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This text/reference is an in-depth introduction to the systematic, universal software 
engineering kernel known as “Essence.” This kernel was envisioned and originally created by 
Ivar Jacobson and his colleagues, developed by Software Engineering Method and Theory 
(SEMAT) and approved by The Object Management Group (OMG) as a standard in 2014. 
Essence is a practice-independent framework for thinking and reasoning about the practices 
we have and the practices we need. It establishes a shared and standard understanding 
of what is at the heart of software development. Essence is agnostic to any particular 
methods, lifecycle independent, programming language independent, concise, 
scalable, extensible, and formally specified. Essence frees the practices from their 
method prisons.

HIGH PRAISE FOR THE ESSENTIALS OF MODERN SOFTWARE ENGINEERING

“Essence is an important breakthrough in understanding the meaning of software engineering. 
It is a key contribution to the development of our discipline and I’m confident that this book 
will demonstrate the value of Essence to a wider audience. It too is an idea whose time has 
come.” – Ian Somerville, St. Andrews University, Scotland (author of Software Engineering, 
10th Edition, Pearson)

“What you hold in your hands (or on your computer 
or tablet if you are so inclined) represents 
the deep thinking and broad experience of the 
authors, information you’ll find approachable, 
understandable, and, most importantly, actionable.”
– Grady Booch, IBM Fellow, ACM Fellow, IEEE 
Fellow, BCS Ada Lovelace Award, and IEEE 
Computer Pioneer
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cerf’s up

are still largely conducted by fax, post 
(including overnight delivery), and tele-
phone as well as venerable F2F com-
munication. Electronic mail is typically 
used for internal but not external com-
munication owing to the potential for 
misrepresenting the origin of public 
email messages (“spoofing”). Even that 
is slowly changing as various forms of 
strong authentication become available.

The arrival of the World Wide Web 
(WWW) in 1991 heralded a new era in in-
formation production and sharing. 
From the diplomatic perspective, it of-
fered an open source for intelligence 
about events in the world and also an av-
enue to engage in what some call soft di-
plomacy by which is meant pursuit of 
diplomatic aims by means of suasion 
and public pressure. Concurrent with 
the evolution of the WWW, cloud com-
puting has emerged as the natural suc-
cessor to the time-sharing systems of the 
1960s. Cloud computing and smart-
phones have contributed to two more 
recent dramatic changes in the online 
environment that are upending tradi-
tional diplomatic communication. The 
first is the arrival of social media, most 
notably Facebook, Twitter, Instagram, 
Tik-Tok, WeChat, and YouTube, among 
others. The second is public and private 
videoconferencing. Videoconferencing 
is not new. Indeed, its origins lie in the 
1960s and experiments with this medi-
um were conducted on the American AR-
PANET in the 1970s. The COVID-19 pan-
demic, however, has launched 
videoconferencing over the Internet into 
orbit. To account for lockdowns and so-
cial distancing, videoconferencing sys-
tems like Zoom, Teams, Meet, among 
others, are now in daily use worldwide. 
We are locked in front of our laptop 
screens, not only by email, chat, and surf-
ing the Web, but by videoconferences 
and webinars going day and night.

On Digital Diplomacy

T
HE TERM DIGITAL  DIPLOMACYa 
might have two interpreta-
tions. One is the conduct of 
diplomacy through digital 
means. The other is diploma-

cy concerning digital technologies. Both 
interpretations are addressed in this col-
umn. Interestingly, the term protocol in 
the computer communication sense was 
adopted from its use in diplomatic 
terms. Protocols are practices, proce-
dures, and forms in the diplomatic 
world. In the world of computing, they 
are procedures and formats for informa-
tion exchange. The conduct of diploma-
cy through digital means is, at first 
glance, a natural extension of face-to-
face (F2F) and written diplomacy. From 
1845 to 1865, telegraphy was a terrestrial 
service and quickly put to use in com-
merce, diplomacy, and war.b When the 
first, lasting telegraphic trans-Atlantic 
cable was laid in 1866,c telegraphy be-
came an important part of rapid diplo-
macy on an intercontinental scale. The 
invention of the telephone provided for 
real-time interactions, the value of which 
became especially apparent in the wake 
of the October 1962 “Cuban Missile Cri-
sis” leading to the installation of a “hot-
line” between the White House and the 
Kremlin. Facsimile transmission capa-
bility arrived in quantity in the 1980s, 
transforming diplomacy once again.

With the arrival of the Internet, elec-
tronic messaging has become wide-
spread and in informal use worldwide. 
Formal diplomatic communications 

a O.S. Adesina, J. Summers (Reviewing Ed.) 
Foreign policy in an era of digital diplomacy.  
Cogent Social Sciences 3, 1 (2017). DOI: 10.1080/ 
23311886.2017.1297175

b President Abraham Lincoln famously and av-
idly read dispatches from the war front during 
the Civil War, for example.

c Earlier efforts beginning in 1854 did not suc-
ceed or failed quickly.

On the negative side of the ledger, so-
cial media have become avenues for the 
spread of misinformation and disinfor-
mation and have been used to foment 
civil unrest. The latter is often triggered 
by the distribution of false information 
and reinforced by the use of botnetsd and 
fake accounts in social media. Indeed, 
such abuses highlight the growing rec-
ognition in government and diplomatic 
circles that abuse of the Internet is a na-
tional and international problem that 
needs attention (See S. Cresci’s article on 
p. 72). Hence the second interpretation 
of digital diplomacy: diplomatic negotia-
tions about dealing with the abuse of 
digital infrastructure. The canvas for this 
debate is enormous. There are billions of 
digital devices in use today from mobile 
smartphones, laptops, desktops, tablets, 
and a growing body of devices called col-
lectively the Internet of Things. Hacking 
of these devices along with the distribu-
tion of malware (that is, harmful soft-
ware) constitute major hazards in the 
online world. These hazards are made all 
the more difficult to deal with because 
the Internet is global, and perpetrators 
may be in one jurisdiction while the vic-
tim is in another.

It is apparent that the world needs 
thoughtful and technically credible de-
bate on alternatives for containing the 
problem of harmful behavior on the 
Internet. Perpetrators must be identi-
fied, and international norms and agree-
ments established for bringing them 
to justice. This is a task for diplomacy 
about digital technology and its use and 
abuse, and computer scientists have a 
serious role to play in this discussion. 

d A “bot” is a computer that has been hacked to 
become part of a large network of machines 
that can be used to mount denial of service at-
tacks, spread spam and misinformation and 
reinforce tweet storms, among other things. A 
“botnet” is a collection of bots.

Vinton G. Cerf is vice president and Chief Internet Evangelist 
at Google. He served as ACM president from 2012–2014.
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the first self-replicating computer 
programs made the rounds, they were 
experiments or pranks;12 for most, the 
point was solely reproduction. An early 
computer worm was beneficent, but 
escaped control.2 

We distinguish computer viruses 
from computer worms by the profligate 
scale of replication, viruses generating a 
broadcast of copies rather than a chain 
of copies. The obvious points of analogy 
across both types of virus include that 
viruses are tiny, invading a host much 
greater in size and complexity, without 
an overt signal, and that viruses disrupt 
some process in the host. Neither com-
puter nor biological virus necessarily 
does damage. In biology, self-replication 
is an end, not a means, making the dam-
age a side-effect. In the modern com-
puter virus, the end is likely to be the ac-
tion of a payload of malicious code. Now 
the term “virus,” in both environments, 
connotes an intrusive and damaging 
force carrying dangerous baggage.

To explore some points of analogy 
systematically, consider access: How is 
virus entry accomplished? Computer 

viruses look for an opening by probing 
known vulnerabilities; if one is found, 
malificent code is injected. This is 
quite like the organic version. 

Consider gain: What does the virus 
get out of this, and how? The virus gets 
more virus, and the means of repro-
duction is the same—self-replication. 
Note the correspondence to the Unix 
system fork() call, which spawns a 
new process by replicating the current 
process. The history tells us that this 
happened because it was easy: “... it 
seems reasonable to suppose that it ex-
ists in Unix mainly because of the ease 
with which fork could be implemented 
without changing much else.”8 The 
heuristic, across both types: To start 
a new working structure, just copy the 
working structure on hand.

Consider pathology, the means of 
damage. A virus damages the host body 
by depleting cell resources, consumed 
by the virus; bursting the cell walls; or 
generating toxic byproducts. Do each 
of these have an analogy? Sure—Denial 
of Service; breaching buffer boundar-
ies or reverse shell; interference with 

Robin K. Hill  
The Virus Analogy  
and Validation
https://bit.ly/2yTFYCX
May 29, 2020

The COVID-19 pandemic highlights 
the virus analogy that gave rise to the 
use of the word “virus” from biology, 
to label a malicious program that at-
tacks computer systems. The situation 
moves us to look into that, as another 
way to compare nature and artifact, 
and as an excuse to raise more ab-
stract questions. We are moved also to 
stipulate that our mastery of both the 
biological and computational forms is 
shallow, and to invite other, better ob-
servations to follow. See Apvrille and 
Guillaume1 for greater depth and in-
triguing crossover speculation, Weis11 
for yet more intriguing comparison, 
and Wenliang Du’s website for de-
tailed virus examples,3 which consti-
tute dramatic reading for coders.

A virus is generally not regarded as 
a living organism, but sometimes de-
scribed as (similar to) software. When 
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organic viruses and computer viruses is so compelling. 
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the operating system, degrading its 
protection of system resources such as 
CPU cycles, files, and ports.2,10 

We could consider defense, the host’s 
prevention or cure mechanism, that is, 
the action taken if the host somehow 
notices that something is wrong. That 
panoply of fascinating mechanisms 
is beyond our expertise, but it is clear 
vaccination is one of them, leading to 
countermeasures such as mutation. 
Both organic and computer viruses can 
mutate quickly. But mutation in organ-
ics is a quirk, a random unguided alter-
ation. Mutation in computer programs 
is human-directed. The brute-force op-
tions for repair and defense are off lim-
its to humans. We can’t reboot to reset 
memory, let alone re-install a clean op-
erating system.

Viruses have been described as 
troops in a war game, initiating and 
reacting, as they take over cells for the 
purpose of replication. But wait—Is 
there a purpose? All we can say for sure is 
that viruses insert genetic material into 
cells, which causes the cells to gener-
ate more viruses. Is there a struggle? Is 
control being deliberately wrested from 
the cell, or is there actually no agent in-
volved that gives a hoot, no intention at 
all? The vocabulary of aggression in cell 
science (layperson’s version) reflects our 
human phenomenology, projected onto 
what we see. It may be fair, or it may be 
distorted. It may be way off the mark; 
the cells might be “fulfilled”—an odd 
thought. But why is it less odd to say 
the cells are “defeated”? Why use the 
language of attack, when the language 
of hospitality (or indifference) might 
model the process just as well (the lan-
guage of indifference, even better)? Pre-
viously, we said that in biology, damage 
is a “side-effect,” which assumes some 
kind of intention. We now question that 
assumption. Other natural forces bring 
about change; the wind threatens, in-
trudes, and damages, but to speak of its 
intention is only poetic.

In computing, similarly, a computer 
virus executes in order to create more 
copies of its code and then disseminate 
them. Does that statement of the analo-
gy, through the phrase “in order to,” lead 
us to the attribution of volition to the 
computer virus, inaccurately? We claim 
it is misleading to speak as if the organic 
virus has volition. Imbued by the pro-
grammer, however, a computer virus ex-

hibits hostility. But wait. That means the 
computer virus is more like the organic 
virus than the organic virus itself!

Of course, the question of volition, 
seen here on a small scale, bears on 
larger questions in the philosophy of 
computing as well, those in artificial 
intelligence and cognitive science con-
nected to intentionality and conscious-
ness. That inquiry could be aided by a 
new locution for computer virus, which 
might even inform a new locution for 
organic virus. My earlier article “Ar-
ticulation of Responsibility”7 called for 
such locutions. 

Programs do not make decisions. 
Because it looks like they do, we need a 
way to talk about what they actually do 
that is not misleading. Viruses do not 
“intend” in any meaningful way; they 
just behave as if they were intending. 
Or perhaps they don’t even “behave” 
in any particular way, they just exhibit 
actions that intentional beings would 
exhibit if they had as a goal the end-
result reached by the virus. We are so 
dependent on the vocabulary of inten-
tion and volition that we have no other 
non-awkward options.

Analogies between natural and 
computation phenomena, tight or 
stretched, have formed the subjects of 
several pieces in this space.4–6 In the 
case before our eyes, we see the anal-
ogy between the biological virus and 
the computer virus exhibits strengths 
and weaknesses, and may offer further 
possibilities. Points of positive similar-
ity may not be due to cause and effect, 
but rather to effects of some common 
cause, something like the general vul-
nerability of processes that use input 

and output. We might even propose the 
proper analogue to the biological mi-
crobe is the programmer-code pair, a 
self-contained system that lies between 
the program and the programmer, en-
joying some kind of collective semi-ani-
mate agency. We can turn to philosophy 
to ask—Do agents have to be individual 
and human? That’s debatable9 beyond 
the scope of this inquiry.

But wait. The really interesting 
question is what a strong successful 
analogy, matching computer viruses 
to organic viruses, would mean. Does 
it mean that some common notions—
say, the general vulnerability of input 
(as mentioned previously), or entry 
through a defined interface, or subver-
sion of a external body’s resources—
are somehow universal? If so, have we 
gained anything beyond a pleasant self-
validation? But wait! What does valida-
tion get us, anyway? Are computer sci-
entists to congratulate ourselves when 
our artifacts look like nature? What’s 
so great about that? Or is there some-
thing great about that? If so, what’s not 
so great about artifice? 
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of qubits can represent and manipu-
late an exponentially larger number 
of combinations. Exploiting this pos-
sibility for computing seemed like a 
pipe dream, however, until research-
ers devised algorithms to extract use-
ful information from the qubits. The 
first such algorithm, described in 
1994 by Peter Shor, then at Bell Labs 
in New Jersey, efficiently finds the 
prime factors of a number, poten-

T
HE  HISTORY  OF science and 
mathematics includes many 
examples of surprising paral-
lels between seemingly unre-
lated fields. Sometimes these 

similarities drive both fields forward in 
profound ways, although often they are 
just amusing.

In December, Adam Brown, a phys-
icist at Google, described a surpris-
ingly precise relationship between a 
foundational quantum-computing 
algorithm and a whimsical method of 
calculating the irrational number π. 
“It’s just a curiosity at the moment,” 
but “the aspiration might be that 
if you find new ways to think about 
things, that people will use that to lat-
er make connections that they’d not 
previously been able to make,” Brown 
said. “It’s very useful to have more 
than one way to think about a given 
phenomenon.”

In a preprint posted online (but 
not yet peer-reviewed at press time),  
Brown showed a mathematical cor-
respondence between two seemingly 
unconnected problems. One is the 
well-known Grover search algorithm 
proposed for quantum computers, 
which should be faster than any classi-
cal equivalent. The other is a surprising 

procedure in which counting the num-
ber of collisions between idealized bil-
liard balls produces an arbitrarily pre-
cise value for the π. 

Quantum Algorithms
Quantum computing exploits quan-
tum bits, or qubits, such as ions or 
superconducting circuits, that can si-
multaneously represent two distinct 
states. In principle, a modest number 

Bouncing Balls and 
Quantum Computing 
A lighthearted method for calculating π is analogous  
to a fundamental algorithm for quantum computing.

Science  |  DOI:10.1145/3416076 Don Monroe
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 N tially cracking important cryptogra-
phy schemes. The trick is to frame the 
problem as determining the repeti-
tion period of a sequence, essentially 
a Fourier transform, which can be 
found using global operations on an 
entire set of qubits.

The second fundamental algo-
rithm, devised in 1996 by Lov Grover 
working independently at Bell Labs, 
operates quite differently. “Shor and 
Grover are the two most canonical 
quantum algorithms,” according 
to Scott Aaronson of the University 
of Texas at Austin. “Even today, the 
vast majority of quantum algorithms 
that we know are recognizably either 
‘Shor-inspired’ or ‘Grover-inspired’, 
or both.”

Grover’s algorithm is often de-
scribed as a database search, exam-
ining a list of N items to find the item 
that has a desired property. If the list 
is ordered by some label (for example, 
alphabetized), any label can be found 
by repeatedly dividing the list in suc-
cessive halves, eventually requiring 
log2N queries. For an unsorted list, 
however, checking each item in turn 
requires, on average N/2 steps (and 
possibly as many as N).

Like other quantum algorithms, 
Grover’s manipulates the entire set 
of qubits simultaneously, while pre-
serving the relationships between 
them (prematurely querying any qu-
bit to determine its state turns it into 
an ordinary bit, squandering any 
quantum advantage). However, Gro-
ver showed the desired item can gen-
erally be found with only π4 √

 
N  global 

operations.
This improvement is less than that 

seen in Shor-style algorithms, which 
typically are exponentially faster than 
their classical counterparts. The Gro-
ver approach, however, can be ap-
plied to more general, unstructured 
problems, Brown notes.

The calculation starts with an 
equal admixture of all N qubits. The 
algorithm then repeatedly subjects all 
the qubits to two alternating manipu-
lations. The first operation embod-
ies the target: it inverts the state of a 
specific, but unknown, bit. The task is 
to determine which bit is altered, but 
not by measuring them all. The sec-
ond operation does not require any 
information about the target. Grover 

found that each time this sequence 
is repeated, the weight of the target 
in the admixture increases (although 
this cannot be measured). After the 
correct number of repetitions, there 
is an extremely high chance a mea-
surement will yield the correct result.

Bouncing Billiards
These sophisticated quantum manip-
ulations may seem to have little rela-
tionship to bouncing billiard balls. 
Yet Brown, while working on issues 
related to Grover’s algorithm, came 
across an animation by math popular-
izer Grant Sanderson that made him 
notice the similarities. In his paper, 
Brown shows there is a precise map-
ping between the two problems.

Sanderson’s animation illustrates 
a surprising observation described 
in 2003 by Gregory Galperin, a math-
ematician at Eastern Illinois Univer-
sity in Charleston. In the paper “Play-
ing Pool with π,” he imagined two 
billiard balls moving without friction 
along a horizontal surface, bouncing 
off each other and off a wall on the 
left side in completely elastic col-
lisions (which preserve their com-
bined kinetic energy).

If the right-hand ball is sent left-
ward toward a second stationary ball 
that is much lighter, the smaller ball 
will be sent back toward the left-hand 
wall without slowing the larger ball 
much. The small ball will bounce off 
the wall, and then collide with the 
large one again, repeating this mul-
tiple times. Eventually the collisions 
will turn the large ball around until it 
finally escapes to the right faster than 
the small ball can pursue it.

The number of collisions needed 
before this escape can occur grows 

larger with the ratio of the mass of the 
large ball compared to the small one. If 
the masses are equal, it will take three 
bounces: the first transfers all mo-
tion from the right ball to the left one, 
which bounces off the wall and then 
transfers its momentum back to the 
right ball again. If the large ball is 100 
times as massive, the process will take 
31 bounces. If the mass ratio is 10,000, 
there will be 314 bounces. In a spec-
tacularly impractical computation, for 
every increase of a factor of 100 in the 
mass ratio, the number of collisions 
(divided by the square root the mass ra-
tio) includes another digit to the digital 
representation of π, 3.141592654 . . . 

Brown fortuitously encountered 
Sanderson’s animation (which uses 
blocks instead of balls) when Grover’s 
algorithm was fresh in his mind, and 
recognized significant similarities 
between the two situations. The two 
quantum operations, for example, 
correspond respectively to collisions 
between the balls and between the 
lighter ball and the wall. The mass 
ratio corresponds to the size of the 
database. Moreover, the final result 
was that the number of operations (or 
bounces) is proportional to π and to 
the square root of this size or mass ra-
tio. (There are also two factors of two 
that reflect simple bookkeeping dif-
ferences between the problems.)

Beyond the surprising connection 
between such different systems, what 
on earth is the number π doing in both 
cases? This irrational number is of 
course best known as the ratio of the 
circumference of a circle to its diame-
ter, although it also appears in the pro-
portions of ellipses, as well as higher-
dimensional objects like spheres. One 
way to define a circle is through an 
algebraic constraint on the horizontal 
and vertical coordinates, x and y: The 
points of a circle with radius r are con-
strained to satisfy x2 + y2 = r2.

As it turns out, both the billiard 
problem and the Grover algorithm 
have constraints of this form. Colli-
sions of the balls or manipulations 
of the quantum system correspond to 
rotations along the circle defined by 
these constraints. 

For example, for two billiards 
of mass m (with velocity vm) and M 
(with velocity vM), an elastic collision 
preserves their total kinetic energy, 

Grover’s algorithm 
manipulates the 
entire set of qubits 
simultaneously, 
while preserving 
the relationships 
between them. 



12    COMMUNICATIONS OF THE ACM   |   OCTOBER 2020  |   VOL.  63  |   NO.  10

news

particle quantum systems and gravi-
tational models incorporating curved 
spacetime with one higher dimension. 
There is even hope the wormholes in 
spacetime can help resolve paradoxes 
associated with quantum-mechanical 
“entanglement” of distant particles. 

Mathematics has frequently ad-
vanced through connections between 
disparate fields. For example, Fer-
mat’s “last theorem,” involving inte-
ger solutions of a simple equation, 
was only proved centuries later using 

½mvm
2 + ½MvM

2. Completely revers-
ing the velocity of the larger ball re-
quires a total “rotation” by 180° (π ra-
dians) in the plane with coordinates 
vm and vM.

Similarly, for quantum systems, 
the probability of observing a partic-
ular outcome is proportional to the 
square of the “wave function” corre-
sponding to that outcome. The sum 
of the probability (squared amplitude) 
for the target and all other outcomes 
must be one.

Historical Examples of Connections
There is still the question, “Is this 
profound insight into the nature of 
reality, or is it just a sort of curiosity?” 
Brown said. “Maybe Grover search is 
telling us something profound about 
the nature of reality, and maybe the 
bouncing-ball thing is more of a curi-
osity, and maybe connecting them is 
more in the spirit of the second one 
than the first one.”

Still, there have been numerous 
cases in physics, and especially in 
mathematics, where such connec-
tions have contributed profoundly 
to progress. For example, physicists 
have spent more than two decades ex-
ploring a surprising correspondence 
between strongly interacting multi-

For quantum 
systems,  
the probability  
of seeing a particular 
outcome is 
proportional to  
the square of the 
wave function 
corresponding  
to that outcome. 

methods from “elliptic curves.” In an-
other example, in January, computer 
scientists proved a theorem relating 
entanglement to Alan Turing’s notion 
of decidable computations, which 
continues to shake up other seem-
ingly unrelated fields.

For his part, Aaronson suspects 
the Grover-billiard correspondence, 
although “striking in its precision,” is 
probably “just a cute metaphor (in the 
sense that I don’t know how to use it 
to deduce anything about Grover’s al-
gorithm that we didn’t already know). 
And that’s fine.” 
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not modeled using formal techniques,” 
he adds, though improvements in de-
sign tools may lead to simulators that 
can perform accurate-enough assess-
ment without having to go to actual 
silicon before testing.

The elliptic-curve code known as 
Curve25519 benefited from algorith-
mic modeling so it could more easily 
resist side-channel analysis. However, 
in 2017, a team from the University of 
Pennsylvania found smartphone cir-
cuitry that clearly leaked the positions 
of zeroes in intermediate calculations 
that pointed directly to subkey bytes.

Many countermeasures attempt to 
hide the samples that correlate well 
with key data. One common approach 
is masking, which combines the actual 
key bytes with randomly chosen dum-
my values just before the most vulner-
able part of the encryption sequence 
that is most often targeted by adversar-
ies: often where the key is first used to 
disguise the plaintext data. Dummy 
operations make it more difficult for 
hackers to align traces and find the cor-
relations embedded in them.

At the International Solid State Cir-
cuits Conference (ISSCC) in February, 
researchers from Purdue University 
and the Georgia Institute of Technolo-
gy showed how the bulk of electromag-
netic emissions come from the layers 
of metal interconnect closest to the top 
of an integrated circuit. Disconnecting 
a cryptoprocessor from direct access to 
the three highest metal layers, the team 
cut usable interference significantly in 
one experiment.

A second project led by the Purdue 
team, presented at the Custom Inte-
grated Circuits Conference (CICC) a 
month later, isolated the cryptoproces-
sor behind an on-chip power regulator 
that prevents an external observer from 
seeing the small changes in current that 
reveal circuit behavior. At the same con-
ference, Intel Labs’ director of circuit 

T
HE SAME ATTRIBUTES that give 
deep learning its ability to 
tell images apart are helping 
attackers break into the cryp-
toprocessors built into inte-

grated circuits that were meant improve 
their security. The same technology may 
provide the tools that will let chip de-
signers find effective countermeasures, 
but it faces an uphill struggle.

Side-channel attacks have been a 
concern for decades, as they have been 
used in the hacking of smartcard-
based payment systems and pay-TV 
decoders, as well as in espionage. Yet 
the rise of Internet of Things (IoT) and 
edge systems and their use in large-
scale, commercially sensitive applica-
tions makes such attacks a growing 
worry for chipmakers. The innate con-
nectivity of IoT devices means success 
in obtaining private encryption keys 
from them may open up network ac-
cess on cloud-based systems that rely 
on their data.

Although there are side-channel at-
tacks that can be deployed remotely 
by measuring the timing of responses 
from software running on a server, 
many of the most pernicious attacks 
rely on physical proximity and can be 
performed using low-cost electrical in-
struments (see “Secure-System Design-
ers Strive to Stem Data Leaks,” Commu-
nications, April 2015). The switching of 
logic gates creates changes in the elec-
tromagnetic fields around them that 
can be detected by probes placed close 
to the chip’s surface by an attacker. An-
other side channel stems from rapid 
changes in energy consumption that 
can be seen by attaching probes to the 
device’s power-supply connections.

Though it is not the only approach, 
a common technique is to profile the 
target using known keys and plain text, 
collecting thousands of traces of the 
emissions of the process. Careful anal-
ysis of the traces often will show cor-

relations between power or emissions 
spikes, and the value of the byte of the 
encryption key being processed during 
that interval.

Alric Althoff, principal engineer at 
secure-hardware tools supplier Tor-
tuga Logic, says, “The majority of the 
attacks involve very straightforward 
statistics.”

Often, the signals that show a de-
pendency on data are restricted to a few 
samples within the traces, which may 
cover thousands of samples that are lit-
tle more than noise. One approach the 
design community has tried to apply is 
to use formal models of computation 
to predict how much data-dependen-
cy is present in the switching of logic 
gates, and using that information to try 
to remove correlated samples from ap-
pearing in the traces.

“Design based on the theoretical 
models does mitigate the vast majority 
of the leakage. The problem is that, if 
you are free to collect millions of traces 
and analyze them, correlations are go-
ing to start popping out even if they are 
very small,” Althoff says. A second is-
sue is that the layout of transistors on 
the silicon die lead often leads to larger 
emissions than predicted. “Those are 

Thwarting  
Side-Channel Attacks
Deep learning challenges chip security.

Technology  |  DOI:10.1145/3416080 Chris Edwards
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technology research Vivek De described 
a number of methods that use on-chip 
power converters to inject noise into the 
power signals that an attacker would typ-
ically probe at the PCB level. He claimed 
the techniques could cut by five orders 
of magnitude the signal-to-noise ratio.

Althoff says, “The correlation with 
the signal-to-noise is very well under-
stood. For a specific reduction in cor-
relation, you want a certain amount of 
noise, and you can compute that.”

The growing question is determin-
ing how much noise you need to in-
ject to maintain secrecy. Attackers are 
moving from conventional statisti-
cal tools to deep learning because it 
readily combines data from disparate 
positions across traces, rather than 
focusing attention on a small number 
of what they hope are telltale samples. 
In doing so, deep learning reverses the 
effects of countermeasures. The con-
volutional filters often used in DNNs 
to detect features no matter where they 
are in images appear to be effective at 
filtering out the noise introduced by 
masks and dummy operations.

However, deep learning is far from 
a reliable tool. Althoff points out that 
subtle artifacts in trace captures, such 
as a constant offset in the underlying 
amplitude, do not cause problems 
for statistical models, but can easily 
throw off a machine-learning pipeline. 
Research has shown if training is not 
carefully controlled, deep-learning 
models are highly prone to overfitting, 
which significantly reduces their abil-
ity to correctly predict keys when tested 
on traces they have not seen before.

Guilherme Perin, senior secu-
rity analyst at Riscure, says another 
technique that tends to show bet-
ter performance overall is ensem-
ble learning using subtly different 
neural-network models and fed with 
complementary subsets of the traces 
obtained during profiling.

Because deep learning can be highly 
unreliable when used in attacks, its use 
poses bigger problems for those build-
ing defenses who try to apply it as a 
form of penetration testing.

“If you attack something success-
fully, you’ve proven that it’s vulnerable. 
If you’re not successful, you’ve proven 
nothing,” Althoff notes. “The best 
performing attacks in nature are un-
published. Attackers doing nefarious 

things are not sharing their approach-
es. An attacker in the business of at-
tacking is going to run many at once 
and will have a whole set of scripts set 
up to help perform them.”

There is some hope that machine 
learning will provide an answer as to 
whether designs are vulnerable, and 
this is one reason why Riscure is pur-
suing it. However, rather than train-
ing models just to find keys, the Dutch 
consultancy’s approach focuses on 
looking inside the model that train-
ing creates. Perin says one approach 
that has demonstrated some success 
is to focus on the neurons that have 
the strongest influence on correctly 
predicted key bytes and tracing back to 
the combinations of samples that ac-
tivate them. Although sifting through 
this data is a manually intensive process 
today, it may provide the basis for 
automated systems that identify which 
operations in a long sequence are leak-
ing the most information.

Althoff sees potential in analyzing 
the models created by techniques such 
as deep learning. “There is a trend in 
explainable learning, to really under-
stand why the models are making the 
decisions they are making. We want to 
look at the weights that correspond to a 
certain region and why it weights them 
more heavily.”

What makes better analysis of infor-
mation leakage increasingly important 
is the cost and energy overhead of many 
of the countermeasures. The Purdue 
team claims their on-chip regulator 
made it impossible for a DNN to dis-
tinguish data operations from noise on 
the power rails. Unfortunately, it has a 
power overhead of 50% when the cryp-
toprocessor is running. It also adds to 
cost through increased silicon area.

“Many mitigation techniques come 
with major overheads in power perfor-
mance and die area that are impracti-
cal for IoT devices,” De says.

De says one option is to only in-
voke strong countermeasures if the 
device detects behavior that indicates 
side-channel analysis is under way. 
One method is direct; he points to an 
idea proposed five years ago by a team 
from Tohoku and Kobe universities in 
Japan; they placed inductors on the 
surface of the IC at strategic points to 
pick up the distortion in electric field 
caused by a nearby measurement 
probe. Another technique might be to 
monitor how the cryptoprocessor is 
being used, and whether that points 
to a large number of operations being 
profiled (although this is vulnerable 
to false positives).

The game of cat and mouse will con-
tinue until researchers develop better 
tools to determine how much informa-
tion circuitry leaks, and what are the 
limits of detection. 

Further Reading

Das, D., Danial, J., Golder, A., Ghosh, S., 
Raychowdhury, A., and Sen, S.
Deep Learning Side-Channel Attack 
Resilient AES-256 using Current Domain 
Signature Attenuation in 65nm CMOS
Proceedings of the 2020 IEEE Custom 
Integrated Circuits Conference (CICC)

Edwards, C.
Secure-System Designers Strive to STEM 
Data Leaks, Communications, April 2015, 
18-20, http://bit.ly/38MvW28

Masure, L., Dumas, C., and Prouff, E.
A Comprehensive Study of Deep Learning 
for Side-Channel Analysis
IACR Cryptology ePrint Archive (2019), 
https://eprint.iacr.org/2019/439

Perin, G., Ege, B., and Chmielewski, L.
Neural Network Model Assessment for 
Side-Channel Analysis
IACR Cryptology ePrint Archive (2019), 
https://eprint.iacr.org/2019/722

Homma, N., Hayashi, Y., Miura, N., Fujimoto, D., 
Tanaka, D., Nagata, M., and Aoki, T.
EM Attack is Non-Invasive? Design 
Methodology and Validity Verification of 
EM Attack Sensor, Proceedings of the 2014 
Conference on Cryptographic Hardware  
and Embedded Systems (CHES 2014), 
Lecture Notes in Computer Science, vol 
8731.

Chris Edwards is a Surrey, U.K.-based writer who reports 
on electronics, IT, and synthetic biology.
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“There is a trend in 
explainable learning, 
to really understand 
why the models are 
making the decisions 
they are making.”
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agencies do need to obtain a warrant 
after the imminent threat has passed, 
to demonstrate the inquiry was made 
in good faith.

“It would of course be more efficient 
to allow law enforcement officials to de-
cide who to surveil on their own, with-
out oversight by a court, but that would 
risk invasive surveillance at the whim 
of the government,” says Crocker. “If 
there is a true emergency that makes 
getting a warrant impractical, such as 
an imminent threat to someone’s life, 
the Fourth Amendment and these laws 
allow for a brief warrantless search, of-
ten requiring the government to come 
back to a court after the fact.”

Former law enforcement officials 
agree, noting that there will always 
be some tension between the desire 
to protect personal privacy and the 
clear value of information that can 
be used to solve crimes or keep the 
public safe.

“It’s definitely a challenge, and it’s 
a balance between personal freedom 
and the ability of law enforcement 
to do their job, especially during the 
emergency circumstances that are put-
ting others in harm’s way,” says Dan-

I
N  A  WORLD  that is defined by 
the generation and collec-
tion of data by technology and 
communications companies, 
personal information—in-

cluding where people go, with whom 
they associate, what they purchase, 
and what they read, listen to, and even 
eat—it is quite a simple task to cre-
ate a detailed profile of an individual 
based solely on the data captured in 
his or her phone.

The right to access and use the 
cache of personal information stored 
in each person’s smartphone has be-
come a major question about balanc-
ing personal privacy rights against 
governments’ desire to monitor and 
retrieve data about its citizens’ activi-
ties for law enforcement, public safety, 
and health issues. While much of the 
attention over the past several years 
has focused on demands from law en-
forcement to access this data to aid in 
criminal investigations, the COVID-19 
pandemic of 2020 has refocused the 
debate on the government’s right to 
access location data during health or 
other public safety emergencies.

Within the U.S., the primary com-
munications privacy law that regu-
lates the disclosure of and access to 
electronic data held by communica-
tion services providers, including 
wireless carriers, Internet Service 
Providers (ISPs), social media plat-
forms, and search companies, among 
others, is the Electronic Communi-
cations Privacy Act of 1986 (ECPA) 
which, along with the Uniting and 
Strengthening America by Providing 
Appropriate Tools Required to Inter-
cept and Obstruct Terrorism (USA 
PATRIOT) Act OF 2001, protects wire, 
oral, and electronic communications 
while those communications are be-
ing made, are in transit, and when 
they are stored on computers. As the 

Act explicitly states, “Some informa-
tion can be obtained from providers 
with a subpoena; other information 
requires a special court order; and 
still other information requires a 
search warrant.”

Andrew Crocker, senior staff attor-
ney on the Electronic Frontier Foun-
dation’s civil liberties team, says the 
ECPA generally “requires the govern-
ment to use legal process to get data 
about users,” rather than simply allow-
ing them to request and receive infor-
mation from service providers.

Similarly, the Fourth Amendment 
of the U.S. Constitution requires law 
enforcement agencies to demonstrate 
probable cause when seeking histori-
cal location data from an individual’s 
phone. This requirement was affirmed 
via a 2018 Supreme Court decision, in 
which Chief Justice John Roberts, writ-
ing on behalf of the majority, held that 
police are required to obtain a warrant 
in ordinary investigations, but could 
access such information without a war-
rant in an emergency, such as during a 
bomb threat, kidnapping, or other exi-
gent circumstance where time is of the 
essence. However, law enforcement 

Who Has Access to  
Your Smartphone Data? 
ISPs, app developers, and even the government  
may know more about you than you think. 

Society  |  DOI:10.1145/3416078 Keith Kirkpatrick
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iel Linskey, managing director of the 
Security Risk Management practice 
of New York-based risk solutions pro-
vider Kroll, and head of the compa-
ny’s Boston office. Linksey, a former 
superintendent-in-chief of the Boston 
Police Dept., notes that in addition 
to the requirement to get a warrant 
to obtain information, the business 
models of Google and other collectors 
of personal data generally are focused 
on protecting privacy, rather than 
making it easy for law enforcement to 
access such data.

“I think there’s a business decision 
to not share information with law en-
forcement unless absolutely neces-
sary,” Linskey says. “And even when 
necessary, the resources are not in 
place to make that a quick or timely 
process. The number of requests for 
information has overwhelmed Google, 
Yahoo, and any of those data providers 
to keep up with it and to provide infor-
mation in a timely manner.”

Law enforcement agencies have re-
alized the value of obtaining informa-
tion for use in criminal investigations, 
as the contents of email, location data, 
and private SMS messages often can 
provide the evidence needed to show 
intent, direct criminal activity, or il-
lustrate that a suspect was in or near a 
specific location.

Also, the practice of obtaining sub-
poenas or warrants to obtain personal 
data from cellphones can be abused, 
according to George W. Price, a Bos-
ton-based attorney with Casner & Ed-
wards LLP who is a former police offi-
cer, a former senior special agent with 
of the U.S. Drug Enforcement Admin-
istration (DEA), and a former special 
assistant district attorney for Middle-
sex County, MA. “I can find out more 
about someone through 24 hours of 
their phone and data use than proba-
bly anything else; it’s really, really valu-
able,” Price says.

 “At the same time, people’s expec-
tations of privacy are different than 
they were 10 or 15 years ago on data 
devices. You may have a higher ex-
pectation now, because you’re basi-
cally running your whole life through 
this digital device, which is not nec-
essarily just used for criminal activ-
ity. So, I think we’re in new territory, 
as far as how law enforcement can 
better access that.”

Most technology companies realize 
the value of protecting personal infor-
mation, at least within the U.S., where 
personal privacy is seen as a pillar of 
the U.S. Constitution. Says Price, “My 
sense is that [holders of personal data] 
are not afraid to push back on law en-
forcement when they feel like there is 
not enough evidence, or the warrant 
doesn’t meet the proper standards.”

Further, there is very little accurate 
reporting surrounding the effective-
ness of warrants used to get private in-
formation from users’ data in criminal 
cases, says Stephen Smith, a former 
federal magistrate judge in Houston, 
and now Director of Fourth Amend-
ment & Open Courts at Stanford’s Cen-
ter for Internet and Society.

“If somebody would ask me what 
kind of legislation is most urgently 
needed right now, I’d say we need a 
reporting requirement for all these 
things, similar to what we have for 
the wiretaps,” Smith says, referring to 
reports provided by federal and state 
officials on applications for orders for 
interception of wire, oral, or electronic 
communications. “We [would] have a 
complete picture of what’s going on 
and could see how often these tech-
niques are used for child predators, 
hostage-taking situations, or other re-
ally violent crime, versus how many of 
these are for identity theft, drug pos-
session cases, or run-of-the-mill cases 
that don’t really require the extraordi-
nary means to get this stuff.”

Protections on the collection of 
personal data are far slimmer in juris-
dictions outside the U.S. For example, 
in the U.K., the police can download 
cellphone data without a warrant, 
and news reports indicate that cloud 
extraction technologies provided by 

companies such as Petah Tikvah, Is-
rael-based Cellebrite and Alexandria, 
VA-based Oxygen Forensics can en-
able law enforcement agencies in the 
U.K. to continuously track social me-
dia accounts, as well as using facial 
recognition to analyze data extracted 
from the cloud. U.K. police depart-
ments cite three specific powers un-
der which they derive their authority 
to access this information, including 
the Police and Criminal Evidence Act 
1984 (PACE), the Investigatory Pow-
ers Act 2017, or the Regulation of In-
vestigatory Powers Act 2000.

In Japan, the Ministry of Internal 
Affairs and Communications used to 
require mobile carriers to obtain the 
permission of users before sharing 
any location data with government au-
thorities. However, in June 2015, this 
requirement was dropped, and news 
reports indicated some carriers were 
providing location data to the govern-
ment, mostly relating to crime investi-
gations. In response, Japanese mobile 
carrier NTT Docomo announced in 
May 2016 five smartphone models that 
would allow authorities to track their 
locations without users knowing. 

Japan has asked owners of both 
public and private surveillance camer-
as, as well as wireless carriers, to make 
user data available to authorities with-
out warrants. This practice, which the 
Japanese government believes is help-
ful in solving crimes, as well as track-
ing domestic abuse cases, is seen as 
one reason why Japan’s crime rate is 
about a quarter that of the U.S.

The coronavirus outbreak earlier 
this year has led to even greater shar-
ing of location data between mobile 
carriers and data collectors. Mobile 
carriers in Italy, Germany, and Aus-
tria shared location tracking info 
with authorities, while Taiwan, Sin-
gapore, and Hong Kong used location 
monitoring systems to ensure that 
people who were carrying COVID-19 
were staying at home. Further, the Is-
raeli government in March approved 
emergency measures that allowed its 
security agencies to track the mobile-
phone data of people suspected to 
be infected with the coronavirus, as 
well as allowing authorities to enforce 
quarantines and warn those who may 
have come into contact with people in-
fected with the virus.

“There are very few 
legal limits on what 
governments can do 
with even the most 
personal data once 
they have it.” 
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“Realistically, cellphone tracking is 
already a pretty widespread practice,” 
says Jennifer Fernick, a technology Fel-
low at the National Security Institute at 
George Mason University in Virginia, 
and the head of research and engineer-
ing with NCC Group, a global cyber se-
curity and risk mitigation firm based in 
Manchester, U.K. Fernick notes that in 
order for a cellphone to work, it must 
be able to connect to various cell tow-
ers, and as the phone connects with 
a tower, location information can be 
gathered. “So, to some extent that [lo-
cation] data is already out there, as it is 
core to how cellphone networks are de-
signed. To defend against that, there’s 
not much you can do, other than put 
your phone in the fridge, or maybe 
throw it in the ocean.”

Beyond simply using carrier data 
to track cellphone users, multination-
al technology companies, including 
Google, Unacast, Tectonix, X-Mode, 
and Facebook, among others, are 
now making available user location 
data that is captured via apps on us-
ers’ smartphones, to track social-dis-
tancing efforts. While the data is ano-
nymized—and users that have turned 
on location tracking have, by default, 
consented to this information being 
captured by accepting the terms and 
conditions of the apps they use—there 
is a fear that this information may be 
stored forever by authorities, and used 
in unrelated matters.

Fred Cate, vice president for re-
search at Indiana University and 
founding director of the university’s 
Center for Applied Cybersecurity Re-
search, points to the Health Insurance 
Portability and Accountability Act of 
1996 (HIPAA) and to the laws most U.S. 
states have “that give states enormous 
authority when addressing public 
health issues.

“I don’t doubt for a moment that 
states have the authority to use this 
data, which in every case I am aware 
of they are getting from a third party, 
in any event. To my mind, the bigger 
challenge isn’t whether they can get it, 
but what can they do with it once they 
have it?”

Cate says that while the Fourth 
Amendment clearly lays out the proper 
procedures for obtaining data (gener-
ally requiring the government to show 
it has a legitimate reason for needing 

the data), once the government has it, 
there are no laws covering how long the 
government may keep the data, or how 
it may be used in unrelated situations.

“There are very few legal limits on 
what governments can do with even the 
most personal data once they get it,” 
Cate says, noting that in cases involv-
ing public safety, security, or health is-
sues, “I suspect almost everyone would 
approve of the use. But what if, once 
the government has the data, they then 
use it for unrelated purposes?”

Cate notes financial information 
collected during a criminal investi-
gation on money laundering, for ex-
ample, could be turned over to the In-
ternal Revenue Service if instances of 
non-related tax evasion activity were 
found, even in the absence of a crimi-
nal charge or conviction. Indeed, given 
the dearth of regulation, Cate says, 
there are no usage or time limits to 
what the U.S. government can do with 
that data.

“Some agencies have policies,” 
Cates says. The U.S. Federal Bureau of 
Investigation (FBI), for example, “used 
to delete information about you when 
you turned 70 or 75, but that changed 
after 9/11. However, that was just an 
internal policy, and there was no legal 
force to that. In other words, there’s no 
time limit on that data.” 

Further Reading

The Fourth Amendment to the U.S. 
Constitution:
https://constitutioncenter.org/interactive-
constitution/amendment/amendment-iv

Google’s Process for Handling Requests for 
User Information: https://bit.ly/3ahEKQh

How the U.S. Government is Tracking 
People via their Cell Phones, The Wall 
Street Journal, Feb. 10, 2020, https://www.
youtube.com/watch?v=SXAShotdFZo

U.K. Police and Criminal Evidence Act 1984
http://www.legislation.gov.uk/
ukpga/1984/60/contents

U.K. Investigatory Powers Act 2017
http://www.legislation.gov.uk/
ukpga/2016/25/contents/enacted

U.K. Regulation of Investigatory  
Powers Act 2000
http://www.legislation.gov.uk/
ukpga/2000/23/contents

Keith Kirkpatrick is principal of 4K Research & 
Consulting, LLC , based in New York, USA.
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OAK RIDGE NATIONAL 
LABORATORY

“My father 
brought home a 
computer when I 
was in high 
school, and I 
taught myself to 
program on one 

of the early TRS-80s,” says 
Deborah Frincke, associate 
laboratory director for the 
National Security Sciences 
Directorate at the U.S. Department 
of Energy’s Oak Ridge National 
Laboratory (ORNL).

Frincke’s early computing 
experience helped her to discover 
her passion. She went on to earn 
her undergraduate, master’s, and 
doctoral degrees in computer 
science, all from the University of 
California, Davis.

After obtaining her Ph.D., 
Frincke joined academia as a 
professor of computer science 
at the University of Idaho. After 
that, she moved to the Pacific 
Northwest National Laboratory, 
where she rose to chief scientist for 
cybersecurity before leaving for the 
National Security Agency (NSA).

At the NSA, Frincke served in 
various roles, most recently as 
research director. She was also 
the agency’s Science Advisor, 
which meant she needed to 
understand and advise on a 
diverse range of fields including 
mathematics, computer science, 
cybersecurity, quantum and 
high-performance computing, 
engineering, and various 
physical sciences.

Throughout her career, 
Frincke has focused on 
cybersecurity, especially 
collaborative approaches 
to defensive aspects of 
cybersecurity, to better 
protect systems and identify 
vulnerabilities.

At ORNL, Frincke is 
assembling a national security 
science directorate, which 
requires inventorying current 
cybersecurity initiatives at the 
facility, then determining how 
to strengthen them, and set the 
overall strategic direction.

“One of the things that 
excites me about this job is 
increasing my scope beyond 
those fields I led at NSA,” 
Frincke says.

