. Whether
such algorithms exist has remained a central open problem
in external memory algorithms for more than three decades.

In this paper, we present a tight conditional lower bound
on the complexity of external memory sorting of integers.
Our lower bound is based on a famous conjecture in network
coding by Li and Li, who conjectured that network coding
cannot help anything beyond the standard multicommodity
flow rate in undirected graphs.

The only previous work connecting the Li and Li con-
jecture to lower bounds for algorithms is due to Adler et al.
Adler et al. indeed obtain relatively simple lower bounds for
oblivious algorithms (the memory access pattern is fixed
and independent of the input data). Unfortunately, oblivi-
ousness is a strong limitation, especially for integer sorting:
we show that the Li and Li conjecture implies an Ω(n lg n)
lower bound for internal memory oblivious sorting when
the keys are Θ(lg n) bits. This is in sharp contrast to the
classic (nonoblivious) Radix Sort algorithm. Indeed, going
beyond obliviousness is highly nontrivial; we need to intro-
duce several new methods and involved techniques, which
are of their own interest, to obtain our tight lower bound for
external memory integer sorting.

1. INTRODUCTION
Sorting is one of the most basic algorithmic primitives
and has attracted lots of attention from the beginning of
the computing era. Many classical algorithms have been
designed for this problem such as Merge Sort, Bubble Sort,
Insertion Sort, etc. As sorting extremely large data has
become essential for many applications, there has been
a strong focus on designing more efficient algorithms
for sorting big datasets2 These datasets are often much
larger than the computer’s main memory and the per-
formance bottleneck changes from being the number of

The original version of this paper is entitled “Lower Bounds for Exter-
nal Memory Integer Sorting via Network Coding” and was published in
STOC 2019.

CPU instructions executed to being the number of accesses
to slow secondary storage. In this external memory setting,
one usually uses the external memory model to analyze the
performance of algorithms. External memory algorithms
are designed to minimize the number of input/output (I/O)s
between the internal memory and external memory (e.g., hard
drives and cloud storage), and we measure the complexity of
an algorithm in terms of the number of I/Os it performs.

Formally, the external memory model consists of a main
memory that can hold M words of w bits each (the memory
has a total of m = Mw bits), and an infinite (random access) disk
partitioned into blocks of B consecutive words of w bits each
(a block has a total of b = Bw bits). The input to an external
memory algorithm is initially stored on disk and is assumed
to be much larger than M. An algorithm can then read blocks
into memory or write blocks to disk. We refer jointly to these
two operations as an I/O. The complexity of an algorithm is
measured solely in terms of the number of I/Os it makes.

Aggarwal and Vitter2 considered the sorting problem in
the external memory model. A simple modification to the
classic Merge Sort algorithm yields a comparison based sort-
ing algorithm that makes O((n/B) lgM/B(n/B)) I/Os for sorting
an array of n comparable records (each storable in a word
of w bits). Notice that O(n/B) would correspond to linear I/Os,
as this is the amount of I/Os needed to read/write the input/
output. Aggarwal and Vitter2 complemented their upper bound
with a matching lower bound, showing that comparison-
based external memory sorting algorithms must make
Ω((n/B) lgM/B(n/B)) I/Os. In the same paper, Aggarwal and
Vitter also showed that any algorithm treating the keys as
indivisible atoms, meaning that keys are copied to and from
disk blocks, but never reconstructed via bit tricks and the
like, must make Ω(min{n, (n/B) lgM/B(n/B)}) I/Os. This lower
bound does not assume a comparison-based algorithm, but
instead makes an indivisibility assumption. Notice that the
lower bound matches the comparison-based lower bound
for large enough B (B > lg n suffices). The comparison and
indivisibility settings have thus been (almost) fully under-
stood for more than three decades.

However, if the input to the sorting problem is assumed
to be w bit integers and we allow arbitrary manipulations of
the integers (hashing, XOR tricks, etc.), then the situation is
completely different. In the standard internal memory com-
putational model, known as the word-RAM, one can design

http://dx.doi.org/10.1145/3416268

research highlights

98 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

integer sorting algorithms that far outperform comparison-
based algorithms regardless of w. More concretely, if the
word and key size is w = Θ(lg n), then Radix Sort solves the
problem in O(n) time, and for arbitrary w, one can design sort-
ing algorithms with a running time of in the
randomized case6 and O(n lg lg n) in the deterministic case5
(both bounds assume that the word size and key size are
within constant factors of each other). In external memory,
no integer sorting algorithms faster than the comparison-
based O((n/B) lgM/B(n/B)) bound are known! Whether faster
integer sorting algorithms exist was posed as an important
open problem in the original paper by Aggarwal and Vitter2
that introduced the external memory model. Three decades
later, we still do not know the answer to this question.

In this paper, we present tight conditional lower bounds
for external memory integer sorting via a central conjecture
by Li and Li7 in the area of network coding. Our conditional
lower bounds show that it is impossible to design integer
sorting algorithms that outperform the optimal comparison-
based algorithms, thus settling the complexity of integer
sorting under the conjecture by Li and Li.

1.1. Network coding
The field of network coding studies the following com-
munication problem over a network: Given a graph G with
capacity constraints on the edges and k data streams, each
with a designated source-sink pair of nodes (si, ti) in G, what
is the maximum rate at which data can be transmitted con-
currently between the source-sink pairs? A simple solution
is to forward the data as indivisible packages, effectively
reducing the problem to multicommodity flow (MCF). The
key question in network coding is whether one can achieve
a higher rate by using coding/bit-tricks. This question is
known to have a positive answer in directed graphs, where
the rate increase may be as high as a factor Ω(|G|) (by send-
ing XOR’s of carefully chosen input bits); see for example,
Adler et al.1 However, the question remains wide open for
undirected graphs where there are no known examples for
which network coding can do anything better than the mul-
ticommodity flow rate. The lack of such examples resulted
in the following central conjecture in network coding.7

Conjecture 1 (Undirected k-pairs Conjecture). The coding
rate is equal to the multicommodity flow rate in undirected graphs.

Despite the centrality of this conjecture, it has so forth
resisted all attempts at either proving or refuting it. Adler
et al.1 made an exciting connection between the conjecture
and lower bounds for algorithms. More concretely, they
proved that if Conjecture 1 is true, then one immediately
obtains nontrivial lower bounds for all of the following:

• Oblivious external memory algorithms
• Oblivious word-RAM algorithms
• Oblivious two-tape Turing machines

In the above, oblivious means that the memory access pat-
tern of the algorithm (or tape moves of the Turing machine)
is fixed and independent of the input data. Thus proving

Conjecture 1 would also give the first nontrivial lower bounds
for all these classes of algorithms. One can view this connec-
tion in two ways: Either as exciting conditional lower bounds
for (restricted) algorithms, or as a strong signal that proving
Conjecture 1 will be very difficult.

In this paper, we revisit these complexity theoretic impli-
cations of Conjecture 1. Our results show that the restriction
to oblivious algorithms is unnecessary. In more detail, we
show that Conjecture 1 implies nontrivial (and in fact tight)
lower bounds for external memory sorting of integers and
for external memory matrix transpose algorithms. We also
obtain tight lower bounds for word-RAM sorting algorithms
when the word size is much larger than the key size, as well as
tight lower bounds for transposing a b × b matrix on a word-
RAM with word size b bits. The striking thing is that our lower
bounds hold without any extra assumptions such as oblivious-
ness, indivisibility, comparison-based, or the like. Thus prov-
ing Conjecture 1 is as hard as proving super-linear algorithm
lower bounds in the full generality word-RAM model, a bar-
rier far beyond current lower bound techniques! Moreover,
we show that the assumption from previous papers about
algorithms being oblivious makes a huge difference for inte-
ger sorting: We prove an Ω(n lg n) lower bound for sorting
Θ(lg n) bit integers using an oblivious word-RAM algorithm
with word size Θ(lg n) bits. This is in sharp contrast to the
classic (nonoblivious) Radix Sort algorithm, which solves the
problem in O(n) time. Thus, the previous restriction to oblivi-
ous algorithms may be very severe for some problems.