—John Delaney

https://constitutioncenter.org/interactive-constitution/amendment/amendment-iv
https://bit.ly/3ahEKQh
https://www.youtube.com/watch?v=SXAShotdFZo
http://www.legislation.gov.uk/ukpga/1984/60/contents
http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted
http://www.legislation.gov.uk/ukpga/1984/60/contents
https://www.youtube.com/watch?v=SXAShotdFZo
https://constitutioncenter.org/interactive-constitution/amendment/amendment-iv
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Fran Allen:
1932–2020 

In Memoriam |  DOI:10.1145/3418560 Simson Garfinkel and Eugene H. Spafford

that she stayed 45 years, becoming the 
first female IBM Fellow in 1989.

Allen worked on compilers for 
IBM’s first transistorized comput-
er, the IBM 7030 (also known as the 
Stretch), and the IBM 7950 Harvest, 
a one-of-a-kind system designed for 
breaking codes at the U.S. National Se-
curity Agency. These were the fastest 
systems in the world from their intro-
duction 1961 until 1964; NSA used the 
Harvest until 1976 when its mechani-
cal parts wore out.

IBM’s FORTRAN translated human-
readable mathematical formulas and 
algorithms into machine code, but the 
resulting programs were significantly 
larger and slower than what program-
mers fluent in machine code could pro-
duce. Allen created an optimizing com-
piler with John Cocke (1987 ACM A.M. 
Turing Award recipient) and the rest 
of the IBM team so that the compiled 
code would be worthy of the hardware 
on which it was running. In addition to 
FORTRAN, the finished compiler could 
also handle Autocoder, a business lan-
guage, and Alpha, a language created 
for code breaking.

Still determined to be a teacher, 
Allen became the driving force be-
hind seminal papers in optimizing 
compilers. Her first, “Program Opti-
mization,” was distributed internally 
at IBM in 1966 and published in the 
1969 Annual Review in Automatic Pro-
gramming. Her 1970 paper, “Control 
Flow Analysis,” appeared in SIGPLAN 
Notices (July 1970). In 1971, she and 
Cocke published “A Catalog of Op-
timizing Transformations,” an IBM 
technical report that describes “loop 
transformations,” “redundant sub-
expression elimination,” “constant 
folding,” “dead code elimination,” 
“instruction scheduling,” and many 
other techniques that are still used in 
optimizing compilers.

Allen was also “an enormously kind 
and encouraging manager,” recalls 
Paula Newman, a retired computer 

F
RANCES E.  ALLEN, an Ameri-
can computer scientist, ACM 
Fellow, and the first female 
recipient of the ACM A.M. 
Turing Award (2006), passed 

away on Aug. 4, 2020—her 88th birth-
day—from complications of Alzheim-
er’s disease.

Allen was raised on a dairy farm in 
Peru, NY, without running water or 
electricity. She received a BS degree in 
mathematics from the New York State 
College for Teachers (now the State 
University of New York at Albany). 
Inspired by a beloved math teacher, 
and by the example of her mother, 
who had also been a grade-school 
teacher, Allen started teaching high 
school math. She needed a master’s 
degree to be certified, so she enrolled 
in a mathematics master’s program 
at the University of Michigan. There 
she took one of the first courses ever 
offered in computer programming. 
Fran interviewed with IBM on campus 
and took their offered job with the in-
tent of paying off her student loans 
before pursuing her intended career 
as a teacher.

IBM announced FORTRAN, one of 
the first high-level languages, exactly 
two months before Allen’s arrival in 
July 1957. She was immediately put to 
work teaching the language to IBM sci-
entists. To teach herself how the FOR-
TRAN compiler worked, she read its 
source code. Thus began her interest in 
compilers. Her “throwaway job,” as she 
called it at first, proved so compelling 

scientist who reported to Allen in the 
late 1960s. “When I saw a letter … sug-
gesting a somewhat different method 
of program structure analysis, she al-
lowed me to pursue that approach, and 
even sent me to an IBM-wide employee 
appreciation event in Montreal as re-
ward for my work. I believe she contin-
ued that management style for the rest 
of her career.”

These sentiments are echoed by 
IBM’s current CEO, Arvind Krishna: 
“Fran spent her life working to ad-
vance the field of computing. … Apart 
from her technical genius, we remem-
ber Fran for her love of teaching and 
her passion to inspire and mentor oth-
ers.” To honor Allen and her efforts, 
IBM established the Frances E. Allen 
Women in Technology Mentoring 
Award in 2000.

Allen took sabbaticals at New York 
University in 1970 and at Stanford 
University in 1977. “Fran was the only 
woman professor I had in graduate 
school,” observed Anita Borg (1949–
2003), who founded the Institute for 
Women and Technology (renamed 
AnitaB.org in 2017).

Among many honors, Allen was 
awarded the Computer Society Bab-
bage Award in 1997, the Augusta Ada 
Lovelace Award from the Association 
for Women in Computing in 2002, and 
the IEEE Computer Pioneer Award in 
2004. Two years later, she was the first 
woman recipient of the ACM A.M. Tur-
ing Award (19 years after her colleague 
Cocke), “For pioneering contributions 
to the theory and practice of optimiz-
ing compiler techniques that laid the 
foundation for modern optimizing 
compilers and automatic parallel ex-
ecutions.”

A member of the National Academy 
of Engineering and the American Phil-
osophical Society, Allen was also a Fel-
low of the American Academy of Arts 
and Sciences, the ACM, the IEEE, and 
the Computer History Museum. IEEE 
established the Frances E. Allen medal, 

“Fran was a lovely 
warm person and a 
strong feminist.”
BARBARA SIMONS
ACM PRESIDENT, 1998–2000

http://dx.doi.org/10.1145/3418560
http://AnitaB.org
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to be awarded for the first time in 2022, 
to honor her career achievements.

“Fran was not swayed by short-term 
recognition, but instead focused on 
the significance of the research and 
technical problems that she worked on 
and encouraged her team to work on,” 
notes ACM fellow Vivek Sarkar. She in-
stalled a ‘shoot for the moon’ attitude 
in all of us.”

Allen also loved exploring, climb-
ing mountains in Austria and China, 
including a 14,000-foot peak in the Hi-
malayas, and traveling across the Arc-
tic without maps or radio contact. She 
even established a new route across 
Ellesmere Island in the Arctic Archipel-
ago, the most northerly point of land in 
Canada.

“Fran was a lovely warm person 
and a strong feminist,” recalled ACM 
Fellow and past president Barbara Si-
mons. “I had the pleasure of knowing 
Fran as a colleague and a friend.” 

Simson Garfinkel is the U.S. Census Bureau’s Senior 
Computer Scientist for Confidentiality and a part-time 
faculty member at George Washington University in 
Washington, D.C., USA. He is an ACM Fellow.

Eugene H. Spafford is a professor of computer science 
and the founder and executive director emeritus of 
the Center for Education and Research in Information 
Assurance and Security at Purdue University, W. Lafayette, 
IN, USA. He is an ACM Fellow.
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“Apart from her 
technical genius,  
we remember Fran 
for her love  
of teaching and her 
passion to inspire  
and mentor others.”
ARVIND KRISHNA 
IBM CEO



20    COMMUNICATIONS OF THE ACM   |   OCTOBER 2020  |   VOL.  63  |   NO.  10

V
viewpoints

email and smartphones, has become a 
player in the automotive IoT software 
market with its QNX operating system, 
which runs on some 150 million vehi-
cles.11 Green Hills Software competes in 
this business as well, along with Google. 
Automakers, auto parts vendors, and ro-
botics and AI startups, all have been 
learning how to design the AI and ma-
chine-learning applications needed to 
process data and warn drivers or provide 
instructions to the vehicle subsystems.

Electric vehicles rely heavily on com-
puters to control their functions, and this 
characteristic makes them especially 
suitable for self-driving technology. Not 
surprisingly, Tesla vehicles deploying 
driver-assist technology have logged 
nearly two billion miles and the company 
probably leads the industry in data collec-
tion.14 Tesla was able to commercialize 
its Autopilot system because it used cam-
eras, radar, and ultrasound, rather than 
the more expensive lidar. However, Tesla 
vehicles are still somewhere between Lev-
els 2 and 3—far from the goal of autono-
mous driving. They also have been in-

A
UTOMA K E RS  HAVE ALREADY 

spent at least $16 billion de-
veloping self-driving tech-
nology, with the promise of 
someday creating fully au-

tonomous vehicles.2 What has been the 
result? Although it seems that we have 
more promises than actual progress, 
some encouraging experiments are now 
under way, and there have been interme-
diate benefits in the form of driver-assist 
safety features.

Engineers started on this quest to au-
tomate driving several decades ago, when 
passenger vehicles first began deploying 
cameras, radar, and limited software 
controls. In the 1990s, automakers intro-
duced radar-based adaptive cruise con-
trol and dynamic traction control for 
braking. In the 2000s, they introduced 
lane-departure warning and driver-assist 
parking technology. Since 2017, Waymo, 
Uber, Daimler, the U.S. Postal Service, 
and several other automakers all have 
launched experiments with robo-taxis or 
robo-trucks, targeting Level 4 Autonomy 
(see the sidebar on the last page of this 

column).4,13 If and when this technology 
will make its way into your average pas-
senger vehicle is uncertain, but there is 
no doubt that companies have been mov-
ing closer toward their goal.

The basic technologies and engineer-
ing skills needed to make self-driving ve-
hicles more widely available already ex-
ist. The most popular camera packages 
from Mobileye (purchased by Intel in 
2017) and OmniVision are relatively in-
expensive. However, some self-driving 
systems deploy much more expensive 
lasers (usually referred to as “lidar” for 
Light Detection and Ranging) as well as 
radar and ultrasound sensors, provided 
by firms such as Ibeo, Velodyne, and Au-
toliv. Major auto parts and technology 
suppliers, led by Bosch, Denso, Aptiv 
(formerly Delphi Automotive, which 
also purchased the AI and robotics soft-
ware company NuTonomy in 2017), 
TRW, and Continental, assemble com-
ponents into various driver-assist sys-
tems and use microprocessors from In-
tel-Mobileye, Nvidia, and ARM. 
Blackberry, formerly a pioneer in secure 

Technology Strategy  
and Management 
Self-Driving Vehicle Technology: 
Progress and Promises
Seeking the answer to the elusive question, ‘Are we there yet’?  
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but it has proceeded largely on its own.
Other automakers and ride-sharing 

businesses have formed partnerships 
that now compete with each other, 
though they often rely on the same sup-
pliers.5 For example, some 80% of vehi-
cles with Advanced Driver Assistance Sys-
tems (ADAS) already use Intel-Mobileye 
cameras, chips, and software.6 Volkswa-
gen is at the center of one group built 
around Argo AI technology, with Ford as a 
major investor. This alliance has loose or 
indirect ties to Mercedes-Benz (Daimler), 
BMW, Toyota, and GM (which bought 
Cruise Automation in 2016). Other allies 
are Lyft and Didi. In addition to Argo AI, 
technology providers include Bosch, 
Nvidia, Microsoft, Apple, Huawei, Qual-
comm, Baidu/Apollo, TomTom, Waymo, 
and Here (mapping technology). BMW 
and Mercedes-Benz have a separate alli-
ance, with loose ties to Renault-Nissan, 
Geely in China, and Audi (a Volkswagen 
subsidiary). They rely on many of the 
same suppliers as well as IBM. Toyota 
leads another group, with ties to GM, 
Geely, BMW, Mercedes-Benz, and Uber. 

volved in several high-profile accidents 
when drivers stopped paying attention, 
so the company now insists that drivers 
keep their hands on the steering wheel 
and eyes on the road.

Another key player is Waymo, found-
ed as a Google R&D project in 2009 and 
spun off as a fully owned subsidiary in 
2016. Waymo does not manufacture cars 
but has partnered with Fiat-Chrysler, 
Audi, Toyota, and Jaguar to retrofit their 
vehicles. It also makes a lot of its own 
hardware and software to reduce costs. 
Waymo’s technology is more advanced 
than Tesla, and is presumed to operate at 
Level 4—but with caveats. The vehicles 
drive mainly on predefined routes and 
rely on an expensive combination of li-
dar, cameras, and radar, as well as hu-
man drivers for backup. Since March 
2019, Waymo has been operating 600 au-
tonomous vehicles and claims the lead in 
Level 4 data, with approximately 20 mil-
lion miles logged on public roads.16 Since 
mid-2019, Waymo also has been operat-
ing a robo-taxi pilot in California, offer-
ing thousands of rides each month.7 Al-

though it has lost billions of dollars, 
Waymo’s ultimate goals are to offer ride-
sharing services with tens of thousands 
of vehicles (perhaps with Uber and Lyft as 
partners) and to license technology to au-
tomakers and service providers. To ex-
pand its ride-sharing business, Waymo 
has ordered 62,000 Chrysler Pacifica vans 
and another 20,000 Jaguar I-Pace cars.10

Even automakers with modest finan-
cial resources can now buy access to self-
driving technology. Several companies 
provide turnkey driver-assist or semi-
autonomous driving systems; others fo-
cus on data and simulation software, 
sensor hardware (cameras, lidar, radar, 
and ultrasound), mapping and location-
based software, and vehicle communi-
cations systems.5 But there is a problem: 
Exactly what combination of hardware 
and software works best remains un-
clear, and there is, as yet, no single in-
dustrywide “platform” or common ap-
proach for self-driving vehicle 
technology and communications. Tesla 
could have been an industry leader by 
making its software platform available, 
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makers are exploring how to enable own-
ers to share their vehicles when not in use 
and earn some revenue from this activity, 
rather than relying on Uber or other inter-
mediaries.

Conclusion
In sum, there  currently are several exper-
iments with robo-taxis and robo-trucks 
on prescribed routes, but still with hu-
man drivers as backups. Full automation 
at Level 4 or 5 remains a distant goal for 
the average consumer, and it is difficult 
to pinpoint a timeframe when this will 
become a reality. Meanwhile, all this R&D 
is not for naught. Even if automakers 
never advance much beyond Level 3 over 
the next decade, driver-assist technology 
has already made driving safer. Assist-
ing rather than replacing drivers should 
perhaps be our end goal, rather than full 
automation. 

a See M.A. Cusumano, ‘Platformizing’ a bad 
business does not make it a good business, 
Communications (Jan. 2020).
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Mercedes-Benz, which has been working 
with BMW, Audi, and Bosch, launched 
another partnership in June 2020 with 
Nvidia to develop a unique software-de-
fined self-driving architecture by 2024.15 
It is not clear how this effort will impact 
other Daimler/Mercedes-Benz partner-
ships. Various automakers and technol-
ogy vendors, including Intel-Mobileye, 
are also testing self-driving technology in 
ride-sharing or ride-hailing ventures 
while partnering with Uber, Lyft, and 
Didi—and providing competition to 
Waymo.

Despite the intensifying competition, 
there are good arguments for more coop-
eration. First, the technology remains ex-
pensive to develop, especially as compa-
nies try to move beyond Level 2. Cameras 
are necessary to view road signs and traf-
fic lights, but they perform poorly in bad 
weather. Radar is cheap and able to de-
tect the range and speed of distant ob-
jects, but radar images are not as precise 
as the three-dimensional pictures lidar 
generates, albeit at considerable ex-
pense. Ultrasound or land-based sonar, 
used extensively in Tesla vehicles, pro-
vides a 360-degree view that compensates 
for camera blind spots and aids in park-
ing, but it can only detect nearby objects 
and does not replace camera vision.12

Second, autonomous driving requires 
massive amounts of data to refine the ve-
hicle control systems. The more frag-
mented the market and variations in sen-
sor combinations and algorithms, the 
less usable data available to any one man-
ufacturer or platform provider.

Third, it could be helpful for vehicles 
to communicate with each other and 
with some traffic control systems, as air-
planes do. This type of communication 
does not solve the problem of a pedestri-
an suddenly appearing in front of a mov-
ing car, but it could reduce accidents with 
other vehicles, especially if we retrofit 
older cars and trucks with inexpensive 
communications devices or smartphone 
cameras.1 The Networking for Autono-
mous Vehicles Alliance (see https://nav-
alliance.org/), founded by Bosch, Conti-
nental, Marvell, NVIDIA, and Volkswagen 
of America, is also working “to provide a 
platform for the automotive industry to 
develop the next generation of in-vehicle 
network infrastructure for autonomous 
vehicles,” though it has yet to set any 
global standards.9

Ride-sharing and ride-hailing compa-
nies are likely to buy or lease fleets of self-
driving vehicles to get rid of driver costs, 
their main expense, and their large-scale 
purchases could help reduce costs for the 
automakers. However, the ride-sharing 
companies are already losing billions of 
dollars per year, and they will have to take 
on the enormous costs of owning or leas-
ing millions of their own vehicles.a Self-
driving technology might even someday 
eliminate demand from companies like 
Uber, Lyft, and Didi.3 Most privately 
owned automobiles sit idle approximate-
ly 95% of the time.8 Tesla and other auto-

Level 1—Driver Assistance:  
The system and the human driver 
share control; for example, radar-
based adaptive cruise control operates 
the engine and braking, and assists in 
lane control while the driver steers. 

Level 2—Partial Automation:  
The system controls vehicle operations 
such as acceleration, braking, and 
steering, but drivers must constantly 
monitor operations and usually need 
to hold the steering wheel for the 
autonomous system to operate. Assists 
steering, lane changing, traffic-jam 
driving (low-speed version of cruise 
control), and overtaking.

Level 3—Conditional Automation:  
The system controls most vehicle 
operations, but driver monitoring and 
intervention are still essential. Drivers 
may be “hands off” on highways for 
short periods. Assists lane changes, 
parking, and traffic-jam driving.

Level 4—High Automation:  
The system supports self-driving with 
no or minimal driver intervention, 
but primarily in mapped locations. 
Automated lane changing and other 
features available.

Level 5—Full Automation:  
The system requires no human 
intervention, as in a robo-taxi or 
robo-truck.

This table is based on various sources, 
including: Shuttleworth, J. SAE Standards 
news: J3016 automated-driving graphic 
update, SAE.org News, January 7, 2019; and 
Madhavan, R. How self-driving cars work: a 
simple overview. Emerj.com, June 3, 2019.

Levels of 
Autonomy in 
Self-Driving 
Vehicles

http://Medium.com
mailto:cusumano@mit.edu
https://nav-alliance.org/
http://SAE.org
http://emerj.com
http://IoTWorldToday.com
https://nav-alliance.org/
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ourselves.” The same is true of my 
quote from the early crypto wars re-
garding export controls: “Pandora’s 
Cat Is Out of the Barn, and the Genie 
Won’t Go Back in the Closet.” We are 
apparently reaching a crossroads at 
which we must reconsider potentially 
everything, and especially how it af-
fects the future.

Priorities Among Competing Goals
Human civilization does not tend to 
agree among issues such as fairness, 
equality, safety, security, privacy, and 
self-determination (for example). With 

T
HIS COLUMN CONSIDERS some 
challenges for the future, re-
flecting on what we might 
have learned by now—and 
what we systemically might 

need to do differently. Previous Inside 
Risks columns have suggested that 
some fundamental changes are ur-
gently needed relating to computer sys-
tem trustworthiness.a Similar conclu-
sions would also seem to apply to 
natural and human issues (for exam-
ple, biological pandemics, climate 
change, decaying infrastructures, so-
cial inequality), and—more general-
ly—being respectful of science and evi-
dent realities. To a first approximation 
here, I suggest almost everything is po-
tentially interconnected with almost 
everything else. Thus, we need moral, 
ethical, and science-based approaches 
that respect the interrelations.

Some commonalities across differ-
ent disciplines, consequent risks, and 
what might need improvement are 
considered here. In particular, the nov-
el coronavirus (COVID-19) has given us 
an opportunity to reconsider many is-
sues relating to human health, eco-
nomic well-being (of individuals, aca-
demia, and businesses), domestic and 
international travel, all group activities 
(cultural, athletic, and so forth), and 
long-term survival of our planet in the 

a For example, see “How Might We Increase 
System Trustworthiness?” Communications 
(Oct. 2019); http://www.csl.sri.com/neumann/
cacm247.pdf

face of natural and technological cri-
ses. However, there are also some use-
ful lessons that might be learned from 
computer viruses, malware, and inade-
quate system integrity, some of which 
are relevant to the other problems—
such as computer modeling and retro-
spective analysis of disasters, supply-
chain integrity, and protecting 
whistle-blowers.

A quote from Jane Goodall in an in-
terview in April 2016 seems more 
broadly relevant here than in its origi-
nal context: “If we carry on with busi-
ness as usual, we’re going to destroy 

Inside Risks  
A Holistic View  
of Future Risks 
Almost everything is somehow interrelated with  
everything else—and that should not surprise us.

DOI:10.1145/3417095 Peter G. Neumann
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pandemics, climate change, and the 
planet’s environment—along with 
their implications for human health 
and well-being, and resource exhaus-
tion of rare elements.

A closely related principle of perva-
sive holism invokes a big-picture view of 
the Einstein principle, in which every-
thing is potentially in scope unless ex-
plicitly ruled out—for example, for rea-
sons of impossibility, feasibility, or 
perhaps for mistaken decisions about 
costs, when the long-term overall ben-
efits would dramatically outweigh the 
short-term savings. Pervasive holism 
represents the ability to consider all 
relevant factors, and the ensuing risks. 
It is relevant broadly across many disci-
plines. For example, it is essential in 
the design of computer-communica-
tion systems. It encourages systems to 
be designed to compensate for a wide 
range of threats and adversities, in-
cluding some that might not be antici-
pated a priori. Similarly, climate 
change is causatively linked with ex-
treme weather conditions, melting gla-
ciers, more disastrous fires, human ac-
tivities, fossil fuels, changes in 
agriculture, and—with nasty feed-
back—greater demands for air condi-
tioning and refrigerants such as hydro-
fluorocarbons that are making the 
problems worse. On the positive side, 
atmospheric and sea changes have 
been observed during the pandemic 
shutdown (with reduced fuel consump-
tion and much less travel), reinforcing 
arguments that alternatives to fossil fu-
els are urgently needed (especially as 
they are becoming increasingly eco-
nomical and competitive).

COVID-19, economical well-being, 
health care, climate change, and oth-
er issues (some of which are consid-
ered here), if we cannot agree on the 
basic goals, we will never reach what-
ever they might have been—especially 
if the goals appear to compete with 
each other.

The Importance of 
Fundamental Principles
Numerous principles for computer sys-
tem security and integrity have been 
known for many years, and occasional-
ly practiced seriously. Some corre-
sponding principles might be consid-
ered more broadly in the combined 
context of risks in engineering com-
puter-related systems, but also in natu-
ral systems.

Albert Einstein wrote “It can scarce-
ly be denied that the supreme goal of 
all theory is to make the irreducible ba-
sic elements as simple and as few as 
possible without having to surrender 
the adequate representation of a single 
datum of experience.”b This is often 
paraphrased as “Everything should be 
made as simple as possible, but no sim-
pler.” Although the longer statement 
could be thought of as applicable to try-
ing to explain things as they are (for ex-
ample, the universe), the simplified 
version (“should be made”) is also fun-
damental to the development of new 
computer systems, as well as in plan-
ning proactively for potential catastro-
phes and collapsing infrastructures.

This principle, together with princi-
ples relating to transparency, account-
ability, and scientific integrity, suggest 
dealing openly and appropriately with 
risks, while being respectful of science 
and reality throughout. For example, 
we tend to make huge mistakes by 
stressing short-term gains (particularly 
financial), while ignoring the long-
term risks (including everything else). 
Unfortunately, the gains are unevenly 
distributed, as the rich get richer, and 
the poor tend to get poorer and suffer 
much more.

The principles relating to com-
pleteness are particularly critical to 
computer system design, implemen-
tation, applications, and human inter-
faces, but also regarding responses to 

b See https://quoteinvestigator.com/2011/05/13/
einstein-simple/

Numerous principles 
for computer system 
security and integrity 
have been known 
for many years, 
and occasionally 
practiced seriously.
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Many nations have clearly realized 
that careful application of scientific 
analysis is always desirable, but it can 
be misused or misapplied. In confront-
ing pandemics, massive immunization 
programs must be preceded by exten-
sive testing, without which they can 
have serious consequences (including 
organ failures, deaths, iatrogenic ef-
fects, and in some cases allergic reac-
tions such as anaphylaxis). In pharma-
c e u t i c a l s ,  s o m e  e f f e c t s  a r e 
disingenuously called ‘side-effects’—
whereas in many cases these effects are 
well known to have occurred (and are 
often extensively enumerated in the la-
beling). However, the effects of defor-
estation, pesticides, toxic environ-
ments (water, air, polluted oceans), 
non-recyclable garbage, overuse of an-
tibiotics, and so on should by now all 
be well recognized as long-term risks.

In today’s novel coronavirus and its 
ongoing mutations, a holistic approach 
requires anticipating human physical 
and mental health factors, and their in-
teractions with economic factors and 
social equality (all persons are suppos-
edly created equal, but usually not 
treated accordingly—but what about 
other creatures?), along with future im-
plications, globally rather than just lo-
cally. It also requires understanding 
potential long-term damage—for ex-
ample, effects on heart, brain, and oth-
er organs are still unknown. Fully an-
ticipating the consequences of 
insurance policies that would not allow 
existing preconditions is also a major 
issue, in light of the huge numbers of 
COVID-19 infections worldwide. Equal-
ity in almost everything is desirable, es-
pecially in education when home 
schooling is impossible, broadband ac-
cess is spotty or nonexistent, and the 
lack of ubiquitous Internet-accessible 
devices is a show-stopper for many chil-
dren. Equal opportunity to vote is also 
critical, but is being badly abused. Fur-
thermore, spreading disinformation 
and other forms of disruption can be 
especially damaging in all of the pre-
ceding cases. So, many of these issues 
are actually interrelated. As one further 
example of the extent of interrelation-
ships and interlocking dependencies, 
the realization that arctic glacial melt-
ing is releasing methane and possibly 
ancient viruses from earlier pandemics 
is also relevant.

Principles involving controllability, 
adaptability, and predictability require 
better understanding of the impor-
tance of a priori requirements, as well 
as the vagaries of models, designs, de-
velopment, implementation, and situ-
ational awareness in real time. These 
are vital in computer system develop-
ment. In pandemics, these principles 
should help reduce the uncertainties 
of taking different approaches to limit-
ing propagation of contagion, severity 
of cases, duration of disruption, extent 
of acquired immunities, and above all 
a willingness to accept reality and sci-
entific knowledge.

A caveat is needed here: The preced-
ing principles can be used effectively 
by people who deeply understand the 
fields in which they are working—and 
who also have a willingness to work 
well with colleagues with a better un-
derstanding of other areas. In the ab-
sence of such knowledge and willing-
ness, the principles are likely to be very 
poorly misapplied. Humility is a virtue 
in this regard.

Legal and Ethical Principles
In the social and economic arena, there 
is a similar need for close attention to 
the core legal principles driving priva-
cy, antitrust, labor rights, environmen-
tal damage, and so on. There is a small 
but growing group of legal scholars 
who are revisiting our legal founda-
tions, in an overarching framework 
they call an approach to ‘law and politi-
cal economy’, somewhat in reaction to 
the very influential ‘law and economics’ 

Adherence to  
ethical principles is  
of course also likely 
to contribute to 
human integrity, 
as well as to 
transparency, 
accountability,  
and reality.

approach that originated from the Uni-
versity of Chicago.c

Adherence to ethical principles is of 
course also likely to contribute to hu-
man integrity, as well as to transparen-
cy, accountability, and reality.

Models, Predictions, and Planning
Creating realistic models for compu-
tational or other problems consid-
ered here is always an art form. A se-
lected model may itself be 
fundamentally divergent from reality. 
Assumptions made may be specula-
tive, or in some cases intentionally 
biased to enable the model to justify 
preconceived goals. (With statistics, 
anything can be ‘proven’.) Further-
more, static models are unable to 
adapt to changing events, so the 
model must be adaptable to evolving 
realities and the emergence of better 
knowledge. This is true of pandem-
ics, climate change, as well as com-
puter system behavioral modeling.

Having well-designed models that 
provide transparency, respect reality, 
and are mathematically sound is very 
important—in order to be able to rea-
son sensibly. However, because mod-
els inherently represent abstractions 
of reality, reasoning about models typi-
cally introduces discrepancies between 
the models and reality. Predicting the 
future based on erroneous models and 
erroneous logic is not a path to suc-
cess. Similar remarks apply to statisti-
cal analysis of inherently multidimen-
sional problems. These issues have 
clearly been raised in predicting the 
progress of pandemics, climate 
change, and the trustworthiness of 
computer systems (for example). Al-
though this is a particularly fundamen-
tal area, it deserves much more study. 
However, when evidence clearly dem-
onstrates poor results, it is time to reas-
sess failed remediations.

Testing and Verifying
Testing finds problems, but cannot 
find the absence of problems. Verifica-
tion can find some of the problems, but 
many others are beyond routine analy-
sis—such as side channels, hardware 
attacks, and other things that might 
not be included in threat models. Thus, 

c See https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=3547312

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3547312
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3547312
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points of failure. In addition, due to 
the lack of alternatives, product quality 
suffers when market power is abused, 
due to the lack of alternatives.e

Principles of robust and resilient 
system design, both industrial and 
computer related, suggest that hav-
ing many distributed and roughly 
commensurate producers or proto-
col participants is preferable to high-
ly centralized structures. The latter 
might be superficially more efficient, 
but could mask dramatic failure 
modes. This notion also shows up in 
ecology, where diverse and vibrant 
farm ecosystems are typically more 
resilient than crop monocultures. 
Furthermore, concentrated econom-
ical power embodied by monopolies 
is easily converted into political 
power, leading to contribution-fa-
voring legislation and rising eco-
nomic inequality.

The advantages of having diverse 
and widely dispersed (but well coordi-
nated and carefully monitored) actors 
seem to be preferable in improving 
distributed computer-system resilien-
cy, economies of industrial organiza-
tions, approaches to pandemics, and 
thriving ecosystems.

System Integrity
Overall system integrity is also an is-
sue. For example, election integrity is 
dependent not just on voting machines 
and paper ballots. It also depends on 
the trustworthiness of registration da-
tabases, tabulation and auditing pro-
cesses, as well as (for example) the 
avoidance or tolerance of distorting ef-
fects such as gerrymandering, selective 
disenfranchisement, and rampant use 
of disinformation. Some efforts re-
quire effective national leadership, 
and in some cases extensive interna-
tional cooperation.

Protecting Protectors  
and Truth of Information
Reporting of systemic flaws newly 
found by white-hat hackers has gen-
erally become carefully managed in 
order to avoid flagrant misuse; how-
ever, the market for zero-day flaws 
remains lucrative. Whistle-blowers 

e See https://prospect.org/power/monopoly-
misrepresentation-and-malpractice-3m-
earplugs/

even a combination of both may not be 
enough, which applies to computer 
algorithms, protocols, software, and 
hardware, but also to some of the 
other areas considered here. For ex-
ample, biological testing and appli-
cations of artificial intelligence and 
deep learning need to have a sound-
er basis that could eliminate vastly 
too many false positives and false 
negatives, as well as other forms of 
unrealistic results.

Formal methods are increasingly 
being applied to software hypervisors 
(for example, CertiKOS, seL4, and the 
Green Hills Integrity Multivisor) and 
to hardware (for example, CHERI, 
Centaur). Formal modeling of biologi-
cal pathways, techniques to stimulate 
immunities, effects of climate change, 
short- versus long-term consequenc-
es, and many other possible approach-
es could be considered using formal 
analysis. Of particular interest might 
be formal analysis of requirements, 
models, and analysis techniques in 
other areas considered here.

System and Supply-Chain Integrity
The availability and integrity of deliv-
ered computer-related systems and 
medical supplies clearly present enor-
mous problems, which are likely to be 
exacerbated in times of crisis. Over re-
cent years, the implementation of 
many entities has increasingly been 
outsourced and off-shored, including 
computer hardware fabrication, just-
in-time delivery of automobile parts, 
hospital health-care necessities, and 
even food. It should be obvious that 
our computer systems, medical sup-
plies, and other resources may be in-
adequately protected from supply-
chain disruptions, tampering, and 
even fraud.

The effects of monopolized indus-
trial sectors are notable here. The con-
centration of industrial production of 
various types in a few very large play-
ers (most prominently and visibly in 
the tech sector, but it is pervasive 
across the board with hidden mo-
nopolies galore, for example, in 
pharmaceuticals and health-care 
management).d It effectively creates 
fewer but far more consequential 

d See https://prospect.org/health/hidden-mo-
nopolies-raise-drug-prices/

For further information 
and to submit your 

manuscript, 
visit csur.acm.org

ACM Computing Surveys 
(CSUR) publishes 
comprehensive, 
readable tutorials and 
survey papers that give 
guided tours through 
the literature and 
explain topics to those 
who seek to learn the 
basics of areas outside 
their specialties. These 
carefully planned and 
presented introductions 
are also an excellent 
way for professionals to 
develop perspectives on, 
and identify trends in, 
complex technologies.
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Conclusion
Willingness to accept and respond to 
reality is fundamental to avoiding 
risks. The unknown unknowns are al-
ways risky, but can be minimized some-
what by proactively seeking to identify 
the potential risks, and reflecting on 
Murphy’s Law—rather than ignoring 
the emergence of certain presumed 
rare disasters that have been emerging 
much more often, which deserve a prio-
ri attention (rather than relying on case-
by-case a posteriori remediation).

This clearly applies to infrastruc-
tures, supply chains, and medical pre-
paredness, among other topics con-
sidered here—or further topics that 
could have been included here but 
were not even mentioned, with the un-
fortunate consequence of making the 
discussion too simple, in conflict with 
the Einstein principle.

As has been frequently noted, but 
which is nevertheless highly relevant 
here, We Are All In This Together, and Al-
most Everything Is Increasingly Becom-
ing Interrelated—for better or for worse. 
Isolated defensive actions have very lim-
ited value; your own actions can affect 
others. Retrogressive governmental ac-
tions are counterproductive. Biological 
viruses and computer risks can both 
propagate globally with amazing rapidi-
ty. In any event, you must protect your-
self, while also respecting the well-being 
of others. Wearing a mask and isolating 
yourself are akin to being intensely secu-
rity-aware with respect to computer vi-
ruses and phishing attacks, having back-
ups to defend against ransomware 
attacks, and being cognizant of reality.

Ultimately, more altruistic foresight 
could help to avoid all sorts of undesirable 
events, such as pandemics, climate 
change, environmental disasters, global 
extinction of species, disparities in educa-
tion and economic well-being, and unnec-
essary losses of human life—as well as 
crossover combinations of these (for ex-
ample, as varied as the Deepwater Horizon 
fiasco, deforestation of the Amazon, the 
demise of honey bees, and wars). And yet, 
this brief summary is only a beginning. 

Peter G. Neumann (neumann@csl.sri.com) is Chief 
Scientist of the SRI International Computer Science 
Lab, and has moderated the ACM Risks Forum since its 
beginning in 1985. He is grateful to Prashanth Mundkur 
and Tom Van Vleck for helping considerably enrich the 
holistic perspective in this column.

Copyright held by author.

have often subsequently been victims 
of character assassinations, particu-
larly those that are fabricated to dis-
tract from would-be exposure of mis-
deeds. Also, numerous medical 
experts who have dealt with legiti-
mate scientific evidence regarding 
COVID-19 have been treated as ille-
gitimate purveyors of fake informa-
tion, as if they had been whistle-
blowers spreading false accusations. 
The same is true of climate change, 
which requires careful consideration 
of the underlying science. Conspira-
cy theories continue to appear. The 
principles of transparency and ac-
countability are particularly impor-
tant in these contexts.

Privacy and Related Concerns
Respecting personal privacy is a ubiq-
uitous challenge in every computer-
related activity, particularly in the 
presence of overreaches in wide-
spread surveillance, the desire for 
cryptographic backdoors for law en-
forcement, and detailed statistical re-
porting. In addition, addressing ram-
pant disinformation and hate speech, 
as well as attacks on whistle-blowers, 
are in conflict while trying to protect 
free speech. Some of these and other 
issues are particularly relevant to pan-
demics (for example, with the need 
for intensive monitoring and large-
scale fine-grained contact tracing)—
as well as almost everything involving 
big data.

What Is Missing from This 
Conceptual Big-Picture View?
The discussion here may seem some-
what disconnected, and the desire for 
holistic approaches overly ambitious. 
However, it is becoming ever clearer 
that the topics considered here are 

interrelated in ways that are some-
times not obvious. For example, man-
made disruptions of nature seem to 
be biting back at us in various ways, 
including climate change, health, 
eco-balance, pollution, and animal-
human crossovers of pandemics. 
This column is merely a high-level at-
tempt to find commonality in what 
may once have appeared to be dispa-
rate subjects. Putting all the pieces 
together with adequate foresight 
presents major challenges. Every-
thing along the way needs precise 
definitions, descriptions, specifica-
tions, and logical thought, including 
the dependencies among the constit-
uent elements. Well-defined realistic 
abstractions are important, along 
with well-defined refinements that can 
be used to determine overall consisten-
cy and predictable results. Only then 
can rational conclusions be reached 
that have any bearing on reality.

The sense of composing the pieces 
with predictable assurance is concep-
tually understood in theory with re-
spect to computer systems, although 
not often observed in practice. A goal 
here would be to mirror such ap-
proaches with respect to other areas, 
such as biological processes, pandem-
ic spreading, environmental prob-
lems, and other socioeconomic is-
sues, to give them a more scientific 
and logical basis. Understanding the 
legal foundations of markets and so-
cial interactions is also a basic part of 
what needs to be included in the holis-
tic view, along with the technological, 
engineering, and other scientific prin-
ciples. Identifying any common ab-
stractions and their potential interac-
tions could be very helpful.

In the opposite direction, what 
might computer technology learn 
from the ongoing natural-world prob-
lems noted here? For example, our 
system models and risk models for 
trustworthy computer systems gener-
ally fail to consider the risks holisti-
cally—for example, neglecting those 
that are external to the technology. 
Predicting any consequences on the 
basis of questionable models is also a 
major risk, especially if the results su-
perficially seem generally believable—
and what one might like to believe. 
Thus, we need to learn more from 
each other.

Willingness  
to accept and 
respond to reality  
is fundamental  
to avoiding risks.
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no ability to deploy these helpful hints 
to improve productivity. Allowing any 
two symbols to represent the same con-
cept, for example, is a definite no-no. 
Imagine if you could have two types of 
braces to delineate blocks of code, just 
because two different parts of the pro-
gramming community wanted them, or 
if there were multiple syntactic ways to 
dereference a variable. The basic idea is 
there must be one clear way to do each 
thing that a language must do, both for 
human understanding and for the sani-
ty of editor developers. Thus, the use of 
invisible, or near-invisible, markings in 
code, especially tabs and spaces, to indi-
cate structure or syntax.

Invisible and near-invisible mark-
ings bring us to the human part of the 
problem—not that code editor au-
thors are not human, but most of us 
will not write new editors, though all of 
us will use editors. As we all know, 

Dear KV,
My team resurrected some old Python 
code and brought it up to version 3. The 
process was made worse by the new re-
striction of not mixing tabs and spaces 
in the source code. An automatic clean-
up that allowed the code to execute by 
replacing the tabs with spaces caused a 
lot of havoc with the comments at the 
ends of lines. Why does anyone make a 
language in which white space matters 
this much?

White Out

Dear White,
Ever edited a Makefile? Although 
there is a long tradition of the signifi-
cant use of white space in program-
ming languages, all traditions need 
to change. In Python, many people 
have taken issue with the choice to 
have white space—and not braces—
to indicate the limits of blocks of 
code, but since the developers did 
not change their minds on this with 
version 3 of Python, I suspect we are 
all stuck with it for quite a bit longer, 
and I am quite sure that there will be 
other languages, big and small, where 
white space remains significant.

If I could change one thing in the 
minds of all programming language 
designers, it would be to impress upon 
them—forcefully—the idea that any-
thing that is significant to the syntactic 
or structural meaning of a program 
must be easily visible to the human 

reader, as well as easily understood by 
the systems used by developers.

Let’s deal with that last point first. 
Making it easy for tools to understand 
the structure of software is one of the 
keys to having tools that help pro-
grammers prepare proper programs 
for computers. Since the earliest days 
of software development, program-
mers have tried to build tools that 
show them—before the inevitable ed-
it-compile-test-fail-edit endless loop—
where there might be issues in the pro-
gram text. Code editors have added 
colorization, syntax highlighting, fold-
ing, and a host of other features in a 
desperate, and some might say fruit-
less, attempt to improve the produc-
tivity of programmers.

When a new language comes along, 
it is important for these signifiers in 
the code to be used consistently; oth-
erwise your editor of choice has little or 

Kode Vicious 
Sanity vs. Invisible 
Markings 
Tabs vs. spaces

DOI:10.1145/3417099 George V. Neville-Neil
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V once upon a time computers had small 
memories and the difference between 
a tab, which is a single byte, and a cor-
responding number of spaces (8) 
could be a significant difference be-
tween the size of source code stored on 
a precious disk, and also transferred, 
over whatever primitive and slow bus, 
from storage into memory.

Changing the coding standard from 
eight spaces to four might improve 
things, but let’s face it, none of this has 
mattered for several decades. Now, the 
only reason for the use of these invisi-
ble markings is to clearly represent the 
scope of a piece of code relative to the 
pieces of code around it.

In point of fact, it would be better 
to pick a single character that is not a 
tab and not a space and not normally 
used in a program—for example, Uni-
code code point U+1F4A9—and to use 
that as the universal indentation char-
acter. Editors would then be free to in-
dent code in any consistent way based 
on the user’s preferences. The user 
could have any number of blank char-
acters used per indent character—8, 
4, 2, some prime number, whatever 
they like—and programmers could 
choose their very own personal views 
of the scope. On disk, this format 
would cost only one character (two 
bytes) per indent, and if you wanted to 
see the indent characters, a common 
feature of modern editors, you flip a 
switch, and voila, there they all are. Ev-
eryone would be happy, and we would 
finally have solved the age-old conun-
drum of tabs vs. spaces.

KV

  Related articles  
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declaration and management of con-
flicts, as follows.

1. Uniquely identify all authors in 
bibliographic data sources, as well 
as all authors, reviewers, and meta-
reviewers in manuscript management 
systems. (Meta-reviewers are those 
who manage the review process, such 
as editors-in-chief and program com-
mittee chairs.)

Duplicate names already make it 
impossible to unambiguously identify 
by name those involved in the review 
process, and even make it difficult for 
conference organizers to ensure they 
are inviting the right people to join 

O
VER THE LAST 70 years of com-
puter science research, our 
handling of conflicts of 
interest has changed very 
little. Each paper’s corre-

sponding author must still manually 
declare all their co-authors’ conflicts 
of interest, even though they probably 
know little about their most senior co-
authors’ recent activities. As top-tier 
conference program committees in-
crease past 500 members, many with 
common, easily confusable names, 
PC chairs with thousands of reviews to 
assign cannot possibly double-check 
corresponding authors’ manual decla-
rations against their paper’s assigned 
reviewers. Nor can reviewers reliably 
catch unreported conflicts. Audits at 
recent top-tier venues across several 
areas of computer science each uncov-
ered more than 100 instances where, 
at the first venue, a pair of recent co-
authors failed to declare their conflict 
of interest; at the second venue, some-
one was assigned to review a recent 
co-author’s submission; and at the 
third venue, someone reviewed a sub-
mission written by a prior co-author 
from any year. Even the concept of a 
conflict deserves closer scrutiny: an au-
dit at yet another recent top-tier venue 
edition found more than 100 cases in 
which prior co-authors from any year 
reviewed each other’s submissions.

These are issues of scale. Seven-

ty years of exponential growth have 
turned our little village into a metropo-
lis, and our handling of conflicts of in-
terest (conflicts for short) has not kept 
pace with our community’s growth. But 
we computer scientists are experts at 
scaling up! We have already addressed 
issues of scale in many other aspects 
of our review processes, including en-
hancements such as double-blind re-
view, multiple submission deadlines, 
opportunities for revision and rebut-
tal, and online submission and review 
management systems. 

It is time for our venues to leverage 
existing data sources to improve the 

Viewpoint 
We Need to Automate 
the Declaration of 
Conflicts of Interest 
Leveraging existing data sources to improve the declaration  
and management of authorship conflicts of interest.
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V uniquely identified, and the otherg re-
quires only reviewers to be uniquely 
identified.3 In the longer run, we recom-
mend that outcalls to a conflict service 
be directly supported by manuscript 
management systems, so that the sys-
tem can automatically invoke the con-
flict service to augment self-reports of 
conflicts before reviewers are assigned. 
We also recommend that the authors of 
reviewer assignment algorithms extend 
them to avoid additional more subtle bi-
ases in the review process, by ensuring 
diversity of institutions, localities, and 
countries of origin. Computer science 
research is now a global enterprise, and 
we should take advantage of that diver-
sity throughout the review process.

Villagers might not need to lock 
their doors, but metropolis dwellers 
would be foolish not to. As village life 
slowly gave way to the anonymity of the 
big city, our community has had to es-
tablish ethics committees and codes 
of ethics, policies on plagiarism, au-
thorship, sexual harassment, and so 
on. Automated reporting of observable 
conflicts will greatly reduce the big-city 
crimes of impersonating others and 
deliberately underreporting conflicts. 
Automated audits will offer a further 
deterrent once the conflict service is in-
tegrated into submission systems: the 
system can automatically recompute 
the observable conflicts some months 
after the submission deadline and 
compare them to those stored in the 
system. At a minimum, missing self-re-
ports should result in a warning letter.

Currently, conflicts are all-or-nothing: 
today two recent co-authors absolutely 
cannot review each other’s papers, but 
maybe tomorrow they absolutely can. 
Big-city life demands a more nuanced 
definition that recognizes all the shades 
of gray, so let us acknowledge that con-
flicts differ in their severity, drop the bi-
nary definition of conflict, and define a 
(degree of) conflict as a real number in 
[0, 1] computed by a formula specified 
by the publication venue (the aforemen-
tioned menu-style specification). Then 
we can differentiate between the sever-
ity of a conflict and a venue’s publicized 
threshold for automatically disqualify-
ing a reviewer, which will legitimately 
differ between venues (for example, a 

g See https://www.ntu.edu.sg/home/assourav/re-
search/DARE/closet.html

their program committees. Fortunate-
ly, authenticated ORCIDsa exist for ex-
actly this purpose, and we should re-
quire their use.

2. Disallow changes in the author 
list after submission. Conflict declara-
tions are based on the author list at the 
time of submission; subsequent chang-
es may introduce new conflicts not con-
sidered during reviewer assignment.

3. Require automated reporting of 
all observable conflicts. PC chairs can 
use a service that identifies all conflicts 
observable in publicly available in-
formation on co-authorships, institu-
tional affiliations, and advisor relation-
ships, as explained here.

4. Require authors to self-report 
only non-observable conflicts, such as 
new employers, new collaborations, 
family members, and friends.

5. Automatically audit self-reports 
in retrospect and share the results 
with the venue’s sponsor or publisher, 
which should have the power to exam-
ine all data they consider relevant and 
to impose appropriate sanctions for se-
rious violations.

6. Use an independent and conflict-
of-interest-free committee to select 
best papers.

7. Consider the use of a more so-
phisticated definition of conflict of in-
terest, as explained here.

8. Involve the community and our 
professional societies as needed, as 
discussed here.

To see how an automated conflict re-
porting service for manuscript manage-
ment systems can work, consider the 
traditional definition of a conflict: two 
people have a conflict if they wrote a pa-
per together in the past two years, are at 
the same institution, are close relatives 
or friends, were advisor and advisee, 
or worked together closely on a proj-
ect in the past two years. Bibliographic 
databases such as Google Scholarb and 
DBLPc implicitly provide a graph of the 
relevant co-authorship relationships, 
and can also be mined with high accu-
racy to identify advisor-advisee relation-
ships.2 DBLP already uses data-driven 

a The Open Researcher and Contributor ID (OR-
CID) is an international non-profit initiative to 
uniquely identify scientific and other academic 
authors; see https://orchid.org

b See https://google.scholar.com
c See https://dblp.org

disambiguationd of individuals and 
associates authors with ORCIDs and 
employers; see, for example, how DBLP 
handles its 218 different Wei Wangs.e 
Authenticated employer information 
(including unique IDs for institutions) 
and educational affiliations are also 
available directly from the ORCID ser-
vice, and perhaps authenticated advisor 
information eventually as well.

The conflict service’s input is: for 
each paper, the set of (uniquely identi-
fied) authors; the set of reviewers and 
meta-reviewers, also uniquely identi-
fied; and a menu-style specification 
of the venue’s conflict policy. For each 
paper, the conflict service returns the 
paper’s conflicts, that is, all review-
ers and meta-reviewers who have an 
observable conflict with an author of 
the paper, along with an explanation 
of the source of the conflict. These 
conflicts must be added to the self-
reports in the submission system, af-
ter which conference organizers can 
use any method of assigning papers 
to reviewers, for example, manually, 
based on bids, or using the Toronto 
Paper Matching Service.1 As usual, the 
assignment algorithm will automati-
cally avoid all review assignments that 
involve a conflict. Note that the con-
flict service need not learn anything 
about a venue’s submissions, beyond 
the set of all authors.

Two standalone beta versions of 
conflict services are already available 
to PC chairs, driven by DBLP data; onef 
requires authors and reviewers to be 

d See https://dblp.uni-trier.de/faq/17334571.html
e See https://dblp.uni-trier.de/pers/hd/w/wang:wei
f See https://github.com/ebina1/conflict-of-

interest

It is time for our 
venues to leverage 
existing data sources 
to improve  
the declaration  
and management  
of conflicts.
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even a computing-wide consortium that 
includes non-profit societies and for-
profit publishers.

2. To expand the definition of a con-
flict and devise the infrastructure to 
support that definition, we may need 
input from experts on the social issues 
of privacy and security; the technical 
issues of data collection, organization, 
and maintenance; the policy issues in-
herent in defining conflict broadly yet 
specifically; and the administrative is-
sues in long-term maintenance and 
evolution of a conflict service.

3. We should encourage research into 
relevant topics, including definitions of 
conflict, scalable algorithms to identify 
conflicts, and sources and methods for 
handling suspected false positives.

4. Once they are in place, we should 
share our community’s metrics, mecha-
nisms, and infrastructure with the glob-
al research enterprise, including other 
scientific disciplines and the National 
Academies of interested countries.

Life in the big city poses new threats 
and challenges, but we can leverage the 
metropolis’s great infrastructure to ad-
dress those problems. By taking advan-
tage of existing datasets, services, and 
mining algorithms, we can eliminate 
almost all the tedium of declaring and 
managing conflicts, with the pleasant 
side effect of reducing the metropoli-
tan crime rate. With those measures 
in place, we can move on to develop a 
more nuanced understanding of what 
constitutes a conflict of interest. 
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workshop versus a top-tier conference). 
The conflict service described here can 
easily support such venue-specific cut-
off scores and real-valued functions for 
computing conflicts, making it easy for 
venues to define and experiment with 
more sophisticated measures.

We also need to recognize that mul-
tiple co-authorships indicate a stronger 
tie. A dozen papers co-authored five 
years ago may pose as much of a conflict 
as does a single paper co-authored last 
year, because those dozen papers indi-
cate a very strong tie. Further, conflicts 
can have multiple contributing facets, 
for example, same institution, same 
city, or a highly overlapping set of prior 
co-authors. We can weight each type of 
tie between researchers according to the 
strength of their tie, model the fading 
of ties over time as a continuous func-
tion, and devise a method to gracefully 
combine multiple weighted and faded 
factors into an overall conflict score, 
corresponding to our best estimate of 
the chance that two people cannot im-
partially review each other’s work.

The prototypes mentioned here 
show that one can already build useful 
standalone conflict services that rely 
on readily available data. But we will 
need greater community involvement 
to reach the ultimate solution. Beyond 
the steps outlined that each venue can 
take today, we advocate four steps at 
the community level.

1. To reach a solution suitable for all 
of computer science, our community 
will need to provide coordination and 
funding for infrastructure construc-
tion. This could come from the ACM 
Publications Board, the SIG Governing 
Board, the IEEE Technical Activities 
Board, ACM and/or IEEE as a whole, or 

The prototypes 
mentioned here 
show that one can 
already build useful 
standalone conflict 
services that rely on 
readily available data.
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prove the accessibility of the theory 
course while maintaining its rigor: 
first, emphasizing search problems 
rather than decision problems in cer-
tain parts of the course; and second, 
employing computer programs written 
in a real programming language as 
one of the standard computational 

T
HE  THE ORY OF computation 
is one of the crown jewels of 
the computer science curric-
ulum. It stretches from the 
discovery of mathematical 

problems, such as the halting problem, 
that cannot be solved by computers, to 
the most celebrated open problem in 
computer science today: the P vs. NP 
question. Since the founding of our 
discipline by Church and Turing in the 
1930s, the theory of computation has 
addressed some of the most fundamen-
tal questions about computers: What 
does it mean to compute the solution 
to a problem? Which problems can be 
solved by computers? Which problems 
can be solved efficiently, in theory and 
in practice?

Yet computational theory occupies 
an ambiguous role in the undergradu-
ate curriculum. It is a required core 
course for the computer science major 
at many institutions, whereas at many 
others it is an upper-level elective. And 
whether required or not, the theory 
course can have a reputation as an aus-
tere and perhaps even irrelevant niche, 
disconnected from the skills and ideas 
that comprise computer science. This 
is not a new phenomenon, and in re-
cent decades the CS community has 
worked diligently to improve the acces-
sibility and perceived relevance of the 

theory course. Notable contributions 
include the JFLAP software for experi-
mentation with automata,8 and various 
efforts to promote “NP-completeness 
for all” via visualizations and practical 
laboratory exercises.1

This Viewpoint discusses two spe-
cific suggestions for continuing to im-

Viewpoint 
Using Computer Programs 
and Search Problems  
for Teaching Theory  
of Computation 
Recognizing the significance of a cornerstone of computer science.
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Using Real Computer Programs 
to Complement Automata
Another technique for increasing stu-
dent engagement and connections 
with other parts of the CS curriculum is 
to employ code in a real programming 
language. This can provide a beneficial 
supplement to the automata and gram-
mars that typically dominate a course 
in theory of computation. Formal mod-
els such as Turing machines are of 
course essential, especially for provid-
ing a rigorous definition of computa-
tion itself. However, it is possible to 
teach a mathematically rigorous theory 
course using a programming language 
as the primary model of computation. 
In this approach, the program model is 
layered over Turing machines as an un-
derlying model, and Turing machines 
are still employed when required in cer-
tain proofs and definitions. A strong 
majority of CS theory textbooks do not 
employ a programming language as the 
primary computational model, but sev-
eral authors have done so, for example 
using Python,6 Ruby,9 and a variant of 
LISP.4,7 As an example of the approach, 
consider the Python program shown in 
the figure here.

This code provides the basis for a 
proof by contradiction, demonstrating 
that a certain computational problem 
is undecidable. Specifically, it proves 
the undecidability of the following 
question: “Given a Python function 
P() and input string I, does P return 
the value 'yes' when invoked with in-
put I?” A detailed explanation of the 
proof is outside the scope of this View-
point; here, I focus on the potential ad-
vantages for undergraduate students 
who are encountering this type of ma-
terial for the first time. Note that, in 
practice, the code shown in the figure 
would be presented in class only after 
exposure to and experimentation with 
prerequisite concepts, such as Python 
functions that take the source code of 
other Python functions as input and 
analyze them or transform them in 
some way. Nevertheless, for concrete-
ness and compactness in this View-
point, I describe the potential benefits 
to students directly as they appear in 
this proof.

First, note the undecidability result 
itself can be described in terms of Py-
thon programs: “It is impossible to 
write a Python program that deter-

models, complementing the use of au-
tomata such as Turing machines. The 
suggestions here apply specifically to 
an undergraduate course in which 
students encounter theory of compu-
tation for the first time. The content of 
such courses varies widely, and the 
following suggestions are most appli-
cable to introductory courses that in-
corporate both computability and 
complexity theory.

Emphasizing Search Problems
The theory of computation is usually 
phrased in terms of decision problems: 
questions with a single-bit yes/no re-
sponse. In other areas of computer sci-
ence, however, we are usually interest-
ed in search problems, whose solutions 
consist of more than a single bit. As an 
example, consider the problem of find-
ing a Hamilton cycle in a graph—that 
is, a route visiting every vertex exactly 
once. Theory courses usually discuss 
the decision problem, “Does the graph 
G contain a Hamilton cycle?” But if the 
answer is yes, we still do not know the 
route of a Hamilton cycle in G. It is 
more natural and useful to consider the 
related search problem, “Find and out-
put a Hamilton cycle of G, if one exists.”

Once they have finished their first 
theory course, computer science un-

dergraduates will recognize the con-
nections between search and decision 
problems. But search problems are 
more familiar and more immediately 
applicable, so there are good reasons 
to teach the more elementary parts of 
the theory course with an emphasis on 
search problems. It is worth noting 
that Knuth prize winner Oded Gold-
reich is an advocate of this approach2; 
his books are among the few modern 
textbooks3,6 that adopt search prob-
lems as a primary paradigm. But 
search problems can easily be incor-
porated into more traditional ap-
proaches that retain decision prob-
lems as the standard model, and I do 
recommend this as a means of con-
necting the theory course more closely 
to other parts of the undergraduate CS 
curriculum.

The advantages of, and techniques 
for, teaching CS theory via search prob-
lems have been discussed in detail 
elsewhere.5 One interesting result, 
based on a survey of CS undergradu-
ates, is that search problems are per-
ceived as significantly more useful 
than decision problems. Because per-
ceived relevance is known to be a factor 
in achieving good learning outcomes, 
this provides indirect evidence the ap-
proach is beneficial.

Python program example.

# yesOnStr(P,I) returns 'yes' if the Python function with 

# source code P returns 'yes' after receiving input I.   

# We assume yesOnStr(P,I) exists and works correctly 

# on all inputs.

from yesOnStr import yesOnStr

# Below is a diagonalized and inverted version of 

# yesOnStr(P,I). What happens when the 

# parameter P is a string consisting of the

# source code of diagYesOnStr?

def diagYesOnStr(P):

    if yesOnStr(P, P)=='yes':

        return 'no'

    else:

        return 'yes'

    

The source code of Python function diagYesOnStr(). This code provides the core of a proof by 

contradiction. When given its own source code as input, the function diagYesOnStr() outputs ‘yes’ if 

and only if it outputs ‘no’. This contradiction means our assumption that the function yesOnStr(P,I) 

can exist is not valid. Therefore, the problem YesOnStr is undecidable: no Python function can correctly 

answer the question “does Python function P output ‘yes’ on input I?” for all inputs.
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about polynomial-time verifiers that 
can be proved more instructively—for 
the target audience of novice under-
graduates—using Turing machines 
rather than computer programs.

Every instructor and every group of 
students is different; instructors must 
adopt a style of teaching that is au-
thentic to themselves, achieves the 
goals of the students, and is based re-
alistically on the students’ level of pre-
paredness. I do believe that many the-
ory courses could benefit from making 
more explicit connections to other 
parts of the computer science curricu-
lum, and it is possible to do this incre-
mentally. If decision problems and 
Turing machines are retained as the 
central paradigms, search problems 
can be still be mentioned when rele-
vant, and snippets of code can be used 
to illustrate subtleties.

Whether or not the specific ideas 
suggested here are adopted, it seems 
important that we continue to strive for 
accessibility and engagement in the un-
dergraduate theory course. The theory 
of computation is a profound and im-
portant cornerstone of computer sci-
ence; I hope that in the years ahead, an 
ever-growing number of students will 
appreciate both its beauty and its sig-
nificant connections to the rest of the 
computer science curriculum. 
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mines whether other Python programs 
will output 'yes' on a given input.” 
From one point of view, this is a purely 
cosmetic change from the equivalent 
statement in terms of Turing ma-
chines: “there does not exist a Turing 
machine that determines whether oth-
er Turing machines will accept a given 
input.” After all, students in any theory 
course must come to understand the 
equivalence between Turing machines 
and computer programs. Nevertheless, 
the practice of discussing results in 
terms of computer programs that have 
clear connections to other areas of 
computer science provides the instruc-
tor with opportunities for increased 
engagement; this has certainly been 
my own experience.

Second, there are some steps in the-
ory proofs that are surprisingly subtle 
when expressed in terms of Turing ma-
chines, but become obvious and famil-
iar in a programming language. One 
example in the figure is the trick in 
which a single parameter P is duplicat-
ed and passed on in two separate roles 
to the two-parameter function 
yesOnStr(P,P). In class, this can be 
further explicated by stepping through 
the program in a debugger and show-
ing the dual roles of P: as source code 
in the first parameter and as a text 
string in the second parameter. (Even 
Alan Turing recognized the challenges 
inherent in proofs based on automata. 
In the seminal 1936 paper that intro-
duced Turing machines, he sympa-
thized with readers who might feel 
“there must be something wrong” in 
his first such proof.10)

Third, students can build an intui-
tive understanding of code-based 
proofs by active experimentation with 
the code. In the example in the figure, 
one can provide an approximate ver-
sion of yesOnStr() that works cor-
rectly on a limited class of inputs. Stu-
dents can then predict the output of 
diagYesOnStr() on various inputs, 
and check their answers by running the 
code. They can construct variants of the 
code, discussing which variants pro-
duce the desired contradiction and 
which do not. By implementing ye-
sOnStr() via simulation, students 
can discover an important extension to 
this result: we can in fact write a Python 
program that always terminates cor-
rectly on positive instances of this prob-

lem, so the problem is recognizable but 
not decidable.

Fourth, some students may find the 
programming approach transfers more 
easily to novel problems. In recent years 
I have taught three different approach-
es for undecidability proofs to all stu-
dents: traditional reductions employ-
ing prose descriptions of Turing 
machines; explicit Python programs 
(similar to the example in the figure 
here) supplemented by a prose explana-
tion of the desired contradiction; and 
the application of Rice’s theorem. In 
tests and exams, students may choose 
which proof method to use, and there is 
an approximately even split among 
these three proof techniques. In partic-
ular, a significant fraction of students 
choose to write out a Python program 
as part of their exam answer. This pro-
vides empirical evidence that the pro-
gramming approach is beneficial for 
some students, and it is plausible all 
students gain improved understanding 
from seeing multiple approaches.

Conclusion
Over a period of eight years, I have ex-
perimented with techniques for mak-
ing the undergraduate theory course 
more accessible and engaging. This 
Viewpoint suggests two possibilities: 
emphasizing search problems and em-
ploying real computer programs. I do 
not advocate the universal or complete 
adoption of these suggestions. I have 
backed away from some aspects of the 
approach myself. For example, after ex-
perimenting with teaching NP-com-
pleteness based on search problems, I 
concluded this part of the course works 
better when taught with the traditional 
focus on decision problems. Similarly, I 
found there are some technical results 

Many theory courses 
could benefit from 
making more explicit 
connections to other 
parts of the computer 
science curriculum. 
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T H I S  A R T I C L E  I S  a summary of a three-hour discussion at 
Stanford University in September 2019 among the 
authors. It has been written with combined experiences 
at and with organizations such as Zilog, Altera, Xilinx, 
Achronix, Intel, IBM, Stanford, MIT, Berkeley, University 
of Wisconsin, the Technion, Fairchild, Bell Labs, 
Bigstream, Google, DIGITAL (DEC), SUN, Nokia, SRI, 
Hitachi, Silicom, Maxeler Technologies, VMware, Xerox 
PARC, Cisco, and many others. These organizations are 
not responsible for the content, but may have inspired 
the authors in some ways, to arrive at the colorful ride 
through FPGA space described here.

Field-programmable gate arrays (FP-
GAs) have been hitting a nerve in the 
ASIC community since their inception. 
In the mid-1980s, Ross Freeman and his 
colleagues bought the technology from 
Zilog and started Xilinx, targeting the 
ASIC emulation and education mar-
kets. (Zilog came out of Exxon, since in 
the 1970s people were already afraid 
that oil would run out in 30 years, which 
is still true today). In parallel, Altera was 
founded with similar technology at its 
core.

An FPGA is a chip that is programmed 
by a circuit. It is said to “emulate” that 
circuit. This emulation runs slower than 
the actual circuit would run if it were 
implemented in an ASIC—it has a slow-
er clock frequency and uses more pow-
er, but it can be reprogrammed every 
few hundred milliseconds.

People who make ASICs started us-
ing FPGAs to emulate their ASICs before 
committing them to a mask and send-
ing them out to the factory to be manu-
factured. Intel, AMD, and many other 
companies use FPGAs to emulate their 
chips before manufacturing them.

The telecom industry has been a 
heavy user of FPGAs. Telecom standards 
keep changing and building telecom 
equipment is difficult, so the company 
that ships telecom solutions first tends 
to capture the biggest chunk of the mar-
ket. Since ASICs take a long time to 
make, FPGAs offer an opportunity for a 
shortcut. FPGAs started to be adopted 
for first versions of telecom equipment, 
which initiated the FPGA price conflict. 
While the price of the FPGA does not 
matter to the ASIC emulation market, 
the price of a chip for telecom is impor-
tant. Many years ago, AT&T and Lucent 
made their own FPGAs, called ORCAs 
(optimized reconfigurable cell arrays), 
but they were not competitive with 
Xilinx or Altera in terms of speed or size 
of the silicon.

Today, Huawei is the largest custom-
er for FPGAs. It is possible the recent 
tension between the U.S. and China be-
gan with FPGAs from the U.S. giving 
Huawei an edge in delivering 5G tele-
com equipment two years before any of 
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the other vendors around the world got 
ready to play.

FPGA price hits a nerve. Early on, FP-
GAs were used for software-defined ra-
dios (SDRs), building radios for com-
munication on many different 
standards at the same time, in essence 
having a single phone speaking many 
languages. This time, FPGAs hit a huge 
nerve. There was a split in how SDR 
technology was implemented. Com-
mercial vendors developed cost-effec-
tive solutions, and today every base sta-
tion on the planet has SDR technology 
in it. In the defense community, on the 
other hand, SDRs were built by large de-
fense contractors with profitable legacy 
product lines to protect. The result was 
that the price of FPGA-based radio prod-
ucts was so high that a part of the U.S. 
defense market got a persistent allergic 
reaction to their use.

Next, FPGAs tried to grow in the DSP 
(digital signal processor) and embed-
ded markets. FPGAs with little hard mi-
croprocessors in the corner started to 
appear. The pressure to sell these new 
FPGAs was so high that if customers re-
jected the new family of chips, they were 
put on a blacklist, and sometimes even 
refused service for a few months. Pres-
sure to grow the FPGA market was and 

still is immense, as is the magnitude of 
the failures of FPGA companies to con-
quer new markets, given the impossibil-
ity of reducing the price of FPGA prod-
ucts because of their enormous surface 
area and layers of intellectual property.

Hitting a nerve in HPC and datacen-
ters. For the past few years, FPGAs have 
tried to grow in the high-performance 
computing (HPC) and datacenter mar-
kets. In 2017, Microsoft announced its 
use of Altera FPGAs in the datacenter, 
and Intel bought Altera. In 2018, Xilinx 
announced its “Datacenter First” strat-
egy, with the Xilinx CEO declaring in 
front of an audience of analysts that 
Xilinx is not an FPGA company anymore. 
This may have been a slight dramatiza-
tion, but historically there is relevance.

In HPC and datacenter usage of FP-
GAs, the main obstacle today is place 
and route—the time it takes to run the 
proprietary FPGA vendor software that 
maps the circuit onto the FPGA ele-
ments. On large FPGAs and on a fast 
CPU server, place and route takes up to 
three days, and many times even after 
three days the software fails to find a 
mapping.

Hitting a nerve in oil and gas. In oil 
and gas implementations, however, 
around 2007 a niche opened up. The 

time it took classical computers to sim-
ulate the drilling of holes in the earth to 
find oil was longer than the actual build-
ing of a drilling site and the drilling it-
self. The use of FPGA accelerators dra-
matically changed this upside-down 
timing. The first FPGAs in the datacen-
ter of an oil company, computing seis-
mic images, were built by Maxeler Tech-
nologies and delivered to Chevron.3

The use of FPGAs in oil and gas ex-
panded for a few years, until pressure 
from the ASIC industry led to a return 
to standard CPU technology. Today 
prediction and simulations in oil and 
gas are still important, and seismic im-
aging is mostly done on CPUs and 
GPUs, but the FPGA opportunity still 
exists. We are reminded that “today’s 
new stuff is tomorrow’s legacy,” and, of 
course, today’s new stuff is AI and a fo-
cus on data.

Despite all of this, FPGAs remain a 
quick way to market, a simple way to 
obtain competitive advantage, and an 
indispensable technology for many 
mission-critical situations—even 
though they are expensive on a per-
chip basis compared with ASICs. In 
HPC and the datacenter, however, FP-
GAs have significantly lower operation-
al costs compared with running soft-
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lem, but such advanced ideas have not 
yet been picked up by industry.

How are FPGAs connected? For HPC 
workloads with large flows of data, you 
can use PCI Express and deploy com-
munication-hiding techniques. But 
how about small workloads, such as 
found in network function virtualiza-
tion (NFV), serving a large number of us-
ers at the same time. For NFV and accel-
eration of virtual machines in general, 
the FPGA must connect directly to the 
CPU, possibly using cache coherency as 
a communication mechanism, as inves-
tigated these days by VMware. Of course, 
a key feature is the ability to crash the 
FPGA without crashing the CPU, and 
vice versa. Hyperscalar technology com-
panies are rediscovering requirements 
from IBM mainframe days, driving 
more and more complexity into stan-
dardized platforms.

There are also opportunities for the 
masses. In offering FPGA platforms, or-
ganizations without the budgets for 
ASIC development and without knowl-
edge of the latest silicon fabrication 
challenges and solutions can develop 
circuits and build competitive advan-
tage into their products, such as the 
newly emerging opportunities for com-
puting at the edge of the Internet of 
Things (IoT) network, close to sensors, 
displays, or just in-line at the wire, as 
data flows through.

Meanwhile, FPGA companies are 
pushing vertically up the stack and into 
the CPU socket, where Intel is domi-
nating the market, including, for ex-
ample, special instructions for NFV. 
The key barriers to entry for new CPUs 
and FPGAs in the datacenter are not 
just speed and cost, but also the avail-
ability of software and drivers for all 
possible I/O devices.

Key to making FPGAs work in the 
datacenter is to make them easier to 
use—for example, with automatic 
tools that drive the use of FPGAs with-
out place and route difficulties. Micro-
soft pioneered the use of FPGAs in a 
hyperscalar datacenter for accelerating 
Bing, NFV, and AI algorithms. Micro-
soft also built abstractions, domain-
specific languages, and flexible hard-
ware infrastructures. Commercially, 
the main problem with FPGAs is the 
go-to-market strategy.

Building new chips and then starting 
to think about the software is too late. 

ware on CPUs or GPUs. Fewer FPGAs 
are needed, requiring much less cool-
ing than both CPUs and GPUs. FPGAs 
make for smaller datacenters, hitting a 
nerve with operators who fear their 
datacenters might shrink.

ASIC vs. FPGA. Another way to use 
FPGAs is to complement ASICs. ASICs 
are built to hold fixed functionality 
while adding FPGAs to provide some 
flexibility for last-minute changes or 
adaptivity of the products to different 
markets.

Modern FPGAs are integrating more 
hard functionality and becoming more 
and more like ASICs—while ASICs are 
sometimes adding a bit of FPGA fabric 
into their design for debugging, testing, 
in-field fixes, and flexibility in adding 
little bits of functionality as needed.

Nevertheless, ASIC teams always 
fight the FPGA concept. ASIC designers 
ask, “Which functionality do you want?” 
and are impatient if the answer is, “I 
don’t know yet.”

One such new battleground is the 
autonomous car industry. Since algo-
rithms are constantly changing, and 
laws could change when cars are in the 
field, requiring driver updates, the so-
lution needs to be flexible. FPGAs have 
a lower clock frequency, and thus 
smaller heat sinks, resulting in a small-
er physical size than CPUs and GPUs. 
Lower power consumption and small-
er size makes FPGAs the obvious 
choice. Nevertheless, GPUs are easier 
to program and do not require a three-
day place and route.

Moreover, it is critical to be able to 
run the same code in the car and in the 
cloud (primarily for simulation and test-
ing), so FPGAs would have to be avail-
able in the cloud before they could be 
used in the car. For these reasons, many 
developers prefer GPUs.

Evolution of FPGAS
FPGAs are evolving. Modern interfaces 
are trying to make FPGAs easier to pro-
gram, more modular, and more cooper-
ative with other technologies. FPGAs 
support Advanced Extensible Interface 
(AXI) buses, which make them easier to 
program but also introduce enormous 
inefficiencies and make FPGAs less per-
formant and ultimately much less com-
petitive. Academic work, such as Eric 
Chung’s paper on dynamic networks for 
FPGAs,1 helps with the routing prob-

ASIC teams always 
fight the FPGA 
concept. ASIC 
designers ask, 
“Which functionality 
do you want?” and 
are impatient if the 
answer is, “I don’t 
know yet.” 
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How do you extract value from existing 
software by adapting the hardware to 
serve the software? This also brings an 
opportunity to rethink FPGA architec-
ture. A word of warning, however: The 
silicon industry devours cash. Building 
ASICs is a poker game with minimum 
bets rising over the years. It’s a winner-
take-all game, and any threats such as 
FPGAs get eliminated early in the race.

FPGAs are creating additional and 
undesirable risks for silicon projects.

Niche Technology
While a software designer will always 
say, “If it can be done in software, it will 
be done in software,” the ASIC designer 
will say, “If it can be done in an ASIC, it 
will be done in an ASIC.” Most interest-
ingly, “If it can be done in software, you 
don’t have to deal with the guy who 
thinks like an FPGA.” FPGAs have a tiny 
community of many, sometimes eccen-
tric, programmers, compared with the 
armies needed to make ASICs and with 
the world population of software pro-
grammers. The FPGA companies are 
small. The FPGA community is small.

Intel is driving FPGAs for flexibility. It 
is the most successful company follow-
ing the principle of building the hard-
ware to run existing software.

FPGAs can be faster than CPUs and 
GPUs, but the hard lesson from industry 
and the investment community is that 
most of the time during a computer’s 
existence, speed does not matter, and 
real time does not matter. Therefore, 
buying a computer for speed alone is 
rare. It happens, but it’s more of a ran-
dom event than a market on which to 
build a business. In addition, FPGAs 
have no standard, open source, enjoy-
able programming model—and, there-
fore, no standard marketplace for FPGA 
programs that work on all FPGA chips 
or can be easily cross-compiled. Maxel-
er Technologies has a high-level solu-
tion to provide such an interface, but 
wide industry adoption requires trust. 
To go from early adopters to benefiting 
everyone, trust requires alignment and 
support from established vendors in the 
datacenter space.

Applications people in the real world 
say, “I don’t care what it is, just give me a 
way to do what I want to do.” What are 
the possible application areas for FP-
GAs that have not been widely explored 
yet? For real-time computing, there is 

manufacturing. For computer vision on 
drones, it’s the weight and power advan-
tage of FPGAs. On a satellite it is very ex-
pensive to do hardware upgrades, so 
FPGAs provide long-term flexibility that 
can be critical. FPGAs need to find a 
product that resonates, and they need 
to be easy to program. It’s not just the 
hardware or software, it’s the ecosys-
tem. It’s the complete solution.

One way to expand beyond current 
market confines is real-time compila-
tion and automatic FPGA program gen-
eration. This is easier said than done, 
but the opportunity is growing with AI 
tearing up the application space. These 
days, everything is done with AI; even 
traditional algorithms such as seismic 
imaging for oil and gas are incorporat-
ing AI. A science and engineering solu-
tion is needed to deal with AI blocks. 
FPGAs might be a good starting point, 
maybe initially to connect the AI blocks 
and then to incorporate them into the 
FPGA fabric such as the next-generation 
chips from Xilinx—with AI fabric, CPUs, 
100G interfaces, and FPGA cells all in 
the same 7-nm chip.

From another perspective, with AI 
chips producing and consuming vast 
amounts of data, FPGAs will be needed 
to feed the beast and move outputs 
away swiftly. With all the new ASICs for 
AI processing coming out, FPGAs could 
provide differentiation to AI chip com-
panies.

Predictions
Could the following developments have 
been predicted 10 or 25 years ago?2 
While the world changes, the predic-
tions seem to stay the same.

1. There will be successful 
CPU+FPGA server chips, or FPGAs with 
direct access to the CPU’s cache hierar-
chy. Some say yes, and some say no.

2. System on a chip (SoC) FPGA chips 
will grow and expand, driving the medi-
cal, next-generation telecom, and auto-
motive industries, among others.

3. Developers will use FPGAs to do 
amazing things and make the world a 
better place but will have to hide the fact 
that there is an FPGA inside.

4. The FPGA name will remain, and 
chips called FPGAs will be built, but ev-
erything inside will be completely dif-
ferent.

5. As we forego (dataflow) optimiza-
tion in order to make FPGAs easier to 

program, the performance of FPGAs 
will be reduced so they are no longer 
competitive with CPUs, which will al-
ways be easier to program.

6. There will be FPGAs with dynamic 
routing, evolving interconnect, and run-
time-flexible data movement.

7. Place and route software, as well as 
the complete software stack on top of 
FPGAs, will be open source. There are 
already initial efforts with Yosys and 
Lattice FPGAs.

8. All semiconductor architectures 
will be combined into single chips with 
combinations of TPUs, GPUs, CPUs, 
ASICs, and FPGAs. Some may be combi-
nations of the whole of each. Others will 
be combinations of parts of each.

9. More chips will be focused on lim-
ited application spaces, and fewer on 
general-purpose chips. In a way, every-
thing is becoming an SoC.

Final Comment
How many conflicts are resolved with 
this article, and how many new ones 
are created? In this sense, a conflict is 
a challenge to an existing way of doing 
things. Such an existing way of doing 
things may have implications for the 
way people think, and, therefore, for the 
way they act. But maybe more impor-
tantly, there will be implications on how 
we developers earn a living. 
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Apply established 
strategies for 
common issues

Mitigate 
early

Triage 
effectively

Establish SLOs 
and accurate 
monitoring

GOOGLE HAS PUBLISHED two books about Site Reliability 
Engineering (SRE) principles, best practices, and 
practical applications.1,2 In the heat of the moment 
when handling a production incident, however, a 
team’s actual response and debugging approaches 
often differ from ideal best practices.

This article covers the outcomes of research performed 
in 2019 on how engineers at Google debug production 
issues, including the types of tools, high-level 
strategies, and low-level tasks that engineers use in 
varying combinations to debug effectively. It 
examines the research approach used to capture data, 
summarizing the common engineering journeys for 

production investigations and shar-
ing examples of how experts debug 
complex distributed systems. Finally, 
the article extends the Google specif-
ics of this research to provide some 
practical strategies that you can apply 
in your organization.

As this study began, its focus was on 
developing an empirical understanding 
of the debugging process, with the over-
arching goal of creating optimal prod-
uct solutions that met the needs of 
Google engineers. We wanted to cap-
ture the data that engineers need when 
debugging, when they need it, the com-
munication process among the teams 
involved, and the types of mitigations 
that are successful. The hypothesis was 
that commonalities exist across the 
types of questions that engineers are 
trying to answer while debugging pro-
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duction incidents, as well as the mitiga-
tion strategies they apply. 

To this end, we analyzed postmortem 
results over the last year and extracted 
time to mitigation, root causes, and cor-
related mitigations for each. We then 
selected 20 recent incidents for qualita-
tive user studies. This approach allowed 
us to understand and evaluate the pro-
cesses and practices of engineers in a 
real-world setting and to deep-dive into 
user behavior and patterns that couldn’t 
be extracted by analyzing trends in post-
mortem documents. 

The first step was trying to under-
stand user behavior: At the highest level, 
what did the end-to-end debugging ex-
perience look like at Google? The study 
was broken down into the following 
phases (which are unpacked in the sec-
tions that follow): 

 ˲ Phase 0: Define a way to segment 
the incident responder and incident type 
populations.

 ˲ Phase 1: Audit the postmortem 
documentation from a spread of actual 
Google incidents.

 ˲ Phase 2: Conduct in-depth user in-
terviews with first responders who 
worked on those incidents.

 ˲ Phase 3: Map the responders’ jour-
neys across those incidents, detailing 
common patterns, questions, and 
steps taken.

Phase 0: Segment incident responder 
and incident type populations. The 
preliminary approach to segmenting 
the population under study was de-
signed to ensure a sufficiently broad 
set of incidents and interviewees was 
included, from which we could capture 
a comprehensive set of data.

Incident responders. First, the inci-
dent responders (or on-callers) were 
segmented into two distinct groups: 
SWEs (software engineers), who typi-
cally work with a product team, and 
SREs (Site Reliability Engineers), who 
are often responsible for the reliabili-
ty of many products. These two groups 
were further segmented according to 
tenure at Google. We found the fol-
lowing behaviors across the different 
user cohorts:

SWE vs. SRE mental models and 
tools. SWEs are more likely to consult 
logs earlier in their debugging work-
flow, where they look for errors that 
could indicate where a failure occurred. 

SREs rely on a more generic ap-
proach to debugging: Because SREs are 
often on call for multiple services, they 
apply a general approach to debugging 
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user journey affected, and so on) of the 
problem, the more complex the issue. 

 ˲ Size of the responding team. As more 
people are involved in an investigation, 
communication channels among 
teams grow, and tighter collaboration 
and handoffs between teams become 
even more critical. 

 ˲ Underlying cause. On-callers are 
likely to respond to symptoms that 
map to six common underlying issues: 
capacity problems; code changes; con-
figuration changes; dependency issues 
(a system/service my system/service 
depends on is broken); underlying in-
frastructure issues (network or servers 
are down); and external traffic issues. 
Our investigation intentionally did not 
look at security or data-correctness is-
sues since they were outside the scope 
of the tools focused on in this work.

 ˲ Detection. On-callers learn about 
issues through human or machine 
detection that is based on availabili-
ty or performance problems. Some 
common mechanisms include alerts 
on the following: white-box metrics; 
synthetic traffic; SLO (service-level 
objective) violations; and user-de-
tected issues. 

Phase 1: Postmortem documenta-
tion analysis. Once the different cate-
gories of incidents were determined, 
we read the postmortems for the 20 in-
cidents identified for qualitative stud-
ies, mapping the steps responders took 
in each case. This approach allowed us 
to validate the common factors that af-
fect how responders handled these in-
cidents and the challenges they faced. 
We could also ensure that the incidents 
selected for deep-dive analysis were 
distributed across the dimensions, as 
just described. 

Google has a strong culture of 
blameless postmortems.4 It is com-
mon for teams to look at the history of 
their failures to ensure that their ser-
vices are continuing to run reliably. 
Because of this, postmortem docu-
ments are readily available internally 
and were an invaluable resource for 
analyzing debugging behavior. De-
tailed chat transcripts linked to these 
postmortems helped form a base un-
derstanding of what happened, when 
it happened, and what went wrong. 
We could then start mapping a proto-
type of the debugging journey. Future 
research could extend this work by ap-

based on known characteristics of 
their system(s). They look for common 
failure patterns across service health 
metrics (for example, errors and laten-
cy for requests) to isolate where the is-
sue is happening, and often dig into 
logs only if they’re still uncertain about 
the best mitigation strategy.

Experience level of the incident re-
sponder. Newer engineers are more 
likely to use recently developed tools, 
while engineers with extensive experi-
ence (10 or more years running com-

plex, distributed systems at Google) 
tend to use more legacy tools. Intuitive-
ly, this finding makes sense—people 
tend to use the tools they are most 
comfortable with, particularly in emer-
gency situations. 

Incident types. We also examined in-
cidents across the following dimen-
sions, and found some common pat-
terns for each: 

 ˲ Scale and complexity. The larger the 
blast radius (that is, its location(s), the 
affected systems, the importance of the 

Figure 1. Building blocks.
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plying natural-language processing to 
further validate response patterns in 
the incident response chats. 

Phase 2: In-depth interviews. To 
round out this study, in-depth inter-
views were conducted with the first re-
sponders identified in these 20 post-
mortems so any gaps in the postmortem 
document could be filled in. These 
data sources added significant color to 
the debugging journey we were map-
ping, and surfaced a core set of build-
ing blocks that make up the overall de-
bugging process. 

Phase 3: Mapping the responders’ 
journeys. This study allowed us to 
generate snapshots of what an actual 
incident investigation life cycle looks 
like at Google. By mapping out each 
responder’s journey and then aggre-
gating those views, we extracted com-
mon patterns, tools, and questions 
asked around debugging that apply to 
virtually every type of incident. Figure 
1 is a sample of the visual mapping of 
the steps taken by each of the re-
sponders interviewed. 

Common Patterns 
around Debugging
A typical canonical debugging journey 
consists of the stages and sub-journeys 
shown in Figure 2 and described here. 
These building blocks are often repeat-
ed as the user investigates the issue, and 
each block can happen in a nonsequen-
tial and, sometimes, cyclical order.

During the detection to mitigation 
stages, investigations are typically 
time sensitive—especially when the 
issue affects the end-user experience. 
An on-caller will always try to mitigate 
the issue or “stop the bleeding” before 
uncovering the root cause. After miti-
gation, on-callers and developers of-
ten perform a deeper analysis of the 
code and apply measures to prevent a 
similar situation from recurring. 

Detect. The on-caller discovers the 
issue via an alert, a customer escala-
tion, or a proactive investigation by an 
engineer on the team. A common ques-
tion would be: What is the severity of 
this issue? 

Triage loop. The on-caller’s goal is 
to assess the situation quickly by exam-
ining the situation’s blast radius (the 
severity and impact of the issue) and 
determining whether there is a need to 
escalate (pull in other teams, inform 

Figure 2. User journey.
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Common questions include: What 
went wrong? What’s the root cause of 
the problem? How can you make your 
processes and systems more resilient? 

Communication. Throughout the 
entire process, incident responders 
document their findings, work with 
teammates on debugging, and commu-
nicate outside of their team as needed. 

Observability Data
In every single interview, on-callers re-
ported that they started working with 
time-series metrics that indicate the 
health of a given service, performing a 
breadth-first search to identify which 
components of the system were bro-
ken. The majority of the teams that 
were interviewed evaluated the follow-
ing items: 

 ˲  RPC (remote procedure call) laten-
cy and error metrics (similar to the 
metrics derived from the open source 
gRPC libraries). 

 ˲ Change in external traffic, includ-
ing QPS (queries per second).

 ˲ Change in production such as 
rollouts, configuration pushes, and 
experiments.

 ˲ Underlying job metrics such as 
memory and CPU consumption. 

Both alerts and real-time dash-
boards use these metrics. On-callers 
typically used logs and traces only after 
they identified a component as broken, 
and they then needed to drill down to 
the specific issue. 

Anecdotes from the Front Line
Some of the interviewees applied 
SRE best practices to debug complex 
distributed systems, methodically 
eliminating their theories on what 
could go wrong, applying temporary 
mitigations to prevent user pain, and, 
finally, successfully resolving and root-
causing the problem that set off the 
outage in the first place. 

Many other responders hit unex-
pected roadblocks. Some responders 
were impacted by a complex set of 
changes throughout the stack that oc-
curred simultaneously. Therefore, it 
was extremely challenging to isolate 
the actual issue and figure out how to 
resolve it. Other responders cited pro-
cess and awareness issues: Some did 
not fully understand how their produc-
tion tooling worked, or the appropriate 
standard course of action to take. Some 

internal and external stakeholders). 
This stage can happen multiple times 
in a single incident as more informa-
tion comes in. 

Common questions include: Should 
I escalate? Do I need to address this is-
sue immediately, or can this wait? Is 
this outage local, regional, or global? If 
the outage is local or regional, could it 
become global (for example, a rollout 
contained by a canary analysis tool 
likely won’t trigger a global outage, 
whereas a query of death triggered by a 
rollout that is now spreading across 
your systems might)?

Investigate loop. The on-caller forms 
hypotheses about potential issues and 
gathers data using a variety of monitor-
ing tools to validate or disprove theo-
ries. The on-caller then attempts to 
mitigate or fix the underlying problem. 
This stage typically happens multiple 
times in a single incident as the on-
caller collects data to validate or dis-
prove any hypotheses about what 
caused the issue. 

Common questions include: Was 
there a spike in errors and latency? 
Was there a change in demand? How 
unhealthy is this service? (Is this a false 
alarm, or are customers still experienc-
ing issues?) What are the problematic 
dependencies? Were there production 
changes in services or dependencies?

Mitigate loop. The on-caller’s goal 
is to determine what mitigation ac-
tion could fix the issue. Sometimes a 
mitigation attempt can make the is-
sue worse or cause an adverse ripple 
effect on one of its dependent servic-
es. Remediation (or full resolution of 
the issue) usually takes the longest of 
all the debugging steps. This step can, 
and often does, happen multiple 
times in a single incident. 

Common questions include: What 
mitigation should be taken? How con-
fident are you that this is the appropri-
ate mitigation? Did this mitigation fix 
the issue? 

Resolve/root-cause loop. The on-
caller’s goal is to figure out the under-
lying issue in order to prevent the 
problem from occurring again. This 
step typically occurs after the issue is 
mitigated and is no longer time sen-
sitive, and it may involve significant 
code changes. Responders write the 
postmortem documentation during 
this stage. 

Sometimes  
a mitigation attempt 
can make  
the issue worse  
or cause  
an adverse ripple 
effect on one  
of its dependent 
services.
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responders wound up unintentionally 
applying bad changes to production.

Following are some (anonymous) 
stories to illustrate successful and 
problematic debugging sessions. 
These anecdotes are intended to show 
that even with the most experienced 
engineers, great technology, and pow-
erful tooling, things can—and do—go 
wrong in unexpected ways.

An exemplary debugging journey. 
The following is an example of a suc-
cessful debugging session, where the 
SRE follows best practices and miti-
gates a service-critical issue in less 
than 20 minutes.

While sitting in a meeting, the SRE 
on-caller receives a page informing her 
the front-end server is seeing a 
500-server error. While she is initially 
looking at service health dashboards, a 
pager-storm starts, and she sees many 
more alerts firing and errors surfacing. 
She responds quickly and immediately 
identifies that her service isn’t healthy. 

She then determines the severity of 
the issue, first asking herself how 
many users are affected. After looking 
at a few error rate charts, she confirms 
that a few locations have been hit with 
this outage, and she suspects that it 
will significantly worsen if not imme-
diately addressed. This line of ques-
tioning is referred to as the triage loop, 
similar to triage processes used in 
health care (for example, emergency 
rooms that sort patients by urgency or 
type of service). The SRE needs to de-
termine if the alert is noise, if she 
needs to handle it now, and whether 
to escalate the issue to other teams 
and stakeholders. 

Now that she knows this is a real 
and relatively severe issue, the SRE 
starts pulling in other people from her 
team to help with the investigation. 
She also sets up communication chan-
nels to inform other teams that may be 
affected, and to let them know her 
team is addressing the outage. 

She then focuses on temporarily 
mitigating the issue for end users. She 
tasks a teammate with ensuring traffic 
isn’t routed to any of the unhealthy lo-
cations and configuring load balanc-
ers to avoid sending traffic to affected 
locations. For the moment, this action 
stops the issue from propagating, 
which leaves her free to conduct a deep-
er investigation using monitoring data. 

Next, she asks a series of questions 
that help her narrow down the poten-
tial cause and figure out how best to 
mitigate the issue permanently. She 
largely uses time-series metrics (for ex-
ample, cloud monitoring metrics3) to 
help answer these questions quickly: 

 ˲ To narrow down the breadth of the 
investigation: Which specific parts of 
the service are unhealthy? Are the er-
rors coming from the front end or the 
back end? Are there “slices” of data 
that are problematic? Are there outli-
ers in the data? 

 ˲ To identify the severity of the issue 
and rule out causes: Is the shape of the 
graph a step (something changed 
suddenly and remained unchanged), 
a spike (something changed, then 
stopped), or a slope (a gradual rollout 
is happening)? How quickly did the 
error rate ramp up? 

 ˲ To identify the severity: What is the 
blast radius? (If errors occur globally, 
this indicates a severe issue that will 
most likely have end-user impact.)

 ˲ To rule out underlying causes: When 
did the problem start? What produc-
tion events in the service or in its de-
pendencies correlate with this issue? 

Once the issue is mitigated, the 
SRE drills into logs and traces, con-
firming that a new line of code was 
crashing the jobs in the regions with 
issues. She decides to roll back to the 
last stable version of the service, and 
validates that the issue is resolved 
when the affected locations are 
brought back online. 

Debugging journey where the tool-
ing failed to support the on-caller. The 
following is an example of a journey 
where Google on-callers hit unexpect-
ed hurdles as they debugged, and 
where applying best practices could 
have reduced the time to mitigation. 

The on-caller receives a page that 
informs him that the service’s overall 
server-side availability SLO (service-
level objective) was down from 99.9% 
to 91%, and that specific user actions 
failed. He begins his investigation by 
looking at graphs of metrics that con-
firm when the error rate started to in-
crease; errors were mostly caused by 
timeouts; and, request durations were 
about equal to the duration of the 
timeout. He then slices the metrics to 
the failing user actions identified be-
fore, checks the associated server er-

rors and queries-per-second metrics, 
and digs into server logs to find spe-
cific errors. Up to this point, he has 
followed common practices for de-
bugging. 