1.2. Lower bounds for sorting
Our main result for external memory integer sorting is the
following connection to Conjecture 1:

Theorem 2. Assuming Conjecture 1, any randomized algorithm
for the external memory sorting problem with w = Ω(lg n) bit inte-
gers, having error probability at most 1/3, must make an expected

I/Os.

Thus if we believe Conjecture 1, then even for random-
ized algorithms, there is no hope of exploiting integer input
to improve over the simple external memory comparison-
based algorithms (when B ≥ lg n such that the latter term in
the lower bound is the min).

Now observe that because our lower bound only counts
I/Os, the lower bound immediately holds for word-RAM
algorithms when the word size is some b = Ω(lg n) by setting
m = O(b) and B = b/w in the above lower bound (the CPU’s
internal state, i.e., registers, can hold only a constant num-
ber of words). Thus, we get the following lower bound:

Corollary 3. Assuming Conjecture 1, any randomized word-
RAM algorithm for sorting w = Ω(lg n) bit integers, having error
probability at most 1/3 and word size b ≥ w bits, must spend

time.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 99

2. PRELIMINARIES
We now give a formal definition of the k-pairs communica-
tion problem and the multicommodity flow problem.

k-pairs communication problem. To keep the definition
as simple as possible, we restrict ourselves to directed acy-
clic communication networks/graphs and we assume that
the demand between every source-sink pair is the same. This
will be sufficient for our proofs. For a more general defini-
tion, we refer the reader to Adler et al.1

The input to the k-pairs communication problem is a
directed acyclic graph G = (V, E) where each edge e ∈ E has a
capacity c(e) ∈ R+. There are k sources s1, …, sk ∈ V and k sinks
t1, …, tk ∈ V. Typically, there is also a demand di between each
source-sink pair, but for simplicity, we assume di = 1 for all
pairs. This is again sufficient for our purposes.

Each source si receives a message Ai from a predefined set
of messages A(i). It will be convenient to think of this mes-
sage as arriving on an in-edge. Hence, we add an extra node
Si for each source, which has a single out-edge to si. The edge
has infinite capacity.

A network coding solution specifies for each edge e ∈ E an
alphabet Γ(e) representing the set of possible messages that
can be sent along the edge. For a node v ∈ V, define In(u) as the
set of in-edges at u. A network coding solution also specifies,
for each edge e = (u, v) ∈ E, a function
that determines the message to be sent along the edge e as a
function of all incoming messages at node u. Finally, a net-
work coding solution specifies for each sink ti a decoding
function . The network coding solu-
tion is correct if, for all inputs , it holds that
σi applied to the incoming messages at ti equals Ai, that is,
each source must receive the intended message.

In an execution of a network coding solution, each of
the extra nodes Si starts by transmitting the message Ai
to si along the edge (Si, si). Then, whenever a node u has
received a message ae along all incoming edges e = (v, u), it
evaluates on all out-edges and forwards the
message along the edge e′.

Following Adler et al.1 (and simplified a bit), we define the
rate of a network coding solution as follows: Let each source
receive a uniform random and independently chosen mes-
sage Ai from A(i). For each edge e, let Ae denote the random
variable giving the message sent on the edge e when execut-
ing the network coding solution with the given inputs. The
network coding solution achieves rate r if:

• H(Ai) ≥ rdi = r for all i.
• For each edge e ∈ E, we have H(Ae) ≤ c(e).

Here H(×) denotes binary Shannon entropy. The intuition is
that the rate is r, if the solution can handle upscaling the
entropy of all messages by a factor r compared to the demands.

Multicommodity flow. A multicommodity flow problem in
an undirected graph G = (V, E) is specified by a set of k source-
sink pairs (si, ti) of nodes in G. We say that si is the source of
commodity i and ti is the sink of commodity i. Each edge e ∈ E
has an associated capacity c(e) ∈ R+. In addition, there is a
demand di between every source-sink pair. For simplicity, we
assume di = 1 for all i as this is sufficient for our needs.

We note that a standard assumption in the word-RAM is a
word size and key size of b, w = Θ(lg n) bits. For that choice
of parameters, our lower bound degenerates to the trivial
t = Ω(n). This has to be the case, as Radix Sort gives a match-
ing upper bound. Nonetheless, our lower bound shows that
when the key size is much smaller than the word size, one
cannot sort integers in linear time (recall linear is O(nw/b) as
this is the time to read/write the input/output).

Finally, we show that the obliviousness assumption made
in the previous paper by Adler et al.1 allows one to prove very
strong sorting lower bounds that even surpass the known
(nonoblivious) Radix Sort upper bound:

Theorem 4. Assuming Conjecture 1, any oblivious random-
ized word-RAM algorithm for sorting Θ(lg n) bit integers, hav-
ing error probability at most 1/3 and word size Θ(lg n), must
spend Ω(n lg n) time.

Thus, at least for the natural problem of integer sorting, being
oblivious has a huge impact on the possible performance of
algorithms. Our results are therefore not just an application of
the previous technique to a new problem, but a great strength-
ening. Moreover, as we discuss in Section 3, removing the
obliviousness assumption requires new and deep ideas that
result in significantly more challenging lower bound proofs.

1.3. Lower bounds for matrix transpose
We also reprove an analog of the lower bounds by Adler et al.1
for the matrix transpose problem, this time without any
assumptions of obliviousness. In the matrix transpose prob-
lem, the input is an n × n matrix A with w-bit integer entries. The
matrix is given in row-major order, meaning that each row of
A is stored in n/B blocks of B consecutive entries each. The goal
is to compute AT, that is, output the column-major representa-
tion of A that stores n/B disk blocks for each column of A, each
containing a consecutive range of B entries from the column.

Theorem 5. Assuming Conjecture 1, any randomized algo-
rithm for the external memory matrix transpose problem with
w bit integer entries, having error probability at most 1/3, must
make an expected

I/Os.

Consider now the matrix transpose problem on the word-
RAM with word size b bits (and thus memory size m = O(b)).
Given an n × n matrix A with w-bit integer entries, the lower
bound in Theorem 5 implies (by setting B = b/w):

Corollary 6. Assuming Conjecture 1, any randomized word-
RAM algorithm for computing the transpose of an n × n matrices
with w-bit integer entries, having error probability at most 1/3
and word size b bits, must spend

time.

research highlights

100 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

Consider now an algorithm A for permuting, and assume
for simplicity that it is deterministic and always correct. As
in the previous work by Adler et al.1, we define a graph G(A)
that captures the memory accesses of A on an input array A.
The graph G has a node for every block in the input array, a
node for every block in the output, and a node for every inter-
mediate block written/read by A. We call these block nodes.
Moreover, the graph has a memory node that represents
the memory state of A. The idea is that whenever A reads
a block into memory, then we add a directed edge from the
corresponding block node to the memory node. When A
writes to a block, we create a new node (that replaces the
previous version of the block) and add a directed edge from
the memory node to the new node. The algorithm A can now
be used to send messages between input and output block
nodes as follows: Given messages X1, …, Xn of w bits each
and an intended output block node (storing C[π(i)]) for each
message i, we can transmit the message Xi from the input
block node representing the array entry A[i] to the output
block node representing the array entry C[π(i)] simply by
simulating the algorithm A: Each block node of the network
always forwards any incoming message to the memory node
along its outgoing edge. The memory node thus receives
the contents of all blocks that it ever reads. It can therefore
simulate A. Whenever it performs a write operation, it sends
the contents along the edge to the designated block node. By
the correctness of A, this results in every output block node
knowing the contents of all array entries C[π(i)] that should
be stored in that output block. Examining this simulation,
we see that we need a capacity of b bits on all edges for the
simulation to satisfy capacity constraints. Moreover, by the
definition of network coding rate (Section 2), we see that the
coding rate is w bits.