At the same time, another on-caller 
for a back-end service dependency no-
tices the service is nearing its quota 
limitations and suspects that this situ-
ation might have an impact on the in-
vestigation. This on-caller tries to al-
locate some quota through a 
configuration change, hoping to alle-
viate the problem. Because of a mis-
understanding in the configuration 
push tooling, however, this change ac-
cidentally removes a back-end server 
in one location instead of adding quo-
ta, which increases the error rates in 
the other locations. Additionally, 
since he considered this change to be 
safe, the on-caller did not monitor the 
rollout of the updated configuration 
as closely as best practices recom-
mend, and initially missed indicators 
that overall capacity was actually re-
duced by removing that location. At 
this point, the on-caller breaks from 
best practices by performing a global 
push of a nonvalidated configuration 
that includes a completely unrelated 
change—the action of dropping a 
back end should be separate from 
adding capacity. 

While this is happening, the first on-
caller goes deep in the logs and finds 
“permission-denied” errors increased 
at the time the back-end server was re-
moved. He does this through a breadth-
first search of a number of the support-
ing back ends and an analysis of their 
aggregated logs. Here, he notices that 
when one server was removed, more re-
quests were funneling to the servers 
that were experiencing issues. Only af-
ter digging into logs and opening a 
number of tools is he able to connect 
the errors to the configuration change 
in the dependency. 

Better tooling could have prevented 
the user from performing an unantici-
pated change. Tooling could also have 
helped validate what the change would 
actually do. Additionally, better tooling 
to support monitoring the effects of 
the changes to the system could have 
helped the on-callers draw these con-
clusions earlier. 

The on-callers then connect to share 
their findings. Once connected, the 
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vice architecture. Frequently, the error 
may be deeper in the stack than where it 
manifested to the on-caller. Similar to 
debugging dependencies, it’s helpful 
to be able to traverse the stack quickly, 
associate production changes, and un-
derstand service architecture. 

Conclusion
SREs continuously strive to improve 
systems and expose vulnerabilities in 
order to limit the probability of fail-
ures, near misses, and inefficiencies in 
production. Even under the most ideal 
conditions, things inevitably go wrong. 
By surfacing, preserving, and dissemi-
nating the commonalities—both posi-
tive and negative—in the debugging 
workflow, the aim is to prevent the 
same class of problem from recurring, 
or, when prevention isn’t possible, to 
minimize the duration or impact of 
unavoidable outages. Hopefully, other 
organizations can apply these findings 
in practice too.  
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first on-caller rolls back the configura-
tion push that reduced capacity, identi-
fies the back-end dependency that 
changed the permission errors, and 
works with the back-end team to get 
bad changes rolled back. 

Translating Insights  
into Concrete Action
If you are responsible for running a 
distributed service, you might find 
yourself dealing with scenarios simi-
lar to what the teams we interviewed 
experienced. Our study revealed 
teams that apply the following prin-
ciples are typically able to mitigate 
service problems faster. 

Establish SLOs and accurate moni-
toring. You need to have SLOs and/or 
metrics that you can alert and option-
ally report on. These should accurately 
reflect user pain and allow for slicing 
by failure domains. These should also 
be associated with alerts that have 
clear next steps and links to the most 
important information. 

Triage effectively. Once you have 
the prerequisites of SLOs and accu-
rate monitoring in place, you need to 
be able to quickly determine both the 
severity of user pain and the total 
blast radius. You should also know 
how to set up the proper communica-
tion channels based on the severity of 
the issue. 

Mitigate early. Documenting a set 
of mitigation strategies that are safe 
for your service can help on-callers 
temporarily fix user-facing issues and 
buy your team critical time to identify 
the root cause. For more information 
on implementing generic mitiga-
tions (see Mace.5) The ability to easily 
identify what changed in your ser-
vice—either in its critical dependen-
cies or in your user traffic—is also 
helpful in determining what mitiga-
tion attempt to move forward with. As 
mentioned in the exemplary debug-
ging case, asking a series of common 
questions and having metrics, logs, 
and traces can help speed up the pro-
cess of validating your theories about 
what went wrong.

Apply established mitigation strate-
gies for common issues. Although ev-
ery service is different, the following 
patterns emerged in the underlying is-
sues we examined and the mitigations 
associated with them. When you are 

dealing with a problem that you have 
never seen before, it can be helpful to 
think about what type of issue your ser-
vice is facing, the questions you should 
ask, and the associated mitigations 
based on the answers. 

 ˲ Service errors. This was the most 
common cause for an alert firing in our 
study. As such, it also had the largest 
variety of mitigations. Some factors to 
consider in determining mitigation 
strategies include: Are the errors oc-
curring globally? Check for correlated 
rollouts, configuration/data changes, 
and experiments. Are the incoming 
QPS spiking? Add capacity and/or start 
load shedding to drop traffic that your 
service can’t handle. Is a bad actor 
causing a change in QPS? If so, block 
the user.

 ˲ Performance. Latency can make 
for a bad user experience and degrade 
into errors over time. These issues 
can be difficult to debug if there is no 
obvious correlated capacity or pro-
duction change. Typically, respond-
ers look through traces to identify 
which components in the stack are af-
fected and try to determine a solution 
from there. 

 ˲ Capacity. Capacity issues are some 
of the easiest to spot, especially if you 
have capacity-specific alerts. Like er-
rors and performance issues, these 
can manifest as both fast and slow 
burns. If a service is going to run out 
of capacity immediately, teams typi-
cally ask for more capacity in an 
“emergency loan” to scale up their ser-
vice (or they may attempt to scale out). 
For a slow burn, responders perform 
additional analyses and planning to 
determine if there are other underly-
ing issues. These types of alerts sur-
face only when automated capacity 
systems hit their authorized maxi-
mum, and acquiring more resources 
requires human intervention. 

 ˲ Dependency issues. A critical de-
pendency—even if it is deep within the 
service stack—can contribute to the 
failure of the entire service. Knowing 
your hard dependencies (those in the 
critical path of your code) and being 
able to view the health of these depen-
dencies can be helpful in ruling out 
whether the problem actually lies with 
another service.

 ˲ Debugging microservices. Most of the 
teams we interviewed have a microser-
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THE METAPHOR OF development teams throwing 
applications over a wall to the operations group for 
deployment is often used to vividly illustrate that 
development and operations operate as silos. The 
DevOps movement was started in 200817 to try and 
break down these barriers between the development 
and operations groups. The DevOps movement relies 
on a culture that strives to understand the capabilities 
and constraints of the other group (development or 
operations): “Delivering value to the business through 
software requires processes and coordination that 
often span multiple teams across complex systems 
and involves developing and delivering software with 
both quality and resiliency.”11

Automation is a major enabler of DevOps as it is 
highly desirable to automate provisioning, release 
management, and anything else that is possible.

Continuous build, integration, and de-
livery are also enablers of DevOps.17 But 
DevOps is not just about tools that fa-
cilitate development and deployment. 
In The DevOps Handbook,19 the follow-
ing myths are debunked.

1. DevOps replaces Agile.
2. DevOps is incompatible with ITIL.
3. DevOps means eliminating IT 

operations.
4. DevOps is just “infrastructure as 

code” or automation.
DevOps is about good development 

practices that continually deliver prod-
uct features (Agile) effectively with 
minimal wasted efforts (Lean) which 
are overseen by good governance con-
trols (Information Technology Service 
Management, or ITSM).2 To that end, 
a growing consensus within the infor-
mation technology community is that 
DevOps = Agile + Lean + ITSM. We be-
lieve the integration of Agile, Lean, and 
ITSM can provide a strong foundation 
for DevOps.

Adopting DevOps is not an ad hoc 
or routine operational change, it is 
transformative in nature and requires 
a fundamental shift in the traditional 
ways of working. DevOps is not just a 
new technology adoption initiative. 
Rather DevOps adoption should be 
people-centric, including defining 
clear roles and providing appropriate 
training.14 But the lack of a common 

What Do  
Agile, Lean, 
and ITIL Mean  
to DevOps?

DOI:10.1145/3372114

The value of learning skillsets within a trio of 
disciplines and the role each plays in DevOps.

BY STUART GALUP, RONALD DATTERO, AND JING QUAN 

 key insights
 ˽ The consensus within the DevOps 

community is DevOps = Agile + Lean + ITIL.

 ˽ The DevOps goal is to enable cross-
functional relationships between the 
development and operations groups 
thereby enabling them to work together to 
ensure IT services are transitioned to the 
live environment successfully.

 ˽ The integration of ITIL with Agile and 
Lean as part of ITIL 4 is a positive step 
in establishing a practical framework to 
enable the implementation of DevOps.

 ˽ Our data analysis provides significant 
evidence that there is value gained by 
IT professionals if they possess Agile 
(salary premium 26%), Lean (salary 
premium 9%) and ITIL skills and 
knowledge (salary premium 16%).

http://dx.doi.org/10.1145/3372114
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loops that ultimately improve custom-
er value by developing software in a 
collaborative, iterative, and incremen-
tal manner. The main elements of The 
Manifesto10 are:

 ˲ Work is done by self-organizing 
teams, networks, and ecosystems that 
mobilize the full talents of those doing 
the work.

 ˲ Work is focused directly on meet-
ing customers’ needs and interaction 
with the customer is paramount.

 ˲ A “lens” focuses attention on the 
customers’ needs (when the lens is 
a person, as in Scrum, the person is 
known as a “product owner”).

 ˲ Work proceeds in an iterative 
fashion and progress toward fulfilling 
the needs of customers is assessed at 
every stage.

There are a wide range of Agile soft-
ware development methods including 
eXtreme Programming, Adaptive Soft-
ware Development, Scrum, Agile Proj-
ect Management, Crystal Methods, 
Feature-Driven Development, Lean De-
velopment, and Rational Unified Pro-
cess.1 As a result, agility could be con-
sidered more of a mindset rather than 
a specific set of techniques.

Lean
Manufacturing took many concepts 
from leadership practices and learned 
how to remove constraints along the 
flow of work using a variety of short 
feedback loops.25 “The core idea be-
hind lean is maximizing customer 
value while minimizing waste,” states 
The Lean Enterprise Institute.20 The In-
stitute goes on to state that “Simply 
put, lean means creating more value 
for customers with fewer resources.”

There has been a long-time connec-
tion between Agile and Lean in the IT 
field. In 2003, Poppendieck and Pop-
pendieck23 published their book, Lean 
Software Development: An Agile Toolkit. 
This book was part of Addison-Wes-
ley’s The Agile Software Development 
Series. In their book, Poppendieck and 
Poppendieck illustrate how 22 differ-
ent Lean tools, such as seeing waste 
and value stream mapping, could be 
applied to the (Agile) software develop-
ment process.

In 2010, Bell and Orzen6 published 
their book Lean IT: Enabling and Sus-
taining Your Lean Transformation. 
They applied Lean to the entire IT 

DevOps set of skills and knowledge 
negatively affects the implementa-
tion and training of DevOps roles for 
organizations and educational insti-
tutions.18 We believe that understand-
ing the value of each discipline (Agile, 
Lean, and ITSM) will assist organiza-
tions and educational institutions to 
better appreciate the value of the spe-
cific skills and knowledge for a Dev-
Ops role. Specifically, both IT profes-
sionals and organizations can select 
the best course of action to maximize 
their investment and time when pur-
suing and acquiring DevOps skills and 
talents based on the relative value of 
each discipline.

In a prior study focusing on the val-
ue of Agile skills, Agile skills produced 
a 22.6% increase in average salary.9 In 
another study focusing on ITIL (the 
leading ITSM framework6), ITIL skills 
produced an overall salary premium of 
10.0% with ITIL certification producing 
an even greater 14.5% salary premium.13

This article begins with an over-
view of Agile, Lean, and ITSM, em-
phasizing the areas of overlap, and 
then addresses the following research 
questions: (RQ1) Are there compensa-
tion benefits for IT professionals that 
possess Agile, Lean, and ITSM skills? 
With the logical follow-up question, if 
there are benefits: (RQ2) What are the 
estimated benefits?

Agile
After many years of using the water-
fall software development methodol-
ogy (and other less than successful 
approaches),17 software developers met 
to discuss alternative software develop-
ment methods in 2001. The “Manifesto 
for Agile Software Development” was the 
result of this meeting. The Manifesto23 
is a set of four values that are supported 
by 12 principles. In a 2010 study of Agile 
practices,8 the most widely valued Agile 
principle was related to business people 
and developers working together. The 
2010 study8 found 84% of respondents 
rated this of high importance. The (tied 
for) second most valued Agile princi-
ple related to achieving customer sat-
isfaction through early and continu-
ous delivery of valuable software. 
Some 60% of respondents rated this 
of high importance.

Essentially, the Agile approach is 
designed to drive shorter feedback 

A growing 
consensus within 
the information 
technology 
community is  
that DevOps =  
Agile + Lean + ITSM.
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ities in DevOps performed in the pro-
cesses that make up these two ITIL life 
cycle stages. Service Design includes 
processes for Service-Level Manage-
ment, Availability Management, Ca-
pacity Management, IT Service Conti-
nuity Management, and Information 
Security Management. Service Opera-
tion consists of five processes: Event 
Management, Incident Management, 
Request Fulfillment, Problem Manage-
ment, and Access Management. ITIL 
also suggests four generic functions 
(employee groups): Service Desk, Tech-
nical Management, Application Man-
agement, and IT Operations Manage-
ment.15

The updated ITIL framework, ITIL 
4, was released in 2019:3

 This name reflects the role 
ITIL will play in supporting 
individuals and organizations to 
navigate the Fourth Industrial 
Revolution. IT is at the core of 
every modern business in the 
global economy. The update will 
allow ITIL to reflect the fast-paced 
and complex environment we live 
in, and new ways of working and 
emerging practices, all of which 
are essential not only for ITSM 
professionals, but also for a wider 
range of professionals working 
in the digital transformation 
world. The purpose of ITIL 4 is 
to provide organizations with 
comprehensive guidance for the 
management of information 
technology in the modern service 
economy. ITIL 4 will evolve to 
provide an end-to-end IT/Digital 
Operating Model, covering the 
full delivery (and sustaining) 
of tech-enabled products 
and services, guiding how IT 
interfaces with, and even leads, 
the wider business strategy.24

ITIL 4 expands on the previous ver-
sions by providing a practical and flex-
ible basis to support organizations on 
their journey to the new world of digital 
transformation.5 It provides an operat-
ing model for the delivery and opera-
tion of the IT components that fosters 
team integration. “ITIL 4 also provides 
a holistic end-to-end picture that inte-
grates frameworks such as Lean, Agile, 
and DevOps.”22

organization. In their Lean IT pyra-
mid, the top of their pyramid is cul-
ture. The starting building blocks 
are: consistency of purpose, respect 
for people, and pursuit of perfection. 
Intermediate layers include: Voice of 
the Customer (originally a market-
ing term widely adopted in business 
to describe the in-depth process of 
capturing customer’s expectations, 
preferences, and aversions); quality 
at the source (a Lean manufacturing 
principle defines that quality output 
is not only measured at the end of the 
production line but at every step of 
the production process; at each step, 
the responsibility for quality are the 
individuals working on the step rath-
er than quality inspectors); systems 
thinking (a holistic approach to analy-
sis that focuses on the entire system 
and the relationships between each 
of the system’s constituent parts over 
time); and flow/pull/Just-in-Time (an 
approach in which materials, goods, 
and labor are scheduled to arrive or be 
replenished only when needed in the 
process—that is, just in time).

The DevOps Handbook was highly 
influenced by prior work on Lean and 
Agile applied to IT. A major theme of 
this book is the three ways described 
as: “the values and philosophies that 
frame the processes, procedures, 
practices of DevOps, as well as the pre-
scriptive steps:”19

 The First Way emphasizes 
the performance of the entire 
system, as opposed to the 
performance of a specific silo 
of work or department—this 
can be as large as a division 
(for example, Development or 
IT Operations) or as small as 
an individual contributor (for 
example, a developer, system 
administrator).19

 The Second Way is about creating 
responsive feedback loops. 
The goal of almost any process 
improvement initiative is to 
shorten and amplify feedback 
loops so necessary corrections 
can be continually made.19

 The Third Way is about creating 
a culture that fosters two things: 
continual experimentation—

taking risks and learning from 
failure; and understanding that 
repetition and practice is the 
prerequisite to mastery.19

Information Technology 
Infrastructure Library (ITIL)
Information Technology Service Man-
agement (ITSM) is a quality manage-
ment approach for managing IT ser-
vices that meet the needs of the 
business7 by focusing on the effective 
and efficient operation of the IT service 
provider’s internal processes.12 ITSM is 
defined as the implementation and 
management of quality IT services that 
meet the needs of the business and is 
performed by IT service providers 
through an appropriate mix of people, 
processes, and information technology.12 
There are several ITSM frameworks, 
but the most widely known framework 
is the Information Technology Infra-
structure Library (ITIL). In our data 
analysis, we use ITIL knowledge to rep-
resent ITSM knowledge.

There are five life cycle stages in 
ITIL v3: Service Strategy; Service De-
sign; Service Transition; Service Oper-
ation; and, Continual Service Improve-
ment (CSI). CSI has many similarities 
to the Lean concept of kaizen. CSI uses 
methods from quality management 
such as the Deming PDCA (Plan-Do-
Check-Act) Cycle.16

Like The Agile Manifesto, ITIL 
explicitly states some essential prin-
ciples and values. In ITIL v3, each of 
the five life cycle books begin with a 
chapter on services and value. In IT-
IL’s definition of a service, it provides 
an essential core principle—a service 
is a means of delivering value to cus-
tomers by facilitating outcomes cus-
tomers want to achieve without the 
ownership of specific costs and risks. 
ITIL further expounds on this princi-
ple as IT service value is composed of 
two parts: utility and warranty. Utility 
is a service’s fitness for purpose while 
warranty is a service’s fitness for use. 
Utility is simply a service’s function-
al requirements. Warranty includes 
availability, capacity, continuity, and 
security.

In terms of DevOps, Service Design 
(Development) and Service Operation 
(Operations) have considerable rele-
vance because of the overlapping activ-
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criteria (www.DICE.com).
The original dataset contains a 

certain number of outliers and omis-
sions related to salary. We cleansed 
the data by setting the minimum wage 
of $10.00 per hour or $20,000 per year 
(40 hours per week and 50 weeks per 
year). The records with less than a 
$20,000 annual salary were eliminat-
ed (most of these eliminated records 
did not provide a salary figure). We 
further limited the respondents to 
only full-time employees in order to 
obtain a sample of 5,081.

Based on the DICE data, the salaries 
for IT professionals that possess Agile, 
Lean, and ITIL skills and knowledge 
are shown in Table 1. The table pro-
vides the salary for all respondents, 
comparing the salary medians of IT 
professionals that possess Agile, Lean, 
or ITIL skills and knowledge to the sal-
ary for all respondents.

The results clearly indicate a signifi-
cant salary premium for possessing Ag-
ile, Lean, or ITIL skills and knowledge 
because the median salaries for indi-
vidual skills are substantially higher 
than the overall (all respondents) me-
dian. Furthermore, the combination of 

two skills is even greater and individu-
als possessing all three skills being the 
highest. Over half of the respondents 
did not possess any of the three skills 
and had substantially lower salaries 
than their more skilled peers.

Human capital. The dominant eco-
nomic theory of wage determination is 
the Human Capital Theory,3 which pre-
dicts that differences in wages arise be-
cause of differences in human capital 
which can be accumulated in two main 
ways—education and experience.19 
Specifically, investments made in one’s 
occupation are directly correlated to 
the compensation earned over time 
that is received for the execution of job 
tasks. Therefore, educational spending 
can be considered to be an investment 
in human capital.27 The more educa-
tion workers have, the more productive 
they will be when compared to their 
less educated counterparts. As a result, 
the educated worker is more likely to 
command higher wages. In addition 
to formal education (indicated by the 
acquiring of a high school diploma, 
college degree, and so on), on-the-
job training is a very important factor 
for many IT jobs. Rather than formal 
education, we factor in whether an IT 
professional has (self-reported) Agile, 
Lean, or ITIL skills/knowledge.

As stated earlier, two research ques-
tions will be addressed: (RQ1) Are there 
compensation benefits for IT profes-
sionals that possess Agile, Lean, and 
ITSM skills? With the logical follow-up 
question, if there are benefits: (RQ2) 
What are the estimated benefits? Rath-
er than using salary (given in U.S. dol-
lars in the survey) as the dependent vari-
able in a regression model, we employ 
the natural logarithm of salary because 
Roy26 showed the natural logarithm of 

Data Collection and Results
A voluntary Web-based survey on salary 
and skills of IT professionals conducted 
by Dice (http://www.dice.com) was 
used for this article. The Dice 2018 Tech 
Salary Report states the survey was ad-
ministered online by Dice.com, with 
10,705 employed technology profes-
sionals from the U.S. responding be-
tween Oct. 18, 2017 and Dec. 13, 2017. 
Respondents were invited to participate 
in the survey in several ways: via an 
email invitation to Dice’s registered 
database members, through a notifica-
tion on the Dice.com home page and/
or via site intercept invitations within 
the site to visitors, and via banner ads 
on external sites. Additionally, technol-
ogy professionals who were registered 
users of eFinancialCareers.com were 
invited to participate in the survey via an 
email invitation. A cookie methodology 
was used to ensure that there was no du-
plication of responses between or with-
in the various sample groups, and dupli-
cate responses from a single email 
address were removed. Technology pro-
fessionals earning salaries of $350,000 
and above were not automatically elimi-
nated from the survey if they met other 

Table 1. Median salary for respondents.

Salary: skills and knowledge n (%) Median

All respondents 5,081 (100%) $85,000

Agile 1933 (38%) $100,000

Lean 445 (9%) $103,000

ITIL 778 (15%) $100,600

Agile and ITIL 375 (7%) $111,200 

Agile and Lean 290 (6%) $112,600

Lean and ITIL 129 (3%) $120,000

Agile and Lean and ITIL 99 (2%) $124,800

None of the three 2,620 (52%) $72,000

Table 2. Human capital model with Agile, 
Lean, and ITIL (* denotes significant at 
the .001 level).

Coefficient

Intercept 11.001*

X 0.026*

X2 –0.0006*

Agile 0.257*

Lean  0.087*

ITIL 0.158*

F-statistic 192.5*

Regression model.

where Yi is the yearly income for each worker,
β₀ is the intercept term in the regression model that determines the base rate,
β₁ and β₂ are coefficients that assess the rate of return on experience,
Agilei is an indicator variable defined to be 1 if the individual possesses Agile skills and 0 if the 
individual does not possess Agile skills, 
Leani is an indicator variable defined to be 1 if the individual possesses Lean skills and 0 if the 
individual does not possess Lean skills, 
ITILi is an indicator variable defined to be 1 if the individual possesses ITIL skills    
and 0 if the individual does not possess ITIL skills, 
β₃, β₄,and β₅ are coefficients that assess the rate of return on Agile, Lean, and ITIL knowledge, 
respectively, and i is the random disturbance associated with the i-th worker.   

http://www.DICE.com
http://www.dice.com
http://Dice.com
http://eFinancialCareers.com
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salary rather than salary produced a 
much better model fit. As stated earlier, 
experience is often incorporated in hu-
man capital models so it will also be one 
of our independent variables. Mincer21 
showed that experience should be mod-
eled as concave because as experience 
reaches a certain point, salary cannot 
increase indefinitely. Therefore, experi-
ence squared will be another indepen-
dent variable. In addition, three dummy 
or indicator independent variables will 
be used to model whether each respon-
dent indicated whether they possess Ag-
ile, Lean, or ITIL skills. This set of vari-
ables produce the the regression model 
depicted in the accompanying figure. 
We fitted the regression equation us-
ing the 5,081 respondents from the 
cleansed DICE sample with the results 
given in Table 2.

All coefficients and the overall mod-
el are highly significant. Therefore, the 
answers to the research questions are 
clearly affirmative based on the Hu-
man Capital Model. The fact that the 
coefficients of Agile, Lean, and ITSM 
skills in the estimated regression equa-
tion are positive provides the answer 
to RQ1 about compensation benefits 
for IT professionals that possess these 
skills. The salary premium is comput-
ed by taking each coefficient’s inverse 
of the natural logarithm function—
that is, each coefficient is plugged into 
the exponential function. Agile skills, 
by far, produce the greatest salary pre-
mium (26%) with ITIL (16%) and Lean 
(9%) skills and knowledge producing 
significant overall salary premiums. 
Given the logarithmic nature of the re-
gression model, one can multiply these 
numbers to get the premiums for pairs 
of skills and all three skills. The largest 
salary premium would be produced by 
the combination of all three skills. This 
answers RQ2 about the estimated ben-
efits of these skills.

Conclusion
The goal of DevOps is to enable cross-
functional relationships between the 
development and operations groups 
thereby enabling the two groups to 
work together to ensure IT services are 
transitioned to the live environment 
without problems. The specific skills 
and knowledge needed for a DevOps 
implementation will vary based on the 
infrastructure and business focus. This 

adds to the challenge of implementing 
DevOps because there is a clear lack of 
universally accepted skills and knowl-
edge requirements. The growing con-
sensus within the DevOps community 
is that DevOps = Agile + Lean + ITIL 
helps to establish a common set of base 
skills and knowledge that transcend 
business environments and toolchains. 
As reflected by the salary premiums, 
our data analysis provides significant 
evidence that there is value gained by IT 
professionals if they possess Agile (sal-
ary premium 26%), Lean (salary premi-
um 9%) , and ITIL skills and knowledge 
(salary premium 16%). Organizations 
and educational institutions that focus 
on cultivating these skills and knowl-
edge will enhance the IT professional’s 
ability to build cross-functional pro-
cesses and also use appropriate technol-
ogy to enhance an overall collaborative 
automated DevOps environment.14

ITIL’s Service Design and Service 
Operation processes can clearly be 
adapted for DevOps as these processes 
and the generic functions will still be 
necessary. Similarly, Agile can adapt 
ITIL Service Transition processes that 
help monitor and control service de-
livery, such as Change Management, 
Service Asset and Configuration Man-
agement, and Release and Deployment 
Management. In addition, Lean work-
flow concepts can better improve most 
(if not all) ITIL processes.

The integration of ITIL with Agile 
and Lean as part of ITIL 4 is a positive 
step in the direction of establishing 
a practical framework to enable the 
implementation of DevOps. Kim bet-
ter summarizes our opinion as follows: 
“For many years, I’ve felt I’ve been the 
official ITIL® apologist in the DevOps 
community, because I’ve always be-
lieved that DevOps and ITIL should 
be able to peacefully coexist. But these 
days, I feel that a more activist role in 
the DevOps community is necessary—
we must reach out and form effective 
bridges with the ITIL community, be-
cause ITIL is the most powerful and en-
trenched orthodoxy in large, complex 
IT organizations.”19  
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THE GENERAL SETTING for worst-case execution time 
(WCET) analysis is that a set of hard real-time tasks 
is to be executed on a given hardware platform. Hard 
real-time tasks have associated deadlines within 
which they must finish their execution. The deadlines 
may be given by periods. Timing verification must verify 
these timing constraints are satisfied. Traditionally, 
timing verification is split into a WCET analysis, which 
determines upper bounds on the execution times of 
all tasks, and a schedulability analysis, which takes 
these upper bounds and attempts to verify the given 
set of tasks when executed on the given platform will 
all respect their deadlines.

The problem to determine upper (and potentially 
also) lower bounds on execution times underwent a 
transition in the 1990s:

 ˲ In the old days, textbooks about 
the realization of real-time systems 
would strongly argue against the use 
of execution platforms with caches, 
pipelines, and such. For previously 
used architectures with instructions 
that had constant execution times, 
WCET analysis methods using timing 
schemata23 were the method of 
choice. Timing schemata describe 
how (bounds on) the execution times 
of a programming-language construct 
were composed from the (bounds on) 
the execution times of its compo-
nents. These methods would thus do 
structural induction over the struc-
ture of a program and determine 
bounds for ever bigger parts of the 
program. Worse yet, industry’s “best 
practice” was, and unfortunately part-
ly still is, to do some end-to-end mea-
surements, ignore some unwelcome 
outliers, if optimism prevailed, or add 
some safety margin, if more problem-
awareness dominated.

 ˲ The introduction of performance-
enhancing architectural components 
and features such as caches, pipelines, 
and speculation made methods based 
on timing schemata obsolete. Execu-
tion times did not compose any longer 
because instruction execution times 
were now dependent on the execution 
state in which they were executed. In 
the composition A;B, the execution 
time of statement B depended on the 
execution state produced by statement 
A. The variability of execution times 

Real Time 
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Real Time
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The story of the development of a sound, static 
method for worst-case execution-time analysis.
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 key insights
 ˽ WCET searches a huge state space for 

a longest path. Adequate abstraction 
of the execution platform is key to cope 
with the complexity of the analysis, and 
Abstract Interpretation provides the 
theoretical foundation for a sound and 
efficient WCET analysis. 

 ˽ The Timing Predictability of an 
architecture determines the efficiency  
of WCET analysis and the precision  
of its results.

 ˽ Some performance-enhancing features 
ruin timing predictability and at the same 
time open the door to hardware security-
attacks like Spectre and Meltdown.

http://dx.doi.org/10.1145/3375545
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grew with several architectural param-
eters, for example, the cache-miss pen-
alty and the costs for pipeline stalls 
and for control-flow mispredictions.

The introduction of multicore exe-
cution platforms into the embedded 
real-time domain made the problem 
still more difficult. These platforms 
typically have shared resources, and 
the interference on these shared re-
sources complicates the determina-
tion of upper execution-time bounds 
for tasks executed on such a platform. 
A few words about terminology. From 
the beginning we aimed at sound 
WCET-analysis methods. The results 
of a sound WCET analysis are conserva-
tive, that is, they will never be exceeded 
by an execution. We consider being 

conservative as a Boolean property. Of-
ten conservative is used as a metric, be-
ing more conservative meaning being 
less accurate. For an unsound method, 
however, it does not make sense to 
speak about being more or less conser-
vative. It is not even clear whether be-
ing “more conservative” means mov-
ing toward the real WCET from below 
or moving further away from the real 
WCET by increasing overestimation. 
The second, quite important property, 
referred to when mentioning conserva-
tism, is accuracy of the results of a 
WCET analysis.

WCET analysis can be seen as the 
search for a longest path in the state 
space spanned by the program under 
analysis and by the architectural plat-

form. The analysis is based on the as-
sumption that the analyzed programs 
terminate, that is, all recursions and it-
erations are bounded. We are not con-
fronted with the undecidability of the 
halting problem. In trying to determine 
bounds on recursion or iteration in a 
program, our tool might discover that it 
cannot determine all of the bounds and 
will ask the user for annotations. All 
WCET bounds are then valid with re-
spect to the given annotations.

This state space is thus finite, but 
too large to be exhaustively explored. 
Therefore, (safe) overapproximation is 
used in several places. In particular, an 
abstraction of the execution platform 
is employed by the WCET analysis. 
We will in the following cover static 
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access sequence of cached memory 
blocks, extended by some way to indi-
cate not cashed. The associativity of a 
fully associative cache is equal to its 
capacity. For a set associative cache it 
is the size of a cache set, that is, the 
number of memory blocks fitting into 
each set. It was (for us) easy to see our 
analysis should perform a kind of in-
tersection and associate with the ele-
ments in the resulting set their maxi-
mal age from the incoming must 
caches, whenever control flow merges. 
Abstract must caches can be used to 
predict cache hits.

An abstract may cache at a program 
point indicates which memory blocks 
may be in a concrete cache whenever 
execution reaches this program point. 
In analogy, our analysis uses union at 
control-flow merge points and associ-
ates the minimal incoming age with 
the elements in the union. Taking the 
complement of a may cache gives the 
information which memory blocks 
will be in no concrete cache arriving at 
this program point. It thus allows to 
predict cache misses. In Lv,18 we called 
such analyses classifying analyses as 
their results allow to classify some 
memory accesses as either definite 
hits or definite misses.

In contrast, persistence analyses are 
called bounding analyses. They aim at 
bounding the number of cache re-
loads of memory blocks. Intuitively, a 
memory block is called persistent if it 
suffers at most one cache miss during 
program execution. We defined such a 
persistence analysis, which was too 
beautiful to be correct. The tempting 
idea was to add another cache line 
with age associativity in which all 
memory blocks were collected that 
had been replaced in the cache at least 
once and to compute the maximal po-
sition (relative age) for all memory 
blocks that may be in the cache. The 
analysis would thus use union and 
maximal age at control-flow merge 
points. Our mistake was that we ig-
nored the capacity constraints of the 
caches. Our analysis could collect 
more memory blocks in an abstract 
cache than would fit into the concrete 
cache and thereby underestimate the 
age. Luckily, this cache-persistence 
analysis was never implemented in 
AbsInt’s tools. The error was later 
corrected by Cullmann and Huynh.4,15

Let me jump out of the story to some 
later developments: Jan Reineke has 
clarified the semantic foundations of 
persistence analysis.21 All types of per-
sistence are identified by the occur-
rence of certain patterns in memory-
access traces, while categorizing cache 
analyses, that is, must and may analy-
ses only abstract from the last state in a 
trace. Reineke also identified a whole 
zoo of different persistence analyses. 
End of excursion.

Understanding Our Approach
We developed the cache analysis with 
the goal of classifying memory access-
es as either definite cache hits or defi-
nite cache misses. The difference to 
competing approaches was that we 
could describe our cache analyses as 
abstract interpretations.3 This meant 
we defined the following:

 ˲ domains of abstract cache states 
with a partial order representing which 
domain elements contained better in-
formation than other elements,

 ˲ corresponding to this partial or-
der, a join function, used to combine 
incoming abstract domain elements at 
control-flow merge points, for exam-
ple, some kind of intersection for the 
must-cache analysis, and,

 ˲ abstract cache effects for each 
memory access, describing the update 
of abstract cache states corresponding 
to this memory access.

This stood in stark contrast to the 
state of the art in cache analysis, 
which would typically give a page of 
pseudo-C code and claim that this 
code would implement a sound cache 
analysis, of course without any cor-
rectness arguments!

Now, that we had solved one sub-
problem of WCET analysis, it was time 
to reflect more deeply what the essence 
of our method was, and we identified 
the following central idea behind our 
WCET-analysis method:

 ˲ Consider any architectural effect 
that lets an instruction execute longer 
than its fastest execution time as a tim-
ing accident. Typically such timing ac-
cidents are cache misses, pipeline 
stalls, bus-access conflicts, and 
branch mis-predictions. Each such 
timing accident had to be paid for, in 
terms of execution-time cycles, by an 
associated timing penalty. The size of 
a timing penalty can be constant but 

analyses of the behavior of several ar-
chitectural components.

Cache Analysis
Our engagement in timing analysis 
started with the dissertation work of 
Christian Ferdinand at around 1995. I 
had proposed several thesis topics, 
which he all rejected with the argu-
ment, “This is of no interest to any-
body,” meaning irrelevant for industri-
al practice. When I proposed to develop 
an analysis of the cache behavior he 
answered, “This may actually be of in-
terest to somebody.” He was able to 
convince himself (and me) very quickly 
that an idea we had would work. He 
used the program-analysis generator 
PAG, conceived by Martin Alt and real-
ized by Florian Martin in his Ph.D. the-
sis,19 to implement a prototype cache 
analysis for caches with a least-recently 
used (LRU) replacement strategy. This 
was, and still is, WCET researcher’s 
dearest replacement policy. Our first 
submitted article on cache analysis1 
confirmed Ferdinand’s appreciation 
for the subject. It received enthusiastic 
reviews as for the relevance of the prob-
lem we had solved and for the elegance 
of the solution.

Unlike existing methods, Ferdinand 
designed two different abstract do-
mains for cache analysis, a must and a 
may domain.1,6,8 An abstract must 
cache at a program point indicates 
which memory blocks will be in all 
concrete caches whenever execution 
reaches this program point. There is 
an underlying assumption that pro-
gram execution is not disturbed by in-
terrupts or preemption. Otherwise, the 
impact of interrupts or preemptions 
must be taken into account by analyz-
ing the maximal cache impact through 
a CRPD analysis.2

An abstract must cache state com-
puted at a program point represents 
an over-approximation of the set of 
concrete cache states that may reach 
this program point. All the concrete 
cache states in this overapproximation 
have as common contents the memory 
blocks that are sure to be in the con-
crete cache when execution reaches 
this program point. In LRU caches, 
memory blocks logically have an age. 
The age is between 0 and the associa-
tivity—1 of the cache (set) and corre-
sponds to the relative position in the 
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proach.7 This processor had a four-
way set-associative cache with a rath-
er strange cache-replacement strategy 
using one global round-robin replace-
ment counter keeping track of where 
the next replacement should take 
place. It meant our cache analysis 
could essentially only keep track of 
the last loaded cache line in each 
cache set. This strange beast of a 
cache triggered the concept of timing 
predictability, which turned out to be 
a very fruitful research area, to be dis-
cussed later.

There was a second assumption 
that turned out to be false. It is intui-
tively clear the accuracy of the cache 
analysis has a strong impact on the ac-
curacy of the WCET-analysis results. 
This led us to believe that cache analy-
sis was the difficult part of WCET anal-
ysis, that the rest would be easy. It 
turned out that caches were relatively 
easy to analyze, although good solu-
tions for Non-LRU caches had yet to be 
found. Much later, between 2008–
2011, Daniel Grund developed an effi-
cient analysis for FIFO caches and ap-
proached a solution for the analysis 
problem for PLRU caches.9–11

Pipelines were much more difficult 
to analyze and also appeared in more 
variations and were mostly badly docu-
mented. And then Airbus informed us 
about the existence of peripheries and 
system controllers, architectural com-
ponents that serious WCET research-
ers had never heard of. Their analyses 
can have a very strong influence on the 
accuracy of timing analyses.

Control-Flow Reconstruction
But first we needed to get programs to 
analyze. WCET analysis has to be done 
on the executable level because the 
compiler influences the execution 
time by its memory allocation and 
code generation. So, we needed a re-
construction of the control flow from 
binary programs. This was part of 
Henrik Theiling’s Ph.D. thesis.24 De-
coding individual instructions is rela-
tively easy, but identifying the control 
flow, in particular switch tables is a 
non-trivial task.

Pipeline Analysis
At the end of the 1990s, Stephan Thesing 
started to develop the framework for 
modeling pipeline architectures.16,25 

may also depend on the execution 
state. We consider the property that a 
particular instruction will not cause a 
particular timing accident as a safety 
property. The occurrence of a timing 
accident thus violates a correspond-
ing safety property.

 ˲ Use an appropriate method for the 
verification of safety properties to 
prove that for individual instructions 
in the program some of the potential 
timing accidents will never happen. 
Reduce the worst-case execution-time 
bound for an instruction, which a 
sound WCET analysis would have to as-
sume, by the penalties for the excluded 
timing accidents.

 ˲ Abstract interpretation3 is a pow-
erful method to prove safety proper-
ties. Use it to compute certain invari-
ants at each program point, namely an 
upper approximation of the set of exe-
cution states that are possible when 
execution reaches this program point. 
Derive safety properties, that certain 
timing accidents will not happen, 
from these invariants.

This method for the micro-architec-
tural analysis was the central innova-
tion that made our WCET analysis 
work and scale.

Our First Illusions
Christian Ferdinand had finished his 
very fine dissertation on cache analy-
sis in 1997. It still represents the state 
of the art in cache analysis for LRU 
caches.6 Since everybody else working 
in the area had tried to solve this 
problem first, and we were convinced 
that our solution was the best, we felt 
that we had essentially solved the 
WCET-analysis problem. Very opti-
mistically we founded AbsInta early in 
1998, “we,” being five former or actual 
Ph.D. students and me.

This optimism turned out as wrong 
in several aspects. Firstly, more or 
less nobody uses LRU caches in their 
processors since the logic is consid-
ered too complex. Frequently used re-
placement policies are PLRU, FIFO, 
random replacement, or even strange 
looking approximations of random 
replacement like in the Motorola 
Coldfire, which is flying in the Airbus 
A340, and which Airbus selected as a 
real-life processor to test our ap-

a www.absint.com

All types of 
persistence are 
identified by the 
occurrence of 
certain patterns 
in memory access 
traces, while 
categorizing cache 
analyses, that 
is, must or may 
analyses only 
abstract from the 
last state in a trace. 
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and 7%,12 but the analysis efficiency 
increased by an order of magnitude.

The Breakthrough
The European project Daedalus, Valida-
tion of critical software by static analysis 
and abstract testing, which ran from 
2000 to 2002, associated us with an ex-
tremely valuable partner, Airbus. Pat-
rick Cousot had organized an industry 
seminar on abstract interpretation. 
One of the participants was an Airbus 
engineer, Famantanantsoa Randim-
bivololona, in charge of identifying 
new, usable and helpful methods and 
tools for software development at Air-
bus. Randim had listed the most severe 
of Airbus’ problems, and Cousot com-
posed a consortium for a European 
project targeted at solving these prob-
lems. Saarbrücken was listed with 
WCET Analysis. My admiration of the 
problem-awareness of the software de-
velopers at Airbus grew during my first 
visit to the Airbus headquarters and de-
velopment labs in Toulouse, France. 
Everybody greeted me, expressing their 
concern that they had no viable solu-
tion for the verification of their real-
time requirements and their hope that 
we would provide a solution.

This is a good point to describe pre-
vious funding. In DFG Collaborative Re-
search Center 124, DFG (our National 
Science Foundation) had funded the 
development of the foundations of 
WCET analysis, including Florian Mar-
tin’s Program Analyzer Generator 
(PAG). When this DFG Collaborative 
Research Center, which has run 15 
years (from 1983 to 1998) approached 
its end, DFG had just initiated a new 
type of grant, a Transfer Center, meant 
to support transfer of results of suc-
cessful Research Centers to practice. 
This was a perfect fit for our situation. 
We applied and were granted solid 
funding for further development. At 
about this time, Airbus was searching 
for a solution for their WCET-analysis 
problem. Cousot formed the consor-
tium, and the EU Commission granted 
us the Daedalus project. In hindsight, 
this sequence of funded projects ap-
pears like a miracle, each at exactly the 
right time!

Back to our contacts with Airbus 
and their search for some one to solve 
the WCET problem: They knew their 
previously used measurement-based 

He also did, as far as I know, the first 
modeling of a system controller for 
WCET analysis.26 Doing this precisely 
was highly important because an impre-
cise, too abstract model of a systems 
controller can easily cost an order of 
magnitude more accuracy than an im-
precise pipeline model.

Pipeline analysis is a highly com-
plex part of the overall analysis be-
cause, unlike caches, most pipelines 
do not have compact, efficiently up-
datable abstract domains. Cache 
analysis is efficient because the sets 
of concrete cache states that may oc-
cur at a program point can be com-
pactly represented by one abstract 
cache state, and abstract cache states 
can be efficiently updated when a 
memory access is analyzed. Essential-
ly, pipeline analysis uses an expensive 
powerset domain, that is, it collects 
sets of pipeline states instead of com-
puting an abstract pipeline state rep-
resenting sets of pipeline states. This 
characteristic would, in principle, 
make it amenable to model checking. 
Stephan Wilhelm tried this around 
2009 and encountered severe prob-
lems in the application of model 
checking to pipeline analysis.28,29 In 
particular, interfacing symbolic rep-
resentations of pipelines with ab-
stract representations of caches, 
while preserving accuracy, is difficult. 
Daniel Kaestner’s Astrée group made 
a similar experience when attempting 
to interface Astrée with some model 
checkers.b It appeared that model 
checking and abstract interpretation 
were communicating badly and thus 
seemed to replicate the behavior of 
their inventors.

Another excursion into the future: 
Hahn et al.13 describes a strictly in-or-
der pipeline providing for compact 
abstract domains. Strictly in-order 
pipelines avoid all downstream de-
pendences between consecutive in-
structions, such as the one of an oper-
and load of an earlier instruction on 
the instruction fetch of a consecutive 
instruction. In case of a contention, 
the operand load is always guaran-
teed to be executed first. The loss in 
(average-case) performance com-
pared to a traditional in-order pipe-
line was measured to be between 6% 

b https://www.absint.com/astree/index.htm
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years later hardware security-attacks 
like Meltdown and Spectre showed 
that architectural features with low 
predictability were also the basis for 
these security attacks. A combination 
of timing unpredictability and vulner-
ability to security attacks might have 
discredited the architectural compo-
nents more effectively.

AbsInt
WCET analysis for single-core architec-
tures had been essentially solved by a 
sequence of Ph.D. theses in my group. 
The only import was the Implicit Path 
Enumeration Technique (IPET) of Li 
and Malik.17 Li and Malik had managed 
to model the timing behavior of pro-
grams and the entire architecture as an 
integer linear program, which was far 
from efficiently solvable. The IPET 
technique was adopted to our setting 
by Henrik Theiling in his Ph.D. thesis.24

It may be valuable information for 
many readers to estimate the neces-
sary effort to develop a sound formal 
method for an industrially relevant 
non-trivial problem more or less from 
scratch. At the core of our work leading 
to the first usable tool, as described in 
Ferdinand et al.,7 were three Ph.D. the-
ses, those of Christian Ferdinand, 
Stephan Thesing, and Henrik Theil-
ing. Their joint development effort 
would amount to approximately 11 
person years, ignoring the effort re-
quired to write up the theses, publish 
results, and satisfy project require-
ments. Another three years went into 
the implementation of static cache 
analysis for some non-LRU caches and 
into the value analysis of the timing-
analysis tool. The latter was based on 
existing theory developed in Cousot 
and Cousot3 but had to be adapted to 
the analysis of binary executables and 
to all the peculiarities of a machine se-
mantics. Altogether the effort invested 
in the first usable tool would add up to 
roughly 14 person years. However, one 
should not underestimate the acceler-
ating effect that PAG19 had on the im-
plementation of and experimentation 
with several abstract interpretations 
within the timing-analysis tool. This 
development effort was followed by 
work to improve efficiency of the analy-
ses and accuracy of the results, by re-
search into the predictability of archi-
tectural features and, based on the 

method, also used in certification, did 
not work any longer for the execution 
platform selected for the Airbus A380, 
namely the Motorola MPC755.

The Airbus people provided us with 
benchmark software, a set of 12 dena-
tured tasks, each consisting of several 
million instructions, as they were fly-
ing them in the A340. The platform 
there was the Motorola Coldfire pro-
cessor, mentioned earlier. The tool we 
developed until 2001 was able to ana-
lyze the benchmark provided by Airbus 
in decent time and with quite precise 
results. The upper bounds our tool 
computed made the Airbus people 
quite happy because they were apporxi-
mately in the middle between the worst 
observed execution times and the up-
per bound determined by Airbus with a 
measurement-based method using 
safety margins. More precisely, our 
analysis results were overestimating 
the worst observed execution times by 
roughly 15%. This breakthrough was 
reported in Ferdinand et al.7 Some-
thing surprising, at least for me, hap-
pened when I described our approach 
and reported our results at EMSOFT 
2001. Highly appreciated colleagues 
like Hermann Kopetz and Gérard Berry 
were storming the stage and congratu-
lated me as if I had just won an Oscar. 
Indeed, this paper received the EM-
SOFT Test-of-Time Award 2019.

Some words about our long-time co-
operation partner, Airbus, in Toulouse. 
We have experienced the group in 
charge of developing safety-critical 
software as problem-aware, highly 
competent, and extremely cooperative. 
They wanted to have this problem 
solved and they trusted us to solve it, 
and they kept us focused on the real 
problems, and thus prevented us from 
solving simplified, self-posed prob-
lems, a tendency academic researchers 
often are inclined to follow.

As a result of our successful devel-
opment, Airbus offered our tools to the 
certification authorities for the certifi-
cation of several Airbus plane genera-
tions, starting with the Airbus A380. 
The European Union Aviation Safety 
Agency (EASA) has accepted the AbsInt 
WCET analysis tool as validated tool 
for several time-critical subsystems of 
these plane types. We were less suc-
cessful with Airbus’ competitor, who 
partly certifies their planes themselves, 

as it recently turned out, and with the 
certification authority in charge, who 
doesn’t seem to require the use of a 
sound verification technology for real-
time requirements.

Predictability
When modeling the Motorola Coldfire 
cache we noticed that only one-fourth 
of its cache capacity could be predict-
ed. This quickly led us to consider the 
problem of timing-predictability of ar-
chitectures.14 In his Ph.D. thesis, Jan 
Reineke developed the first formally 
founded notion of predictability, 
namely that of cache predictability.20,22 
The concept behind this notion is that 
a cache architecture, more precisely 
its cache-replacement policy is more 
predictable than another one if it re-
covers from uncertainty about cache 
contents faster, that is, needs fewer 
memory accesses to remove uncer-
tainty from the abstract cache. Among 
all the considered cache-replacement 
strategies LRU fares provably best.

Reineke also compared how sensi-
tive caches are to changes to the initial 
cache state. He could show that all 
non-LRU cache replacement strategies 
he considered were quite sensitive to 
such changes. This means the differ-
ence in the cache-miss rate is only 
bounded by the length of the memory-
access sequence. Thus, missing an ini-
tial cache state when measuring execu-
tion time may mean to miss a 
memory-access sequence with a high 
cache-miss rate.

In Wilhelm et al,27 we collected our 
wisdom concerning timing predict-
ability of several types of architectural 
components. It heavily influenced the 
design of the Kalray MPPA.5

One could at this point remark that 
a future automatically driven car will 
employ a GPU executing learned-pat-
tern recognition, which is controlled 
by an 8-core-ARM architecture whose 
design contradicts under almost all as-
pects this collected wisdom of ours. It 
employs random-replacement caches, 
a cache coherence protocol, a shared 
bus, and all DRAM memory.

Another remark is in place here. Our 
efforts to push the predictability issue 
had limited effect. In retrospect, it 
looks like we came up too early with 
our complaints and the ideas to reme-
dy the corresponding problems. A few 
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namely how to determine reliable 
and precise upper bounds on execu-
tion times of programs. We were not 
the only ones to attempt this. Why 
were we more successful than other 
groups? Essentially the answer is, 
we had a firm background in formal 
methods, particularly in abstract in-
terpretation, and abstraction of the 
execution platform played the deci-
sive role in our approach. Without 
the right abstraction of the architec-
ture, the search space is just too large. 
However, there is more to it! WCET 
analysis consists of many phases. 
A practically usable WCET-analysis 
method requires strong solutions 
to all the subproblems and their ad-
equate interaction. Otherwise, either 
the effort is too high, or the accuracy 
is too low. The people at AbsInt did an 
excellent engineering job to come up 
with WCET-analysis tools and later 
also other tools that were usable on 
an industrial scale. 
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results, into ways to exploit the con-
figurability of processor architectures.

We had founded AbsInt to industri-
alize our WCET technology. Well, we 
solved the problem, we had instantia-
tions for some processor architectures, 
basically for those that Airbus and their 
suppliers needed. However, we had to 
learn that hardly any two potential cus-
tomers employed the same architec-
ture configuration. The decision for a 
new platform was taken without consid-
ering whether a WCET-analysis existed 
for this platform. Instantiating our 
technology for a new, complex platform 
took a lot of effort, and platforms were 
not getting simpler! In consequence, 
such an instantiation was very expen-
sive, which did not raise the motivation 
of potential customers to buy our 
WCET tools or order the development 
of a new instance for their platform. In 
addition, there existed some competi-
tors, who marketed their measure-
ment-based, unsound timing analysis 
and often forgot to mention the un-
soundness of their tool. When compa-
nies that developed or integrated hard 
real-time systems were obliged to show 
“that they did something about this 
nasty problem” this unsound, inexpen-
sive solution was sometimes preferred 
to show “that we do something” (and 
didn’t pay too much for it). So, industri-
alizing and marketing a sound WCET 
technology, that inherently needed to 
be expensive, was no promising way to 
get rich.

However, our development of a 
sound method that actually solved a 
real problem of real industry was con-
sidered a major success story for the 
often disputed formal-methods do-
main. AbsInt became the favorite 
partner for the industrialization of ac-
ademic prototypes. First, Patrick Cou-
sot and his team offered their proto-
type of Astrée, a static analysis for 
run-time errors, which in cooperation 
with some of the developers has been 
largely extended by AbsInt. Then, 
Xavier Leroy offered the result of his 
much-acclaimed research project, 
CompCert, the first verified optimiz-
ing C compiler. Both Astrée and 
CompCert are now AbsInt products.

Conclusion
My former Ph.D. students and I have 
solved a relevant, non-trivial problem, 
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DESPITE THE FOCUS on operating in adversarial 
environments, cryptocurrencies have suffered a litany 
of security and privacy problems. Sometimes, these 
issues are resolved without much fanfare following 
a disclosure by the individual who found the hole. In 
other cases, they result in costly losses due to theft, 
exploits, unauthorized coin creation, and destruction. 
These experiences provide regular fodder for 
outrageous news headlines. In this article, we focus on 
the disclosure process itself, which presents unique 
challenges compared to other software projects.15 To 
illustrate, we examine some recent disclosures and 
discuss difficulties that have arisen.

While Bitcoin is the best known, more than 2,000 
cryptocurrencies are in circulation, collectively 
valued at $350 billion as of August 2020.6 Figure 1 
conceptualizes the landscape as a stack. While the 
details differ, at the lowest level, each cryptocurrency 

system is designed to achieve common 
security goals: transaction integrity and 
availability in a highly distributed sys-
tem whose participants are incentiv-
ized to cooperate.38 Users interact with 
the cryptocurrency system via software 
“wallets” that manage the cryptograph-
ic keys associated with the coins of the 
user. These wallets can reside on a local 
client machine or be managed by an 
online service provider. In these appli-
cations, authenticating users and 
maintaining confidentiality of crypto-
graphic key material are the central se-
curity goals. Exchanges facilitate trade 
between cryptocurrencies and between 
cryptocurrencies and traditional forms 
of money. Wallets broadcast cryptocur-
rency transactions to a network of 
nodes, which then relay transactions to 
miners, who in turn validate and group 
them together into blocks that are ap-
pended to the blockchain.

Not all cryptocurrency applications 
revolve around payments. Some crypto-
currencies, most notably Ethereum, 
support “smart contracts” in which 
general-purpose code can be executed 
with integrity assurances and recorded 
on the distributed ledger. An explosion 
of token systems has appeared, in 
which particular functionality is ex-
pressed and run on top of a cryptocur-
rency.12 Here, the promise is that busi-
ness logic can be specified in the smart 
contract and confidently executed in a 
distributed fashion.

The emergence of a vibrant ecosys-
tem of decentralized cryptocurrencies 
has prompted proposals that leverage 
the underlying technology to construct 
new central bank currency2 and corpo-
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ventions adopted for general software 
products in several ways. Two funda-
mental differences arise from the very 
nature of cryptocurrencies.

First, the decentralized nature of 
cryptocurrencies, which must continu-
ously reach system-wide consensus on a 
single history of valid transactions, de-
mands coordination among a large ma-
jority of the ecosystem. While an indi-
vidual can unilaterally decide whether 
and how to apply patches to her client 
software, the safe activation of a patch 
that changes the rules for validating 
transactions requires the participation 
of a large majority of system clients. Ab-
sent coordination, users who apply 
patches risk having their transactions 
ignored by the unpatched majority.

Consequently, design decisions 
such as which protocol to implement or 
how to fix a vulnerability must get sup-
port from most stakeholders to take ef-
fect. Yet no developer or maintainer 
naturally holds the role of coordinating 
bug fixing, let alone commands the au-
thority to roll out updates against the 
will of other participants. Instead, 
loosely defined groups of maintainers 
usually assume this role informally.

This coordination challenge is ag-
gravated by the fact that unlike “cre-
ative” competition often observed in 
the open source community (for exam-
ple, Emacs versus vi), competition be-
tween cryptocurrency projects is often 
hostile. Presumably, this can be ex-
plained by the direct and measurable 
connection to the supporters’ financial 
wealth and the often minor technical 
differences between coins. The latter is 
a result of widespread code reuse,28 
which puts disclosers into the delicate 
position of deciding which among 
many competing projects to inform re-
sponsibly. Due to the lack of formally 
defined roles and responsibilities, it is 
moreover often difficult to identify who 
to notify within each project. Further-
more, even once a disclosure is made, 
one cannot assume the receiving side 
will act responsibly: information about 
vulnerabilities has reportedly been 
used to attack competing projects,18 in-
fluence investors, and can even be used 
by maintainers against their own users.

The second fundamental difference 
emerges from the widespread design 
goal of “code is law,” that is, making 
code the final authority over the shared 

rate electronic money, such as Face-
book’s asset-linked Libra. This article 
focuses on existing decentralized cryp-
tocurrencies. Some lessons discussed 
here could also inform the design and 
operation of these prospective forms of 
digital money issued by public or pri-
vate legal entities.

Bugs in cryptocurrencies. The crypto-
currency realm itself is a virtual “wild 
west,” giving rise to myriad protocols 
each facing a high risk of bugs. Projects 
rely on complex distributed systems 
with deep cryptographic tools, often 
adopting protocols from the research 
frontier that have not been widely vet-
ted. They are developed by individuals 
with varying level of competence (from 
enthusiastic amateurs to credentialed 
experts), some of whom have not devel-
oped or managed production-quality 
software before. Fierce competition be-
tween projects and companies in this 
area spurs rapid development, which 
often pushes developers to skip impor-
tant steps necessary to secure their co-
debase. Applications are complex as 
they require the interaction between 
multiple software components (for ex-
ample, wallets, exchanges, mining 
pools). The high prevalence of bugs is 
exacerbated by them being so readily 
monetizable. With market capitaliza-
tions often measured in the billions of 
dollars, exploits that steal coins are si-
multaneously lucrative to cybercrimi-
nals and damaging to users and other 
stakeholders. Another dimension of 
importance in cryptocurrencies is the 
privacy of users, whose transaction data 

is potentially viewable on shared led-
gers in the blockchain systems on 
which they transact. Some cryptocur-
rencies employ advanced cryptograph-
ic techniques to protect user privacy, 
but their added complexity often intro-
duces new flaws that threaten such pro-
tections.

Disclosures. Disclosures in crypto-
currencies have occurred in varying cir-
cumstances, from accidental discover-
ies, through analysis by expert 
developers and academics, to observ-
ing successful exploits in the wild. In 
the rest of this article, we highlight the 
difficulties and subtleties that arise in 
each case. The root causes of most of 
the difficulties lie in the special nature 
of cryptocurrencies: they are based on 
distributed systems that were designed 
to be difficult to change in order to pro-
vide strong guarantees on their future 
behavior. In order to change these 
rules, the consent of many participants 
is needed—participants who are often 
anonymous, and who are organized 
loosely in communities without gov-
erning bodies or regulatory oversight.

Here, we briefly highlight the differ-
ences between conventional software 
development and cryptocurrencies 
with regard to vulnerability disclosure, 
we identify key issues in the disclosure 
process for cryptocurrency systems, 
and we formulate recommendations 
and pose open questions.

How Is Disclosure Different? 
Responsible vulnerability disclosure in 
cryptocurrencies differs from the con-

Figure 1. Components of the cryptocurrency architecture covered in this article.

User

Developer

MinerMiner Miner

Cryptocurrency systems

Smart contracts
e.g., Token systems

Client software
e.g., Wallets

Online wallets
And exchanges

Main security goals:

Key management
•
• Authentication

Business logic

• Integrity
• Authorization

• Integrity (Safety)
• Availability (Liveness)
• Incentives (Fairness)

Confidentiality



OCTOBER 2020  |   VOL.  63  |   NO.  10  |   COMMUNICATIONS OF THE ACM     65

review articles

system state in order to avoid (presum-
ably fallible) human intervention. To 
proponents, this approach should 
eliminate ambiguity about intention, 
but it inherently assumes bug-free 
code. When bugs are inevitably found, 
fixing them (or not) almost guarantees 
at least someone will be unhappy with 
the resolution. This is perhaps best ex-
emplified by the controversy around 
the DAO, an Ethereum smart contract 
with a reentrance bug that was exploit-
ed to steal coins worth around $50 mil-
lion. After a community vote, the Ethe-
reum developers rolled out a patch to 
reverse the heist, which (maybe surpris-
ingly) turned out to be controversial. 
While the patch was accepted by large 
parts of the ecosystem, it was strongly 
opposed by a minority of Ethereum us-
ers arguing that it is a direct violation of 
the code-is-law principle, and the con-
troversy ultimately led to a split of the 
Ethereum system into two distinct 
cryptocurrencies Ethereum and Ethe-
reum Classic.1 Moreover, situations 
may arise where it is impossible to fix a 
bug without losing system state, possi-
bly resulting in the loss of users’ ac-
count balances and consequently their 
coins. For example, if a weakness is dis-
covered that allows anybody to effi-
ciently compute private keys from data 
published on the blockchain,16 recovery 
becomes a race to move to new keys be-
cause the system can no longer tell au-
thorized users and attackers apart. This 
is a particularly harmful consequence 
of building a system on cryptography 
without any safety net. The safer ap-
proach, taken by most commercial ap-
plications of cryptography but rejected 
in cryptocurrencies, places a third party 
in charge of resetting credentials or 
suspending the use of known weak cre-
dentials.

Ironically, these fundamental differ-
ences stem from design decisions in-
tended to enhance security. Decentral-
ization is prized for eliminating single 
points of control, which could turn out 
to be single points of failure. Giving 
code the final say is intended to pre-
serve the integrity of operations. How-
ever, what may benefit security at de-
sign time becomes a significant liability 
after deployment once vulnerabilities 
are found.

Besides these fundamental differ-
ences, responsible disclosure for cryp-

tocurrencies is characterized by specif-
ic features of the domain. The 
interpretation of system state as mon-
ey, with many exchanges linking it me-
chanically to the conventional financial 
system, makes it easier and faster to 
monetize bugs than for conventional 
software, where vulnerability markets 
may exist but are known to be friction-
prone.23 Moreover, the cryptocurrency 
ecosystem reflects conflicting world-
views, which prevent the establishment 
of basic norms of acceptable behavior. 
For example, invalidating ransomware 
payments via blacklisting has reignited 
the debate over censorship and the rule 
of law.26

Finally, we note a difference in em-
phasis over certain aspects of disclo-
sure. The conventional responsible dis-
closure discussion has focused on 
balancing users’ interests in defensive-
ly patching versus national security in-
terests of weaponizing vulnerabili-
ties,25,31 without regard to whether the 
affected software is open or closed 
source. By contrast, open source soft-
ware and code reuse are central to dis-
closure issues in cryptocurrencies, 
whereas balancing national and indi-
vidual security considerations has so 
far not been widely discussed.

Throughout the rest of the article, 
we illustrate these differences with real 
cases before we derive recommenda-
tions and point to open problems.

Case Studies
We now review selected case studies of 
cryptocurrency vulnerability disclo-
sures, highlighting aspects that teach 
us about the difficulties in response. 
We employ a multi-perspective method 
in selecting and researching these cas-
es, ranging from the authors’ direct ex-
perience as disclosers, interviews with 
developers and cryptocurrency design-
ers, and through public reports. Inter-
views with open-ended questions were 
conducted by telephone, in-person or 
by email. Attribution is given unless the 
subject requested anonymity. The nov-
elty and heterogeneity of the problem 
precluded a more systematic approach, 
though we hope that those informed by 
our findings can do so in future investi-
gations. We investigate coins both 
small and large, because even the top 
coins have experienced severe bugs. 
While the software development pro-

The decentralized 
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Later in 2017, a team of researchers 
including author Ruffing found anoth-
er vulnerability in Zcoin that allowed an 
attacker to “burn” money in transit, 
that is, ensure no one, including the 
sender, recipient, and attacker, can fur-
ther spend the coins.30 Remarkably, the 
root cause of this vulnerability was an 
overlooked attack vector in the design 
and security analysis of the underlying 
Zerocoin protocol. While money burn-
ing does not serve the attacker directly, 
the attacker could profit indirectly, for 
example, by betting on falling prices of 
the affected cryptocurrency (short sell-
ing) and then publishing or exploiting 
the vulnerability. We have no evidence 
that such short-selling activity did in-
deed take place.

Having no cryptographer on its 
team, Zcoin hired Ruffing to provide 
advice and develop a patch. During the 
work, he identified two more vulnera-
bilities,29 one enabling illegitimate coin 
generation and one allowing theft of 
money in transit. Both vulnerabilities 
stemmed from bugs in libzerocoin, a 
prototype library written by the inven-
tors of the Zerocoin protocol for the 
purpose of validating their research. 
The Zcoin project had used that library 
as-is, despite the code’s prominent 
warning that the authors “are releasing 
this dev version for the community to 
examine, test and (probably) break” 
and that there are things that they have 
“inevitably done wrong.”21

Code reuse complicated the disclo-
sure process of the three vulnerabili-
ties.29 Months after the initial notifica-
tion, the discoverers found that more 
than 1,600 public GitHub repositories 
included verbatim copies of libze-
rocoin. Responsible and confidential 
disclosure to so many recipients is in-
feasible. Instead, the discoverers nar-
rowed down the recipient set to less 
than 10 actual cryptocurrency projects, 
four of which they deemed trustworthy 
enough to be informed additionally. 
None of the projects had a clearly de-
fined contact point or process for han-
dling vulnerabilities.

Competition between projects pre-
vented a coordinated response. For ex-
ample, the notified project did not re-
veal to the reporters which of their 
competitors were also vulnerable. Co-
ordination is essential because the first 
project to patch reveals the vulnerabili-

cesses for prominent coins are more 
robust, the cases will show that all coins 
experience challenges to disclosure not 
seen in traditional software projects. 
Figure 2 presents a stylized timeline of 
the cases presented.

Cryptocurrency systems. Zcoin. We 
start with Zcoin, a relatively little 
known cryptocurrency that has suf-
fered from repeated disclosures. Zcoin 
was the first to implement the Zerocoin 
protocol,22 which uses zero-knowledge 
proofs to enable untraceable transac-
tions. In February 2017, an attacker ex-
ploited a typo in C++ code17 (using the 
equality operator ‘==’ instead of the as-
signment operator ‘=’) to generate 
403,050 coins out of thin air. The new 
coins had a market value of $750,000 
and inflated the currency supply in cir-

culation by 37%. In principle, such at-
tacks can remain unnoticed due to the 
zero-knowledge veil, but the sheer 
number of coins created combined 
with the attacker’s impatience eventu-
ally led to its discovery. Within hours, 
the Zcoin team demanded that trading 
halt at big exchanges, published a blog 
post, and asked mining pools to sus-
pend processing zero-knowledge 
transactions. A patch was released 
within a day, but the zero-knowledge 
feature remained disabled, thereby 
temporarily freezing all untraceable 
funds. This issue was resolved after 
four days when a “fork” altering the 
fundamental transaction validation 
rules was adopted by a majority of the 
miners. Even so, the attacker was able 
to abscond with the loot.

Figure 2. Visualization of the vulnerabilities discussed in this article. 

The blue bars represent the underlying coins and 
their widths are proportional to their marketcap (for 
example, Coinmarketcap.org). The red bars visualize 
the discussed incidents from their introduction (flag) to 
their disclosure (wide bar) to their public announcement 
(bell). The additional symbol is used whenever money 
was stolen, burnt or printed.
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ty, leaving the others unprotected. One 
currency was actually exploited in this 
way, and ironically, Zcoin itself was tar-
geted because the patch was not adopt-
ed quickly enough. Dealing with the 
entire situation required tact and judg-
ment by the discoverers, and the poten-
tial for every mistake to be catastrophic 
furthers the discoverers’ burden.

As a result of the coin creation bugs, 
Zcoin improved continuous monitor-
ing of aggregated balances, which led 
to the discovery of another creation 
bug in April 2019. The project repeated 
the notification process described ear-
lier, disabled the zero-knowledge fea-
tures via an emergency fork, and in-
formed three potentially affected 
competitors. It took 10 days of investi-
gation before a project developer iden-
tified the root cause in the design of the 
Zerocoin protocol. Unlike a simple im-
plementation bug, there was no obvi-
ous way to fix the problem. The proj-
ect’s response was to migrate to an 
entirely different zero-knowledge pro-
tocol, suspending untraceable transac-
tions in the meantime and freezing the 
affected funds until the new protocol 
was deployed in July 2019.37

Zcash. Zcash, the commercial imple-
mentation of the Zerocash protocol,3 
improves on Zerocoin’s model for un-
traceable transactions. It too has suf-
fered from similar issues.32 The propos-
al for the used algorithm for generating 
cryptographic material allowed a pa-
rameter to be published that should 
have remained secret. (Incidentally, a 
security proof was omitted because the 
scheme was similar to a previous one 
known to be secure.) The published 
value could have been used to undetect-
ably generate coins out of thin air. The 
problem was discovered internally in 
March 2018 and fixed after 240 days in 
conjunction with a scheduled upgrade 
of the zero-knowledge protocol. Before 
and during the events the Zcash team 
had entered mutual disclosure agree-
ments with the two largest competitors 
who reuse Zcash code. These competi-
tors were notified two weeks after the 
fix with a schedule for public disclosure 
within a maximum of 90 days, which 
then took place in February 2019, al-
most one year after the discovery.32 Ob-
scurity played a key role in this event: 
not only was the fix hidden in a larger 
update, the critical parameter was also 

removed from websites and a cover sto-
ry spun around the “loss” of this piece 
of information. The intention of this 
obscurity was to protect Zcash’s own in-
terests and its users, as well as those of 
competing cryptocurrencies. On the 
downside, such long periods of obscu-
rity may cast doubt on the trustworthi-
ness of security claims in the future, 
and it remains unclear whether and to 
what extent the bug has been exploited.

Monero. The opposite of internal 
discovery is accidental public disclo-
sure. This happened to Monero, the 
most popular implementation of the 
CryptoNote protocol.35 In September 
2018, an interested user posted a 
seemingly innocuous question to an 
online forum: “What happens if some-
body uses a one-time account twice?” 
(paraphrased by the authors).7 Sur-
prisingly, there was no protection 
against this action in the protocol. 
The revealed vulnerability allowed at-
tackers to burn other people’s funds. 
The problem was fixed within 10 days 
without known incidents and publicly 
announced thereafter.

A more serious vulnerability in the 
CryptoNote protocol affected all crypto-
currencies based on it. A post on a spe-
cialized cryptography mailing list in 
February 2017 revealed an issue, which 
implied a coin generation vulnerability 
in CryptoNote’s basic cryptographic 
scheme.20 The Monero team took note 
and developed a patch within three 
days and shared it privately with pre-
ferred parties, such as mining pools 
and exchanges. The true purpose of the 
patch was disguised in order to protect 
the rest of the users who were running 
vulnerable clients. After a fork to the 
validation rules that completely re-
solved the issue in Monero in April 
2017, the Monero team informed other 
CryptoNote coins privately. One such 
coin, Bytecoin, was exploited immedi-
ately afterward, resulting in the illegiti-
mate generation of 693 million coins.18 
In a public disclosure that took place 15 
days later, the Monero team described 
the aforementioned process and 
named unpatched competitors, includ-
ing Bytecoin20 (though Bytecoin claims 
that a patch had been issued to miners 
immediately after the exploit18). Per-
versely, the public disclosure attracted 
other investors to bid up the Bytecoin 
price. Its market capitalization grew 

Unlike bugs  
in which  
coins are created,  
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that might have 
placed user funds  
at risk of theft.
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ther bug could be exploited before 
making the disclosure public on the 
bitcoin-dev mailing list. They did not 
notify anyone of the inflation bug until 
the network had been upgraded. Third, 
the disclosure involved deliberate de-
ception of users: the Bitcoin developers 
published a patch describing it as only 
fixing the denial-of-service issue. This 
downplayed the severity of the bug, 
while at the same time motivating a 
prompt upgrade. This gave Bitcoin us-
ers and other affected cryptocurrencies 
time to adopt the fix, albeit with grum-
bling about the sudden public release. 
This highlights both a benefit and a 
downside to employing white lies in the 
disclosure process.

Silence is an alternative to white lies. 
The Bitcoin team took this option after 
an internal discovery in 2014. Bitcoin 
suffered from an inconsistency be-
tween different versions of the OpenS-
SL library. The 32-bit version was more 
tolerant in accepting variants of digital 
signatures than the 64-bit version, 
which could cause a loss of consistency 
if a signature is accepted only by the 
subset of nodes running on 32-bit. The 
mitigation turned into a year-long or-
deal. Fixing OpenSSL was not an op-
tion, hence the stricter signature for-
mat had to be enforced in the Bitcoin 
codebase. Changes were made subtly 
and gradually in order to avoid drawing 
attention on the relevant piece of code. 
Users upgraded organically over a peri-
od of 10 months. The bug was made 
public when more than 95% of the min-
ers had patched.36

Smart contracts. Some cryptocur-
rencies, most prominently Ethereum, 
support “smart contracts.” These are 
computer programs anyone can store 
on a shared blockchain, which then 
purports to guarantee correct execu-
tion. Contracts can receive, store, and 
send coins to users or other contracts 
according to their programmed logic. 
Smart contracts pose two further chal-
lenges to disclosure and patching. 
First, there is no club of miners whose 
incentives are aligned with the func-
tioning of a specific contract. There-
fore, relying on miners as allies to sup-
port smooth disclosure is usually not 
an option (though we will discuss an 
exception). Second, the code is not up-
dateable by design to demonstrate 
commitment to the rules of operation, 

five-fold, briefly jumping into the top 10 
cryptocurrencies by value. It remains 
unclear who exploited the bug, but By-
tecoin holders certainly benefited from 
the price rise.

IOTA. Unlike bugs in which coins are 
created, IOTA suffered a vulnerability 
that might have placed user funds at 
risk of theft. Contrary to the best prac-
tice of using standardized cryptograph-
ic primitives, IOTA relied on a custom 
hash function that had a collision 
weakness.14 Author Narula and col-
leagues disclosed the vulnerability to 
the developers in July 2017. The vulner-
ability was patched by IOTA in August 
2017 and made public by the disclosers 
in September 2017,13 offering several 
lessons about the disclosure process.

First, the vulnerability was fixed and 
deployed to the network quite quickly. 
On one hand, this is good because the 
potential vulnerability window is small-
er. On the other hand, the speedy re-
sponse was made possible due to the 
project’s high level of control over the 
network, which runs contrary to the de-
sign goals of decentralized cryptocur-
rencies. Such control further allowed 
the operators to shut down its network 
to prevent theft from a vulnerable wal-
let for several weeks in early 2020.

The second lesson is that organiza-
tions may not respond favorably to a 
disclosure. Here, communications 
were tense, the existence and risk of the 
vulnerability was denied and down-
played, and the discoverers were threat-
ened with lawsuits. The response 
echoes industry reactions to vulnerabil-
ity disclosures related to digital rights 
management decades before.19 In the 
cryptocurrency case, there is a clear po-
tential incentive conflict when the orga-
nization holds a large share of the coins 
and reasonably worries that the news 
could devalue holdings or prevent part-
nerships that might increase the value 
of holdings. Moreover, information 
about the bug could be exploited for 
profit by those possessing inside infor-
mation about its existence prior to pub-
lic disclosure.

Bitcoin Cash. Not to be confused 
with Bitcoin, “Bitcoin Cash” is derived 
from Bitcoin’s codebase and was creat-
ed due to disagreements within the eco-
system. Cory Fields, a contributor to the 
predominant implementation of Bit-
coin, Bitcoin Core, was examining 

change-logs of Bitcoin Cash’s main im-
plementation in April 2018.10 There he 
noticed that a sensitive piece of code 
dealing with transaction validation had 
been improperly refactored, causing a 
vulnerability. It would allow an attacker 
to split the Bitcoin Cash network, there-
by compromising the consistency re-
quired for a cryptocurrency to operate.

As Fields noted, bugs like this cause 
systemic risk: if exploited, they could 
sink a cryptocurrency. The large 
amounts of money at risk prompt dis-
closers to take precautions. In this case, 
to protect his own safety, Fields chose to 
remain anonymous.10 The patching 
went smoothly, but we do not know if it 
would have been more contentious had 
he revealed his identity. Moreover, dis-
coverers may want to demonstrate they 
behaved ethically, for example, that 
they sent a report to the developers. One 
possible mechanism is to encrypt the 
report with the developers’ public key 
and publish the ciphertext and draw the 
developer’s attention to it. This would 
require developers to provide public 
keys along with their security contact 
and have internal processes to handle 
incoming messages. Surprisingly, at the 
time Bitcoin Cash, a top-10 cryptocur-
rency worth billions of dollars, did not 
(though now they do). In our interview, 
Fields stressed he found it difficult to 
figure out what was the right thing to do. 
What helped him was to imagine the 
situation with swapped roles.

Bitcoin. A few months later, a devel-
oper from Bitcoin Cash disclosed a bug 
to Bitcoin (and other projects) anony-
mously. Prior to the Bitcoin Cash 
schism, an efficiency optimization in 
the Bitcoin codebase mistakenly 
dropped a necessary check. There were 
actually two issues: a denial-of-service 
bug and potential money creation.8 It 
was propagated into numerous crypto-
currencies and resided there for al-
most two years but was never exploited 
in Bitcoin.

This case teaches us three lessons: 
First, even the most watched cryptocur-
rencies are not exempt from critical 
bugs. Second, not all cases should be 
communicated to everyone in the net-
work at the same time. The Bitcoin de-
velopers notified the miners control-
ling the majority of Bitcoin’s hashrate 
of the denial-of-service bug first, mak-
ing sure they had upgraded so that nei-
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hence the contract analogy. This may 
turn disastrous if the code contains 
bugs because machines, unlike arbitra-
tors of real contracts, have no room for 
interpretation.

The DAO. The most famous example 
of a buggy contract is the DAO (short for 
Decentralized Autonomous Organiza-
tion), the first code-controlled venture 
fund. Widely endorsed by an enthusias-
tic Ethereum community, in spring 
2016 the DAO project collected user 
funds and stored them in a smart con-
tract. Its visible balance of $250 million 
(15% of all available coins at the time) 
made it a highly attractive target. It 
prompted scrutiny from security re-
searchers who raised concerns,9 the 
closest activity to disclosure in the 
smart contract space we have seen. 
Three weeks later, an anonymous at-
tacker managed to withdraw more than 
3.5 million coins (about $50 million) il-
legitimately from the DAO smart con-
tract.1 The attacker’s trick involved 
making a small investment in the DAO, 
then withdrawing and thereby exploit-
ing a re-entrance vulnerability in the 
refund mechanism. (The contract’s 
bug was to not decrease the balance be-
fore sending coins, which in Ethereum 
passes control to the receiving party.) 
This exploit set off a vigorous debate 
over whether or not this behavior was 
abusive, since the code technically al-
lowed the interaction.

The DAO incident could have been 
an example of an irreversible change of 
system state. However, the exceptional 
scale of the project and the involvement 
of the Ethereum community triggered a 
historic vote between miners to sup-
port a fork of the underlying cryptocur-
rency in order to “restore” the invest-
ments in the DAO contract. This 
intervention was highly controversial 
as it thwarted the very idea of immuta-
ble transactions, causing a group of 
purists to create a parallel instance, 
called Ethereum Classic, that was not 
rolled back. In hindsight, the incident 
raised the alarm to the smart contract 
community about the looming security 
issues. Today’s contracts cannot hope 
for miner-enforced rollbacks because 
the uptake of the platform has diversi-
fied interests.

Parity wallet. Another example of a 
fund recovery, albeit partially success-
ful, followed the Parity exploit in July 

2017. The vulnerable contract imple-
mented a multi-signature wallet, a 
mechanism that promises superior 
protection against theft compared to 
standard wallets. Intended uses in-
clude “corporate” accounts storing 
high value, such as the proceeds from 
initial coin offerings (ICOs). An anony-
mous attacker observed a discrepancy 
between the published and reviewed 
source code and the binary code, which 
was deployed for each of 573 wallets 
and omitted an essential access control 
step. This enabled a theft of coins worth 
$30 million from three accounts. Parity 
discovered the attack as it was ongoing 
and published an alert. This would 
have enabled attentive users to rescue 
their funds (exploiting the same vulner-
ability) in a race against the attacker 
and imitators. At this point, a total of 
another $150 million was essentially 
free to be picked up by anyone.33 As ex-
pected, many users reacted slowly and 
found their funds missing. It turned 
out that a group of civic-minded indi-
viduals has taken the funds in custody 
in order to protect users and return 
them in a safe way. This example raises 
the question if protective appropriation 
of funds is legal or should even be ex-
pected from discoverers.

Users who nevertheless continued 
to trust the Parity wallet software were 
less lucky following a second incident. 
The Ethereum platform has a fuse 
mechanism that irrevocably disables 
code at a given address. In November 
2017, a user (allegedly) inadvertently in-
voked this mechanism on a library ref-
erenced in 584 intentionally non-up-
datable contracts of the next-generation 
Parity wallet. A total of $152 million was 
burned.34 This time, no one intervened, 
presumably because the loss concerned 
only 0.5% of all coins.

We close by noting that as of this 
writing, we are not aware of any major 

cases of responsible disclosures of vul-
nerabilities in smart contracts.

Recommendations  
and Open Questions
While best practices in secure software 
engineering and responsible disclo-
sure15 are increasingly adopted in the 
cryptocurrency space, there always re-
mains a residual risk of damaging vul-
nerabilities. Therefore, norms and 
eventually laws for responsible disclo-
sure must emerge. What follows is a 
first step toward that end. Our synthesis 
of what can be learned from the cases is 
structured along three central issues of 
responsible disclosure: how to protect 
users, who to contact, when and how; 
and, how to reward the discoverer. The 
accompanying table sums up the rec-
ommendations outlined in this section.

How to protect users. Discoverer 
safety. If the vulnerability can make 
parties who may operate beyond the 
law substantially richer or poorer, the 
discoverer’s personal safety should be 
considered.10 Death threats are not un-
heard of. Confidentially sharing the 
vulnerability with others the discoverer 
trusts (professional colleagues, nota-
ries or the police) might reduce this 
risk. Sealed envelopes, or their digital 
variants such as time-locked encryp-
tion or secret sharing schemes, lessen 
the risk of unintended leakage. In addi-
tion, anonymous reporting may also 
reduce stress and tension. However, 
note that if the vulnerability is exploit-
ed, any proof the discloser knew of the 
vulnerability before its exploit could be 
used as evidence the discloser was the 
attacker.

Addressing vulnerable funds. If a vul-
nerability means that anyone can steal 
money from an account, should civic-
minded defenders proactively steal to 
protect funds, like in the Parity wallet 
case? This touches on unresolved legal 

Synthesis of recommendations.

Dos Provide point of contact including public key
Liaise with competitors who share code

Don'ts Single out vulnerable competitors
Bug bounties in your own coin

Depends
Use obscurity and white lies during disclosure
Notify all affected projects unless there is conflict
Built-in notification and feature “kill” switches

Need for action Clarify right or obligation to preventively move vulnerable funds
Establish clearinghouse and coordinator
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transport of stolen funds. In other in-
stances, wallet developers must be noti-
fied first, in order to deploy patches to 
their software. It is good practice to 
publish an advisory detailing the course 
of events and clarify any obfuscation or 
lies after the risk is mitigated. This 
transparency could mitigate the ero-
sion of trust resulting from deception.

Coordination among multiple re-
sponders. As illustrated in the cases ex-
plored here, vulnerabilities often affect 
multiple projects. It is up to the discov-
erer to decide where to send the report. 
The reporter should be transparent 
about who has been informed. The dis-
coverer can work with the responders 
to ensure that everyone affected has 
been notified. Coordination among re-
sponders is essential. Patches should 
be deployed as simultaneously as pos-
sible across affected projects, since the 
patching and publication of vulnerabil-
ity information would leave others ex-
posed if no precautions were taken. In 
some circumstances, the responders 
are competitors, and their attitudes to-
ward one another range from suspicion 
to hostility. 

Dealing with untrustworthy respond-
ers. While in the traditional security 
world, it is considered not only com-
mon courtesy but professionally and 
ethically required to inform other proj-
ects about vulnerabilities before dis-
closing their existence publicly. In the 
cryptocurrency world, one must adopt a 
more adversarial mindset. If the discov-
erer does not find a trustworthy re-
sponder, she can take on that responsi-
bility. While one might not expect the 
discoverer to fix the bug, she could 
nonetheless take steps to protect users.

The situation is further complicated 
when multiple projects share a prob-
lem, and some are not trustworthy or 
are hostile toward each other. It is un-
reasonably burdensome for a discover-
er to adjudicate such conflicts. Re-
sponders can make a best effort to 
identify affected parties (for example, 
searching for coins sharing common 
codebases) and notify accordingly. This 
points to the need for developing a 
clearinghouse, à la CERT/CC.

External authorities. Banks, payment 
processors, and other key financial in-
stitutions are often required to report 
vulnerabilities to banking regulators, 
who can coordinate the response if 

questions. If “code is law” is the guid-
ing principle, moving vulnerable funds 
must be legal. But courts are bound to 
real-world norms which differ across 
jurisdictions and circumstances. For 
example, in many places only law en-
forcement can legally expropriate prop-
erty, including crypto coins. Elsewhere, 
disclosers could be obligated to inter-
vene rather than stand by and allow a 
crime to take place. To give the discov-
erer legal certainty, it is essential to set-
tle the basic question whether the dis-
coverer could face legal consequences 
if she takes such precautions or break 
the law if she has the power and does 
not. If opting to leave the matter to law 
enforcement, other complications 
arise: Which law enforcement agency 
has jurisdiction and sufficient authori-
ty and is allowed to act? Do all law en-
forcement agencies possess the techni-
cal capability to intervene in time?

Preparing the system for disclosure. 
Given the inevitability of vulnerabili-
ties, one strategy is to implement fea-
tures in the cryptocurrency itself to au-
tomatically notify affected users of 
significant problems. In fact, Bitcoin 
used to have such an alert system, 
which enabled trusted actors to dis-
seminate messages to all users and 
even suspend transactions. Such alert 
systems prompt difficult questions of 
their own, like who can be trusted with 
that authority in a decentralized sys-
tem? Also, the alert system itself could 
become the target of attack, in much 
the same way that an Internet “kill 
switch” could create more security 
problems than it solves. Incidentally, 
Bitcoin itself abandoned the alert sys-
tem over such concerns.4 A similar idea 
is to incorporate a mechanism to turn 
off particular features if significant vul-
nerabilities are later found. Dash utiliz-
es such a system that lets the holder of a 
secret key turn features on and off at 
will.27 PIVX supports a similar mecha-
nism to disable zero-knowledge trans-
actions, which proved useful during the 
Zerocoin disasters.

Despite the benefits such features 
bring, they contradict the design phi-
losophy of decentralization and might 
expose the privileged party to law en-
forcement requests. Supposing a cryp-
tocurrency could overcome these chal-
lenges and develop mechanisms for 
disseminating protective instructions, 

the question of how to contact the 
trusted party who takes the precaution 
remains. 

Who to contact, when, and how. Pro-
vide clear points of contact. Many crypto-
currencies are designed to avoid relying 
on privileged parties with substantial 
control. Yet this is in effect required to 
support responsible disclosure. It can 
be difficult to determine who is “in 
charge” (assuming anyone is) and who 
can fix the bug. Best practices recom-
mend that developers provide clear 
points of contact for reporting security 
bugs, including long-term public keys.11 
Developers who reuse code are advised 
to publish alongside their own contact 
information that of the original code to 
aid the search for affected projects.

Identifying the responder. All commu-
nication by the discoverer should serve 
the end of fixing the bug. This means 
the discoverer must notify the party 
who is in the best position to solve the 
problem. For example, if the vulnerabil-
ity affects the cryptocurrency’s core im-
plementation, then the developers are 
the natural responders. There is a long 
history of bugs in exchanges,24 in which 
case they would respond. It is impor-
tant to note that once the responder 
has taken responsibility, the discoverer 
should adopt a “need-to-know” prac-
tice until the risk is mitigated. Some-
times the natural choice for responder 
is missing or untrustworthy. In this 
case, the discoverer can also serve as re-
sponder, or delegate the responsibility 
to a third party.

Responder communication with stake-
holders. Given the decentralized nature 
of cryptocurrencies, the responder is 
usually not in a position to unilaterally 
act to fix the bug. Instead, the respond-
er must seek stakeholders’ support. 
This means communicating the right 
messages at the right time. It could be 
dangerous to tell the full truth right 
away, so the message may justifiably in-
clude obfuscation or even white lies. 
Different stakeholders might require 
varying levels of detail at particular 
points in time. For bugs that require 
certain transactions to be mined for 
successful exploitation, the responder 
might encourage miners to upgrade 
first in order to deploy a fix as fast as 
possible. Exchanges can suspend trad-
ing in order to limit price shocks as bad 
news breaks, or aid in blocking the 



OCTOBER 2020  |   VOL.  63  |   NO.  10  |   COMMUNICATIONS OF THE ACM     71

review articles

needed. There is no current equivalent 
for cryptocurrencies, and it is unclear 
under which jurisdiction such a thing 
would reside. Should some global re-
porting agency of this nature be 
formed? If so, how might it successfully 
operate given a community whose com-
mon ground is removing the need for 
central parties? An external body mod-
eled on CERT/CC might serve as a use-
ful starting point. A less formal and 
more decentralized example to consid-
er is iamthecalvary.org, an initiative 
bringing together security researchers 
with medical device manufacturers to 
promote responsible vulnerability dis-
closure and remediation.

How to reward the discoverer. The 
article has shown that disclosing a cryp-
tocurrency vulnerability and reacting 
responsibly is very burdensome. Inter-
viewees have reported sleepless nights 
and fears for their safety, which in turn 
has altered their professional collabo-
rations and friendships. The alterna-
tive to profit from the vulnerability, po-
tentially anonymously, is tempting. 
This is why cryptocurrencies specifical-
ly cannot expect altruistic behavior and 
must instead incentivize responsible 
disclosure.11

Bug bounties offer an established 
way to reward those who find bugs.5 It 
stands to reason they would be a natu-
ral fit for cryptocurrencies, given they 
have a built-in payment mechanism. 
However, denominating the reward in 
its own currency is problematic, since 
its value might diminish as a result of 
disclosing the vulnerability, and you 
are effectively rewarding the discloser 
in a currency which she just found to be 
buggy. Other approaches are possible—
for example, Augur (a smart contract 
market platform) is experimenting 
with exploit derivatives. It is not unrea-
sonable to think that the cryptocurren-
cy community might innovate a solu-
tion that could be a model for the 
broader software community. Never-
theless, monetary rewards must com-
plement and cannot substitute for 
healthy norms and a culture that wel-
comes vulnerability disclosure.
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ON  THE MORNING of November 9, 2016, the world woke 
up to the shocking outcome of the U.S. Presidential 
election: Donald Trump was the 45th President of 
the United States of America. An unexpected event 
that still has tremendous consequences all over 
the world. Today, we know that a minority of social 
bots—automated social media accounts mimicking 
humans—played a central role in spreading divisive 
messages and disinformation, possibly contributing 
to Trump’s victory.16,19

In the aftermath of the 2016 U.S. elections, the world 
started to realize the gravity of widespread deception in 
social media. Following Trump’s exploit, we witnessed 
to the emergence of a strident dissonance between 
the multitude of efforts for detecting and removing 
bots, and the increasing effects these malicious actors 
seem to have on our societies.27,29 This paradox opens a 
burning question: What strategies should we enforce in 
order to stop this social bot pandemic? 

In these times—during the run-up to the 
2020 U.S. elections—the question ap-
pears as more crucial than ever. Particu-
larly so, also in light of the recent report-
ed tampering of the electoral debate by 
thousands of AI-powered accounts.a

What struck social, political, and 
economic analysts after 2016—decep-
tion and automation—has been a mat-
ter of study for computer scientists 
since at least 2010. In this work, we 
briefly survey the first decade of re-
search in social bot detection. Via a 
longitudinal analysis, we discuss the 
main trends of research in the fight 
against bots, the major results that 
were achieved, and the factors that 
make this never-ending battle so chal-
lenging. Capitalizing on lessons 
learned from our extensive analysis, we 
suggest possible innovations that 
could give us the upper hand against 
deception and manipulation. Studying 
a decade of endeavors in social bot de-
tection can also inform strategies for 
detecting and mitigating the effects of 
other—more recent—forms of online 
deception, such as strategic informa-
tion operations and political trolls.

The Social Bot Pandemic
Social bots coexist with humans since 
the early days of online social net-
works. Yet, we still lack a precise and 

a https://bit.ly/2BogSgE

 key insights
 ˽ Social bots are a long studied, yet 

unsolved, problem in our online social 
ecosystems and several detection 
trends appeared through time. The 
latest and most-promising advance is 
represented by group-based detectors.

 ˽ Deception detection is intrinsically 
adversarial. The application of 
adversarial machine learning can give 
us an edge in the fight against all forms 
of online manipulation and automation.

 ˽ Recent advances in computing and 
AI (for example, deepfakes) make 
individual bots indistinguishable 
from legitimate users. Future efforts 
should focus on measuring the extent 
of inauthentic coordination rather 
than on trying to classify the nature of 
individual accounts.