The idea is that we want to use Conjecture 1 to argue that
the graph G must be large (i.e., there must be many I/Os).
To do so, we would like to argue that if we undirect G, then
there is a permutation π such that for many pairs A[i] and
C[π(i)], there are no short paths between the block nodes
storing A[i] and C[π(i)]. If we could argue that for n/2 pairs
(A[i], C[π(i)]), there must be a distance of at least steps in
the undirected version of G, then to achieve a flow rate of w,
it must be the case that the sum of capacities in G is at least
wn/2. But each I/O adds only 2b bits of capacity to G. Thus,
if A makes t I/Os, then it must be the case that tb = Ω(wn) ⇒
t = Ω((nw/b) × ) = Ω((n/B) × ).

Unfortunately, we cannot argue that there must be a
long path between many pairs in the graph G we defined
above. The problem is that the memory node is connected
to all block nodes and thus the distance is never more than
2. To fix this, we change the definition of G slightly: After
every m/b I/Os, we deactivate the memory node and cre-
ate a new memory node to replace it. Further I/Os insert
edges to and from this new memory node. In order for
the new memory node to continue the simulation of A,
the new memory node needs to know the memory state
of A. Hence, we insert a directed edge from the old deac-
tivated memory node to the new memory node. The edge
has capacity m bits. Thus, in the simulation, when the cur-
rent memory node has performed m/b I/Os, it forwards the

A (fractional) solution to the multicommodity flow prob-
lem specifies for each pair of nodes (u, v) and commodity i, a
flow fi(u, v) ∈ [0, 1]. Intuitively, fi(u, v) specifies how much of
commodity i is to be sent from u to v. The flow satisfies flow
conservation, meaning that:

• For all nodes u that is not a source or sink, we have

• For all sources si, we have
• For all sinks, we have

The flow also satisfies that for any pair of nodes (u, v) and
commodity i, there is only flow in one direction, that is,
either fi(u, v) = 0 or fi(v, u) = 0. Furthermore, if (u, v) is not an
edge in E, then fi(u, v) = fi(v, u) = 0. A solution to the multi-
commodity flow problem achieves a rate of r if:

• For all edges e = (u, v) ∈ E, we have

Intuitively, the rate is r if we can upscale the demands by a
factor r without violating the capacity constraints.

The undirected k-pairs conjecture. Conjecture 1 implies
the following for our setting: Given an input to the k-pairs
communication problem, specified by a directed acyclic
graph G with edge capacities and a set of k source-sink pairs
with a demand of 1 for every pair, let r be the best achievable
network coding rate for G. Similarly, let G′ denote the undi-
rected graph resulting from making each directed edge in
G undirected (and keeping the capacities, source-sink pairs
and a demand of 1 between every pair). Let r′ be the best
achievable flow rate in G′. Conjecture 1 implies that r ≤ r′.

Having defined coding rate and flow rate formally, we
also mention that the result of Braverman et al.4 implies that
if there exists a graph G where the network coding rate r and
the flow rate r′ in the corresponding undirected graph G′ sat-
isfy r ≥ (1 + e)r′ for a constant ε > 0, then there exists an
infinite family of graphs {G*} for which the corresponding
gap is at least (lg|G*|)c for a constant c > 0. So far, all evidence
suggests that no such gap exists, as formalized in Conjecture 1.

3. PROOF OVERVIEW
In this section, we give an overview of the main ideas in
our proof and explain the barriers we overcome in order to
remove the assumption of obliviousness. To prove our lower
bound for external memory sorting, we focus on the easier
problem of permuting. In the permutation problem, we are
given an array A of n entries. The i’th entry of A stores a w-bit
data item di and a destination π(i). The destinations π(i)
form a permutation π of {1, …, n}. The goal is to produce the
output array C where di is stored in entry C[π(i)]. The arrays
A and C are both stored in disk blocks, such that each disk
block of A stores b/(lg n + w) entries, and each disk block of
C stores b/w entries (the maximum number of entries that
can be packed in a block). A sorting algorithm that can sort
(lg n + w) bit integer keys can be used to solve the permuta-
tion problem by replacing each entry (π(i), di) with the inte-
ger π(i) × 2w + di (in the addition, we think of di as an integer in
[2w]). Thus, it suffices to prove lower bounds for permuting.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 101

di. To achieve this, we need to modify G a bit. Our idea is to
introduce a coordinator node that can send short descrip-
tions of the mappings between the dis and . We accom-
plish this via the following lemma:

Lemma 7. Consider a communication game with a coordina-
tor u, a set F ⊆ {0, 1}nw and n players. Assume |F| ≥ 2nw−r for
some r. The coordinator receives as input n uniform random bit
strings Xi of w bits each, chosen independently of the other Xj.
The coordinator then sends a prefix-free message Ri to the i’th
player for each i. From the message Ri alone (i.e., without know-
ing Xi), the i’th player can then compute a vector τi ∈ {0, 1}w
with the property that the concatenation q := (τ1 ⊕ X1)

 (τ2 ⊕
X2) ... (τn ⊕ Xn) satisfies q ∈ F, where ⊕ denotes bit wise XOR.
There exists such a protocol where

In particular, if r = o(nw) and w = ω(1), then the communication
satisfies .

We use the lemma as follows: We create a coordinator node u
that is connected to all input block nodes and all output
block nodes. In a simulation of A, the input block nodes
start by transmitting their inputs to the coordinator node u.
The coordinator then computes the messages in the lemma
and sends Ri back to the input block node storing A[i] as well
as to the output block node storing the array entry C[π(i)].
The input block nodes can now compute to
obtain an input . We can then run algorithm A
because this is an input that actually results in the graph G.
Finally, the output block nodes can revert the mapping by
computing . Thus, what the lemma achieves is an
efficient way of locally modifying the inputs of the nodes, so
as to obtain an input for which the algorithm A works. We
find this contribution very novel and suspect it might have
applications in other lower bound proofs.

The introduction of the node u of course allows some
flow to traverse paths not in the original graph G. Thus, we
have to be careful with how we set the capacities on the
edges to and from u. We notice that edges from the input
nodes to u need only a capacity of w bits per array entry
(they send the inputs), and edges out of u need E [|Ri|]
capacity for an input di (one such edge to the input block
node for array entry A[i] and one such edge to the output
block node for array entry C[π(i)]). The crucial observation
is that any flow using the node u as an intermediate node
must traverse at least two edges incident to u. Hence, only

 flow can traverse such paths. If |F| ≥
2nw−o(nw), then Lemma 7 says that this is no more than nw/2 +
o(nw) flow. There therefore remains nw/2 − o(nw) flow that
has to traverse the original length = Ω(lg2m/b n/B) paths
and the lower bound follows.

One may observe that our proof uses the fact that the net-
work coding rate is at most the flow rate in a strong sense.
Indeed, the introduction of the node u allows a constant
fraction of the flow to potentially use a constant length path.
Thus, it is crucial that the network coding rate r and flow rate r′
is conjectured to satisfy r ≤ r′ and not, for example, r ≤ 3r′.

memory state of A to the next memory node who continues
the simulation. The m/b I/Os between the creation of new
memory nodes has been chosen such that the amortized
increase in capacity due to an I/O remains O(b).

We have now obtained a graph G where the degrees
of all nodes are bounded by 2m/b. Thus, for every node
G, there are at most (2m/b) nodes within a distance of .
Thus, intuitively, a random permutation π should have
the property that for most pairs (A[i], C[π(i)]), there will
be a distance of = Ω(lg2m/b n/B) between the correspond-
ing block nodes. This gives the desired lower bound of t =
Ω((n/B) × ) = Ω((n/B) × lg2m/b n/B).

If we had assumed that the algorithm A was oblivious as
in previous work, we would actually be done by now. This is
because, under the obliviousness assumption, the graph G
will be the same for all input arrays. Thus, one can indeed
find the desired permutation π where there is a large dis-
tance between most pairs (A[i], C[π(i)]). Moreover, all inputs
corresponding to that permutation π and data bit strings
d1, …, dn can be simulated correctly using A and the graph
G. Hence, one immediately obtains a network coding solu-
tion. However, when A is not constrained to be oblivious,
there can be a large number of distinct graphs G resulting
from the execution of A.

To overcome this barrier, we first argue that even
though there can be many distinct graphs, the number of
such graphs is still bounded by roughly (nw/b + t)t (each I/O
chooses a block to either read or write and there are t I/Os).
This means that for t = o(n), one can still find a graph G that is
the result of running A on many different input arrays A.
We can then argue that among all those inputs A, there
are many that all correspond to the same permutation π
and that permutation π has the property from before that,
and for most pairs (A[i], C[π(i)]), there will be a distance of
 = Ω(lg2m/b n/B) between the corresponding block nodes.
Thus, we would like to fix such a permutation and use A
to obtain a network coding solution. The problem is that
we can only argue that there are many data bit strings d1,
…, dn that together with π result in an array A for which
A uses the graph G. Thus, we can only correctly transmit
a large collection of messages, not all messages. Let us
call this collection F ⊆ {{0, 1}w}n and let us assume |F|
≥ 2nw−o(nw). Intuitively, if we draw a uniform random input
from F, then we should have a network coding solution
with a rate of w − o(w). The problem is that the definition
of network coding requires the inputs to the nodes to be
independent. Thus, we cannot immediately say that we
have a network coding solution with rate w − o(w) by solv-
ing a uniform random input from F. To remedy this, we
instead take the following approach: We let each data bit
string di be a uniform random and independently cho-
sen w-bit string. Thus, if we can solve the network coding
problem with these inputs, then we indeed have a network
coding solution. We would now like to find an efficient
way of translating the bit strings d1, …, dn to new bit strings

with The translation should be such
that each input block node can locally compute the , and
the output block nodes should be able to revert the trans-
formation, that is, compute from the original bit string

research highlights

102 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

argument.2 The n bound is the bound obtained by running
the naive “internal memory” algorithm that simply puts
each element into its correct position one at a time. The
other term is equivalent to the optimal comparison-based
sorting bound (one thinks of di as an integer in [2w] and
concatenates π(i) di = π(i) ×2w + di and sorts the sequence).
Thus, any sorting algorithm that handles (lg n + w)-bit keys
immediately yields a permutation algorithm with the same
number of I/Os. We thus prove lower bounds for the permu-
tation problem and immediately obtain the sorting lower
bounds as corollaries.

We thus set out to use Conjecture 1 to provide a lower
bound for the permutation problem in the external memory
model. Throughout the proof, we assume that nw/b = n/B is
at least some large constant. This is safe to assume, as other-
wise we only claim a trivial lower bound of Ω(1).

Let A be a randomized external memory algorithm for
the permutation problem on n integers of w bits each.
Assume A has error probability at most 1/3 and let b
denote the disk block size in number of bits. Let m denote
the memory size measured in number of bits. Finally, let
t denote the expected number of I/Os made by A (on the
worst input).

I/O-graphs. For an input array A representing a permuta-
tion π and bit strings d1, …, dn, and an output array C, define
the (random) I/O-graph G of A as follows: Initialize G to have
one node per disk block in A and one node per disk block
in C. Also, add one node to G representing the initial mem-
ory of A. We think of the nodes representing the disk blocks
of A and C as block nodes and the node representing the
memory as a memory node (see Figure 1a). We will add more
nodes and edges to G by observing the execution of A on A.
To simplify the description, we will call nodes of G either
dead or live. We will always have at most one live memory
node. Initially, all nodes are live. We use 0 to label the mem-
ory node. Moreover, we label the block nodes by consecutive
integers starting at 1. Thus, the block nodes in the initial
graph are labeled 1, 2, …, n(w + lg n)/b + nw/b.

Now, run algorithm A on A. Whenever it makes an I/O,
do as follows: If this is the first time, the block is being
accessed and it is not part of the input or output (a write
operation to an untouched block). Then, create a new live
block node in G and add a directed edge from the cur-
rent live memory node to the new block node (see Figure
1e). Label the new node by the next unused integer label.
Otherwise, let v be the live node in G corresponding to the
last time the disk block was accessed. We add a directed
edge from v to the live memory node, mark v as dead, cre-
ate a new live block node v′, and add a directed edge from
the live memory node to v′. We give the new node the same
label as v (Figure 1b and c). Finally, once for every m/b I/
Os, we mark the memory node as dead, create a new live
memory node, and add a directed edge from the old mem-
ory node to the new live memory node (Figure 1d).

To better understand the definition of G, observe that all
the nodes with the same label represent the different ver-
sions of a disk block that existed throughout the execution
of the algorithm. Moreover, there is always exactly one live
node with any fixed label, representing the current version of

Indeed, we can only argue that a too-good-to-be-true per-
mutation algorithm yields a graph in which r ≥ ar′ for some
constant a > 1. However, Braverman et al.4 recently proved
that if there is a graph where r ≥ (1 + ε)r′ for a constant ε > 0,
then there is an infinite family of graphs {G′} where the gap
is Ω((lg |G′|)c) for a constant c > 0. Thus, a too-good-to-be-
true permutation algorithm will indeed give a strong coun-
ter example to Conjecture 1.

Our proof of Lemma 7 is highly nontrivial and is based
on the elegant proof of the bound by Barak et al.3 for
compressing interactive communication under nonprod-
uct distributions. Our main idea is to argue that for a uni-
form random bit string in {0, 1}nw (corresponding to the
concatenation X = X1 ... Xn of the Xi’s in the lemma), it
must be the case that the expected Hamming distance
to the nearest bit string Y in F is . The coordina-
tor thus finds Y and transmits the XOR X ⊕ Y to the play-
ers. The XOR is sparse and thus the message can be made
short by specifying only the nonzero entries. Proving that
the expected distance to the nearest vector is is
the main technical difficulty and is the part that uses ideas
from protocol compression.

4. EXTERNAL MEMORY LOWER BOUNDS
As mentioned in the proof overview in Section 3, we prove
our lower bound for external memory sorting via a lower
bound for the easier problem of permuting: An input to
the permutation problem is specified by a permutation π of
{1, 2, …, n} as well as n bit strings d1, …, dn ∈ {0, 1}w. We
assume w ≥ lg n such that all bit strings may be distinct. The
input is given in the form of an array A where the i’th entry
A[i] stores the tuple (π(i), di). We assume the input is given
in the following natural way: Each π(i) is encoded as a
—bit integer and the di’s are given as they are—using w bits
for each.

The array A is presented to an external memory algo-
rithm as a sequence of blocks, where each block contains

 consecutive entries of A (the blocks have b =
Bw bits). For simplicity, we henceforth assume (w + lg n)
divides b.

The algorithm is also given an initially empty output
array C. The array C is represented as a sequence of n words
of w bits each, and these are packed into blocks containing
b/w words each. The goal is to store in C[i]. That is, the
goal is to copy the bit string di from A[i] to C[π(i)]. We say that
an algorithm A has an error of ε for the permutation prob-
lem, if for every input to the problem, it produces the correct
output with the probability at least 1 − ε.