A Decade  
of Social  
Bot Detection

DOI:10.1145/3409116

Bots increasingly tamper with political 
elections and economic discussions.  
Tracing trends in detection strategies and  
key suggestions on how to win the fight.
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well-agreed definition of what a social 
bot is. This is partly due to the multi-
ple communities studying them and 
to the multifaceted and dynamic be-
havior of these entities, resulting in 
diverse definitions each focusing on 
different characteristics. Computer 
scientists and engineers tend to de-
fine bots from a technical perspective, 
focusing on features such as activity 
levels, complete or partial automa-
tion, use of algorithms and AI. The ex-
istence of accounts that are simulta-
neously driven by algorithms and by 
human intervention led to even more 
fine-grained definitions and cyborgs 
were introduced as either bot-assisted 
humans or human-assisted bots.3 In-
stead, social scientists are typically 
more interested in the social or politi-
cal implications of the use of bots and 
define them accordingly.

Social bots are actively used for both 
beneficial and nefarious purposes.13 

Regarding the detection of benign or 
malicious social bots, the majority of 
existing works focused on detecting 
the latter. The reason is straightfor-
ward if we take into account the catego-
rization proposed by Stieglitz et al.30 
Bots were categorized according to 
their intent and to their capacity of imi-
tating humans, with the majority of ex-
isting specimen being either benign 
bots that do not aim to imitate humans 
(for example, news and recruitment 
bots, bots used in emergencies) or ma-
licious ones relentlessly trying to ap-
pear as human-operated. The detec-
tion of the former category of bots does 
not represent a challenge, and scholars 
devoted the majority of efforts to spot 
the latter, also because of their tamper-
ing with our online ecosystems. In-
deed, the wide array of actions that so-
cial bots perform and the negligible 
cost for creating and managing them 
en masse, open up the possibility to de-

ploy armies of bots for information 
warfare, for artificially inflating the 
popularity of public characters and for 
manipulating opinions.

On the onset of the sudden surge of 
interest around automation and de-
ception, several studies measured the 
extent of the social bot pandemic. Re-
sults are nothing less than worrying. 
The average presence of bots was esti-
mated to be in the region of 15% of all 
active Twitter accounts in 2017,31 and 
11% of all Facebook accounts in 
201938—a considerable share indeed. 
Even more worrisome, when strong po-
litical or economic interests are at 
stake, the presence of bots dramatical-
ly increases. A 2019 study reported that 
71% of Twitter users mentioning trend-
ing U.S. stocks, are likely to be bots.8 

Similar results were obtained about 
the presence of bots in online crypto-
currency discussions24 and as part of 
the “infodemics” about the COVID-19 

Facebook’s War Room in Menlo Park, CA, on Oct. 17, 2018, ahead of Brazil’s runoff election. The company has worked to assuage public 
concern about the fake accounts, misinformation, and foreign interference that cloud discussion about elections on its site. 
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Figure 1. The social bot pandemic. 

World view of 39 countries for which scientific literature 
documented political manipulation by social bots. Each 
country is linked to one or more papers that documented 
the tampering. Although the list of papers is illustrative and 
not exhaustive, it nonetheless allows to map the worldwide 
spread of the social bot pandemic. 
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pandemic.14 Other studies specifically 
focused on political activity, conclud-
ing that bots played a role in strategic 
information operations orchestrated 
ahead of numerous worldwide events, 
as shown in Figure 1. Despite taking 
part in political discussions about all 
countries highlighted in figure, bots 
did not always have a real impact. In 
fact, scholars still lack a widespread 
consensus on the impact of social 
bots, with some studies reporting on 
their pivotal role for increasing disin-
formation’s spread, polarization, and 
hateful speech,27,29 and competing re-
sults claiming that bots do not play a 
significant role in these processes.32 
The ubiquity of social bots is also partly 
fueled by the availability of open source 
code, for which Bence Kollanyi report-
ed an exponential growth that led in 
2016 to more than 4,000 GitHub reposi-
tories containing code for deploying 
Twitter bots.22 Other investigations 
demonstrated this trend has not halted 
yet. In fact, by 2018, scholars found more 
than 40,000 public bot repositories.1 
The looming picture is one where social 
bots are among the weapons of choice 
for deceiving and manipulating crowds. 
These results are backed by the same 
platforms where information opera-
tions took place—namely, Facebook,b 
Twitterc and Redditd—that banned 
tens of thousands accounts involved in 
coordinated activities since 2016.

Given the reported role of bots in 
several of the ailments that affect our 
online ecosystems, many techniques 
were proposed for their detection and 
removal—adding to the great coverage 
from news outlets—contributing to 
the formation of a steeply rising publi-
cation trend. Today, new studies on the 
characterization, detection, and im-
pact estimation of bots are published 
at an impressive rate, as shown in Fig-
ure 2. Should this skyrocketing trend 
continue, by 2021 there will be more 
than one new paper published per day, 
which poses a heavy burden on those 
trying to keep pace with the evolution 
of this thriving field. Perhaps even 
more importantly, the rate at which 
new papers are published implies that 

b https://bit.ly/31wtDAk
c https://about.twitter.com/en_us/values/elec-

tions-integrity.html
d https://bit.ly/38eEgJl

Figure 2. Publications per year on the characterization, detection, and impact estimation of 
social bots. 

Since 2014, the number of publications on the topic sky-
rocketed. We forecast that from 2021 there will be more 
than one new paper published per day on social bots, which 
poses a heavy burden on those trying to keep pace with the 
evolution of this thriving field. Efforts aimed at reviewing and 
organizing this growing body of work are needed in order to 
capitalize on previous results.
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Figure 3. Differences between early and group approaches to social bot detection.

In early approaches (panel A), a supervised detector is sepa-
rately applied to each account under investigation. If a bot 
does not appear as markedly different from a human-operated 
account, as in the case of recent evolved bots, it is likely to 
evade detection. In more recent approaches (B), a detector 
analyzes a group of accounts, looking for traces of coordinated 
and synchronized behaviors. Large groups of coordinated 
accounts are more likely to be detected than sophisticated in-
dividual bots. Nonetheless, prediction errors can still occur for 
small groups of loosely coordinated bots that might provide 
insufficient information for detecting them, or for groups of 
highly coordinated humans that might appear as automated 
(https://bit.ly/3gfZucW). These issues currently represent 
unsolved challenges in the field.
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machine learning features to spot social 
bots. By leveraging more than 1,200 fea-
tures of an account, Botometer evalu-
ates possible bots based on their profile 
characteristics, social network struc-
ture, the content they produce, their 
sentiment expressions, and the timings 
of their actions.35 Instead of focusing 
on a specific type of bots, as Cresci et al. 
did, Botometer represents a “general 
purpose” bot detector. The generality 
and ease of deployment of this detector 
are however counterbalanced by a re-
duced bot detection accuracy.5,17 The 
two previous detectors simultaneous-
ly analyze multiple dimensions of sus-
picious accounts in order to spot pos-
sible bots. Instead, other systems 
solely focus on network characteris-
tics, textual content of shared mes-
sages, or profile information. These 
systems are typically easier to game, 
since they only analyze a single facet of 
the complex behavior of bots.

Despite achieving promising initial 
results, these early approaches have a 
number of drawbacks. The first chal-
lenge in developing a supervised detec-
tor is related to the availability of a 
ground truth dataset to use in the train-
ing phase of the classifier. In most cases, 
a real ground truth is lacking, and the 
labels are simply given by human oper-
ators that manually analyze the data. 
Critical issues arise as a consequence of 
the diverse definitions of social bots, re-
sulting in different labeling schemes.18 
Moreover, humans have been proven to 
suffer from several annotation biases 
and to largely fail at spotting recent so-
phisticated bots, with only 24% bots cor-
rectly labeled as such by humans in a 
recent experiment.5 Furthermore, these 
approaches typically output binary clas-
sifications. In many cases however, 
malicious accounts feature a mixture 
of automated and human-driven be-
haviors that cannot be accounted for 
with simple binary labels. To make 
matters worse, another major draw-
back of individual detectors is caused 
by the evolutionary nature of social bots.

The Issue of Bot Evolution
Initial success at social bot detection 
forced bot developers to put in place 
sophisticated countermeasures. Be-
cause of this, newer bots often feature 
advanced characteristics that make 
them much more difficult to detect 

a huge worldwide effort is taking place 
in order to stop the spread of the social 
bot pandemic. But where is all this effort 
leading? To answer this question, we 
first take a step back at the early days of 
social bot detection.

The Dawn of Social Bot Detection
The first work that specifically ad-
dressed the detection of automated ac-
counts in online social networks dates 
back to January 2010.37 In the early 
days, the vast majority of attempts at 
bot detection featured two distinctive 
characteristics: they were based on su-
pervised machine learning, and on the 
analysis of individual accounts. In oth-
er words, given a group of accounts to 
analyze, detectors were separately ap-
plied to each account of the group, to 
which they assigned a binary label (ei-
ther bot or legitimate). This approach 
to bot detection is schematized in pan-
el A of Figure 3. Here, the key assump-
tion is that bots and humans are clear-
ly separable and that each malicious 
account has individual features that 
make it distinguishable from legiti-
mate ones. This approach to the task 
of social bot detection also revolves 
around the application of off-the-
shelf, general-purpose classification 
algorithms on the accounts under in-
vestigation and on designing effective 
machine learning features for separat-
ing bots from legitimate accounts.

For example, Cresci et al. developed 
a set of supervised machine learning 
classifiers for detecting so-called fake 
followers, a type of automated ac-
counts commonly used to artificially 
boost the popularity of the public char-
acters that buy them.4 Fake followers 
can be bought for as low as $12 per 
1,000 followers in the surface Web. As a 
result, they are fairly common.e The au-
thors analyzed some 3,000 fake follow-
ers obtained from different vendors 
and revealed that the simplistic nature 
of these accounts renders their detec-
tion rather easy, even when leveraging 
only 19 data- and computation-inex-
pensive features.4 After all, fake follow-
ers need not perform complex tasks 
such as producing content or engag-
ing in conversations. Other detection 
systems make use of large numbers of 

e https://www.nytimes.com/interactive/2018/ 
01/27/technology/social-media-bots.html

Newer bots often 
feature advanced 
characteristics that 
make them much 
more difficult to 
detect with respect 
to older ones.

https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html


OCTOBER 2020  |   VOL.  63  |   NO.  10  |   COMMUNICATIONS OF THE ACM     77

review articles

with respect to older ones. This vi-
cious circle leads to the development 
of always more sophisticated social 
bots and is commonly referred to as 
bot evolution.

Noteworthy works published by 
Chao Yang et al. between 2011 and 
2013 provided the first evidence and 
the theoretical foundations to study so-
cial bot evolution.34 The first wave of 
social bots that populated OSNs until 
around 2011 was made of rather sim-
plistic bots. Accounts with very low 
reputation due to few social connec-
tions and posted messages and featur-
ing clear signs of automation as shown 
in panel A of Figure 4. Conversely, the 
social bots studied by Chao Yang et al. 
appeared as more popular and credi-
ble, given the relatively large number of 
their social connections. In addition, 
they were no longer spamming the 
same messages over and over again. 
Leveraging these findings, authors de-
veloped a supervised classifier that was 
specifically designed for detecting 
evolving bots. Initially, the classifier 
proved capable of accurately detecting 
this second wave of bots. Time went by 
and new studies acknowledged the rise 
of a third wave of bots that spread 
through online social networks from 
2016 onward,5,13 as shown in panel C of 
Figure 4. Unfortunately, Yang’s classi-
fier for detecting evolving bots was no 
longer successful at spotting the third 
wave of malicious accounts.6 The previ-
ous example serves as anecdotal evi-
dence of bot evolution and of the detri-
mental effect it has on detectors. 
Additional quantitative evidence is re-
ported in other studies that evaluated 
the survivability of different bots—that 
is, their capability of continually evad-
ing detection and avoiding being re-
moved from social platforms—and the 
ability of humans in spotting bots in-
the-wild. Results showed that only 5% 
of newer bots are removed from social 
platforms, whereas older ones are re-
moved 60% of the times.5 Moreover, 
hundreds of tech-savvy social media 
users that participated in a crowd-
sourcing experiment were able to tell 
apart newer bots from legitimate users 
only 24% of the times. The same users 
were instead able of spotting older bots 
91% of the times.5

The previous anecdotal and quan-
titative results tell us that current 

sophisticated bots are hardly distin-
guishable from legitimate accounts if 
analyzed one at a time, as supervised 
classifiers and crowdsourcing partici-
pants did. In fact, newer bots are more 
similar to legitimate human-operated 
accounts than to other older bots. 
Among the reasons for the human-
like appearance of many bots is an in-
creased hybridization between auto-
mated and human-driven behaviors. 
These cyborgs exist and operate half-
way between the traditional concepts 
of bots and humans, resulting in 
weakened distinctions and overlap-
ping behaviors between the two. 
Moreover, they are now using the 
same technological weapons as their 
hunters, such as powerful AI tech-
niques for generating credible texts 
(for example, via the GPT-2 and 3 deep 
learning models)f and profile pictures 
(for example, via StyleGANs deep 
learning models).g Indeed, the possi-
bility for malicious accounts to lever-
age deepfake texts, profile pictures, 

f https://openai.com/blog/better-language-
models/

g https://www.wired.com/story/facebook- 
removes-accounts-ai-generated-photos/

and videos is worrying, and worthy of 
increased attention.10 Kate Starbird 
recently discussed a related issue in 
an inspiring piece on Nature.28 Simi-
lar to the hazy duality between “bots” 
and “humans,” she posits that the 
boundaries between what is “fake” 
and what is “real,” are blurring. To 
this end, human-like bots and cy-
borgs are just the tip of the iceberg, 
with other newer forms of decep-
tion—such as political trolls and “un-
witting humans”—that are bound to 
make the online information land-
scape an even grimmer place. Figure 
4 provides some examples of Twitter 
profiles that demonstrate how real-
world bots evolved over the course of 
the years. As one form of “social Web 
virus,” bots mutated thus becoming 
more resistant to our antibodies. The 
social bot pandemic gradually became 
much more difficult to stop. Within 
this global picture, dichotomous clas-
sifications—such as human vs bot, 
fake vs real, coordinated vs not coordi-
nated—might represent oversimplifi-
cations, unable to grasp the complexity 
of these phenomena and unlikely to 
yield accurate and actionable results.

Ultimately, the findings about the 

Figure 4. Example Twitter profiles showing the issue of bot evolution. 

Bots of the first wave (panel A) were very simplistic, with few personal 
information and social connections. As such, they could be easily distin-
guished from human-operated legitimate accounts. The second wave 
consisted of more sophisticated accounts (panel B), featuring detailed 
personal information. To increase their credibility, these bots often fol-
lowed one another thus creating clearly identifiable botnets. Nowadays, 
social bots (panel C) are so carefully engineered as to be more similar 
to human-operated accounts (panel D) than to other bots. They have 
large numbers of real friends and followers, they use stolen names 
and profile pictures, and they intersperse few malicious messages with 
many neutral ones.

years

https://openai.com/blog/better-language-models/
https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/
https://openai.com/blog/better-language-models/
https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/
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learning algorithms such as support 
vector machines and decision trees, to 
ad-hoc algorithms that are specifically 
designed for detecting bots, in an effort 
to boost detection performance. Final-
ly, many group detectors are also based 
on unsupervised or semi-supervised 
approaches. Here the idea is to over-
come the generalization deficiencies of 
supervised detectors that are severely 
limited by the availability of exhaustive 
and reliable training datasets.11

To quantitatively demonstrate the 
rise of group approaches to bot detec-
tion, Figure 5 illustrates the results of 
an extensive longitudinal classifica-
tion. We surveyed more than 230 pa-
pers that proposed a bot detection 
technique and we manually classified 
each detector along two orthogonal 
dimensions. The first dimension 
(panel A) highlights whether detectors 
target individual accounts or groups 
of accounts. Then in panel B, we clas-
sify detectors according to their high-
level approach to the task. In particu-
lar, we classified detectors as either 
based on: heuristics—that is, based 
on simple rules; crowdsourcing—that 
is, relying on the judgement of ex-
perts; supervised machine learning—
such as those based on classification 
and requiring a labeled training data-
set; unsupervised machine learn-
ing—such as those based on cluster-
ing that do not necessitate of labeled 
training data; or adversarial ap-
proaches—including adversarial ma-
chine learning. To better explain our 
methodology, we provide a couple of 
examples showing how well-known 
bot detectors were classified. The sys-
tem proposed in Ruan et al.26 is de-
signed for detecting compromised 
accounts—originally legitimate ac-
counts that have been taken over by an 
attacker. It initially builds a behavior-
al profile for each investigated ac-
count. Then, the system is able to de-
tect compromised accounts via 
anomaly detection when a behavior 
diverges significantly with respect to 
its associated profile. This system is 
classified as an individual detector 
(since the behavioral profile of an ac-
count depends solely on its own ac-
tions) and as an unsupervised detec-
tor (since it leverages an anomaly 
detection technique). Conversely, an-
other system looks for suspiciously 

evolution of online automation and de-
ception tell us the naïve assumption of 
early, supervised bot detection ap-
proaches—according to which bots are 
clearly separable from legitimate ac-
counts—is no longer valid.

The Rise of Group Approaches
The difficulties at detecting sophisti-
cated bots with early approaches rap-
idly gave rise to a new research trend. 
Since 2012–2013, several different 
teams independently proposed new 
systems that, despite being based on 
different techniques and implementa-
tions, shared the same concepts and 
philosophy. As schematized in Figure 3 
(panel B), the primary characteristic of 
these new systems, is that of targeting 
groups of accounts as a whole, rather 
than individual accounts. The rationale 
for this design choice is that bots act in 
coordination with other bots, forming 
botnets to amplify their effects.40 The 
existence of botnets does not necessar-
ily imply that accounts are explicitly 
connected in the social network, but 
rather that they are maneuvered by a 

single entity and that they share com-
mon goals. As such, botnets leave be-
hind more traces of their automation 
and coordination than those left be-
hind by sophisticated single bots.5

Devising techniques for spotting 
suspiciously coordinated and synchro-
nized behaviors is thus likely to yield 
better results than analyzing individual 
accounts. In addition, by analyzing 
large groups of accounts, detectors also 
have access to more data for fueling 
powerful—yet data-hungry—AI algo-
rithms. In 2018, approximately five af-
ter the emergence of the group ap-
proach to bot detection, also Facebookh 
and Twitteri acknowledged the impor-
tance of focusing on coordinated and in-
authentic behaviors. The second com-
mon feature to the majority of group 
detectors is the proposal of important 
algorithmic contributions, thus shift-
ing from general-purpose machine 

h https://newsroom.fb.com/news/2018/12/in-
side-feed-coordinated-inauthentic-behavior/

i https://help.twitter.com/en/rules-and-poli-
cies/platform-manipulation

Figure 5. Longitudinal categorization of 236 bot detectors published since 2010. 

Data points indicate the number of new detectors per type published 
in a given year. In panel A, detectors are classified as either focusing 
on the analysis of individual accounts, or on the analysis of groups of 
accounts. In panel B, the same detectors are classified based on their 
high-level approach to the task. Both panels clearly document the rise 
of a new approach to bot detection, characterized by group-analyses 
and many unsupervised detectors. Interestingly, the plateau reached by 
unsupervised approaches since 2017 occurred in conjunction with the 
recent rise of the adversarial ones.
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large similarities between the se-
quence of activities of vast groups of 
accounts.6 The activity of each account 
is encoded as a character’s string and 
similarities between account activities 
are computed by applying the longest 
common subsequence metric to such 
strings. Suspiciously long subsequenc-
es between activity strings are identi-
fied via peak detection, and all those 
accounts that share the long activity 
subsequence are labeled as bots. Giv-
en these characteristics, this work con-
tributes to group-based bot detectors 
(since it analyzes a group of accounts 
looking for similar activity sequences) 
as well as to unsupervised machine 
learning approaches (since it leverages 
an unsupervised peak detection algo-
rithm). Generalizing the two previous 
examples, we note a few interesting 
patterns that derive from our classifi-
cation. The vast majority of techniques 
that perform network analyses, for in-
stance by considering the social or in-
teractions graph of the accounts, are 
naturally classified as group based. 
More often than not, they also propose 
unsupervised approaches. Contrarily, 
all techniques based on the analysis of 
the textual content of posted messag-
es, such as those works that exclusively 
employ natural language processing 
techniques, are supervised detectors 
that analyze individual accounts.

By leveraging classification results 
reported in Figure 5, we can also derive 
a number of additional insights. First of 
all, the rising publication trend of bot 
detectors follows the general trend of 
interest around social bots, previously 
shown in Figure 2. Indeed, since 2015 
there has been a steadily increasing 
number of bot detectors published ev-
ery year. From the trends shown in pan-
el A it is also strikingly evident that 
group-based approaches, revolving 
around the analysis of collective behav-
iors, are increasingly frequent. In fact, 
in 2018 the number of newly proposed 
group-based detectors surpassed for 
the first time that of detectors based on 
the analysis of individual accounts. 
From panel B we note that bot detec-
tion approaches based on heuristics 
and crowdsourcing received very little at-
tention. This is probably due to the many 
challenges involved in the development 
of these systems, which ultimately lim-
it their applicability, scalability and 

detection performance. Instead, the 
number of new supervised detectors 
has been constantly increasing since 
2012, despite their severe generaliza-
tion issues.11 The adoption of unsuper-
vised machine learning started in 2013 
with the rise of group approaches, and 
now appears to be stationary. Interest-
ingly, the plateau hit by unsupervised 
approaches co-occurred with the rise of 
adversarial ones, which might take their 
place in the coming years. Although the 
exact number of new bot detectors per 
type can slightly vary by analyzing a dif-
ferent set of papers, the big picture that 
emerges from Figure 5—documenting 
the trends of individual, group and ad-
versarial approaches—is clear, reliable, 
and insightful.

As a consequence of this paradigm-
shift, group-based detectors are partic-
ularly effective at identifying evolving, 
coordinated, and synchronized ac-
counts. For instance, several group de-
tectors implement graph-based ap-
proaches and aim at spotting suspicious 
account connectivity patterns.20,24 
These techniques are suitable for 
studying both users interacting with 
content (for example, retweets to some-
one else’s tweets) or with other users 
(for example, becoming followers of 
other users). Coordinated and syn-
chronized behaviors appear as near-
fully connected communities in 
graphs, dense blocks in adjacency ma-
trices, or peculiar patterns in spectral 
subspaces.21 Other techniques adopt-
ed unsupervised approaches for spot-
ting anomalous patterns in the tempo-
ral tweeting and retweeting behaviors 
of groups of accounts.2,23 One way to 
spot accounts featuring suspiciously 
synchronized behaviors is by comput-
ing metrics of distance out of the ac-
counts time series, and by subsequent-
ly clustering the accounts. The 
rationale behind this approach is 
based on evidence suggesting that hu-
man behaviors are intrinsically more 
heterogeneous than automated ones.7 
Consequently, a large cluster of ac-
counts with highly similar behaviors 
might indicate the presence of a bot-
net, even in the absence of explicit con-
nections between the accounts. Dis-
tance between accounts time series 
was computed as a warp-correlation 
coefficient based on dynamic time 
warping,2 or as the Euclidean distance 

Devising techniques 
for spotting 
suspiciously 
coordinated and 
synchronized 
behaviors is likely to 
yield better results 
than analyzing 
individual accounts.
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versarial examples—that is, input in-
stances specifically created to induce 
errors in machine learning systems.

All tasks related to the detection of on-
line deception, manipulation and auto-
mation are intrinsically adversarial. As 
such, they represent favorable applica-
tion domains for adversarial machine 
learning. This intuition resulted in the 
first papers published in 2018–2019 
that initiated the development of an 
adversarial approach to bot detection, 
as shown in panel B of Figure 5. In the 
so-called adversarial bot detection, 
scholars experiment with meaningful 
adversarial examples with which they 
extensively test the capabilities of cur-
rent bot detectors.9 Within this con-
text, adversarial examples might be so-
phisticated types of existing bots and 
trolls that manage to evade detection 
by current techniques; or even bots 
that do not exist yet, but whose behav-
iors and characteristics are simulated, 
as done by Cresci et al.;9 or bots devel-
oped ad-hoc for the sake of experimen-
tation, as done by Grimme et al.17 Find-
ing good adversarial examples can help 
scholars understand the weaknesses of 
existing bot detection systems. As a re-
sult, bot hunters need not wait any-
more for new bot mischiefs in order to 
adapt their techniques, but instead 
they can proactively (instead of reac-
tively) test them, in an effort that could 
quickly make them more robust. In 
addition, this paradigm accounts for 
adversaries by design, thus providing 
higher guarantees for deception de-
tection, which violates the stationari-
ty and neutrality assumptions.

The previous analysis highlights 
that initial efforts toward adversarial 
bot detection were driven by the cre-
ativity of some researchers and only 
covered few cases with limited applica-
bility.9,17 In the near future they could 
instead be powered by the latest devel-
opments in AI. Generative adversarial 
networks (GANs) are a powerful ma-
chine learning framework where two 
competing deep learning networks are 
jointly trained in a game-theoretic set-
ting.15 In particular, a GAN is composed 
of a generator network that creates data 
instances and a discriminator network 
that classifies data instances, com-
bined as shown in Figure 6 where a 
GAN is instantiated for a generic task 
of deception detection. The goal of 

between the feature vectors computed 
by an LSTM autoencoder,23 a type of 
deep neural network that is particularly 
suitable for extracting latent features 
from sequential data.

As the switch from individual to 
group detectors demonstrates, the 
overall approach to the task of bot de-
tection can have serious repercussions 
on detection performance. At the same 
time, some scientific communities 
tend to favor and stick to a specific ap-
proach. For instance, works published 
within the natural language processing 
community, quite naturally focus on 
textual content, thus resulting in a 
multitude of supervised classifiers 
that analyze accounts individually and 
that yield binary labels. In contrast, 
the complex networks community fa-
vors graph-based approaches. As a 
consequence, some combinations of 
approaches—above all, text-based de-
tectors that perform unsupervised, 
group analyses—are almost unex-
plored and definitely underrepresent-
ed in the landscape of existing bot de-
tectors. In the future, it would be 
advisable for multiply efforts to follow 
the directions that have been mostly 
overlooked until now.

A Glimpse into the Future 
of Deception Detection
So far, we highlighted that a shift took 
place from individual to group detec-
tors in an effort to contrast social bot 
evolution. Now, we review the latest ad-
vances in the field for gaining possible 
insights into the future of deception 
detection. We ground this analysis on 
two observations:

Firstly, we observe that both the in-
dividual and the group-based ap-
proaches to social bot detection follow 
a reactive schema. In practice, when 
scholars and OSN administrators iden-
tify a new group of accounts that mis-
behave and that cannot be effectively 
detected with existing techniques, they 
react and begin the development of a 
new detection system. Hence, the driv-
ing factor for the development of new 
and better detectors have always been 
bot mischiefs. A major implication of 
this approach is that improvements in 
the detection of bad actors typically 
occur only sometime after having col-
lected evidence of new mischiefs. Bad 
actors such as bots, cyborgs, and trolls 

thus benefit from a long time span—
the time needed to design, develop, 
and deploy a new effective detector—
during which they are essentially free 
to tamper with our online environ-
ments. In other words, scholars and 
OSN administrators are constantly one 
step behind of malicious account devel-
opers. This lag between observations 
and countermeasures possibly ex-
plains the current situation with our 
online social ecosystems: Despite the 
increasing number of existing detec-
tion techniques, the influence of bots 
and other bad actors on our online dis-
cussions did not seem to decrease.

Our second observation is related to 
the use of machine learning for the 
task of social bot detection. The vast 
majority of machine learning algo-
rithms are designed for operating with-
in environments that are stationary 
and neutral, if not even benign. When 
the stationarity and neutrality assump-
tions are violated, algorithms yield un-
reliable predictions that result in dra-
matically decreased performances.15 
Notably, the task of social bot detection 
is neither stationary nor neutral. The 
stationarity assumption is violated by 
the mechanism of bot evolution that 
results in accounts exhibiting different 
behaviors and characteristics over 
time. Also, the neutrality assumption is 
clearly violated, since bot developers 
are actively trying to fool detectors. As a 
consequence, the very same algorithms 
that we have been relying upon for a de-
cade, and for which we reported excel-
lent detection results in our studies, 
are actually seeing their chances to de-
tect bots in-the-wild severely limited.

Recent developments in machine 
learning may however come to our res-
cue and may possibly mitigate both is-
sues emerging from the previous obser-
vations. Adversarial machine learning is 
a paradigm specifically devised for ap-
plication in those scenarios presenting 
adversaries motivated in fooling learned 
models.15 Its high-level goal is to study 
vulnerabilities of existing systems and 
possible attacks to exploit them, before 
such vulnerabilities are effectively ex-
ploited by the adversaries. Early detec-
tion of vulnerabilities can in turn con-
tribute to the development of more 
robust detection systems. One practi-
cal way to implement this vision is by 
generating and experimenting with ad-
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the generator is that of creating syn-
thetic data instances that resemble 
the properties of real organic data, 
while the typical goal of the discrimina-
tor is to classify input data instances as 
either synthetic or organic. The dis-
criminator is evaluated based on its bi-
nary classification performance, while 
the generator is evaluated in terms of 
its capacity to induce errors in the dis-
criminator, hence the competition be-
tween the two networks.

Originally, GANs were proposed as a 
form of generative model—that is, the 
focus was posed on the generator net-
work. A notable example of this kind is 
represented by the GAN trained in Wu 
et al.33 for creating adversarial exam-
ples of social bots that improved the 
training of downstream detectors. 
However, with the end-goal of provid-
ing even larger improvements on de-
ception detection, we could envision 
the adoption of GANs for training better 
discriminator networks. In particular, 
the generator of a GAN could be used as 
a generative model for creating many 
plausible adversarial examples, thus 
overcoming the previously mentioned 
limitations in this task and the scarcity 
of labeled datasets. Then, the whole 
GAN could be used to test the discrimi-
nator against the adversarial examples 
and to improve its detection perfor-
mances. This paradigm has never been 
applied to the task of social bot detec-
tion, but it was tested with promising 
results for related tasks, such as that of 
fake news generation/detection.39 The 
adversarial framework sketched in Fig-
ure 6 is general enough to be applied to 
a wide set of deception detection tasks, 
comprising the detection of social 
bots, cyborgs, trolls and mis/disinfor-
mation. Furthermore, in contrast with 
existing adversarial approaches for bot 
detection, it is grounded on an estab-
lished and successful machine learn-
ing framework, rather than on ad-hoc 
solutions lacking broad applicability.

Despite the high hopes placed on 
adversarial approaches for detecting 
deception and automation, this re-
search direction is still in its infancy 
and, probably due to its recency, is still 
lagging behind more traditional ap-
proaches. As such, efforts at adversari-
al detection can only be successful if 
the scientific community decides to 
rise to the many open challenges. 

Among them is the development of 
techniques for creating many different 
kinds of adversarial examples and to 
evaluate whether these examples are 
realistic and representative of future 
malicious accounts. In spite of these 
challenges, our analysis and the prom-
ising results obtained so far strongly 
motivate future endeavors in this direc-
tion, as also testified by the sparking 
adversarial trend in Figure 5.

Open Challenges  
and the Way Ahead
The exponentially growing body of 
work on social bot detection shown in 
Figure 2, somehow reassures us that 
much effort is bound to be devoted in 
the coming years to the fight of this 
crucial issue. However, at the same 

time it also poses some new challeng-
es. Firstly, it is becoming increasingly 
important to organize this huge body 
of work. Doing so would not only con-
tribute to a better exploitation of this 
knowledge but would also allow re-
searchers to more efficiently provide 
new solutions by avoiding exploring 
paths that already proved unsuccess-
ful. To this end, this survey aims to pro-
vide a contribution to the critical re-
view and analysis of the vast literature 
on and beyond this topic.

Secondly, the foreseen increase in 
publications inevitably implies that 
more bot detectors will be proposed. 
With the growing number of disparate 
detection techniques, it is becoming in-
creasingly important to have standard 
means, such as benchmarks, frame-

Figure 6. Adversarial deception detection based on generative adversarial networks (GANs).

The generator network is employed for creating a large number of 
adversarial examples resembling the properties of real malicious 
examples. The discriminator network is trained to distinguish between 
malicious (either real or generated) and legitimate examples. By jointly 
training the two networks, the generator learns to produce more chal-
lenging malicious examples while the discriminator improves its overall 
classification performances since it trains on the challenging examples. 
This conceptual framework can be applied to many tasks, comprising 
the detection of disinformation, social bots, and trolls.
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extremely welcome as they can enable 
the next wave of research on these is-
sues. Then, we should also devise ad-
ditional ways for creating a broad array 
of diverse adversarial examples. Doing 
so would also require quantitative 
means to estimate the contributions 
brought by the different adversarial ex-
amples, for instance in terms of their 
novelty and diversity with respect to ex-
isting malicious accounts. These chal-
lenges currently stand as largely un-
solved and call for the highest effort of 
our scientific community.

Our longitudinal analysis of the 
first decade of research in social bot 
detection revealed some interesting 
trends. Early days were characterized 
by simple supervised detectors ana-
lyzing accounts individually. Unsu-
pervised detectors emerged in 2012–
2013 and shifted the target to groups 
of misbehaving accounts. Finally, we 
highlighted the new rising trend of ad-
versarial approaches. Our analysis re-
vealed that for more than a decade we 
fought each of the menaces posed by 
sophisticated social bots, cyborgs, 
trolls, and collusive humans, separate-
ly. Now, thanks to the rise of AI-enabled 
deception techniques such as deep-
fakes, the most sophisticated of these 
malicious actors are bound to be-
come indistinguishable from one an-
other, and likely also from legitimate 
accounts. It is thus becoming increas-
ingly necessary to focus on spotting 
the techniques used to deceive and to 
manipulate, rather than trying to clas-
sify individual accounts by their na-
ture. Inauthentic coordination is an 
important piece of the deception 
puzzle, since it is exploited by bad ac-
tors for obtaining visibility and im-
pact. Moreover, it is oblivious to the 
different types of bad actors. In other 
words, both our findings and recent 
reflections17,28 suggest that we should 
keep on moving away from simple 
supervised approaches focusing on 
individual accounts and producing 
binary labels. We should instead take 
on the challenging task of embracing 
the complexity of deception, manip-
ulation and automation by devising 
unsupervised techniques for spot-
ting suspicious coordination. In ad-
dition, future techniques should not 
provide oversimplistic binary labels 
as often done and just as often 

works and reference datasets, with 
which to evaluate and compare them. 
The present situation is one where we 
have a suitcase filled with all kinds of 
tools. Unfortunately, we do not really 
know how to use them profitably, what 
the differences are between them, and 
ultimately, what they are really worth! 
Buying us yet another tool would not 
help much. Instead, a few targeted in-
vestments aimed at extensively evaluat-
ing and comparing our current tools 
would tremendously increase the use-
fulness of all our suitcase.

One aspect often overlooked when 
evaluating bot detectors is their gener-
alizability, that is, their capacity of 
achieving good detection results also 
for types of bots that have not been orig-
inally considered. To this regard, our 
analysis lays the foundations of a bi-di-
mensional generalizability space, 
sketched in Figure 7. A desirable sce-
nario for the near future would involve 
the possibility to evaluate any new bot 
detector against many different types of 
social bots, thus moving along the y-ax-
is of Figure 7, following the promising 
approaches recently developed in 
Echieverria et al.11 and Yang et al.36 It 
would also be profitable to evaluate de-
tectors against different versions of cur-
rent bots, thus somehow simulating 

the evolving characteristics of bots. 
This could be achieved by applying the 
adversarial approach previously de-
scribed for creating many adversarial 
examples, opening up experimentation 
along the x-axis of the generalizability 
space. Combining these two evaluation 
dimensions, thus extensively exploring 
the generalizability space, would allow 
a much more reliable assessment of the 
detection capabilities of present and 
future techniques, thus avoiding over-
estimates of detection performance. In 
order to reach this ambitious goal, we 
must first create reference datasets that 
comprise several different kinds of ma-
licious accounts, including social bots, 
cyborgs and political trolls, thus signifi-
cantly adding to the sparse resources 
existing as of today.j Here, challenges 
include the limited availability of data 
itself, missing or ambiguous ground 
truth and the obsolescence of existing 
datasets that hardly cope with the rapid 
evolution of malicious accounts. To this 
regard, continuous data-sharing initia-
tives such as that of Twitter for accounts 
involved in information operations,k are 

j One of the few publicly available bot reposi-
tories is hosted at: https://botometer.iuni.
iu.edu/bot-repository/datasets.html

k https://transparency.twitter.com/en/informa-
tion-operations.html

Figure 7. The bi-dimensional generalizability space. 

Axes represent dimensions along which to test generalization capabilities of detectors. 
The majority of existing detectors are evaluated under favorable conditions—that is, 
only against a specific type of bots (b0) and with data collected at a specific point in time 
(t0)—thus possibly overestimating their capabilities. The actual detection performance 
for b ≠ b0 and for t > t0 are unknown. More realistic estimations could be obtained by 
evaluating detectors under more general conditions. Generalization along the y-axis can be 
achieved by adopting evaluation methodologies such as that proposed by Echeverría et al.11 
Generalization along the x-axis can be obtained by applying adversarial approaches aimed 
at creating variations of currently existing bots.
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criticized,l but should instead pro-
duce multifaceted measures of the ex-
tent of suspicious coordination.

Our in-depth analysis revealed the 
emergence of group-based approach-
es several years before “coordinated 
inauthentic behavior” was acknowl-
edged as the main threat to our online 
social ecosystems by the general pub-
lic and by the social platforms them-
selves. Among the most pressing chal-
lenges along this line of research is 
the problem of scalability of group-
based detectors and the intrinsic 
fuzziness of “inauthentic coordina-
ton.” In fact, the scalable and general-
izable detection of coordination is 
still a largely open challenge, with 
only few contributions proposed so 
far.12,25 Similarly, computational 
means to discriminate between au-
thentic and inauthentic coordination 
are yet to be proposed and evaluated. 
Interestingly, the same analysis that 
anticipated worldwide interest in in-
authentic coordination, is now sug-
gesting that adversarial approaches 
might give us an edge in the long-last-
ing fight against online deception.

Summarizing the main sugges-
tions stemming for our extensive anal-
ysis, future deception detection tech-
niques should: focus on identifying 
suspicious coordination indepen-
dently of the nature of individual ac-
counts; avoid providing binary labels 
in favor of fuzzier and multifaceted 
indicators; favor unsupervised/semi 
supervised approaches over super-
vised ones; and account for adversar-
ies by design. In addition, part of the 
massive efforts we dedicated to the 
task of detection should also be real-
located to measure (human) exposure 
to these phenomena and to quantify 
the impact they possibly have. Only 
through enacting these changes we 
will be able to develop tools that better 
represent the existing reality, thus 
providing actionable results to the 
many scientific communities and 
stakeholders looking at AI and Big 
Data tools as a compass to adventure 
in the perilous landscape of online in-
formation. These guiding lights stand 
in front of us as an exciting and rare 
opportunity, one that we did not have 
in the past. Acting upon and capitaliz-

l https://bit.ly/2BrJAxd

ing on this opportunity is now exclu-
sively on our shoulders.
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Technical  
Perspective
Analyzing Smart Contracts 
With MadMax 
By Benjamin Livshits

S M A R T  C O N T R AC T S  P ROV I D E  a way to 
bring computational integrity to ex-
ecuting more or less general-purpose 
programs. While proposed a long time 
ago, they have only become popular 
with the advent of newer blockchain-
based systems such as Ethereum with 
its associated Ethereum Virtual Ma-
chine (EVM), and several other simi-
lar systems. Smart contracts give the 
hope of being able to capture complex 
financial interactions and relation-
ships with the help of executing code. 
As a result, we have seen a multitude 
of projects in areas as diverse as law 
and what is frequently referred to as 
decentralized finance (DeFi) based on 
smart contracts. 

Somewhat notoriously, smart con-
tracts, because they often directly 
manage financial transactions, wal-
lets, and transfers, have been subject 
to vulnerability discovery, with many 
high-profile vulnerabilities, such as 
the DAO hack, a highly impactful ex-
ploit from mid-2016, where a hacker 
found a loophole in a smart contract 
that has led to the theft of about $70 
million. This attack and some of the 
others have generated a great deal of 
interest in using static analysis and 
verification techniques to find bugs 
and vulnerabilities in contracts be-
fore they are allowed to be deployed 
onto a blockchain (since, after all, 
contracts are generally immutable as 
well, making bugs fairly difficult to fix 
after the fact). 

MadMax focuses on a fairly spe-
cific aspect of smart contracts, that of 
metering. Metering is an approach to 
charge for contract execution, which 
plays the dual role of compensat-
ing blockchain participants and of 
preventing denial-of-service attacks. 
How to do metering properly is actu-
ally quite a hard problem. The EVM 
proposes a specific way to charge for 
contact execution, as specified in the 

Ethereum yellow paper. Gas is pro-
vided for the purpose of contract ex-
ecution but if not enough gas is pro-
visioned, contract state can be rolled 
back. 

MadMax tackles gas-related vul-
nerabilities, which permit an attacker 
to force key contract functionality to 
run out of gas—effectively perform-
ing a permanent denial-of-service 
attack on the contract. As such, the 
following paper first effectively dis-
covers a new vulnerability. Second, it 
proposes a detection approach based 
on a static analysis (defined with the 
help of Datalog). MadMax analyses 
the entirety of smart contracts in the 
Ethereum blockchain at the time of 
this writing in just 10 hours and flags 
vulnerabilities in contracts that hold 
billions of dollars. The analysis Mad-
Max proposes is fairly precise: man-
ual inspection of a sample of flagged 
contracts shows that 81% of the sam-
pled warnings do indeed lead to vul-
nerabilities. 

The impact of this work is long-
ranging and has some implications 
for the blockchain industry as a whole. 
Specifically, the metering approach 
that is based on gas measurements 
is a highly imperfect design. Funda-
mentally, assigning fixed weights to 
individual instructions is bound to 
create a mismatch with the specifics 
of individual hardware architectures. 

However, given that blockchain is 
experiencing rapid adoption, the fo-
cus on meeting and out-of-gas attacks 
of the following paper is well-warrant-
ed and more research is needed in 
this space to both propose new ways 
to do metering and to fix existing at-
tacks.  

Benjamin Livshits is Chief Scientist of Brave Software 
and an associate professor at Imperial College London, 
U.K. 
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Abstract
Ethereum is a distributed blockchain platform, serving as 
an ecosystem for smart contracts: full-fledged intercom-
municating programs that capture the transaction logic of 
an account. A gas limit caps the execution of an Ethereum 
smart contract: instructions, when executed, consume gas, 
and the execution proceeds as long as gas is available.

Gas-focused vulnerabilities permit an attacker to force 
key contract functionality to run out of gas—effectively 
performing a permanent denial-of-service attack on the 
contract. Such vulnerabilities are among the hardest for 
programmers to protect against, as out-of-gas behavior may 
be uncommon in nonattack scenarios and reasoning about 
these vulnerabilities is nontrivial.

In this paper, we identify gas-focused vulnerabilities 
and present MadMax: a static program analysis technique 
that automatically detects gas-focused vulnerabilities with 
very high confidence. MadMax combines a smart con-
tract decompiler and semantic queries in Datalog. Our 
approach captures high-level program modeling concepts 
(such as “dynamic data structure storage” and “safely 
resumable loops”) and delivers high precision and scal-
ability. MadMax analyzes the entirety of smart contracts in 
the Ethereum blockchain in just 10 hours and flags vulner-
abilities in contracts with a monetary value in billions of 
dollars. Manual inspection of a sample of flagged contracts 
shows that 81% of the sampled warnings do indeed lead to 
vulnerabilities.

1. INTRODUCTION
Ethereum is a decentralized blockchain platform that can 
execute arbitrarily-expressive computational smart contracts. 
A smart contract can capture virtually any complex inter-
action, such as responding to communication from other 
accounts and dispensing or accepting funds. The possibili-
ties for such programmable logic are endless. It may encode 
a payoff schedule, investment assumptions, interest policy, 
conditional trading directives, trade or payment agreements, 
and complex pricing. Virtually any transactional multiparty 
interaction is expressible without a need for intermediaries 
or third-party trust.

Smart contracts typically handle transactions in Ether, 
which is the native cryptocurrency of the Ethereum block-
chain with a current market capitalization in tens of billions 
of dollars. Smart contracts (as opposed to noncomputa-
tional “wallets”) hold a considerable portion of the total 
Ether available in circulation, which makes them ripe targets 

The original version of this paper appeared in Proceedings of the ACM 
Programming Languages 2 (OOPSLA) (Nov. 2018).

for attackers. Hence, developers and auditors have a strong 
incentive to make extensive use of various tools and pro-
gramming techniques that minimize the risk of their con-
tract being attacked.

Analysis and verification of smart contracts are, therefore, 
high-value tasks, possibly more so than in any other applica-
tion domain. The combination of monetary value and pub-
lic availability makes the early detection of vulnerabilities a 
task of paramount importance.

A broad family of contract vulnerabilities concerns out-of-
gas behavior. Gas is the fuel of computation in Ethereum. Due 
to the massively replicated execution platform, wasting the 
resources of others is prevented by charging users for running 
a contract. Each executed instruction costs gas, which is traded 
with the Ether cryptocurrency. As a user pays gas upfront, a 
transaction’s computation may exceed its allotted amount of 
gas. In that case, the Ethereum Virtual Machine (EVM), which is 
the runtime environment for compiled smart contracts, raises 
an out-of-gas exception and aborts the transaction. A contract 
is at risk for a gas-focused vulnerability if it has not anticipated 
(or otherwise does not correctly handle) the possible abortion of a 
transaction due to out-of-gas conditions. A vulnerable smart con-
tract may be blocked forever due to the incorrect handling of 
out-of-gas conditions: re-executing the contract’s function will 
fail to make progress, re-yielding out-of-gas exceptions, indefi-
nitely. Thus, although an attacker cannot directly appropriate 
funds, they can cause damage to the contract, locking its bal-
ance away in what is, effectively, a denial-of-service attack. 
Such attacks may benefit an attacker in indirect ways—for 
example, harming competitors or the ecosystem, amassing 
fame in a black-hat community, or blackmailing.

In this work, we present MadMax:1 a static program anal-
ysis framework for detecting gas-focused vulnerabilities in 
smart contracts. MadMax is a static analysis pipeline con-
sisting of a decompiler (from low-level EVM bytecode to a 
structured intermediate language) and a logic-based analy-
sis specification. MadMax is highly efficient and effective: 
it analyzes the whole Ethereum blockchain in just 10 hours 
and reports numerous vulnerable contracts holding a total 
value exceeding $2.8B, with high precision, as determined 
from a random sample.