The best known upper bounds for the permutation prob-
lem work also under the indivisibility assumption. These
algorithms solve the permutation problem in

I/Os.2 Moreover, this can easily be shown to be optimal under
the indivisibility assumption by using a counting

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 103

the disk block. Also, observe that at the end of the execution,
there must be a live disk block node in G representing each
of the output blocks in C, and these have the same labels as
the original nodes representing the empty disk blocks of C
before the execution of A.

Fixing the randomness of A. Consider the execution of A
on an input A representing a uniform random permutation
π as well as independent and uniform random bit strings
d1, …, dn ∈ {0, 1}w. Because A makes an expected t I/Os, it
follows by Markov’s inequality that A makes more than 6t
I/Os with probability less than 1/6. If we simply abort in such
cases, we obtain an algorithm with worst case O(t) I/Os and
error probability at most 1/3 + 1/6 = 1/2. Now fix the random
choices of A to obtain a deterministic algorithm A* with
error probability 1/2 over the random choice of π and d1,
…, dn. A* makes t* = 6t I/Os in the worst case. Observe that
for A*, we get a fixed I/O graph G(A) for every input array A
because A* is deterministic.

Finding a popular I/O-graph. We now find an I/O-graph
G that is the result of running A* on a large number of dif-
ferent inputs. For notational convenience, let t denote the
worst case number of I/Os made by A* (instead of using t*
or 6t). Observe that the total number of different I/O-graphs
one can obtain as the result of running A* is small:

Lemma 8. There are no more than

I/O-graphs that may result from the execution of A*.

This means that we can find an I/O-graph, which corre-
sponds to the execution of A* on many different inputs, and
moreover, we can even assume that A* is correct on many
such inputs:

Lemma 9. There exists a set Γ containing at least (n!2nw)/(2(t +
n(w + lg n)/b + nw/b + 1)t+1) different input arrays A, such that
A* is correct on all inputs A ∈ Γ and the I/O-graph is the same
for all A ∈ Γ.

Data must travel far. The key idea in our lower bound
proof is to argue that there is a permutation for which
most data bit strings di are very far away from output
entry C[π(i)] in the corresponding I/O-graph. This would
require the data to “travel” far. By Conjecture 1, this is
impossible unless the I/O-graph is large. Thus, we start
by arguing that there is a fixed permutation where data
has to travel far on the average, and where it also holds
that there are many different data values that can be
sent using the same I/O-graph. To make this formal, let
dist(π, i, G) denote the distance between the block node
in G representing the input block storing A[i] (the initial
node, before any I/Os were performed) and the node in G
representing the output block storing C[π(i)] in the undi-
rected version of G (undirect all edges).

We prove the following:

Lemma 10. If (t+n(w+lg n)/b+nw/b+1)t+1 ≤ (nw/b)(n/30), then there
exists a permutation π, a collection of values F ⊆ {{0, 1}w}n
and an I/O-graph G such that the following holds:

Figure 1. I/O-graph for an array A consisting of 3-bit strings d1, . . ., d8. In
this example, each disk block contains two words of w = 3 bits, that is,
B = 2 (and b = Bw = 6). Also, the main memory holds M = 6 words
(m = 18). Figure (a) shows the initial I/O-graph. For each disk block, we
have initially one block node that is illustrated underneath them. Black
nodes are dead, and white nodes are live. Figure (b) shows the updated
I/O-graph after making an I/O to access the first disk block. Figure (c)
is the I/O-graph after accessing the block containing C[1] and C[2].
Figure (d) shows the graph after making another I/O on the first disk
block. Also, we create a new memory node after every m/b = M/B = 3 I/Os
and mark the old memory node as dead. Figure (e) shows the updated
graph after accessing some block other than the input or output.

π(1) d1 π(2) d2 · · · π(8) d8

Array A

C[1] C[2] · · · C[7] C[8]

Array C

· · ·

External Memory

1 2 · · · 8 9 · · · 12

Memory Nodes

0

(a)

π(1) d1 π(2) d2 ··· π(8) d8

Array A

C[1] C[2] ··· C[7] C[8]

Array C

···

External Memory

1

1

2 · · · 8 9 · · · 12

Memory Nodes

0

(b)

π(1) d1 π(2) d2 · · · π(8) d8

Array A

C[1] C[2] · · · C[7] C[8]

Array C

· · ·

External Memory

1

1

2 · · · 8 9

9

· · · 12

Memory Nodes

0

(c)

π(1) d1 π(2) d2 · · · π(8) d8

Array A

C[1] C[2] · · · C[7] C[8]

Array C

· · ·

External Memory

1

1

1

2 · · · 8 9

9

· · · 12

Memory Nodes

0 0

(d)

π(1) d1 π(2) d2 · · · π(8) d8

Array A

C[1]C[2] · · · C[7]C[8]

Array C

tmp1 tmp2 · · ·

External Memory

1

1

1

2 · · · 8 9

9

13· · · 12

Memory Nodes

0 0

(e)

research highlights

104 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

4. Add all edges of G to G*. Edges between a block node
and a memory node have capacity b bits. Edges between
two memory nodes have capacity m bits.

5. Remove all block nodes that have an incoming and
outgoing edge to the same memory node (this makes
the graph acyclic).

6. Add a directed edge with capacity w bits from each
source si to pi, and add a directed edge with capacity w
bits from each pi to the input block node containing A[i].

7. Add an edge with capacity w bits from the output block
node containing C[π(i)] to the sink ti.

8. Add a special node u to G*. Add an edge of capacity w
bits from each source si to u. Also, add a directed edge
from u to each pi having capacity ρi for parameters ρi > 0
to be fixed later. Also, add an edge from u to sink ti with
capacity ρi.

We argue that for sufficiently large choices of ρi, one
can use A* to efficiently transmit w bits of information
between every source-sink pair (si, ti). Our protocol for
this problem uses Lemma 7 from Section 3 as a subrou-
tine. We defer the proof of Lemma 7. It can be shown
that there exists a transmitting protocol for transmitting X1,
…, Xn and it satisfies all capacity constraints of network G*. The
exact protocol can be found in the full version of the paper.

Deriving the lower bound. We observe that for all edges,
except those with capacity ρi, our protocol sends a fixed
number of bits. Thus, messages on such edges are prefix-
free. For the edges with capacity ρi, the protocol sends a
prefix-free message with expected length ρi. Because all
messages on all edges are prefix-free, it follows from
Shannon’s Source Coding theorem that the expected
length of each message is an upper bound on its entropy.
Because the expected lengths are at most the capacity of
the corresponding edges, we get by the definition of net-
work coding rate from Section 2, that the above solution
achieves a rate of w bits. Hence, from Conjecture 1, it fol-
lows that if we undirected G*, then the multicommodity
flow rate must be at least w bits. From the definition of
multicommodity flow rate in Section 2, we see that this
implies that there is a (possibly fractional) way of sending
w units of flow between each source-sink pair.

We first examine the amount of flow that can be trans-
ported between pairs (si, ti) along paths that visit u. We
observe that any such flow must use at least two edges inci-
dent to u. But the sum of capacities of edges incident to u
is . Hence, the amount of flow that can be trans-
mitted along paths using u as an intermediate node is no
more than . If |F| ≥ 2nw−o(nw),
then this is no more than nw/2 + o(nw). From Lemma 10,
we know that there are at least (4/5)n indices i for which
dist(π, i, G) ≥ (1/2) lg2m/b(nw/b), provided that (t + n(w + lg
n)/b + nw/b + 1)t+1 ≤ (nw/b)(1/30)n. The total flow that must be
sent between such pairs is (4/5)nw. This means that there
is at least (4/5)nw − nw/2 − o(nw) = Ω(nw) flow that has to tra-
verse (1/2) lg2m/b(nw/b) = Ω(lg2m/b(nw/b)) edges of G* (the flow
must use a path in the undirected version of G as it cannot
shortcut via u). Hence, the sum of capacities correspond-
ing to edges in G must be Ω(nw lg2m/b(nw/b)), assuming that

1. For all (d1, …, dn) ∈ F, it holds that the algorithm A* exe-
cuted on the input array A corresponding to inputs π and
d1, …, dn results in the I/O-graph G and A* is correct on A.