1 Available at: https://github.com/nevillegrech/MadMax.

http://dx.doi.org/10.1145/3416262
https://github.com/nevillegrech/MadMax
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MadMax is unique in the landscape of smart contract ana-
lyzers and verifiers. It is an approach employing cutting-edge 
declarative static analysis techniques (e.g., context-sensitive 
flow analysis and memory layout modeling for data struc-
tures), whereas past analyzers have primarily focused on 
lightweight static analysis, on symbolic execution, or on full-
fledged verification for functional correctness. As MadMax 
demonstrates, static program analysis offers a unique com-
bination of advantages: very high scalability (applying to the 
entire blockchain) and high coverage of potential vulnerabil-
ities. Additionally, MadMax is raising the level of abstraction 
of automated security analysis, by encoding complex prop-
erties (such as “safely resumable loop” or “storage whose 
increase is caused by public calls”), which, in turn, allow 
detecting vulnerabilities that span multiple transactions.

2. BACKGROUND
A blockchain is a shared, transparent distributed ledger 
of transactions that is secured using cryptography. One 
can think of a blockchain as a long and ever-growing list 
of blocks, each encoding a sequence of individual transac-
tions, always available for inspection and safe from tam-
pering. Each block contains a cryptographic signature of 
its previous block. Thus, no previous block can be changed 
or rejected without also rejecting all its successors. Peers/
miners run a mining client for separately maintaining the 
current version of the blockchain. Each of the peers con-
siders the longest valid chain starting from a genesis block 
to be the accepted version of the blockchain. To encour-
age transaction validation by all peers and discourage 
wasted or misleading work, a blockchain protocol typi-
cally combines two factors: an incentive that is given as a 
reward to peers successfully performing validation, and a 
proof-of-work, requiring costly computation to produce a 
block. To see how distributed consensus and permanent 
record-keeping arise, consider a malicious client who tries 
to double-spend a certain amount. The client may propa-
gate conflicting transactions (e.g., paying sellers A and B) 
to different parts of the network. As different peers become 
aware of the two versions of the truth, a majority will arise, 
because the peers will build further blocks over the version 
they perceived as current. Thus, a majority will soon accept 
one of the two spending transactions as authoritative and 
will reject the other. The minority has to follow suit, or its 
further participation in growing the blockchain will also be 
invalidated: the rest of the peers will disregard any of the 
blocks not resulting in the longest chain.

Using this approach, a blockchain can serve to coordi-
nate all multiparty interactions with trust arising from the 
majority of peers, instead of being given to an authority by 
default.

The original blockchain, at least in its popular form, is 
due to the Bitcoin platform.11 Bitcoin is explicitly a special-
purpose cryptocurrency platform. Therefore, the data regis-
tered on the Bitcoin ledger can be seen as transaction parties 
and amounts (with minor logic permitted for cryptographic 
authentication). In contrast, the blockchain formulation we 
are interested in is the one popularized by the Ethereum plat-
form4, 21: registered accounts may contain smart contracts, 

that is, full-fledged programs that can perform arbitrary com-
putations, enabling the encoding of complex logic.

Ethereum smart contract programming is most com-
monly done in the Solidity language.18 Solidity is a JavaScript-
like language, enhanced with static types, contracts as a 
class-like encapsulation construct, contract inheritance, and 
numerous other features.

The Solidity (or other high-level language) level of abstrac-
tion is significantly removed from that of the code that directly 
runs on the Ethereum blockchain. Instead, Ethereum natively 
supports a low-level bytecode language—the Ethereum plat-
form is essentially a distributed, replicated virtual machine, 
called the Ethereum VM (EVM). The EVM is a low-level stack-
machine with an instruction set such as standard arithmetic 
instructions, basic cryptography primitives (mainly crypto-
graphic hashing), primitives for identifying contracts and 
calling out to different contracts (based on cryptographic 
signatures), exception-related instructions, and primitives 
for gas computation. Data is stored either on the blockchain 
(a memory area called storage), in the form of persistent data 
structures, or in contract-local transient memory.

In our work, we focus on analyzing smart contracts at the 
bytecode level. This is a high-cost design decision (due to the 
low-level nature of the bytecode). At the same time, the EVM 
bytecode level of abstraction yields a high payoff for analy-
ses that target it. A bytecode-level analysis does not require 
a contract’s source, allowing the analysis of both new and 
deployed contracts, originally written in any language. At the 
bytecode level, the input code is normalized, with all control 
flow being explicit, uniform, and simplified. Furthermore, 
the impedance mismatch between a high-level language 
and the EVM bytecode is often a source of confusion and 
error. For instance, consider the code pattern here:

creditorAddresses = new address [](size);

This code RESULTS in iteration over all locations of an 
array, to set them to zero. This iteration can well run out of gas. 
(Such code was behind a vulnerability1 in the GovernMental16 
smart contract, for example.) The iteration is implicit at the 
Solidity level but immediately apparent at the bytecode level.

3. GAS-FOCUSED VULNERABILITIES
We next identify some of the most common patterns of gas-
focused vulnerabilities. We employ Solidity for illustration 
purposes, even though our entire analysis work is at the EVM 
bytecode level.

The Ethereum execution model incentivizes users to 
minimize the number of instructions executed, by making 
them pay up front for the gas required to execute a transac-
tion. Running out of gas is common, but, in most cases, this 
is not catastrophic: the transaction is reverted and the end 
user reruns it with a higher gas budget.

However, Ethereum smart contracts can relatively easily 
reach a state such that there will never be enough gas to run 
their code. The most common reason is the block gas limit of 
the Ethereum network—currently at 9M units of gas, which is 
enough for a mere few hundred writes to storage (i.e., to the 
blockchain).
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3.1. Unbounded mass operations
The most standard form of a gas-focused vulnerability is 
that of unbounded mass operations. Loops whose behavior 
is determined by user input could iterate too many times, 
exceeding the block gas limit, or becoming too economi-
cally expensive to perform. The code may not have predicted 
this possibility, thus failing to ensure that the contract can 
continue to operate as desired under these conditions. This 
will commonly lead to a denial of service for all transactions 
that must attempt to iterate the loop. Consider the contract:

contract NaiveBank {
 struct Account {
  address addr;
  uint balance;
 }
 Account accounts [];

 function applyInterest () returns (uint) {
  for (uint i=0; i < accounts . length; i++) {
    // apply 5 percent interest
    accounts [i] . balance =
    accounts [i] . balance * 105 / 100;
 }
 return accounts. length;
 }
}

As the number of accounts is increased, the gas require-
ments for executing applyInterest will rise. Very quickly 
(after a mere few hundred entries are added to accounts), 
the function will be impossible to execute without raising 
an out-of-gas exception: the cost of the loop’s instructions 
exceeds the Ethereum block gas limit.

Ethereum programming safety recommendations17 sug-
gest that programs should avoid having to perform opera-
tions for an unbounded number of clients (instead merely 
enabling the clients to “pull” from the contract). However, it 
is easy for contracts to violate this practice, without realizing 
that a loop’s iterations are bounded only by user-controlled 
quantities.

An alternative recommendation is that when loops do need 
to perform operations for an unbounded number of clients, 
the amount of gas should be checked at every iteration and the 
contract should “keep track of how far [it has] gone, and be able 
to resume from that point”.17 This pattern is complex, error-
prone, and (as we determine) very uncommon in practice.

3.2. Nonisolated calls (wallet griefing)
An additional way for a contract to run into out-of-gas trou-
ble involves invoking external functionality that may itself 
throw an out-of-gas exception. The first element of the prob-
lem is a call that the programmer may not have considered 
extensively. Such calls are typically implicit, as part of Ether 
transfer. Sending Ether involves calling a fallback function 
on the recipient’s side.

It is illustrative to see the issue based on the Solidity primi-
tives and recommended practices. In Solidity, sending Ether 
is performed via either the send or the transfer primitive. 

These have different ways to handle transfer errors. For 
instance, send returns false if sending Ether fails:

< address >. send (uint256) returns (bool)

On the other hand, transfer raises an error (i.e., throws 
an exception) if sending Ether fails.

Importantly, both the send and the transfer Solidity 
primitives are designed with failure in mind. Both are 
translated into regular calls at the EVM bytecode level, but 
with a limited gas budget of 2300 given to the callee. This 
is barely enough to allow executing some logging code on 
the recipient’s side. Therefore, the emphasis is placed on 
the error handling.

A good practice locally (and also used in recommended 
Ethereum security code patterns17) is using the send primi-
tive always with a check of the result and aborting the 
transaction by throwing an exception, if a send fails. This 
effectively turns a send into a transfer plus any other 
code the user wants.

The problem arises when that exception is thrown in 
the middle of a loop, which is also handling other external 
accounts. The contract programmer or auditor may easily 
miss the potential threat. For instance, the loop may iter-
ate only a bounded number of times (e.g., a contest may 
award money to the three leaders of a scoreboard) tricking 
the programmer into thinking that its gas consumption is 
fixed. Furthermore, it is counter-intuitive to consider that an 
external party will purposely abort the very transaction that 
gives it money. Finally, the usually-conservative naïve error 
handling of eagerly aborting the transaction conspires to 
cause the problem.

We can see the issue in example code for a vulnerability20 
appealingly termed wallet griefing.2 Consider a simple loop 
that tries to reward the three winners of a contest:

for (uint i = 0; i < 3; i++)
  if (!(winners [i]. send (reward) ) ) throw;

The problem is that the send command will also result 
in the callback function of the winner being executed. All 
it takes for the contract to be vulnerable is for attackers 
to make themselves a winner and then provide a callback 
function that runs out of gas. The sender contract may 
never be able to recover from such conditions—for exam-
ple, code clearing the winners may only appear after the 
end of the above loop.

3.3. Integer overflows
A programming error that commonly expresses itself as a 
gas-focused vulnerability results from possible integer over-
flows, often (but not exclusively) arising due to the Solidity-
type inference approach. This is a separate pattern from the 
general attack of Section 3.1, as the iteration is not merely 
unbounded but literally nonterminating.

2 The slang term “griefing” comes from the gaming community, where it is 
used to denote targeted destructive behavior meant to harass.
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 destinations, per the above point). All functions of a 
contract are fused in one, with low-level jumps as the 
means to transfer control.

To call an intracontract function, the code pushes a 
return address to the stack, pushes arguments, pushes the 
destination block’s identifier (a hash), and performs a jump 
(which pops the top stack element, to use it as a jump des-
tination). To return, the code pops the caller basic block’s 
identifier from the stack and jumps to it.

4.2. Decompilation approach
MadMax was originally based on the Vandal decompiler.3, 19 
Subsequently, the same analysis logic has been ported to our 
Gigahorse decompiler framework.6

Our decompilation step accepts EVM bytecode as input 
and produces output in a standard structured intermediate 
representation: a control-flow graph (of basic blocks and the 
edges connecting them); three-address code for all opera-
tions (instead of operations acting on the stack); and recog-
nized (likely) function boundaries. This representation is 
encoded as relations (i.e., tables) and queried, recursively, to 
formulate higher-level program analyses.

We observe that the EVM bytecode input is much like a 
functional language in continuation-passing-style (CPS) 
form: all calls and returns are forward calls (jumps), where 
calls add the continuation (return-to instruction) as one of 
the arguments. This equivalence of CPS and low-level jumps 
has been observed before—most explicitly by Thielecke.15

The technical setting of having CPS input and needing to 
detect value and control flow is precisely that of control-flow 
analysis (CFA).12, 13 Control-flow analysis is also one of the 
original proposals for a context-sensitive (call-site sensitive) 
static analysis of value flow: for a k-CFA analysis, every call 
target gets analyzed separately for each caller (i.e., calling 
instruction), caller’s caller, etc., up to a maximum depth, k.

Decompilation, therefore, adopts the standard form of 
a control-flow analysis,13 formulated as an abstract-interpreta-
tion. Context sensitivity adapts to the complexity of the input 
contract, often resulting in analyses with deep context 
(e.g., k = 12). The end result is a three-address code using 
the schema listed in Figure 1. Syntax sugar and minor detail 
elision are employed for presentation purposes. Language 
syntax is quoted using [ and ] and implicitly unquoted for 
meta-variables. For instance, s:[to:= BinOp(x, y)] indicates 
that statement s is some binary operation on x and y with its 
result in to, where x, y, and to are the meta-variables refer-
ring to the bytecode variables. The distinction between vari-
ables in the analyzed program and meta-variables in the 
analysis is clear from context; therefore, we simply refer to 
“variables,” henceforth. We omit the statement identifier, s, 
when it does not affect a rule. We also use * as a wildcard, 
that is, it denotes any variable, which is ignored.

The schema captures all elements of EVM bytecode in 
a slightly abstracted fashion, using a standard, structured 
intermediate language. For example, JUMPI instructions 
have statements, and not arbitrary values, as targets. All 
binary operations are treated equivalently, as we currently 
do not attempt to analyze arithmetic expressions. We do not 

Consider the following contract:

contract Overflow {
Payee payees [];

function goOverAll () {
  for (var i = 0; i < payees . length; i++)
  { ... }
  } ...
 }

The use of var induces a type inference problem. (Newer 
versions of Solidity statically detect this issue.) The inferred 
type of variable i is uint8 (i.e., a byte), as the variable is 
initialized to 0 and uint8 is the most precise type that can 
hold 0 while being compatible with all operations on i. 
Unfortunately, this means that a mere addition of 256 mem-
bers to payees is enough to cause the loop to not terminate, 
quickly resulting in gas exhaustion. An attacker can exploit 
this vulnerability by adding fake payees using appropriate 
public functions (not shown) until the overflow is triggered.

4. DECOMPILING EVM BYTECODE
The first step of our gas-focused vulnerability analysis is a 
decompilation step, raising the level of abstraction from that 
of EVM bytecode to a structured intermediate language (IR): 
control-flow graphs (CFGs) over the three-address code. The 
decompilation step is itself a static analysis, as EVM bytecode 
is low-level: much closer to machine-specific assembly than 
to structured IRs (e.g., Java bytecode or.NET IL).

4.1. Challenges for EVM bytecode analysis
The EVM is a stack-based low-level IR with minimal struc-
tured language characteristics. In the bytecode form of a 
smart contract, symbolic information has been replaced by 
numeric constants, functions have been fused together, and 
control flow is hard to reconstruct. To illustrate, compare 
the EVM bytecode language to the best-known bytecode 
language: Java (JVM) bytecode—a much higher-level IR. The 
design differences include the following:

• Unlike JVM bytecode, EVM does not have structs, classes, 
or objects, nor does it have a concept of methods.

• Java bytecode is a typed bytecode, whereas EVM bytecode 
is not.

• In JVM bytecode, the stack depth is fixed under different 
control flow paths: execution cannot get to the same 
program point with different stack sizes. In EVM byte-
code, no such guarantee exists.

• All control-flow edges (i.e., jumps) in EVM bytecode are 
to variables, not constants. The destination of a jump is 
a value that is read from the stack. Therefore, a value-
flow analysis is necessary even to determine the con-
nectivity of basic blocks. In contrast, JVM bytecode has 
a clearly-defined set of targets of every jump, indepen-
dent of value flow (i.e., independent of stack contents).

• JVM bytecode has defined method invocation and return 
instructions. In EVM bytecode, although calls to outside 
a smart contract are identifiable, function calls inside 
a contract get translated to just jumps (to variable 
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5. CORE MADMAX ANALYSIS
The main MadMax analysis operates on the output of decom-
pilation using logic-based specifications. The analysis is 
implemented in the Datalog language: a logic-based language, 
equivalent to first-order logic with recursion.8 The analysis 
consists of several layers that progressively infer higher-
level concepts about the analyzed smart contract. Starting 
from the three-address-code representation of Figure 1, con-
cepts such as loops, induction variables, and data flow are 
first recognized. Then, an analysis of memory and dynamic 
data structures is performed, inferring concepts such as 
dynamic data structures, contracts whose storage increases 
upon reentry, nested arrays, etc. Finally, concepts at the 
level of analysis for gas-focused vulnerabilities (e.g., loop with 
unbounded mass storage) are inferred.

5.1. Flow and loop analyses
Ethereum gas-focused vulnerabilities tend to require a high-
level semantic understanding of the underlying contract. 
There are various initial low-level analyses that need to hap-
pen before expressing deeper semantics. Thus, the first 
step of a MadMax analysis is the derivation of loop and data 
flow information. This yields several relations, on which 
further analysis steps are built. The relations, together with 
some extra domain and input context definitions, are given 
in Figure 2. We do not provide the Datalog rules for any of 
these relations—their implementation, although not always 
straightforward, is standard. For instance, it resembles the 
flow computation in standard Datalog analysis formula-
tions14 or frameworks for Java bytecode, such as JChord9, 10 
and Doop.2

The first three computed relations in Figure 2 (InLoop, 
InductionVar, and LoopExitCond) encode useful con-
cepts in structured loops. Note that loops in low-level pro-
grams do not have to be structured; for example, there may 
not be a loop head that dominates all loop statements. 
However, Solidity and other EVM languages often produce 
structured loops as part of their compilation process. The 
loop analysis finds induction variables, that is, variables that 
are incremented by a predictable (but not necessarily stati-
cally known) amount in each iteration.

The next four relations capture a data-flow analysis. Relation 
Flows expresses a data-flow dependency between variables. 
In its simplest form, Flows is just the reflexive transitive clo-
sure of the BinOp input relation; that is, it ignores storage and 

include unary operations or direct assignment between vari-
ables in Figure 1, although we do so in the implementation, 
because these can be treated as special cases of binary oper-
ations. Rtvalue gives a uniform treatment of instructions 
that return the cost of gas, transaction id, code size, caller, 
and other run-time quantities.

Figure 1. Domains and decompiler output (i.e., input relations for 
main analysis).

V is a set of program variables
C is a set of constants, C ⊆ 
S is a set of statement identifiers
N is the set of natural numbers, Z is the set of integers

s:[to := CONST(c)] s : S, to : V, c : C

load from storage
s:[to := SLOAD (index)] s : S, index : V, to : V

store to storage
s:[SSTORE(from, index)] s : S, index : V, from : V

load from (volatile) memory
s:[to := MLOAD(index)] s : S, index : V, to : V

store to (volatile) memory
s:[MSTORE(from, index)] s : S, index : V, from : V

conditional jump
s:[JUMPI(cond, label)] s : S, cond : V, label : S

conditional throw
s:[THROWI(cond)] s : S, cond : V

keccak 256 hash
s:[to := SHA3(ind, len)] s : S, ind : V, len : V, to : V

call external contract
s:[to := CALL(addr, gas...)] s : S, addr : V, gas : V, to : V

get remaining gas
s:[to := GAS()] to : V

get run-time value (e.g. current block size)
s:[to := RTVALUE()] to : V

CAST integer to a number of bits
s:[to := CASTN(from)] to : V, from : V, n : N

binary operator e.g. φ, ADD, AND, etc.
s:[to := BINOP(a, b)] y s : S, a : V, b : V, to : V

constant assignment

Figure 2. Extra domains, input, and output schema for baseline loop and data flow analyses.

INLOOP(s : S, l : L) Statement s is part of loop l
Statement s is part of function f

INDUCTIONVAR(v : V, l : L) v is an induction variable of loop l
LOOPEXITCOND(condVar : V, l : L) Loop condition of l is captured by condVar
HASCONSTANTVALUE(v : V, c : C) Constant c may propagate to variable v
FLOWS(from : V, to : V) Data flow analysis: the value of from flows to to
VARALIAS(v : V, u : V) Local alias analysis: v,u may be aliased via direct assignment
MEMCONTENTS(s : S, p : V, v : V) At statement s, contents at memory location p may be v

F is a set of function hashes
L is a set of structured loops

INPUBLICFUNCTION(s : S, f : F)
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However, the existence of all three conditions is a very strong 
indication that the programmer has considered the possi-
bility of an out-of-gas exception and has taken precautions 
to make the loop resumable on a re-execution of the con-
tract function.

5.2. Analysis of memory layout
A faithful modeling of the Ethereum VM memory layout for 
dynamic data structures is a key part of MadMax. This mod-
eling is necessary for reducing the false-positive rate of the 
analysis. An intuitive but naïve approach to find gas vulner-
abilities may be to flag any contract that contains loops that 
are “dynamically bound,” or loops where the number of iter-
ations depends on some value stored in storage or passed 
as external input. However, a precise analysis requires more 
sophistication. We find experimentally that around half of 
the currently deployed contracts have dynamically bound 
loops—but it would be entirely unrealistic to expect that 
half of smart contracts currently deployed are vulnerable. 
Instead, for loops that iterate over unbounded data (i.e., 
data structures), we need to determine whether the data 
structure could have been populated by an attacker.

The Ethereum virtual machine does not have notions of 
high-level data structures. Instead, operations on high-level 
data structures are compiled down to low-level operations on 
addressable storage. Solidity offers two main kinds of dynam-
ically-sized data structures: dynamically-sized arrays and asso-
ciative arrays, that is, maps. Although both arrays and maps 
can be dynamically resized, no mechanism exists for iterating 
over maps. Therefore, arrays are the primary data structure to 
model, in order to capture loops that iterate without bounds.

The Ethereum memory layout is highly unconventional 
from a traditional programming language standpoint, 
although perfectly reasonable if one considers the specif-
ics of the execution environment (i.e., a segregated, 256-bit 

memory load and store instructions. However, one can give 
more sophisticated Flows definitions without affecting the 
rest of the analysis. VarAlias is a similar relation but more 
restrictive, for variables directly assigned to each other with no 
further arithmetic. Accordingly, HasConstantValue does 
a simple constant propagation: it is just the composition of 
VarAlias with the input CONST relation.

Finally, MemContents does a simple analysis of Mstore 
operations given the results of VarAlias and propagates the 
results to every statement reachable from an Mstore in the 
control-flow graph.

There are two points worth mentioning about the above 
relations:

• The data-flow analysis (i.e., relations HasConstant-
Value, Flows, VarAlias, and MemContents) is 
best-effort, that is, neither sound nor complete. This 
means that, first, not all possible flows, aliases, etc. 
are guaranteed to be found: two variables may hold 
the same value as a result of complex arithmetic, run-
time operations, memory load and stores, etc., with-
out the analysis computing this. Second, not all 
inferences are guaranteed to hold. For example, an 
inference that is known to hold in one control-flow 
path but not in another will be optimistically propa-
gated when paths are merged.

The property of being neither sound nor complete 
carries over to our overall analysis results. MadMax nei-
ther guarantees to detect all gas vulnerabilities nor guar-
antees that every gas vulnerability reported is a real bug. 
This design choice is well-aligned with the intended pur-
pose of a bug-detecting static analysis—the value of the 
analysis is not based on its guarantees but on its real-
world usefulness.5

• Relations Flows and VarAlias are pervasive in the 
MadMax analysis. Most other relations we shall see 
henceforth are transitively closed with respect to either 
Flows or (the weaker) VarAlias. We elide such transi-
tive-closure Datalog rules from our exposition and only 
focus on the seed logic of each interesting concept.

Armed with the above basic loop and data-flow analy-
ses, we can establish higher-level concepts, such as a loop’s 
bound. This is defined as LoopBoundBy in Figure 3. If 
both an induction variable i and a noninduction variable c 
flow to a loop exit condition, then we infer that the loop may 
be bound by the contents of c. A further refinement of this 
relation is DynamicallyBound, which infers which loops 
are bound by either storage or some other value that is only 
known at run-time.

Finally, we define predicate PossiblyResumableLoop, 
to match loops that appear to implement the Ethereum 
secure coding recommendations,17 by checking the amount 
of remaining gas, saving to (permanent) storage an induc-
tion variable, and loading the same induction variable from 
storage. Note that this is not an entirely precise detection of 
resumable loops—it may well be finding instances of code 
that just happen to match these abstract conditions, for 
example, gas check, store, and load of induction variable. 

Figure 3. Inferring bound loops and resumable loops.

LOOPBOUNDBY(loop, var) ←
INDUCTIONVAR(i, loop),
!INDUCTIONVAR(var, loop),
FLOWS(var, condVar),
FLOWS(i, condVar),
LOOPEXITCOND(condVar, loop).

DYNAMICALLYBOUND(loop) ←
[dynVar := SLOAD(*)],
LOOPBOUNDBY(loop, dynVar).

DYNAMICALLYBOUND(loop) ←
[dynVar := RTVALUE()],
LOOPBOUNDBY(loop, dynVar).

POSSIBLYRESUMABLELOOP(loop) ←
[gas := GAS()],
LOOPBOUNDBY(loop, gas).
INDUCTIONVAR(i, loop),
FLOWS(loaded, i),
[loaded := SLOAD(*)],
FLOWS(i, stored),
[SSTORE(*, stored)],
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affects the address loaded.
Finally, loop overflows are conservatively asserted to be 

likely if the induction variable is cast to a short integer or 
ideally one byte. The loop has to be “dynamically bound” 
to be vulnerable, that is, the number of iterations is deter-
mined by some run-time value.

6. IMPACT
Our original MadMax experiments consider all smart con-
tracts available on the Ethereum blockchain on April 9, 
2018. We ran MadMax on an idle machine with an Intel Xeon 
E5–2687W v4 3.00 GHz and 512 GB of RAM. Due to time con-
straints, we set a cutoff of 20 s for decompilation—beyond 
that time, contracts are considered to time-out.

The contracts flagged for vulnerabilities, combined, con-
tain 7.07 million ETH, or roughly $2.8 billion.3 In total, there 
were 6.33 million contract instances deployed at the time of 
our blockchain scraping, produced from 91.8k unique pro-
grams. 4.1% of the contracts are flagged by MadMax as being 
susceptible to unbounded iteration, 0.12% to wallet griefing, 
and 1.2% to overflows of loop induction variables.

To estimate a false-positive rate, we manually inspected a 
subset of the contracts flagged. Our unbiased sampling pro-
cess involves taking unique bytecode programs and selecting 
the first and last few contracts by block-hash order. However, 
a bias factor is introduced by the need to have source code 
available online—contracts without source code were not 
considered, as manual inspection of low-level bytecode is 
highly time-consuming and unreliable.

We select the first 13 contracts, and manual inspection 
reveals that 11 of these contracts indeed exhibit 13 distinct 
vulnerabilities, of 16 flagged, for a precision of 13/16 = 81%. 
The exact number is hardly important—a larger sample 
could have it move a few percentage points up or down. 
What is important is that the analysis is precise enough to 
yield a wealth of true vulnerability warnings. By manually 
inspecting the sampled contracts, we have gained impor-
tant insights about the effectiveness of MadMax—presented 
in detail in the MadMax conference publication.7

The entire MadMax analysis of the 91.8k contracts took less 
than 10 hours, running 45 concurrent processes. Subsequent 
advances of the Gigahorse decompiler have brought this num-
ber down by at least a factor of 2. Decompilation currently 
exhibits time-outs for around 4% of the contracts, depending 
on the exact settings.

Note that a confirmed vulnerability in a contract does not 
mean that: (1) exploiting the vulnerabilities is easy or cheap 
or (2) the vulnerability blocks all Ether in a contract. For 
instance, the gas required to exploit an unbounded mass 

memory space per contract, cryptographic hashing as a 
primitive). The main idea is that a key represents an array. 
The key is the address of the memory location holding the 
array’s size. At the same time, the key is hashed to yield the 
address of the memory location that holds the array’s 
contents.

Figure 4 depicts an example of storage allocation for a 
simple contract with two scalar variables and a two-dimen-
sional dynamic array. Fixed-sized data structures in Solidity 
are stored consecutively in storage as these appear in pro-
gram order, starting from offset 0. The individual elements in 
arrays are also stored consecutively in storage; however, the 
starting offset of the elements requires some calculations to 
be determined. Due to their unpredictable size, dynamically-
sized array types use a keccak256 hash function (sha3) to 
find the starting position of the array data. The dynamic 
array value itself occupies an empty slot in storage at some 
position p. For a dynamic array, this slot stores the number 
of elements in the array. The array data, however, is located 
at keccak256(p). The implementation of arrays is extended 
to arbitrarily-nested dynamic data structures, by recursively 
mapping the above implementation, necessitating a recur-
sive analysis.

MadMax performs an analysis (elided) for modeling the 
memory layout and identifying dynamic data structures in 
smart contracts. The outputs of this analysis are shown in 
Figure 5. Based on these relations, we define key concepts for 
gas-focused analyses, as shown in Figure 6. An important con-
cept is IncreasedStorageOnPublicFunction. Storage 
variables that are increased and stored in their corresponding 
storage slot imply that a contract’s array size is increased when 
some public function is invoked. Moreover, we can find loops 
that iterate over arrays. We define ArrayIterator as a loop 
that iterates over an array.

5.3. Top level vulnerability queries
The analysis concepts of the previous sections set up the 
final queries for gas-focused vulnerabilities. These are 
made precise by combining several distinct concepts. Figure 
7 shows the final output relations of the MadMax analysis in 
slightly simplified (and inlined to single rule) form.

Consider, for instance, the UnboundedMassOp logic: it 
examines whether an array that can grow in size as the result 
of a public function has contents that are loaded or stored 
(the Flows(storeOffsetVar, index) allows dereferencing from 
the beginning of the contents), inside a loop whose bound is 
based on the array size and that contains an induction vari-
able that affects the address loaded or stored.

The WalletGriefing query is even more precise, 
requiring a load from the dynamic array, flow of the 
loaded value to a call whose result is the condition of a 
throw statement. The call and the throw need to be in the 
same loop, which also has an induction variable that 

Figure 4. Outputs of data structure analysis.

VARINDEXESSTORAGE(s : S, v : V) Variable v reads or writes to storage at statement s
ARRAYSIZEVARIABLE(sv : V, arrId : C, kv : V ) Array arrId has its length and address read in sv and kv, respectively
ARRAYIDTOSTORAGEINDEX(arrId : C, v : V ) v holds a storage address that is part of (outermost) array arrId

3 The price of ETH/USD and contract balances are both volatile quantities. 
To fix a reference point, all numbers given are as of April 9th, 2018 (with ETH/
USD at $400.72).
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operation vulnerability may be costly, deterring attackers. 
However, this does not affect the vulnerable nature of the 
contract against motivated malicious actors.

7. CONCLUDING DISCUSSION
We presented MadMax, a tool for finding gas-focused vulner-
abilities in Ethereum smart contracts. We identify new vul-
nerabilities for Ethereum smart contracts and demonstrate 
the first successful design of a static analysis tool at the EVM 
bytecode level that painstakingly decompiles and recon-
structs the program’s higher-level semantics. The MadMax 
approach utilizes best-of-breed techniques and technolo-
gies: from abstract-interpretation-based low-level analysis for 
decompilation to declarative program analysis techniques 
for higher-level analysis. Our approach is validated using all 
deployed smart contracts on the blockchain and demon-
strates scalability and concrete effectiveness. The threat to 
some of these smart contracts presented by our tools is over-
whelming in financial terms, especially considering the high 
precision of warnings in a manually-inspected sample.

Gas-focused vulnerabilities are likely to become more 

relevant in the foreseeable future. Gas (or a quantity like it) is 
fundamental in blockchain computation and is, for example, 
included in the design of the upcoming Facebook Libra. 
Computation under gas constraints requires different coding 
styles than in traditional programming domains—a simple 
linear loop over a data structure may render a contract vulner-
able! This year, Ethereum’s Istanbul update makes SLOAD four 
times more expensive, whereas making SSTORE cheaper. 
Exploiting the unbounded operation vulnerability involves 
many state changing operations to cause the victim to per-
form more state reading operations. The cost to the attacker 
is therefore relative to the ratio of the cost of storing against 
the cost of reading. Hence, this vulnerability will become 
cheaper to exploit. Moreover, Libra’s virtual machine will 
have state reading operations such as ImmBorrowField 
and ReadRef. These will be as expensive as state writing 
operations MutBorrowField and WriteRef, which would 
make the unbounded operations’ vulnerability cheaper to 
exploit in Libra than in Ethereum.

MadMax is the first published analysis to detect threats 
that require coordination across multiple transactions. This 
is representative of the future trends for automated security 
analyses: the analysis will need to account for state changes by 
independent transactions, long before the final attack can be 
perpetrated. Furthermore, future threats are likely to involve 
multicontract or whole-app attacks—for example, with coor-
dination between the off-blockchain part of a decentralized 
application and its on-blockchain (smart contract) part. This 

Figure 7. Top-level query for unbounded mass operations, wallet 
griefing, and overflow vulnerabilities.

UNBOUNDEDMASSOP(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
VARINDEXESSTORAGE(storeOrLoadStmt, index),
INLOOP(storeOrLoadStmt, loop),
ARRAYITERATOR(loop, arrayId),
INDUCTIONVAR(i, loop),
FLOWS(i, index),
!POSSIBLYRESUMABLELOOP(loop).

WALLETGRIEFING(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
[loadVar := SLOAD(index)],
FLOWS(loadVar, target),
INLOOP([resVar := CALL(target, **)], loop),
INLoop([THROWI(condVar)], loop),
FLOWS(resVar, condVar),
INDUCTIONVAR(i, loop),
FLOWS(i, index).

LOOPOVERFLOW(loop) ←
DYNAMICALLYBOUND(loop),
[to := CASTN(from, n)], n ≤ 16,
INDUCTIONVAR(to, loop),
INDUCTIONVAR(from, loop),
FLOWS(to, condVar),
LOOPEXITCOND(condVar, loop).

Figure 5. Storage structure and contents (bottom) for given contract 
(top). sha3 is the keccak256 hash function.

contract Foo {
uint i0;
uint i1;

uint [][]a;
..

}

address contents
0 i0
1 i1
2 a.length

SHA3(2) a[0].length
SHA3(2) + 1 a[1].length

SHA3(SHA3(2)) a[0][0]
SHA3(SHA3(2)) + 1 a[0][1]

SHA3(SHA3(2) + 1) a[1][0]
SHA3(SHA3(2) + 1) + 1 a[1][1]

Figure 6. Datalog rules for identifying storage requirements increase 
in public functions.

INCREASEDSTORAGEONPUBLICFUNCTION(arrayId) ←
ARRAYSIZEVARIABLE(sizeVar, arrayId, keyVar),
INPUBLICFUNCTION([sizeVar’ := ADD(sizeVar, *)], f ),
INPUBLICFUNCTION([SSTORE(keyVar, sizeVar’)], f ).

ARRAYITERATOR(loop, arrayId) ←
LOOPBOUNDBY(loop, sizeVar),
ARRAYSIZEVARIABLE(sizeVar, arrayId, *).
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is a challenging next frontier for security analysis tools. In 
the case of MadMax, multitransaction reasoning is enabled 
by positing high-level properties, such as “safely resumable 
loop.” In turn, this is made possible by the declarative nature 
of the analysis, which allows a concise, logical specification of 
complex properties. The same declarative approach may well 
play an important role in future scaling of analyses to multi-
contract, whole-application reasoning.
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the network on the left below: s1 and 
s2 can simultaneously send streams of 
messages to t1 and t2 respectively if each 
in-degree 1 node sends its input along 
both output edges, node u passes on 
the XOR of its input messages to v, and 
nodes t1 and t2, in turn, compute the 
XOR of their input streams.

s1 t2

u v

s2 t1

s1 t2

u v

s2 t1

On the other hand, if the links are 
undirected, as in the network on the 
right, one can achieve the same rate 
without coding (or even using the (u,v) 
link): each si simply uses half the band-
width of each of the other links to send 
xi to ti. (In this example, the links could 
be used by alternate message streams in 
consecutive time steps.) This solution is 
an example of a (fractional) multi-com-
modity flow on the network with send-
er-receiver pairs (s1, t1), (s2, t2), unit de-
mands, and unit capacities. Such a flow 
reserves a fraction of the capacities on 
each edge for each sender-receiver pair. 
The undirected k-pairs conjecture, which 
originated in a 2004 paper of Li and Li, 
is that such a multi-commodity flow so-
lution is always optimal, so there would 
never be an advantage to network cod-
ing in undirected networks. The surpris-
ing result is that if (a weak form of) this 
network coding conjecture is true, then 
multiway Merge Sort is asymptotically 
optimal for external-memory sorting!

Alternatively, it follows from the 
paper that a better algorithm than 
Merge Sort would have a second ben-
efit: It could be used to design di-
rected networks for which the rates 
achievable using network coding are 
arbitrarily higher than the rates pos-
sible without network coding, even 
with the direction restrictions on the 
network removed. 
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for Computer Science & Engineering at the University of 
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S O R T I N G  A N D  T R A N S M I T T I N G  data are 
two of the most fundamental tasks for 
which we have employed digital com-
puters. The following paper proves a 
remarkable connection between how 
efficiently computers can perform 
these two tasks, connecting a long-
standing question about the optimal-
ity of Merge Sort and another, very dif-
ferent, open problem in the study of 
network coding for data transmission.

Merge Sort was one of the first pro-
grams written for digital computers. 
Though, as a comparison-based in-
memory algorithm, it has since been 
superseded by other sorting algorithms 
with better memory usage and by algo-
rithms, such as radix sort, that are faster 
than any comparison-based algorithm, 
Merge Sort has remained important 
for sorting large amounts of data that 
require external storage. It can be modi-
fied to merge multiple streams at once 
and only requires the sequential access 
common for many storage media. A 
natural question to ask is: Is (multiway) 
Merge Sort an optimal choice for an 
external-memory sorting algorithm, or 
can we do much better? With the ubiq-
uity of large datasets, this could have 
many practical applications.

To answer this question, one needs 
a suitable cost measure. Computers 
now have many levels of storage hier-
archy and hence many levels of “ex-
ternal” memory; data is transfered 
between levels in blocks rather than in-
dividual data items. The cost of those 
transfers often dominates the cost of 
operations in “internal” memory. So, 
a suitable cost measure for external-
memory algorithms is the number of 
transfers of blocks of size B into an in-
ternal memory of size M. In 1988, Ag-
garwal and Vitter, who developed the 
cost measure, showed that M/2B-way 
Merge Sort, which has transfers that 
mimic comparisons of an in-memory 
algorithm for input size n/B, is asymp-
totically optimal for comparison-based 
sorting algorithms, even for sorting 
instances that merely convert a matrix 
from row-major order to column-ma-

jor order. The challenge they left is to 
determine whether this also holds for 
general external-memory sorting algo-
rithms.

For in-memory algorithms, the gulf 
between the O(n log n) time for com-
parison-based algorithms and that for 
general algorithms is quite large: Radix 
sort, which uses indirect addressing, 
runs in O(n) time when the bit-length 
w of keys is O(log n). Also, as the paper 
notes, other in-memory algorithm that 
make of use of hashing operations on 
w-bit words can achieve nearly this 
level of performance for all values of w. 
It is plausible that a general O(n) time 
sorting algorithm is achievable for all 
w (an open question not considered 
here). However, the operations of in-
direct addressing and hashing seem to 
have no analogue for external-memory 
algorithms, which makes the optimal-
ity of Merge Sort plausible.

Though the theory of coding for a 
single sender and receiver dates back to 
the earliest days of computing, network 
coding is a more recent invention that 
arises in the context of many sender-re-
ceiver pairs in a shared communication 
network. Ahlswede et al. showed that, 
in a directed network, it is possible to 
send data at a higher rate if nodes in 
the network actively combine the con-
tents of the data they receive, rather 
than simply forwarding it as indivisible 
units. Their classic example is given in 
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Abstract
Sorting extremely large datasets is a frequently occurring 
task in practice. These datasets are usually much larger than 
the computer’s main memory; thus, external memory sort-
ing algorithms, first introduced by Aggarwal and Vitter, are 
often used. The complexity of comparison-based external 
memory sorting has been understood for decades by now; 
however, the situation remains elusive if we assume the 
keys to be sorted are integers. In internal memory, one can 
sort a set of n integer keys of Θ(lg n) bits each in O(n) time 
using the classic Radix Sort algorithm; however, in exter-
nal memory, there are no faster integer sorting algorithms 
known than the simple comparison-based ones. Whether 
such algorithms exist has remained a central open problem 
in external memory algorithms for more than three decades.

In this paper, we present a tight conditional lower bound 
on the complexity of external memory sorting of integers. 
Our lower bound is based on a famous conjecture in network 
coding by Li and Li, who conjectured that network coding 
cannot help anything beyond the standard multicommodity 
flow rate in undirected graphs.

The only previous work connecting the Li and Li con-
jecture to lower bounds for algorithms is due to Adler et al. 
Adler et al. indeed obtain relatively simple lower bounds for 
oblivious algorithms (the memory access pattern is fixed 
and independent of the input data). Unfortunately, oblivi-
ousness is a strong limitation, especially for integer sorting: 
we show that the Li and Li conjecture implies an Ω(n lg n) 
lower bound for internal memory oblivious sorting when 
the keys are Θ(lg n) bits. This is in sharp contrast to the 
classic (nonoblivious) Radix Sort algorithm. Indeed, going 
beyond obliviousness is highly nontrivial; we need to intro-
duce several new methods and involved techniques, which 
are of their own interest, to obtain our tight lower bound for 
external memory integer sorting.

1. INTRODUCTION
Sorting is one of the most basic algorithmic primitives 
and has attracted lots of attention from the beginning of  
the computing era. Many classical algorithms have been 
designed for this problem such as Merge Sort, Bubble Sort, 
Insertion Sort, etc. As sorting extremely large data has 
become essential for many applications, there has been 
a strong focus on designing more efficient algorithms 
for sorting big datasets2 These datasets are often much 
larger than the computer’s main memory and the per-
formance bottleneck changes from being the number of 

The original version of this paper is entitled “Lower Bounds for Exter-
nal Memory Integer Sorting via Network Coding” and was published in 
STOC 2019.

CPU instructions executed to being the number of accesses 
to slow secondary storage. In this external memory setting, 
one usually uses the external memory model to analyze the 
performance of algorithms. External memory algorithms 
are designed to minimize the number of input/output (I/O)s 
between the internal memory and external memory (e.g., hard 
drives and cloud storage), and we measure the complexity of 
an algorithm in terms of the number of I/Os it performs.

Formally, the external memory model consists of a main 
memory that can hold M words of w bits each (the memory 
has a total of m = Mw bits), and an infinite (random access) disk  
partitioned into blocks of B consecutive words of w bits each  
(a block has a total of b = Bw bits). The input to an external 
memory algorithm is initially stored on disk and is assumed 
to be much larger than M. An algorithm can then read blocks 
into memory or write blocks to disk. We refer jointly to these 
two operations as an I/O. The complexity of an algorithm is 
measured solely in terms of the number of I/Os it makes.

Aggarwal and Vitter2 considered the sorting problem in 
the external memory model. A simple modification to the 
classic Merge Sort algorithm yields a comparison based sort-
ing algorithm that makes O( (n/B) lgM/B(n/B) ) I/Os for sorting 
an array of n comparable records (each storable in a word  
of w bits). Notice that O(n/B) would correspond to linear I/Os,  
as this is the amount of I/Os needed to read/write the input/ 
output. Aggarwal and Vitter2 complemented their upper bound 
with a matching lower bound, showing that comparison- 
based external memory sorting algorithms must make 
Ω( (n/B) lgM/B(n/B) ) I/Os. In the same paper, Aggarwal and 
Vitter also showed that any algorithm treating the keys as 
indivisible atoms, meaning that keys are copied to and from 
disk blocks, but never reconstructed via bit tricks and the 
like, must make Ω(min{n, (n/B) lgM/B(n/B)}) I/Os. This lower 
bound does not assume a comparison-based algorithm, but 
instead makes an indivisibility assumption. Notice that the 
lower bound matches the comparison-based lower bound 
for large enough B (B > lg n suffices). The comparison and 
indivisibility settings have thus been (almost) fully under-
stood for more than three decades.

However, if the input to the sorting problem is assumed 
to be w bit integers and we allow arbitrary manipulations of 
the integers (hashing, XOR tricks, etc.), then the situation is 
completely different. In the standard internal memory com-
putational model, known as the word-RAM, one can design 

http://dx.doi.org/10.1145/3416268
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integer sorting algorithms that far outperform comparison-
based algorithms regardless of w. More concretely, if the 
word and key size is w = Θ(lg n), then Radix Sort solves the 
problem in O(n) time, and for arbitrary w, one can design sort-
ing algorithms with a running time of  in the 
randomized case6 and O(n lg lg n) in the deterministic case5 
(both bounds assume that the word size and key size are 
within constant factors of each other). In external memory, 
no integer sorting algorithms faster than the comparison-
based O( (n/B) lgM/B(n/B) ) bound are known! Whether faster 
integer sorting algorithms exist was posed as an important 
open problem in the original paper by Aggarwal and Vitter2 
that introduced the external memory model. Three decades 
later, we still do not know the answer to this question.

In this paper, we present tight conditional lower bounds 
for external memory integer sorting via a central conjecture 
by Li and Li7 in the area of network coding. Our conditional 
lower bounds show that it is impossible to design integer 
sorting algorithms that outperform the optimal comparison- 
based algorithms, thus settling the complexity of integer 
sorting under the conjecture by Li and Li.

1.1. Network coding
The field of network coding studies the following com-
munication problem over a network: Given a graph G with 
capacity constraints on the edges and k data streams, each 
with a designated source-sink pair of nodes (si, ti) in G, what 
is the maximum rate at which data can be transmitted con-
currently between the source-sink pairs? A simple solution 
is to forward the data as indivisible packages, effectively 
reducing the problem to multicommodity flow (MCF). The 
key question in network coding is whether one can achieve 
a higher rate by using coding/bit-tricks. This question is 
known to have a positive answer in directed graphs, where 
the rate increase may be as high as a factor Ω(|G|) (by send-
ing XOR’s of carefully chosen input bits); see for example, 
Adler et al.1 However, the question remains wide open for 
undirected graphs where there are no known examples for 
which network coding can do anything better than the mul-
ticommodity flow rate. The lack of such examples resulted 
in the following central conjecture in network coding.7

Conjecture 1 (Undirected k-pairs Conjecture). The coding 
rate is equal to the multicommodity flow rate in undirected graphs.

Despite the centrality of this conjecture, it has so forth 
resisted all attempts at either proving or refuting it. Adler  
et al.1 made an exciting connection between the conjecture 
and lower bounds for algorithms. More concretely, they 
proved that if Conjecture 1 is true, then one immediately 
obtains nontrivial lower bounds for all of the following:

• Oblivious external memory algorithms
• Oblivious word-RAM algorithms
• Oblivious two-tape Turing machines

In the above, oblivious means that the memory access pat-
tern of the algorithm (or tape moves of the Turing machine) 
is fixed and independent of the input data. Thus proving 

Conjecture 1 would also give the first nontrivial lower bounds 
for all these classes of algorithms. One can view this connec-
tion in two ways: Either as exciting conditional lower bounds 
for (restricted) algorithms, or as a strong signal that proving 
Conjecture 1 will be very difficult.