2.

3. There are at least (4/5)n indices i ∈ {1, …, n} for which
dist(π, i, G) ≥ (1/2) lg2m/b(nw/b).

Reduction to network coding. We are now ready to
make our reduction to network coding. The basic idea in
our proof is to use Lemma 10 to obtain an I/O-graph G
and permutation π with large distance between the node
containing A[i] and the node containing C[π(i)] for many i.
We will then create a source si at the node representing
A[i] and a corresponding sink ti at the node correspond-
ing to C[π(i)]. These nodes are far apart, but using the
external memory permutation algorithm A*, there is an
algorithm for transmitting di from si to ti. Because the dis-
tance between si and ti is at least (1/2) lg2m/b(nw/b) for (4/5)
n of the pairs (si, ti), it follows from Conjecture 1 that the sum
of capacities in the network must be at least Ω(nw lg2m/

b(nw/b)) (we can transmit w bits between each of the pairs).
However, running the external memory algorithm results
in a network/graph G with only O(t) edges, each needing
to transmit only b bits (corresponding to the contents of
block on a read or write). Thus, each edge needs only have
capacity b bits for the reduction to go through. Hence, the
sum of capacities in the network is O(tb). This means that
t = Ω((nw/b) lg2m/b(nw/b)) as desired.

However, the reduction is not as straightforward
as that. The problem is that Lemma 10 leaves us
only with a subset F of all the possible values d1, …,
dn that one wants to transmit. For other values of d1,
…, dn, we cannot use the algorithm A* to transmit the
data via the network/graph G. We could of course try
to sample (d1, …, dn) uniformly from F and then have
a network coding solution only for such inputs. The
problem is that for such a uniform (d1, …, dn) ∈ F, it
no longer holds that the inputs to the sources in the
coding network are independent! Network coding rate
only speaks of independent sources; hence, we need a
way to break this dependency. We do this by adding an
extra node u and some edges to the coding network.
This extra node u serves as a coordinator that takes
the independent sources X1, …, Xn and replaces them
with an input (d1, …, dn) ∈ F in such a way that running
A* on (d1, …, dn) and using a little extra communica-
tion from u allow the sinks to recover from .
We proceed to give the formal construction. Let G be
the I/O-graph, π the permutation, and F ⊆ {{0, 1}w}n
the values promised by Lemma 10. From G, construct a
coding network G* as follows:

1. Add source and sink nodes s1, …, sn and t1, …, tn to G*.
2. For each source si, add an additional node pi.
3. Add all nodes of G to G*.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 105

Alireza Farhadi and Mohammad Taghi
Hajiaghayi ({farhadi, hajiagha}@cs.umd.
edu), University of Maryland, College Park,
MD, USA.

Kasper Green Larsen (larsen@cs.au.dk),
Aarhus University, Denmark.

Elaine Shi (runting@gmail.com), Cornell
University, Ithaca, NY, USA.

References
 1. Adler, M., Harvey, N.J.A., Jain, K.,

Kleinberg, R., Lehman, A.R. On the
capacity of information networks.
In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on
Discrete Algorithm, SODA ‘06 (2006),
241–250.

 2. Aggarwal, A., Vitter, J. The input/
output complexity of sorting and
related problems. Commun. ACM 9,
31 (1988), 1116–1127.

 3. Barak, B., Braverman, M., Chen, X.,
Rao, A. How to compress interactive
communication. In Proceedings of
the Forty-Second ACM Symposium
on Theory of Computing, STOC ‘10
(2010), 67–76.

 4. Braverman, M., Garg, S., Schvartzman, A.
Coding in undirected graphs is either
very helpful or not helpful at all.
In 8th Innovations in Theoretical

Computer Science Conference,
ITCS 2017, January 9–11,
2017, Berkeley, CA, USA (2017),
18:1–18:18.

 5. Han, Y. Deterministic sorting in
O(n lg lg n) time and linear space.
In Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory
of Computing (2002), ACM, New York,
602–608.

 6. Han, Y., Thorup, M. Integer sorting
in expected time and
linear space. In Proceedings of the
43rd Annual IEEE Symposium on
Foundations of Computer Science
(2002), IEEE, 135–144.

 7. Li, Z., Li, B. Network coding: the
case of multiple unicast sessions.
In Proceedings of the 42nd
Allerton Annual Conference on
Communication, Control and
Computing, Allerton ‘04 (2004).

|F| ≥ 2nw−o(nw). Every I/O made by A* increases the capacity of
the edges by O(b) bits (two edges of b bit capacity when a new
block node is added to G, and an amortized b bits capacity
to pay for the m bit edge between memory nodes after every
m/b I/Os). Thus, if A* makes at most t I/Os, it must be the
case that tb = Ω(nw lg2m/b(nw/b)) if |F| ≥ 2nw−o(nw). But |F| ≥
2nw/4(t + n(w + lg n)/b + nw/b + 1)t+1. Therefore, we must have
either t = Ω((nw/b) lg2m/b(nw/b)) or t lg(tn(w + lg n)/b) = Ω(nw).
Finally, Lemma 10 is also required (t + n(w + lg n)/b + nw/b
+ 1)t+1 ≤ (nw/b)(1/30)n. Combining all of this means that for
t = Ω((nw/b) lg2m/b(nw/b)), or t = Ω(nw/lg(nw)) or t = Ω(n lg(nw/b)/
lg(n lg(nw/b))) = Ω(n).

Thus, using the reduction to sorting we have proved:

For w = Ω(lg n), we may use the reduction to sorting
and we immediately obtain Theorem 2 as a corollary.

Theorem 2. Assuming Conjecture 1, any randomized algorithm
for the external memory sorting problem with w = Ω(lg n)
bit integers, having error probability at most 1/3, must make
an expected

I/Os. © 2020 ACM 0001-0782/20/10 $15.00

Open for
Submissions

Digital Threats:
Research and Practice (DTRAP)

A peer-reviewed journal that targets the prevention,
identification, mitigation, and elimination of digital threats

Digital Threats: Research and Practice (DTRAP) is a peer-reviewed
journal that targets the prevention, identification, mitigation, and
elimination of digital threats. DTRAP aims to bridge the gap between
academic research and industry practice. Accordingly, the journal
welcomes manuscripts that address extant digital threats, rather than
laboratory models of potential threats, and presents reproducible
results pertaining to real-world threats.

For further information and to submit
your manuscript, visit dtrap.acm.org

mailto:larsen@cs.au.dk
mailto:runting@gmail.com
http://dtrap.acm.org
http://cs.umd.edu
http://cs.umd.edu

106 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

CAREERS

Boston College
Non Tenure-Track Position in Computer Science

The Computer Science Department of Boston
College seeks to fill one or possibly more non-
tenure track teaching positions, as well as
shorter-term visiting teaching positions. One of
these positions has a January, 2021 start date. All
applicants should be committed to excellence in
undergraduate education and be able to teach
a broad variety of undergraduate computer
science courses. We are especially interested
in candidates who are able to teach courses in
systems and networks. Faculty in longer-term
positions will also participate in the development
of new courses that reflect the evolving landscape
of the discipline.

Minimum requirements for the title of
Assistant Professor of the Practice, and for the title
of Visiting Assistant Professor, include a Ph.D. in
Computer Science or closely related discipline.

Candidates without a Ph.D. would be eligible
for the title of Lecturer or Visiting Lecturer.

We will begin reviewing applications as
they are received and will continue considering

applications until the positions are filled.
Applicants should submit a cover letter, CV, and
a separate teaching statement and arrange for
three confidential letters of recommendation
that comment on their teaching performance to
be uploaded directly to Interfolio. To apply go to:
http://apply.interfolio.com/78108

Boston College conducts background checks
as part of the hiring process. Information about
the University and our department is available at
bc.edu and cs.bc.edu.

Boston College is a Jesuit, Catholic university
that strives to integrate research excellence with
a foundational commitment to formative liberal
arts education. We encourage applications from
candidates who are committed to fostering a
diverse and inclusive academic community.
Boston College is an Affirmative Action/Equal
Opportunity Employer and does not discriminate
on the basis of any legally protected category
including disability and protected veteran status.
To learn more about how BC supports diversity
and inclusion throughout the university, please
visit the Office for Institutional Diversity at
http://www.bc.edu/offices/diversity.

California Institute of Technology
Faculty Position in Computing and
Mathematical Sciences

The Computing and Mathematical Sciences
(CMS) Department at the California Institute
of Technology (Caltech) invites applications
for tenure-track faculty positions. The CMS
Department is part of the Division of Engineering
and Applied Science (EAS), comprising researchers
working in and between the fields of aerospace,
civil, electrical, environmental, mechanical, and
medical engineering, as well as materials science
and applied physics. The Institute as a whole
represents the full range of research in biology,
chemistry, engineering, geological and planetary
sciences, physics, and the social sciences.

Fundamental research in computing and
mathematical sciences, and applied research
which links to activities in other parts of Caltech,
are both welcomed. A commitment to world-
class research, as well as high-quality teaching
and mentoring, is expected, and appointment
as an assistant professor is contingent upon the
completion of a Ph.D. degree in applied math-
ematics, computer science or related areas.
The initial appointment at the assistant profes-
sor level is four years. Reappointment beyond
the initial term is contingent upon successful
review conducted prior to the commencement
of the fourth year.

 ˲ Interviews will take place in January and
February 2021.

 ˲ Applications will be reviewed beginning 22
October 2020 and all applications received before
1 December 2020 will receive full consideration.

 ˲ Applications received before 8 November will
be considered for interviews in January.

 ˲ Applications received after 8 November will be
considered for interviews in February.

To fulfill Caltech’s commitment to promot-
ing diversity, inclusiveness, and excellence in
research on our campus, we actively seek can-
didates who can work with, teach, and mentor
students from under-represented communities.
Along with other standard application materi-
als, applicants should submit a diversity and
inclusion statement that discusses past and/or
anticipated contributions to improving diversity,
equity, and inclusion in the areas of research,
teaching, and/or outreach.

For a list of all documents required, and
full instructions on how to apply online, please
visit https://applications.caltech.edu/jobs/cms.
Questions about the application process may be
directed to search@cms.caltech.edu.

Caltech is an equal opportunity employer and
all qualified applicants will receive consideration
for employment without regard to age, race, color,
religion, sex, sexual orientation, gender identity,
national origin, disability status, protected veteran
status, or any other characteristic protected by law.

TENURE-TRACK AND TENURED POSITIONS
School of Information Science and Technology (SIST)

ShanghaiTech University invites highly qualified candidates to fill multiple tenure-
track/tenured faculty positions as its core founding team in the School of Information
Science and Technology (SIST). We seek candidates with exceptional academic
records or demonstrated strong potentials in all cutting-edge research areas of
information science and technology. They must be fluent in English. English-based
overseas academic training or background is highly desired.

ShanghaiTech is founded as a world-class research university for training future
generations of scientists, entrepreneurs, and technical leaders. Boasting a
new modern campus in Zhangjiang Hightech Park of cosmopolitan Shanghai,
ShanghaiTech shall trail-blaze a new education system in China. Besides establishing
and maintaining a world-class research profile, faculty candidates are also expected
to contribute substantially to both graduate and undergraduate educations.

Academic Disciplines: Candidates in all areas of information science and
technology shall be considered. Our recruitment focus includes, but is not limited to:
computer science and technology, electronic science and technology, information
and communication engineering, applied mathematics and statistics, data science,
robotics, bioinformatics, biomedical engineering, internet of things, smart energy,
computer systems and security, operation research, mathematical optimization and
other interdisciplinary fields involving information science and technology, especially
areas related to AI.

Compensation and Benefits: Salary and startup funds are highly competitive,
commensurate with experience and academic accomplishment. We also offer a
comprehensive benefit package to employees and eligible dependents, including
on-campus housing. All regular ShanghaiTech faculty members will join its new
tenure-track system in accordance with international practice for progress evaluation
and promotion.

Qualifications:
• Strong research productivity and demonstrated potentials;

• Ph.D. (Electrical Engineering, Computer Engineering, Computer Science,
Statistics, Applied Math, or related field);

• A minimum relevant (including PhD) research experience of 4 years.

Applications: Submit (in English, PDF version) a cover letter, a 2-page research
plan, a CV plus copies of 3 most significant publications, and names of three
referees to: sist@shanghaitech.edu.cn

For more information, please visit: http://sist.shanghaitech.edu.cn/

Deadline: December 31, 2020

http://apply.interfolio.com/78108
http://bc.edu
http://cs.bc.edu
http://www.bc.edu/offices/diversity
https://applications.caltech.edu/jobs/cms
mailto:search@cms.caltech.edu
mailto:sist@shanghaitech.edu.cn
http://sist.shanghaitech.edu.cn/

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 107

last byte

approach is
that it requires doubling the number of
people polled to get the same effective
sample size. In terms of this example,
200 people must be sampled to get an
effective sample size of 100.

Question: Suppose T has the sup-
port of approximately 60% of the
people and B has the support of 40%.
Suppose the stigma is against only B
supporters. Assuming the people who
are polled are given a standard deck
of 52 playing cards, can you make it
so that if a per-son responds B, then
that person has approximately a 50%
chance of actually supporting B and
achieve an effective sample size of 100
by polling only 140 people?

Solution: Suppose that with prob-
ability 2/7 a person will say B regardless
of his or her view. Then if 60% want T
and 40% want B, B will receive (2/7)*140
= 40 votes because of this 2/7 probabil-
ity and another 40 from the committed
B supporters. Such a scheme would
have the goal of having anyone who re-
sponds with B to the pollster to have a
50% chance of supporting B. To achieve
this, the pollster says to the pollee:
“Please take seven cards including an
Ace, 2, 3, 4, 5, 6, and 7, regardless of
suit. Shuffle the seven cards. Now turn
over one card. If it is an Ace or a 7, say
B. Otherwise, please tell me what you
really think.” In this way, only 40 extra
people must be interviewd to get an ef-
fective sample size of 100 or in general
2/7 extra people.

Upstart: Generalize the above solu-
tion to k candidates all with approxi-
mately equal support. Each person
should have a probability of no more
than p of actually supporting the can-
didate he or she mentions. You can as-
sume for this purpose the pollee has
access to a trusted random number
generator that will give a number be-
tween 0 and 1 with uniform probability.
It should be enough to use this random
number generator just once per pollee.

Dennis Shasha (dennisshasha@yahoo.com) is a professor
of computer science in the Computer Science Department
of the Courant Institute at New York University, New
York, USA, as well as the chronicler of his good friend the
omniheurist Dr. Ecco.

All are invited to submit their solutions to
upstartpuzzles@cacm.acm.org; solutions to upstarts and
discussion will be posted at http://cs.nyu.edu/cs/faculty/
shasha/papers/cacmpuzzles.html

Copyright held by author.

[CONTINUED FROM P. 108]

Digital Government: Research and Practice (DGOV) is an
interdisciplinary journal on the potential and impact
of technology on governance innovations and its
transformation of public institutions. It promotes applied
and empirical research from academics, practitioners,
designers, and technologists, using political, policy, social,
computer, and data sciences methodologies.