In this paper, we revisit these complexity theoretic impli-
cations of Conjecture 1. Our results show that the restriction 
to oblivious algorithms is unnecessary. In more detail, we 
show that Conjecture 1 implies nontrivial (and in fact tight) 
lower bounds for external memory sorting of integers and 
for external memory matrix transpose algorithms. We also 
obtain tight lower bounds for word-RAM sorting algorithms 
when the word size is much larger than the key size, as well as 
tight lower bounds for transposing a b × b matrix on a word-
RAM with word size b bits. The striking thing is that our lower 
bounds hold without any extra assumptions such as oblivious-
ness, indivisibility, comparison-based, or the like. Thus prov-
ing Conjecture 1 is as hard as proving super-linear algorithm 
lower bounds in the full generality word-RAM model, a bar-
rier far beyond current lower bound techniques! Moreover, 
we show that the assumption from previous papers about 
algorithms being oblivious makes a huge difference for inte-
ger sorting: We prove an Ω(n lg n) lower bound for sorting 
Θ(lg n) bit integers using an oblivious word-RAM algorithm 
with word size Θ(lg n) bits. This is in sharp contrast to the 
classic (nonoblivious) Radix Sort algorithm, which solves the 
problem in O(n) time. Thus, the previous restriction to oblivi-
ous algorithms may be very severe for some problems.

1.2. Lower bounds for sorting
Our main result for external memory integer sorting is the 
following connection to Conjecture 1:

Theorem 2. Assuming Conjecture 1, any randomized algorithm 
for the external memory sorting problem with w = Ω(lg n) bit inte-
gers, having error probability at most 1/3, must make an expected

I/Os.

Thus if we believe Conjecture 1, then even for random-
ized algorithms, there is no hope of exploiting integer input 
to improve over the simple external memory comparison-
based algorithms (when B ≥ lg n such that the latter term in 
the lower bound is the min).

Now observe that because our lower bound only counts  
I/Os, the lower bound immediately holds for word-RAM 
algorithms when the word size is some b = Ω(lg n) by setting 
m = O(b) and B = b/w in the above lower bound (the CPU’s 
internal state, i.e., registers, can hold only a constant num-
ber of words). Thus, we get the following lower bound:

Corollary 3. Assuming Conjecture 1, any randomized word-
RAM algorithm for sorting w = Ω(lg n) bit integers, having error 
probability at most 1/3 and word size b ≥ w bits, must spend

time.
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2. PRELIMINARIES
We now give a formal definition of the k-pairs communica-
tion problem and the multicommodity flow problem.

k-pairs communication problem. To keep the definition 
as simple as possible, we restrict ourselves to directed acy-
clic communication networks/graphs and we assume that 
the demand between every source-sink pair is the same. This 
will be sufficient for our proofs. For a more general defini-
tion, we refer the reader to Adler et al.1

The input to the k-pairs communication problem is a 
directed acyclic graph G = (V, E) where each edge e ∈ E has a 
capacity c(e) ∈ R+. There are k sources s1, …, sk ∈ V and k sinks 
t1, …, tk ∈ V. Typically, there is also a demand di between each 
source-sink pair, but for simplicity, we assume di = 1 for all 
pairs. This is again sufficient for our purposes.

Each source si receives a message Ai from a predefined set 
of messages A(i). It will be convenient to think of this mes-
sage as arriving on an in-edge. Hence, we add an extra node 
Si for each source, which has a single out-edge to si. The edge 
has infinite capacity.

A network coding solution specifies for each edge e ∈ E an 
alphabet Γ(e) representing the set of possible messages that 
can be sent along the edge. For a node v ∈ V, define In(u) as the 
set of in-edges at u. A network coding solution also specifies, 
for each edge e = (u, v) ∈ E, a function  
that determines the message to be sent along the edge e as a 
function of all incoming messages at node u. Finally, a net-
work coding solution specifies for each sink ti a decoding 
function . The network coding solu-
tion is correct if, for all inputs , it holds that 
σi applied to the incoming messages at ti equals Ai, that is, 
each source must receive the intended message.

In an execution of a network coding solution, each of 
the extra nodes Si starts by transmitting the message Ai 
to si along the edge (Si, si). Then, whenever a node u has 
received a message ae along all incoming edges e = (v, u), it 
evaluates  on all out-edges and forwards the 
message along the edge e′.

Following Adler et al.1 (and simplified a bit), we define the 
rate of a network coding solution as follows: Let each source 
receive a uniform random and independently chosen mes-
sage Ai from A(i). For each edge e, let Ae denote the random 
variable giving the message sent on the edge e when execut-
ing the network coding solution with the given inputs. The 
network coding solution achieves rate r if:

• H(Ai) ≥ rdi = r for all i.
• For each edge e ∈ E, we have H(Ae) ≤ c(e).

Here H(×) denotes binary Shannon entropy. The intuition is  
that the rate is r, if the solution can handle upscaling the  
entropy of all messages by a factor r compared to the demands.

Multicommodity flow. A multicommodity flow problem in 
an undirected graph G = (V, E) is specified by a set of k source-
sink pairs (si, ti) of nodes in G. We say that si is the source of 
commodity i and ti is the sink of commodity i. Each edge e ∈ E  
has an associated capacity c(e) ∈ R+. In addition, there is a 
demand di between every source-sink pair. For simplicity, we 
assume di = 1 for all i as this is sufficient for our needs.

We note that a standard assumption in the word-RAM is a 
word size and key size of b, w = Θ(lg n) bits. For that choice 
of parameters, our lower bound degenerates to the trivial  
t = Ω(n). This has to be the case, as Radix Sort gives a match-
ing upper bound. Nonetheless, our lower bound shows that 
when the key size is much smaller than the word size, one 
cannot sort integers in linear time (recall linear is O(nw/b) as 
this is the time to read/write the input/output).

Finally, we show that the obliviousness assumption made 
in the previous paper by Adler et al.1 allows one to prove very 
strong sorting lower bounds that even surpass the known 
(nonoblivious) Radix Sort upper bound:

Theorem 4. Assuming Conjecture 1, any oblivious random-
ized word-RAM algorithm for sorting Θ(lg n) bit integers, hav-
ing error probability at most 1/3 and word size Θ(lg n), must 
spend Ω(n lg n) time.

Thus, at least for the natural problem of integer sorting, being 
oblivious has a huge impact on the possible performance of 
algorithms. Our results are therefore not just an application of 
the previous technique to a new problem, but a great strength-
ening. Moreover, as we discuss in Section 3, removing the 
obliviousness assumption requires new and deep ideas that 
result in significantly more challenging lower bound proofs.

1.3. Lower bounds for matrix transpose
We also reprove an analog of the lower bounds by Adler et al.1  
for the matrix transpose problem, this time without any 
assumptions of obliviousness. In the matrix transpose prob-
lem, the input is an n × n matrix A with w-bit integer entries. The 
matrix is given in row-major order, meaning that each row of 
A is stored in n/B blocks of B consecutive entries each. The goal 
is to compute AT, that is, output the column-major representa-
tion of A that stores n/B disk blocks for each column of A, each 
containing a consecutive range of B entries from the column.

Theorem 5. Assuming Conjecture 1, any randomized algo-
rithm for the external memory matrix transpose problem with 
w bit integer entries, having error probability at most 1/3, must 
make an expected

I/Os.

Consider now the matrix transpose problem on the word-
RAM with word size b bits (and thus memory size m = O(b) ). 
Given an n × n matrix A with w-bit integer entries, the lower 
bound in Theorem 5 implies (by setting B = b/w):

Corollary 6. Assuming Conjecture 1, any randomized word-
RAM algorithm for computing the transpose of an n × n matrices 
with w-bit integer entries, having error probability at most 1/3 
and word size b bits, must spend

time.
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Consider now an algorithm A for permuting, and assume 
for simplicity that it is deterministic and always correct. As 
in the previous work by Adler et al.1, we define a graph G(A) 
that captures the memory accesses of A on an input array A. 
The graph G has a node for every block in the input array, a 
node for every block in the output, and a node for every inter-
mediate block written/read by A. We call these block nodes. 
Moreover, the graph has a memory node that represents 
the memory state of A. The idea is that whenever A reads 
a block into memory, then we add a directed edge from the 
corresponding block node to the memory node. When A 
writes to a block, we create a new node (that replaces the 
previous version of the block) and add a directed edge from 
the memory node to the new node. The algorithm A can now 
be used to send messages between input and output block 
nodes as follows: Given messages X1, …, Xn of w bits each 
and an intended output block node (storing C[π(i)]) for each 
message i, we can transmit the message Xi from the input 
block node representing the array entry A[i] to the output 
block node representing the array entry C[π(i)] simply by 
simulating the algorithm A: Each block node of the network 
always forwards any incoming message to the memory node 
along its outgoing edge. The memory node thus receives 
the contents of all blocks that it ever reads. It can therefore 
simulate A. Whenever it performs a write operation, it sends 
the contents along the edge to the designated block node. By 
the correctness of A, this results in every output block node 
knowing the contents of all array entries C[π(i)] that should 
be stored in that output block. Examining this simulation, 
we see that we need a capacity of b bits on all edges for the 
simulation to satisfy capacity constraints. Moreover, by the 
definition of network coding rate (Section 2), we see that the 
coding rate is w bits.

The idea is that we want to use Conjecture 1 to argue that 
the graph G must be large (i.e., there must be many I/Os). 
To do so, we would like to argue that if we undirect G, then 
there is a permutation π such that for many pairs A[i] and 
C[π(i)], there are no short paths between the block nodes 
storing A[i] and C[π(i)]. If we could argue that for n/2 pairs 
(A[i], C[π(i)]), there must be a distance of at least  steps in 
the undirected version of G, then to achieve a flow rate of w, 
it must be the case that the sum of capacities in G is at least 
wn/2. But each I/O adds only 2b bits of capacity to G. Thus, 
if A makes t I/Os, then it must be the case that tb = Ω(wn) ⇒ 
t = Ω( (nw/b) × ) = Ω( (n/B) × ).

Unfortunately, we cannot argue that there must be a 
long path between many pairs in the graph G we defined 
above. The problem is that the memory node is connected 
to all block nodes and thus the distance is never more than 
2. To fix this, we change the definition of G slightly: After 
every m/b I/Os, we deactivate the memory node and cre-
ate a new memory node to replace it. Further I/Os insert 
edges to and from this new memory node. In order for 
the new memory node to continue the simulation of A, 
the new memory node needs to know the memory state 
of A. Hence, we insert a directed edge from the old deac-
tivated memory node to the new memory node. The edge 
has capacity m bits. Thus, in the simulation, when the cur-
rent memory node has performed m/b I/Os, it forwards the 

A (fractional) solution to the multicommodity flow prob-
lem specifies for each pair of nodes (u, v) and commodity i, a 
flow fi(u, v) ∈ [0, 1]. Intuitively, fi(u, v) specifies how much of 
commodity i is to be sent from u to v. The flow satisfies flow 
conservation, meaning that:

• For all nodes u that is not a source or sink, we have 

• For all sources si, we have 
• For all sinks, we have 

The flow also satisfies that for any pair of nodes (u, v) and 
commodity i, there is only flow in one direction, that is, 
either fi(u, v) = 0 or fi(v, u) = 0. Furthermore, if (u, v) is not an 
edge in E, then fi(u, v) = fi(v, u) = 0. A solution to the multi-
commodity flow problem achieves a rate of r if:

• For all edges e = (u, v) ∈ E, we have 
 

Intuitively, the rate is r if we can upscale the demands by a 
factor r without violating the capacity constraints.

The undirected k-pairs conjecture. Conjecture 1 implies 
the following for our setting: Given an input to the k-pairs 
communication problem, specified by a directed acyclic 
graph G with edge capacities and a set of k source-sink pairs 
with a demand of 1 for every pair, let r be the best achievable 
network coding rate for G. Similarly, let G′ denote the undi-
rected graph resulting from making each directed edge in 
G undirected (and keeping the capacities, source-sink pairs 
and a demand of 1 between every pair). Let r′ be the best 
achievable flow rate in G′. Conjecture 1 implies that r ≤ r′.

Having defined coding rate and flow rate formally, we 
also mention that the result of Braverman et al.4 implies that 
if there exists a graph G where the network coding rate r and 
the flow rate r′ in the corresponding undirected graph G′ sat-
isfy r ≥ (1 + e)r′ for a constant ε > 0, then there exists an 
infinite family of graphs {G*} for which the corresponding 
gap is at least (lg|G*|)c for a constant c > 0. So far, all evidence 
suggests that no such gap exists, as formalized in Conjecture 1.

3. PROOF OVERVIEW
In this section, we give an overview of the main ideas in 
our proof and explain the barriers we overcome in order to 
remove the assumption of obliviousness. To prove our lower 
bound for external memory sorting, we focus on the easier 
problem of permuting. In the permutation problem, we are 
given an array A of n entries. The i’th entry of A stores a w-bit 
data item di and a destination π(i). The destinations π(i) 
form a permutation π of {1, …, n}. The goal is to produce the 
output array C where di is stored in entry C[π(i)]. The arrays 
A and C are both stored in disk blocks, such that each disk 
block of A stores b/(lg n + w) entries, and each disk block of 
C stores b/w entries (the maximum number of entries that 
can be packed in a block). A sorting algorithm that can sort  
(lg n + w) bit integer keys can be used to solve the permuta-
tion problem by replacing each entry (π(i), di) with the inte-
ger π(i) × 2w + di (in the addition, we think of di as an integer in 
[2w]). Thus, it suffices to prove lower bounds for permuting.
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di. To achieve this, we need to modify G a bit. Our idea is to 
introduce a coordinator node that can send short descrip-
tions of the mappings between the dis and . We accom-
plish this via the following lemma:

Lemma 7. Consider a communication game with a coordina-
tor u, a set F ⊆ {0, 1}nw and n players. Assume |F| ≥ 2nw−r for 
some r. The coordinator receives as input n uniform random bit 
strings Xi of w bits each, chosen independently of the other Xj.  
The coordinator then sends a prefix-free message Ri to the i’th 
player for each i. From the message Ri alone (i.e., without know-
ing Xi), the i’th player can then compute a vector τi ∈ {0, 1}w  
with the property that the concatenation q := (τ1 ⊕ X1) 



 (τ2 ⊕ 
X2)  ...  (τn ⊕ Xn) satisfies q ∈ F, where ⊕ denotes bit wise XOR. 
There exists such a protocol where

In particular, if r = o(nw) and w = ω(1), then the communication 
satisfies .

We use the lemma as follows: We create a coordinator node u  
that is connected to all input block nodes and all output 
block nodes. In a simulation of A, the input block nodes 
start by transmitting their inputs to the coordinator node u. 
The coordinator then computes the messages in the lemma 
and sends Ri back to the input block node storing A[i] as well 
as to the output block node storing the array entry C[π(i)]. 
The input block nodes can now compute  to 
obtain an input . We can then run algorithm A 
because this is an input that actually results in the graph G. 
Finally, the output block nodes can revert the mapping by 
computing . Thus, what the lemma achieves is an 
efficient way of locally modifying the inputs of the nodes, so 
as to obtain an input for which the algorithm A works. We 
find this contribution very novel and suspect it might have 
applications in other lower bound proofs.

The introduction of the node u of course allows some 
flow to traverse paths not in the original graph G. Thus, we 
have to be careful with how we set the capacities on the 
edges to and from u. We notice that edges from the input 
nodes to u need only a capacity of w bits per array entry 
(they send the inputs), and edges out of u need E [|Ri|] 
capacity for an input di (one such edge to the input block 
node for array entry A[i] and one such edge to the output 
block node for array entry C[π(i)]). The crucial observation 
is that any flow using the node u as an intermediate node 
must traverse at least two edges incident to u. Hence, only 

 flow can traverse such paths. If |F| ≥ 
2nw−o(nw), then Lemma 7 says that this is no more than nw/2 + 
o(nw) flow. There therefore remains nw/2 − o(nw) flow that 
has to traverse the original length  = Ω(lg2m/b n/B) paths 
and the lower bound follows.

One may observe that our proof uses the fact that the net-
work coding rate is at most the flow rate in a strong sense. 
Indeed, the introduction of the node u allows a constant 
fraction of the flow to potentially use a constant length path. 
Thus, it is crucial that the network coding rate r and flow rate r′  
is conjectured to satisfy r ≤ r′ and not, for example, r ≤ 3r′. 

memory state of A to the next memory node who continues 
the simulation. The m/b I/Os between the creation of new 
memory nodes has been chosen such that the amortized 
increase in capacity due to an I/O remains O(b).

We have now obtained a graph G where the degrees 
of all nodes are bounded by 2m/b. Thus, for every node 
G, there are at most (2m/b) nodes within a distance of . 
Thus, intuitively, a random permutation π should have 
the property that for most pairs (A[i], C[π(i)]), there will 
be a distance of  = Ω(lg2m/b n/B) between the correspond-
ing block nodes. This gives the desired lower bound of t = 
Ω( (n/B) × ) = Ω( (n/B) × lg2m/b n/B).

If we had assumed that the algorithm A was oblivious as 
in previous work, we would actually be done by now. This is 
because, under the obliviousness assumption, the graph G 
will be the same for all input arrays. Thus, one can indeed 
find the desired permutation π where there is a large dis-
tance between most pairs (A[i], C[π(i)]). Moreover, all inputs 
corresponding to that permutation π and data bit strings 
d1, …, dn can be simulated correctly using A and the graph 
G. Hence, one immediately obtains a network coding solu-
tion. However, when A is not constrained to be oblivious, 
there can be a large number of distinct graphs G resulting 
from the execution of A.

To overcome this barrier, we first argue that even 
though there can be many distinct graphs, the number of 
such graphs is still bounded by roughly (nw/b + t)t (each I/O 
chooses a block to either read or write and there are t I/Os). 
This means that for t = o(n), one can still find a graph G that is  
the result of running A on many different input arrays A. 
We can then argue that among all those inputs A, there 
are many that all correspond to the same permutation π 
and that permutation π has the property from before that, 
and for most pairs (A[i], C[π(i)]), there will be a distance of 
 = Ω(lg2m/b n/B) between the corresponding block nodes. 
Thus, we would like to fix such a permutation and use A 
to obtain a network coding solution. The problem is that 
we can only argue that there are many data bit strings d1, 
…, dn that together with π result in an array A for which 
A uses the graph G. Thus, we can only correctly transmit 
a large collection of messages, not all messages. Let us 
call this collection F ⊆ {{0, 1}w}n and let us assume |F| 
≥ 2nw−o(nw). Intuitively, if we draw a uniform random input 
from F, then we should have a network coding solution 
with a rate of w − o(w). The problem is that the definition 
of network coding requires the inputs to the nodes to be 
independent. Thus, we cannot immediately say that we 
have a network coding solution with rate w − o(w) by solv-
ing a uniform random input from F. To remedy this, we 
instead take the following approach: We let each data bit 
string di be a uniform random and independently cho-
sen w-bit string. Thus, if we can solve the network coding 
problem with these inputs, then we indeed have a network 
coding solution. We would now like to find an efficient 
way of translating the bit strings d1, …, dn to new bit strings 

with  The translation should be such 
that each input block node can locally compute the , and 
the output block nodes should be able to revert the trans-
formation, that is, compute from  the original bit string 



research highlights 

 

102    COMMUNICATIONS OF THE ACM   |   OCTOBER 2020  |   VOL.  63  |   NO.  10

argument.2 The n bound is the bound obtained by running 
the naive “internal memory” algorithm that simply puts 
each element into its correct position one at a time. The 
other term is equivalent to the optimal comparison-based 
sorting bound (one thinks of di as an integer in [2w] and 
concatenates π(i)  di = π(i) ×2w + di and sorts the sequence). 
Thus, any sorting algorithm that handles (lg n + w)-bit keys 
immediately yields a permutation algorithm with the same 
number of I/Os. We thus prove lower bounds for the permu-
tation problem and immediately obtain the sorting lower 
bounds as corollaries.

We thus set out to use Conjecture 1 to provide a lower 
bound for the permutation problem in the external memory 
model. Throughout the proof, we assume that nw/b = n/B is 
at least some large constant. This is safe to assume, as other-
wise we only claim a trivial lower bound of Ω(1).

Let A be a randomized external memory algorithm for 
the permutation problem on n integers of w bits each. 
Assume A has error probability at most 1/3 and let b 
denote the disk block size in number of bits. Let m denote 
the memory size measured in number of bits. Finally, let 
t denote the expected number of I/Os made by A (on the 
worst input).

I/O-graphs. For an input array A representing a permuta-
tion π and bit strings d1, …, dn, and an output array C, define 
the (random) I/O-graph G of A as follows: Initialize G to have 
one node per disk block in A and one node per disk block  
in C. Also, add one node to G representing the initial mem-
ory of A. We think of the nodes representing the disk blocks  
of A and C as block nodes and the node representing the 
memory as a memory node (see Figure 1a). We will add more 
nodes and edges to G by observing the execution of A on A. 
To simplify the description, we will call nodes of G either 
dead or live. We will always have at most one live memory 
node. Initially, all nodes are live. We use 0 to label the mem-
ory node. Moreover, we label the block nodes by consecutive 
integers starting at 1. Thus, the block nodes in the initial 
graph are labeled 1, 2, …, n(w + lg n)/b + nw/b.

Now, run algorithm A on A. Whenever it makes an I/O, 
do as follows: If this is the first time, the block is being 
accessed and it is not part of the input or output (a write 
operation to an untouched block). Then, create a new live 
block node in G and add a directed edge from the cur-
rent live memory node to the new block node (see Figure 
1e). Label the new node by the next unused integer label. 
Otherwise, let v be the live node in G corresponding to the 
last time the disk block was accessed. We add a directed 
edge from v to the live memory node, mark v as dead, cre-
ate a new live block node v′, and add a directed edge from 
the live memory node to v′. We give the new node the same 
label as v (Figure 1b and c). Finally, once for every m/b I/
Os, we mark the memory node as dead, create a new live 
memory node, and add a directed edge from the old mem-
ory node to the new live memory node (Figure 1d).

To better understand the definition of G, observe that all 
the nodes with the same label represent the different ver-
sions of a disk block that existed throughout the execution 
of the algorithm. Moreover, there is always exactly one live 
node with any fixed label, representing the current version of 

Indeed, we can only argue that a too-good-to-be-true per-
mutation algorithm yields a graph in which r ≥ ar′ for some 
constant a > 1. However, Braverman et al.4 recently proved 
that if there is a graph where r ≥ (1 + ε)r′ for a constant ε > 0, 
then there is an infinite family of graphs {G′} where the gap 
is Ω( (lg |G′|)c) for a constant c > 0. Thus, a too-good-to-be-
true permutation algorithm will indeed give a strong coun-
ter example to Conjecture 1.

Our proof of Lemma 7 is highly nontrivial and is based 
on the elegant proof of the  bound by Barak et al.3 for 
compressing interactive communication under nonprod-
uct distributions. Our main idea is to argue that for a uni-
form random bit string in {0, 1}nw (corresponding to the 
concatenation X = X1  ...  Xn of the Xi’s in the lemma), it 
must be the case that the expected Hamming distance 
to the nearest bit string Y in F is . The coordina-
tor thus finds Y and transmits the XOR X ⊕ Y to the play-
ers. The XOR is sparse and thus the message can be made 
short by specifying only the nonzero entries. Proving that 
the expected distance to the nearest vector is  is 
the main technical difficulty and is the part that uses ideas 
from protocol compression.

4. EXTERNAL MEMORY LOWER BOUNDS
As mentioned in the proof overview in Section 3, we prove 
our lower bound for external memory sorting via a lower 
bound for the easier problem of permuting: An input to 
the permutation problem is specified by a permutation π of  
{1, 2, …, n} as well as n bit strings d1, …, dn ∈ {0, 1}w. We 
assume w ≥ lg n such that all bit strings may be distinct. The 
input is given in the form of an array A where the i’th entry 
A[i] stores the tuple (π(i), di). We assume the input is given 
in the following natural way: Each π(i) is encoded as a 
—bit integer and the di’s are given as they are—using w bits 
for each.

The array A is presented to an external memory algo-
rithm as a sequence of blocks, where each block contains 

 consecutive entries of A (the blocks have b = 
Bw bits). For simplicity, we henceforth assume (w + lg n) 
divides b.

The algorithm is also given an initially empty output 
array C. The array C is represented as a sequence of n words 
of w bits each, and these are packed into blocks containing 
b/w words each. The goal is to store  in C[i]. That is, the 
goal is to copy the bit string di from A[i] to C[π(i)]. We say that 
an algorithm A has an error of ε for the permutation prob-
lem, if for every input to the problem, it produces the correct 
output with the probability at least 1 − ε.

The best known upper bounds for the permutation prob-
lem work also under the indivisibility assumption. These 
algorithms solve the permutation problem in

I/Os.2 Moreover, this can easily be shown to be optimal under 
the indivisibility assumption by using a counting 
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the disk block. Also, observe that at the end of the execution, 
there must be a live disk block node in G representing each 
of the output blocks in C, and these have the same labels as 
the original nodes representing the empty disk blocks of C 
before the execution of A.

Fixing the randomness of A. Consider the execution of A 
on an input A representing a uniform random permutation 
π as well as independent and uniform random bit strings 
d1, …, dn ∈ {0, 1}w. Because A makes an expected t I/Os, it 
follows by Markov’s inequality that A makes more than 6t  
I/Os with probability less than 1/6. If we simply abort in such 
cases, we obtain an algorithm with worst case O(t) I/Os and 
error probability at most 1/3 + 1/6 = 1/2. Now fix the random 
choices of A to obtain a deterministic algorithm A* with 
error probability 1/2 over the random choice of π and d1, 
…, dn. A* makes t* = 6t I/Os in the worst case. Observe that 
for A*, we get a fixed I/O graph G(A) for every input array A 
because A* is deterministic.

Finding a popular I/O-graph. We now find an I/O-graph 
G that is the result of running A* on a large number of dif-
ferent inputs. For notational convenience, let t denote the 
worst case number of I/Os made by A* (instead of using t* 
or 6t). Observe that the total number of different I/O-graphs 
one can obtain as the result of running A* is small:

Lemma 8. There are no more than

I/O-graphs that may result from the execution of A*.

This means that we can find an I/O-graph, which corre-
sponds to the execution of A* on many different inputs, and 
moreover, we can even assume that A* is correct on many 
such inputs:

Lemma 9. There exists a set Γ containing at least (n!2nw)/(2(t + 
n(w + lg n)/b + nw/b + 1)t+1) different input arrays A, such that 
A* is correct on all inputs A ∈ Γ and the I/O-graph is the same 
for all A ∈ Γ.

Data must travel far. The key idea in our lower bound 
proof is to argue that there is a permutation for which 
most data bit strings di are very far away from output 
entry C[π(i)] in the corresponding I/O-graph. This would 
require the data to “travel” far. By Conjecture 1, this is 
impossible unless the I/O-graph is large. Thus, we start 
by arguing that there is a fixed permutation where data 
has to travel far on the average, and where it also holds 
that there are many different data values that can be 
sent using the same I/O-graph. To make this formal, let 
dist(π, i, G) denote the distance between the block node 
in G representing the input block storing A[i] (the initial 
node, before any I/Os were performed) and the node in G 
representing the output block storing C[π(i)] in the undi-
rected version of G (undirect all edges).

We prove the following:

Lemma 10. If (t+n(w+lg n)/b+nw/b+1)t+1 ≤ (nw/b)(n/30), then there 
exists a permutation π, a collection of values F ⊆ {{0, 1}w}n 
and an I/O-graph G such that the following holds:

Figure 1. I/O-graph for an array A consisting of 3-bit strings d1, . . ., d8. In 
this example, each disk block contains two words of w = 3 bits, that is,  
B = 2 (and b = Bw = 6). Also, the main memory holds M = 6 words  
(m = 18). Figure (a) shows the initial I/O-graph. For each disk block, we 
have initially one block node that is illustrated underneath them. Black 
nodes are dead, and white nodes are live. Figure (b) shows the updated 
I/O-graph after making an I/O to access the first disk block. Figure (c)  
is the I/O-graph after accessing the block containing C[1] and C[2]. 
Figure (d) shows the graph after making another I/O on the first disk 
block. Also, we create a new memory node after every m/b = M/B = 3 I/Os  
and mark the old memory node as dead. Figure (e) shows the updated 
graph after accessing some block other than the input or output.
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4. Add all edges of G to G*. Edges between a block node 
and a memory node have capacity b bits. Edges between 
two memory nodes have capacity m bits.

5. Remove all block nodes that have an incoming and 
outgoing edge to the same memory node (this makes 
the graph acyclic).

6. Add a directed edge with capacity w bits from each 
source si to pi, and add a directed edge with capacity w 
bits from each pi to the input block node containing A[i].

7. Add an edge with capacity w bits from the output block 
node containing C[π(i)] to the sink ti.

8. Add a special node u to G*. Add an edge of capacity w 
bits from each source si to u. Also, add a directed edge 
from u to each pi having capacity ρi for parameters ρi > 0  
to be fixed later. Also, add an edge from u to sink ti with 
capacity ρi.

We argue that for sufficiently large choices of ρi, one 
can use A* to efficiently transmit w bits of information 
between every source-sink pair (si, ti). Our protocol for 
this problem uses Lemma 7 from Section 3 as a subrou-
tine. We defer the proof of Lemma 7. It can be shown  
that there exists a transmitting protocol for transmitting X1, 
…, Xn and it satisfies all capacity constraints of network G*. The 
exact protocol can be found in the full version of the paper.

Deriving the lower bound. We observe that for all edges, 
except those with capacity ρi, our protocol sends a fixed 
number of bits. Thus, messages on such edges are prefix- 
free. For the edges with capacity ρi, the protocol sends a  
prefix-free message with expected length ρi. Because all 
messages on all edges are prefix-free, it follows from 
Shannon’s Source Coding theorem that the expected 
length of each message is an upper bound on its entropy. 
Because the expected lengths are at most the capacity of 
the corresponding edges, we get by the definition of net-
work coding rate from Section 2, that the above solution 
achieves a rate of w bits. Hence, from Conjecture 1, it fol-
lows that if we undirected G*, then the multicommodity 
flow rate must be at least w bits. From the definition of 
multicommodity flow rate in Section 2, we see that this 
implies that there is a (possibly fractional) way of sending 
w units of flow between each source-sink pair.

We first examine the amount of flow that can be trans-
ported between pairs (si, ti) along paths that visit u. We 
observe that any such flow must use at least two edges inci-
dent to u. But the sum of capacities of edges incident to u 
is . Hence, the amount of flow that can be trans-
mitted along paths using u as an intermediate node is no 
more than . If |F| ≥ 2nw−o(nw), 
then this is no more than nw/2 + o(nw). From Lemma 10, 
we know that there are at least (4/5)n indices i for which 
dist(π, i, G) ≥ (1/2) lg2m/b(nw/b), provided that (t + n(w + lg 
n)/b + nw/b + 1)t+1 ≤ (nw/b)(1/30)n. The total flow that must be 
sent between such pairs is (4/5)nw. This means that there 
is at least (4/5)nw − nw/2 − o(nw) = Ω(nw) flow that has to tra-
verse (1/2) lg2m/b(nw/b) = Ω(lg2m/b(nw/b) ) edges of G* (the flow 
must use a path in the undirected version of G as it cannot 
shortcut via u). Hence, the sum of capacities correspond-
ing to edges in G must be Ω(nw lg2m/b(nw/b) ), assuming that 

1. For all (d1, …, dn) ∈ F, it holds that the algorithm A* exe-
cuted on the input array A corresponding to inputs π and 
d1, …, dn results in the I/O-graph G and A* is correct on A.

2. 

3. There are at least (4/5)n indices i ∈ {1, …, n} for which 
dist(π, i, G) ≥ (1/2) lg2m/b(nw/b).

Reduction to network coding. We are now ready to 
make our reduction to network coding. The basic idea in 
our proof is to use Lemma 10 to obtain an I/O-graph G 
and permutation π with large distance between the node 
containing A[i] and the node containing C[π(i)] for many i.  
We will then create a source si at the node representing 
A[i] and a corresponding sink ti at the node correspond-
ing to C[π(i)]. These nodes are far apart, but using the 
external memory permutation algorithm A*, there is an 
algorithm for transmitting di from si to ti. Because the dis-
tance between si and ti is at least (1/2) lg2m/b(nw/b) for (4/5)
n of the pairs (si, ti), it follows from Conjecture 1 that the sum  
of capacities in the network must be at least Ω(nw lg2m/

b(nw/b) ) (we can transmit w bits between each of the pairs). 
However, running the external memory algorithm results 
in a network/graph G with only O(t) edges, each needing 
to transmit only b bits (corresponding to the contents of 
block on a read or write). Thus, each edge needs only have 
capacity b bits for the reduction to go through. Hence, the 
sum of capacities in the network is O(tb). This means that  
t = Ω( (nw/b) lg2m/b(nw/b) ) as desired.

However, the reduction is not as straightforward 
as that. The problem is that Lemma 10 leaves us 
only with a subset F of all the possible values d1, …, 
dn that one wants to transmit. For other values of d1, 
…, dn, we cannot use the algorithm A* to transmit the 
data via the network/graph G. We could of course try 
to sample (d1, …, dn) uniformly from F and then have 
a network coding solution only for such inputs. The 
problem is that for such a uniform (d1, …, dn) ∈ F, it 
no longer holds that the inputs to the sources in the 
coding network are independent! Network coding rate 
only speaks of independent sources; hence, we need a 
way to break this dependency. We do this by adding an 
extra node u and some edges to the coding network. 
This extra node u serves as a coordinator that takes 
the independent sources X1, …, Xn and replaces them 
with an input (d1, …, dn) ∈ F in such a way that running 
A* on (d1, …, dn) and using a little extra communica-
tion from u allow the sinks to recover  from .  
We proceed to give the formal construction. Let G be 
the I/O-graph, π the permutation, and F ⊆ {{0, 1}w}n 
the values promised by Lemma 10. From G, construct a 
coding network G* as follows:

1. Add source and sink nodes s1, …, sn and t1, …, tn to G*.
2. For each source si, add an additional node pi.
3. Add all nodes of G to G*.
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602–608.

 6. Han, Y., Thorup, M. Integer sorting 
in  expected time and 
linear space. In Proceedings of the 
43rd Annual IEEE Symposium on 
Foundations of Computer Science 
(2002), IEEE, 135–144.

 7. Li, Z., Li, B. Network coding: the 
case of multiple unicast sessions. 
In Proceedings of the 42nd 
Allerton Annual Conference on 
Communication, Control and 
Computing, Allerton ‘04 (2004). 

|F| ≥ 2nw−o(nw). Every I/O made by A* increases the capacity of 
the edges by O(b) bits (two edges of b bit capacity when a new 
block node is added to G, and an amortized b bits capacity 
to pay for the m bit edge between memory nodes after every 
m/b I/Os). Thus, if A* makes at most t I/Os, it must be the 
case that tb = Ω(nw lg2m/b(nw/b) ) if |F| ≥ 2nw−o(nw). But |F| ≥ 
2nw/4(t + n(w + lg n)/b + nw/b + 1)t+1. Therefore, we must have 
either t = Ω( (nw/b) lg2m/b(nw/b) ) or t lg(tn(w + lg n)/b) = Ω(nw). 
Finally, Lemma 10 is also required (t + n(w + lg n)/b + nw/b 
+ 1)t+1 ≤ (nw/b)(1/30)n. Combining all of this means that for   
t = Ω( (nw/b) lg2m/b(nw/b) ), or t = Ω(nw/lg(nw) ) or t = Ω(n lg(nw/b)/ 
lg(n lg(nw/b) ) ) = Ω(n).

Thus, using the reduction to sorting we have proved:

For w = Ω(lg n), we may use the reduction to sorting  
and we immediately obtain Theorem 2 as a corollary.

Theorem 2. Assuming Conjecture 1, any randomized algorithm 
for the external memory sorting problem with w = Ω(lg n)  
bit integers, having error probability at most 1/3, must make  
an expected

I/Os. © 2020 ACM 0001-0782/20/10 $15.00
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Boston College
Non Tenure-Track Position in Computer Science 

The Computer Science Department of Boston 
College seeks to fill one or possibly more non-
tenure track teaching positions, as well as 
shorter-term visiting teaching positions. One of 
these positions has a January, 2021 start date. All 
applicants should be committed to excellence in 
undergraduate education and be able to teach 
a broad variety of undergraduate computer 
science courses. We are especially interested 
in candidates who are able to teach courses in 
systems and networks. Faculty in longer-term 
positions will also participate in the development 
of new courses that reflect the evolving landscape 
of the discipline. 

Minimum requirements for the title of 
Assistant Professor of the Practice, and for the title 
of Visiting Assistant Professor, include a Ph.D. in 
Computer Science or closely related discipline. 

Candidates without a Ph.D. would be eligible 
for the title of Lecturer or Visiting Lecturer. 

We will begin reviewing applications as 
they are received and will continue considering 

applications until the positions are filled. 
Applicants should submit a cover letter, CV, and 
a separate teaching statement and arrange for 
three confidential letters of recommendation 
that comment on their teaching performance to 
be uploaded directly to Interfolio. To apply go to: 
http://apply.interfolio.com/78108

Boston College conducts background checks 
as part of the hiring process. Information about 
the University and our department is available at 
bc.edu and cs.bc.edu.

Boston College is a Jesuit, Catholic university 
that strives to integrate research excellence with 
a foundational commitment to formative liberal 
arts education. We encourage applications from 
candidates who are committed to fostering a 
diverse and inclusive academic community. 
Boston College is an Affirmative Action/Equal 
Opportunity Employer and does not discriminate 
on the basis of any legally protected category 
including disability and protected veteran status. 
To learn more about how BC supports diversity 
and inclusion throughout the university, please 
visit the Office for Institutional Diversity at  
http://www.bc.edu/offices/diversity.

California Institute of Technology
Faculty Position in Computing and 
Mathematical Sciences

The Computing and Mathematical Sciences 
(CMS) Department at the California Institute 
of Technology (Caltech) invites applications 
for tenure-track faculty positions. The CMS 
Department is part of the Division of Engineering 
and Applied Science (EAS), comprising researchers 
working in and between the fields of aerospace, 
civil, electrical, environmental, mechanical, and 
medical engineering, as well as materials science 
and applied physics. The Institute as a whole 
represents the full range of research in biology, 
chemistry, engineering, geological and planetary 
sciences, physics, and the social sciences.

Fundamental research in computing and 
mathematical sciences, and applied research 
which links to activities in other parts of Caltech, 
are both welcomed. A commitment to world-
class research, as well as high-quality teaching 
and mentoring, is expected, and appointment 
as an assistant professor is contingent upon the 
completion of a Ph.D. degree in applied math-
ematics, computer science or related areas. 
The initial appointment at the assistant profes-
sor level is four years. Reappointment beyond 
the initial term is contingent upon successful  
review conducted prior to the commencement 
of the fourth year.

 ˲ Interviews will take place in January and 
February 2021.

 ˲ Applications will be reviewed beginning 22 
October 2020 and all applications received before 
1 December 2020 will receive full consideration.

 ˲ Applications received before 8 November will 
be considered for interviews in January.

 ˲ Applications received after 8 November will be 
considered for interviews in February.

To fulfill Caltech’s commitment to promot-
ing diversity, inclusiveness, and excellence in  
research on our campus, we actively seek can-
didates who can work with, teach, and mentor 
students from under-represented communities. 
Along with other standard application materi-
als, applicants should submit a diversity and 
inclusion statement that discusses past and/or 
anticipated contributions to improving diversity, 
equity, and inclusion in the areas of research, 
teaching, and/or outreach.

For a list of all documents required, and 
full instructions on how to apply online, please 
visit https://applications.caltech.edu/jobs/cms. 
Questions about the application process may be 
directed to search@cms.caltech.edu.

Caltech is an equal opportunity employer and 
all qualified applicants will receive consideration 
for employment without regard to age, race, color, 
religion, sex, sexual orientation, gender identity, 
national origin, disability status, protected veteran 
status, or any other characteristic protected by law.

TENURE-TRACK AND TENURED POSITIONS
School of Information Science and Technology (SIST) 

ShanghaiTech University invites highly qualified candidates to fill multiple tenure-
track/tenured faculty positions as its core founding team in the School of Information 
Science and Technology (SIST). We seek candidates with exceptional academic 
records or demonstrated strong potentials in all cutting-edge research areas of 
information science and technology. They must be fluent in English. English-based 
overseas academic training or background is highly desired.

ShanghaiTech is founded as a world-class research university for training future 
generations of scientists, entrepreneurs, and technical leaders. Boasting a 
new modern campus in Zhangjiang Hightech Park of cosmopolitan Shanghai, 
ShanghaiTech shall trail-blaze a new education system in China. Besides establishing 
and maintaining a world-class research profile, faculty candidates are also expected 
to contribute substantially to both graduate and undergraduate educations. 

Academic Disciplines: Candidates in all areas of information science and 
technology shall be considered. Our recruitment focus includes, but is not limited to: 
computer science and technology, electronic science and technology, information 
and communication engineering, applied mathematics and statistics, data science, 
robotics, bioinformatics, biomedical engineering, internet of things, smart energy, 
computer systems and security, operation research, mathematical optimization and 
other interdisciplinary fields involving information science and technology, especially 
areas related to AI.

Compensation and Benefits: Salary and startup funds are highly competitive, 
commensurate with experience and academic accomplishment. We also offer a 
comprehensive benefit package to employees and eligible dependents, including 
on-campus housing. All regular ShanghaiTech faculty members will join its new 
tenure-track system in accordance with international practice for progress evaluation 
and promotion.

Qualifications:
•  Strong research productivity and demonstrated potentials;

•  Ph.D. (Electrical Engineering, Computer Engineering, Computer Science, 
Statistics, Applied Math, or related field);

•  A minimum relevant (including PhD) research experience of 4 years.

Applications: Submit (in English, PDF version) a cover letter, a 2-page research 
plan, a CV plus copies of 3 most significant publications, and names of three 
referees to: sist@shanghaitech.edu.cn

For more information, please visit: http://sist.shanghaitech.edu.cn/

Deadline: December 31, 2020
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last byte 

approach is 
that it requires doubling the number of 
people polled to get the same effective 
sample size. In terms of this example, 
200 people must be sampled to get an 
effective sample size of 100.

Question: Suppose T has the sup-
port of approximately 60% of the 
people and B has the support of 40%. 
Suppose the stigma is against only B 
supporters. Assuming the people who 
are polled are given a standard deck 
of 52 playing cards, can you make it 
so that if a per-son responds B, then 
that person has approximately a 50% 
chance of actually supporting B and 
achieve an effective sample size of 100 
by polling only 140 people?

Solution: Suppose that with prob-
ability 2/7 a person will say B regardless 
of his or her view. Then if 60% want T 
and 40% want B, B will receive (2/7)*140 
= 40 votes because of this 2/7 probabil-
ity and another 40 from the committed 
B supporters. Such a scheme would 
have the goal of having anyone who re-
sponds with B to the pollster to have a 
50% chance of supporting B. To achieve 
this, the pollster says to the pollee: 
“Please take seven cards including an 
Ace, 2, 3, 4, 5, 6, and 7, regardless of 
suit. Shuffle the seven cards. Now turn 
over one card. If it is an Ace or a 7, say 
B. Otherwise, please tell me what you 
really think.” In this way, only 40 extra 
people must be interviewd to get an ef-
fective sample size of 100 or in general 
2/7 extra people.

Upstart: Generalize the above solu-
tion to k candidates all with approxi-
mately equal support. Each person 
should have a probability of no more 
than p of actually supporting the can-
didate he or she mentions. You can as-
sume for this purpose the pollee has 
access to a trusted random number 
generator that will give a number be-
tween 0 and 1 with uniform probability. 
It should be enough to use this random 
number generator just once per pollee.

Dennis Shasha (dennisshasha@yahoo.com) is a professor 
of computer science in the Computer Science Department 
of the Courant Institute at New York University, New 
York, USA, as well as the chronicler of his good friend the 
omniheurist Dr. Ecco.

All are invited to submit their solutions to 
upstartpuzzles@cacm.acm.org; solutions to upstarts and 
discussion will be posted at http://cs.nyu.edu/cs/faculty/
shasha/papers/cacmpuzzles.html

Copyright held by author.
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is to offer cutting-edge research and 
concepts designed to navigate and 
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of transparency and cybersecurity, 
innovation and accountability, and 
collaboration and privacy. 
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your manuscript, visit dgov.acm.org
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tell us the truth.” Suppose again for the 
purposes of example 60% want B and 
40% want T. If 200 people are polled, B 
will get 60 true answers and 50 because 
of double tails. The remaining 90 will 
go to T. Thus,we subtract a quarter of 
the total number of people polled (50 
in this example) from B (yielding 110-
50 = 60), a quarter from T (yielding 90-
50 = 40) and we get the correct answer.

The only trouble with this privacy-
preserving 

talk to, there might be a stigma to vote 
for either candidate. Can the pollsters 
still do their job?

Question: Can you think of a proto-
col that will protect privacy for support-
ers both of B and T?

Solution: Here is one possibil-
ity. Tell the pollees (the people asked): 
“Please flip a coin twice. If it comes up 
heads both times, then please say T. If 
it comes up tails both times, please say 
B. With any other combination, please 

WHEN PE OPLE  A R E  asked whom they 
will vote for, they might not want to 
say. After all, other people might judge 
them, ask for contributions, or pub-
lish the answer. Suppose there are two 
candidates, randomly called B and T. 
Suppose, again for the sake of this hy-
pothetical, that there is a slight stigma 
against people who support T.

The pollster says to them: “Please 
flip a coin. If the coin comes up tails, 
please tell us whom you like best. If it 
comes up heads, then always say T.” 
That way, even if a person states an 
intention to vote for T, nobody knows 
for sure.

Warm-Up: Suppose the true proba-
bilities are 60% for B and 40% for T. 200 
people are again polled. How many will 
say T in response to the poll with the 
coin-flip rule and how many will say B?

Solution to Warm-Up: Approximate-
ly half the people—100—will flip heads 
and will say T, regardless of their pref-
erences. Of the other half—60—will 
say B and 40 will say T. So 140 will say T 
and 60 will say B.

Warm-Up 2: Suppose 70% want T 
and 30% want B. 200 people are again 
polled. How many will say T in re-
sponse to the poll with the coin-flip 
rule and how many will say B? 

Solution to Warm-Up 2: 170 for T 
and 30 for B. So to find the true support 
for T and B, simply subtract from the T 
score half of the total number of people 
polled. Leave the B score alone.

But now suppose a country is so di-
vided that, depending on whom you 

Upstart Puzzles 
Privacy-Preserving 
Polling
Can you answer a poll without revealing your true preferences and 
have the results of the poll still be accurate?

DOI:10.1145/3416266  Dennis Shasha

Political pollster: “We understand your choice of candidate may be something you want to 
keep private. At the end of this process, only you will know for sure whether the choice you 
mention is your real choice or not.”

[CONTINUED ON P.  107]

Let me flip a coin 

a couple of times 

and then I’ll tell you

...taking a poll...

Who are you 
going to vote for?

http://dx.doi.org/10.1145/3416266
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