DGOV aims to appeal to a wider audience of research
and practice communities with novel insights, disruptive
design ideas, technical solutions, scientific and empirical
knowledge, and a deep understanding of digital impact in
the public sector. The major areas include the new forms
of governance and citizen roles in the inter-connected
digital environment, as well as the governance of new
technologies, including governance of automation, sensor
devices, robot behavior, artificial
intelligence, and big data. Whether
it is governing technology or
technology for governing, the goal
is to offer cutting-edge research and
concepts designed to navigate and
balance the competing demands
of transparency and cybersecurity,
innovation and accountability, and
collaboration and privacy.

For further information and to submit
your manuscript, visit dgov.acm.org

An Open Access research journal on the
potential and impact of technology on

governance innovations and public institutions

Digital Government:
Research and Practice (DGOV)

mailto:dennisshasha@yahoo.com
mailto:upstartpuzzles@cacm.acm.org
http://cs.nyu.edu/cs/faculty/shasha/papers/cacmpuzzles.html
http://cs.nyu.edu/cs/faculty/shasha/papers/cacmpuzzles.html
http://dgov.acm.org

108 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

last byte

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

tell us the truth.” Suppose again for the
purposes of example 60% want B and
40% want T. If 200 people are polled, B
will get 60 true answers and 50 because
of double tails. The remaining 90 will
go to T. Thus,we subtract a quarter of
the total number of people polled (50
in this example) from B (yielding 110-
50 = 60), a quarter from T (yielding 90-
50 = 40) and we get the correct answer.

The only trouble with this privacy-
preserving

talk to, there might be a stigma to vote
for either candidate. Can the pollsters
still do their job?

Question: Can you think of a proto-
col that will protect privacy for support-
ers both of B and T?

Solution: Here is one possibil-
ity. Tell the pollees (the people asked):
“Please flip a coin twice. If it comes up
heads both times, then please say T. If
it comes up tails both times, please say
B. With any other combination, please

WHEN PE OPLE A R E asked whom they
will vote for, they might not want to
say. After all, other people might judge
them, ask for contributions, or pub-
lish the answer. Suppose there are two
candidates, randomly called B and T.
Suppose, again for the sake of this hy-
pothetical, that there is a slight stigma
against people who support T.

The pollster says to them: “Please
flip a coin. If the coin comes up tails,
please tell us whom you like best. If it
comes up heads, then always say T.”
That way, even if a person states an
intention to vote for T, nobody knows
for sure.

Warm-Up: Suppose the true proba-
bilities are 60% for B and 40% for T. 200
people are again polled. How many will
say T in response to the poll with the
coin-flip rule and how many will say B?

Solution to Warm-Up: Approximate-
ly half the people—100—will flip heads
and will say T, regardless of their pref-
erences. Of the other half—60—will
say B and 40 will say T. So 140 will say T
and 60 will say B.

Warm-Up 2: Suppose 70% want T
and 30% want B. 200 people are again
polled. How many will say T in re-
sponse to the poll with the coin-flip
rule and how many will say B?

Solution to Warm-Up 2: 170 for T
and 30 for B. So to find the true support
for T and B, simply subtract from the T
score half of the total number of people
polled. Leave the B score alone.

But now suppose a country is so di-
vided that, depending on whom you

Upstart Puzzles
Privacy-Preserving
Polling
Can you answer a poll without revealing your true preferences and
have the results of the poll still be accurate?

DOI:10.1145/3416266 Dennis Shasha

Political pollster: “We understand your choice of candidate may be something you want to
keep private. At the end of this process, only you will know for sure whether the choice you
mention is your real choice or not.”

[CONTINUED ON P. 107]

Let me flip a coin

a couple of times

and then I’ll tell you

...taking a poll...

Who are you
going to vote for?

http://dx.doi.org/10.1145/3416266

Check out the acmqueue app

FREE TO ACM MEMBERS

acmqueue is ACM’s magazine by and for practitioners,
bridging the gap between academics and practitioners
of the art of computer science. For more than a decade
acmqueue has provided unique perspectives on how
current and emerging technologies are being applied
in the fi eld, and has evolved into an interactive,
socially networked, electronic magazine.

Broaden your knowledge with technical articles
focusing on today’s problems aff ecting CS in
practice, video interviews, roundtables, case studies,
and lively columns.

Desktop digital edition also available at queue.acm.org.
Bimonthly issues free to ACM Professional Members.
Annual subscription $19.99 for nonmembers.

Keep up with this fast-paced world
on the go. Download the mobile app.

acmqueue_cacm_fp_bleed_ad_oct_2018.indd 1 10/26/18 3:23 PM

http://queue.acm.org

Conference 17 – 20 November 2020
Exhibition 18 – 20 November 2020
EXCO, Daegu, South Korea

The 13th ACM SIGGRAPH Conference and
Exhibition on Computer Graphics and Interactive
Techniques in Asia

#SIGGRAPHAsia | #SIGGRAPHAsia2020
SA2020.SIGGRAPH.ORG

Driving Diversity

Sponsored by Organized by

Conference 17 – 20 November 2020
Exhibition 18 – 20 November 2020
EXCO, Daegu, South Korea

The 13th ACM SIGGRAPH Conference and
Exhibition on Computer Graphics and Interactive
Techniques in Asia

#SIGGRAPHAsia | #SIGGRAPHAsia2020
SA2020.SIGGRAPH.ORG

Driving Diversity

Sponsored by Organized by

Conference 17 – 20 November 2020
Exhibition 18 – 20 November 2020
EXCO, Daegu, South Korea

The 13th ACM SIGGRAPH Conference and
Exhibition on Computer Graphics and Interactive
Techniques in Asia

#SIGGRAPHAsia | #SIGGRAPHAsia2020
SA2020.SIGGRAPH.ORG

Driving Diversity

Sponsored by Organized by

Conference 17 – 20 November 2020
Exhibition 18 – 20 November 2020
EXCO, Daegu, South Korea

The 13th ACM SIGGRAPH Conference and
Exhibition on Computer Graphics and Interactive
Techniques in Asia

#SIGGRAPHAsia | #SIGGRAPHAsia2020
SA2020.SIGGRAPH.ORG

Driving Diversity

Sponsored by Organized by

http://sa2020.siggraph.org

	Contents
	Departments
	Cerf’s Up
	On Digital Diplomacy

	BLOG@CACM
	Protecting Computers and People From Viruses

	Careers

	Last Byte
	Upstart Puzzles
	Privacy-Preserving Polling

	News
	Bouncing Balls and Quantum Computing
	Thwarting Side-Channel Attacks
	Who Has Access to Your Smartphone Data?
	Fran Allen: 1932–2020

	Viewpoints
	Technology Strategy and Management
	Self-Driving Vehicle Technology: Progress and Promises

	Inside Risks
	A Holistic View of Future Risks

	Kode Vicious
	Sanity vs. Invisible Markings

	Viewpoint
	We Need to Automate the Declaration of Conflicts of Interest

	Viewpoint
	Using Computer Programs and Search Problems for Teaching Theory of Computation

	Practice
	The History, Status, and Future of FPGAs
	Debugging Incidents in Google’s Distributed Systems

	Contributed Articles
	What Do Agile, Lean, and ITIL Mean to DevOps?
	Real Time Spent on Real Time

	Review Articles
	Responsible Vulnerability Disclosure in Cryptocurrencies
	A Decade of Social Bot Detection

	Research Highlights
	Technical Perspective
	Analyzing Smart Contracts with MadMax
	MadMax: Analyzing the Out-of-Gas World of Smart Contracts

	Technical Perspective
	Two for the Price of One
	Lower Bounds for External Memory Integer Sorting via Network Coding

